src/share/vm/gc_implementation/parallelScavenge/psYoungGen.cpp

Thu, 09 Apr 2015 15:59:26 +0200

author
mlarsson
date
Thu, 09 Apr 2015 15:59:26 +0200
changeset 7687
af8f16ac392c
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8066771: Refactor VM GC operations caused by allocation failure
Reviewed-by: brutisso, jmasa

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 30 #include "gc_implementation/shared/gcUtil.hpp"
stefank@2314 31 #include "gc_implementation/shared/mutableNUMASpace.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "runtime/java.hpp"
duke@435 35
drchase@6680 36 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 37
duke@435 38 PSYoungGen::PSYoungGen(size_t initial_size,
duke@435 39 size_t min_size,
duke@435 40 size_t max_size) :
duke@435 41 _init_gen_size(initial_size),
duke@435 42 _min_gen_size(min_size),
duke@435 43 _max_gen_size(max_size)
duke@435 44 {}
duke@435 45
duke@435 46 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
duke@435 47 assert(_init_gen_size != 0, "Should have a finite size");
duke@435 48 _virtual_space = new PSVirtualSpace(rs, alignment);
jmasa@698 49 if (!virtual_space()->expand_by(_init_gen_size)) {
duke@435 50 vm_exit_during_initialization("Could not reserve enough space for "
duke@435 51 "object heap");
duke@435 52 }
duke@435 53 }
duke@435 54
duke@435 55 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
duke@435 56 initialize_virtual_space(rs, alignment);
duke@435 57 initialize_work();
duke@435 58 }
duke@435 59
duke@435 60 void PSYoungGen::initialize_work() {
duke@435 61
jmasa@698 62 _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
jmasa@698 63 (HeapWord*)virtual_space()->high_boundary());
duke@435 64
jmasa@698 65 MemRegion cmr((HeapWord*)virtual_space()->low(),
jmasa@698 66 (HeapWord*)virtual_space()->high());
duke@435 67 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 68
jmasa@698 69 if (ZapUnusedHeapArea) {
jmasa@698 70 // Mangle newly committed space immediately because it
jmasa@698 71 // can be done here more simply that after the new
jmasa@698 72 // spaces have been computed.
jmasa@698 73 SpaceMangler::mangle_region(cmr);
jmasa@698 74 }
jmasa@698 75
duke@435 76 if (UseNUMA) {
iveresov@970 77 _eden_space = new MutableNUMASpace(virtual_space()->alignment());
duke@435 78 } else {
iveresov@970 79 _eden_space = new MutableSpace(virtual_space()->alignment());
duke@435 80 }
iveresov@970 81 _from_space = new MutableSpace(virtual_space()->alignment());
iveresov@970 82 _to_space = new MutableSpace(virtual_space()->alignment());
duke@435 83
duke@435 84 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
duke@435 85 vm_exit_during_initialization("Could not allocate a young gen space");
duke@435 86 }
duke@435 87
duke@435 88 // Allocate the mark sweep views of spaces
duke@435 89 _eden_mark_sweep =
duke@435 90 new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
duke@435 91 _from_mark_sweep =
duke@435 92 new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
duke@435 93 _to_mark_sweep =
duke@435 94 new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
duke@435 95
duke@435 96 if (_eden_mark_sweep == NULL ||
duke@435 97 _from_mark_sweep == NULL ||
duke@435 98 _to_mark_sweep == NULL) {
duke@435 99 vm_exit_during_initialization("Could not complete allocation"
duke@435 100 " of the young generation");
duke@435 101 }
duke@435 102
duke@435 103 // Generation Counters - generation 0, 3 subspaces
duke@435 104 _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
duke@435 105
duke@435 106 // Compute maximum space sizes for performance counters
duke@435 107 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jwilhelm@6085 108 size_t alignment = heap->space_alignment();
jmasa@698 109 size_t size = virtual_space()->reserved_size();
duke@435 110
duke@435 111 size_t max_survivor_size;
duke@435 112 size_t max_eden_size;
duke@435 113
duke@435 114 if (UseAdaptiveSizePolicy) {
duke@435 115 max_survivor_size = size / MinSurvivorRatio;
duke@435 116
duke@435 117 // round the survivor space size down to the nearest alignment
duke@435 118 // and make sure its size is greater than 0.
duke@435 119 max_survivor_size = align_size_down(max_survivor_size, alignment);
duke@435 120 max_survivor_size = MAX2(max_survivor_size, alignment);
duke@435 121
duke@435 122 // set the maximum size of eden to be the size of the young gen
duke@435 123 // less two times the minimum survivor size. The minimum survivor
duke@435 124 // size for UseAdaptiveSizePolicy is one alignment.
duke@435 125 max_eden_size = size - 2 * alignment;
duke@435 126 } else {
duke@435 127 max_survivor_size = size / InitialSurvivorRatio;
duke@435 128
duke@435 129 // round the survivor space size down to the nearest alignment
duke@435 130 // and make sure its size is greater than 0.
duke@435 131 max_survivor_size = align_size_down(max_survivor_size, alignment);
duke@435 132 max_survivor_size = MAX2(max_survivor_size, alignment);
duke@435 133
duke@435 134 // set the maximum size of eden to be the size of the young gen
duke@435 135 // less two times the survivor size when the generation is 100%
duke@435 136 // committed. The minimum survivor size for -UseAdaptiveSizePolicy
duke@435 137 // is dependent on the committed portion (current capacity) of the
duke@435 138 // generation - the less space committed, the smaller the survivor
duke@435 139 // space, possibly as small as an alignment. However, we are interested
duke@435 140 // in the case where the young generation is 100% committed, as this
duke@435 141 // is the point where eden reachs its maximum size. At this point,
duke@435 142 // the size of a survivor space is max_survivor_size.
duke@435 143 max_eden_size = size - 2 * max_survivor_size;
duke@435 144 }
duke@435 145
duke@435 146 _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
duke@435 147 _gen_counters);
duke@435 148 _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
duke@435 149 _gen_counters);
duke@435 150 _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
duke@435 151 _gen_counters);
duke@435 152
duke@435 153 compute_initial_space_boundaries();
duke@435 154 }
duke@435 155
duke@435 156 void PSYoungGen::compute_initial_space_boundaries() {
duke@435 157 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 158 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 159
duke@435 160 // Compute sizes
jwilhelm@6085 161 size_t alignment = heap->space_alignment();
jmasa@698 162 size_t size = virtual_space()->committed_size();
jwilhelm@6085 163 assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
duke@435 164
duke@435 165 size_t survivor_size = size / InitialSurvivorRatio;
duke@435 166 survivor_size = align_size_down(survivor_size, alignment);
duke@435 167 // ... but never less than an alignment
duke@435 168 survivor_size = MAX2(survivor_size, alignment);
duke@435 169
duke@435 170 // Young generation is eden + 2 survivor spaces
duke@435 171 size_t eden_size = size - (2 * survivor_size);
duke@435 172
duke@435 173 // Now go ahead and set 'em.
duke@435 174 set_space_boundaries(eden_size, survivor_size);
duke@435 175 space_invariants();
duke@435 176
duke@435 177 if (UsePerfData) {
duke@435 178 _eden_counters->update_capacity();
duke@435 179 _from_counters->update_capacity();
duke@435 180 _to_counters->update_capacity();
duke@435 181 }
duke@435 182 }
duke@435 183
duke@435 184 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
jmasa@698 185 assert(eden_size < virtual_space()->committed_size(), "just checking");
duke@435 186 assert(eden_size > 0 && survivor_size > 0, "just checking");
duke@435 187
duke@435 188 // Initial layout is Eden, to, from. After swapping survivor spaces,
duke@435 189 // that leaves us with Eden, from, to, which is step one in our two
duke@435 190 // step resize-with-live-data procedure.
jmasa@698 191 char *eden_start = virtual_space()->low();
duke@435 192 char *to_start = eden_start + eden_size;
duke@435 193 char *from_start = to_start + survivor_size;
duke@435 194 char *from_end = from_start + survivor_size;
duke@435 195
jmasa@698 196 assert(from_end == virtual_space()->high(), "just checking");
duke@435 197 assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
duke@435 198 assert(is_object_aligned((intptr_t)to_start), "checking alignment");
duke@435 199 assert(is_object_aligned((intptr_t)from_start), "checking alignment");
duke@435 200
duke@435 201 MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
duke@435 202 MemRegion to_mr ((HeapWord*)to_start, (HeapWord*)from_start);
duke@435 203 MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
duke@435 204
jmasa@698 205 eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
jmasa@698 206 to_space()->initialize(to_mr , true, ZapUnusedHeapArea);
jmasa@698 207 from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
duke@435 208 }
duke@435 209
duke@435 210 #ifndef PRODUCT
duke@435 211 void PSYoungGen::space_invariants() {
duke@435 212 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jwilhelm@6085 213 const size_t alignment = heap->space_alignment();
duke@435 214
duke@435 215 // Currently, our eden size cannot shrink to zero
duke@435 216 guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
duke@435 217 guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
duke@435 218 guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
duke@435 219
duke@435 220 // Relationship of spaces to each other
duke@435 221 char* eden_start = (char*)eden_space()->bottom();
duke@435 222 char* eden_end = (char*)eden_space()->end();
duke@435 223 char* from_start = (char*)from_space()->bottom();
duke@435 224 char* from_end = (char*)from_space()->end();
duke@435 225 char* to_start = (char*)to_space()->bottom();
duke@435 226 char* to_end = (char*)to_space()->end();
duke@435 227
jmasa@698 228 guarantee(eden_start >= virtual_space()->low(), "eden bottom");
duke@435 229 guarantee(eden_start < eden_end, "eden space consistency");
duke@435 230 guarantee(from_start < from_end, "from space consistency");
duke@435 231 guarantee(to_start < to_end, "to space consistency");
duke@435 232
duke@435 233 // Check whether from space is below to space
duke@435 234 if (from_start < to_start) {
duke@435 235 // Eden, from, to
duke@435 236 guarantee(eden_end <= from_start, "eden/from boundary");
duke@435 237 guarantee(from_end <= to_start, "from/to boundary");
jmasa@698 238 guarantee(to_end <= virtual_space()->high(), "to end");
duke@435 239 } else {
duke@435 240 // Eden, to, from
duke@435 241 guarantee(eden_end <= to_start, "eden/to boundary");
duke@435 242 guarantee(to_end <= from_start, "to/from boundary");
jmasa@698 243 guarantee(from_end <= virtual_space()->high(), "from end");
duke@435 244 }
duke@435 245
duke@435 246 // More checks that the virtual space is consistent with the spaces
jmasa@698 247 assert(virtual_space()->committed_size() >=
duke@435 248 (eden_space()->capacity_in_bytes() +
duke@435 249 to_space()->capacity_in_bytes() +
duke@435 250 from_space()->capacity_in_bytes()), "Committed size is inconsistent");
jmasa@698 251 assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
duke@435 252 "Space invariant");
duke@435 253 char* eden_top = (char*)eden_space()->top();
duke@435 254 char* from_top = (char*)from_space()->top();
duke@435 255 char* to_top = (char*)to_space()->top();
jmasa@698 256 assert(eden_top <= virtual_space()->high(), "eden top");
jmasa@698 257 assert(from_top <= virtual_space()->high(), "from top");
jmasa@698 258 assert(to_top <= virtual_space()->high(), "to top");
duke@435 259
jmasa@698 260 virtual_space()->verify();
duke@435 261 }
duke@435 262 #endif
duke@435 263
duke@435 264 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
duke@435 265 // Resize the generation if needed. If the generation resize
duke@435 266 // reports false, do not attempt to resize the spaces.
duke@435 267 if (resize_generation(eden_size, survivor_size)) {
duke@435 268 // Then we lay out the spaces inside the generation
duke@435 269 resize_spaces(eden_size, survivor_size);
duke@435 270
duke@435 271 space_invariants();
duke@435 272
duke@435 273 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 274 gclog_or_tty->print_cr("Young generation size: "
duke@435 275 "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
duke@435 276 " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
duke@435 277 " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
duke@435 278 eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
duke@435 279 _max_gen_size, min_gen_size());
duke@435 280 }
duke@435 281 }
duke@435 282 }
duke@435 283
duke@435 284
duke@435 285 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
jmasa@698 286 const size_t alignment = virtual_space()->alignment();
jmasa@698 287 size_t orig_size = virtual_space()->committed_size();
duke@435 288 bool size_changed = false;
duke@435 289
duke@435 290 // There used to be this guarantee there.
duke@435 291 // guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments");
duke@435 292 // Code below forces this requirement. In addition the desired eden
duke@435 293 // size and disired survivor sizes are desired goals and may
duke@435 294 // exceed the total generation size.
duke@435 295
duke@435 296 assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
duke@435 297
duke@435 298 // Adjust new generation size
duke@435 299 const size_t eden_plus_survivors =
duke@435 300 align_size_up(eden_size + 2 * survivor_size, alignment);
duke@435 301 size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
duke@435 302 min_gen_size());
duke@435 303 assert(desired_size <= max_size(), "just checking");
duke@435 304
duke@435 305 if (desired_size > orig_size) {
duke@435 306 // Grow the generation
duke@435 307 size_t change = desired_size - orig_size;
duke@435 308 assert(change % alignment == 0, "just checking");
jmasa@698 309 HeapWord* prev_high = (HeapWord*) virtual_space()->high();
jmasa@698 310 if (!virtual_space()->expand_by(change)) {
duke@435 311 return false; // Error if we fail to resize!
duke@435 312 }
jmasa@698 313 if (ZapUnusedHeapArea) {
jmasa@698 314 // Mangle newly committed space immediately because it
jmasa@698 315 // can be done here more simply that after the new
jmasa@698 316 // spaces have been computed.
jmasa@698 317 HeapWord* new_high = (HeapWord*) virtual_space()->high();
jmasa@698 318 MemRegion mangle_region(prev_high, new_high);
jmasa@698 319 SpaceMangler::mangle_region(mangle_region);
jmasa@698 320 }
duke@435 321 size_changed = true;
duke@435 322 } else if (desired_size < orig_size) {
duke@435 323 size_t desired_change = orig_size - desired_size;
duke@435 324 assert(desired_change % alignment == 0, "just checking");
duke@435 325
duke@435 326 desired_change = limit_gen_shrink(desired_change);
duke@435 327
duke@435 328 if (desired_change > 0) {
duke@435 329 virtual_space()->shrink_by(desired_change);
duke@435 330 reset_survivors_after_shrink();
duke@435 331
duke@435 332 size_changed = true;
duke@435 333 }
duke@435 334 } else {
duke@435 335 if (Verbose && PrintGC) {
duke@435 336 if (orig_size == gen_size_limit()) {
duke@435 337 gclog_or_tty->print_cr("PSYoung generation size at maximum: "
duke@435 338 SIZE_FORMAT "K", orig_size/K);
duke@435 339 } else if (orig_size == min_gen_size()) {
duke@435 340 gclog_or_tty->print_cr("PSYoung generation size at minium: "
duke@435 341 SIZE_FORMAT "K", orig_size/K);
duke@435 342 }
duke@435 343 }
duke@435 344 }
duke@435 345
duke@435 346 if (size_changed) {
duke@435 347 post_resize();
duke@435 348
duke@435 349 if (Verbose && PrintGC) {
jmasa@698 350 size_t current_size = virtual_space()->committed_size();
duke@435 351 gclog_or_tty->print_cr("PSYoung generation size changed: "
duke@435 352 SIZE_FORMAT "K->" SIZE_FORMAT "K",
duke@435 353 orig_size/K, current_size/K);
duke@435 354 }
duke@435 355 }
duke@435 356
jmasa@698 357 guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
jmasa@698 358 virtual_space()->committed_size() == max_size(), "Sanity");
duke@435 359
duke@435 360 return true;
duke@435 361 }
duke@435 362
jmasa@698 363 #ifndef PRODUCT
jmasa@698 364 // In the numa case eden is not mangled so a survivor space
jmasa@698 365 // moving into a region previously occupied by a survivor
jmasa@698 366 // may find an unmangled region. Also in the PS case eden
jmasa@698 367 // to-space and from-space may not touch (i.e., there may be
jmasa@698 368 // gaps between them due to movement while resizing the
jmasa@698 369 // spaces). Those gaps must be mangled.
jmasa@698 370 void PSYoungGen::mangle_survivors(MutableSpace* s1,
jmasa@698 371 MemRegion s1MR,
jmasa@698 372 MutableSpace* s2,
jmasa@698 373 MemRegion s2MR) {
jmasa@698 374 // Check eden and gap between eden and from-space, in deciding
jmasa@698 375 // what to mangle in from-space. Check the gap between from-space
jmasa@698 376 // and to-space when deciding what to mangle.
jmasa@698 377 //
jmasa@698 378 // +--------+ +----+ +---+
jmasa@698 379 // | eden | |s1 | |s2 |
jmasa@698 380 // +--------+ +----+ +---+
jmasa@698 381 // +-------+ +-----+
jmasa@698 382 // |s1MR | |s2MR |
jmasa@698 383 // +-------+ +-----+
jmasa@698 384 // All of survivor-space is properly mangled so find the
jmasa@698 385 // upper bound on the mangling for any portion above current s1.
jmasa@698 386 HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
jmasa@698 387 MemRegion delta1_left;
jmasa@698 388 if (s1MR.start() < delta_end) {
jmasa@698 389 delta1_left = MemRegion(s1MR.start(), delta_end);
jmasa@698 390 s1->mangle_region(delta1_left);
jmasa@698 391 }
jmasa@698 392 // Find any portion to the right of the current s1.
jmasa@698 393 HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
jmasa@698 394 MemRegion delta1_right;
jmasa@698 395 if (delta_start < s1MR.end()) {
jmasa@698 396 delta1_right = MemRegion(delta_start, s1MR.end());
jmasa@698 397 s1->mangle_region(delta1_right);
jmasa@698 398 }
jmasa@698 399
jmasa@698 400 // Similarly for the second survivor space except that
jmasa@698 401 // any of the new region that overlaps with the current
jmasa@698 402 // region of the first survivor space has already been
jmasa@698 403 // mangled.
jmasa@698 404 delta_end = MIN2(s2->bottom(), s2MR.end());
jmasa@698 405 delta_start = MAX2(s2MR.start(), s1->end());
jmasa@698 406 MemRegion delta2_left;
jmasa@698 407 if (s2MR.start() < delta_end) {
jmasa@698 408 delta2_left = MemRegion(s2MR.start(), delta_end);
jmasa@698 409 s2->mangle_region(delta2_left);
jmasa@698 410 }
jmasa@698 411 delta_start = MAX2(s2->end(), s2MR.start());
jmasa@698 412 MemRegion delta2_right;
jmasa@698 413 if (delta_start < s2MR.end()) {
jmasa@698 414 s2->mangle_region(delta2_right);
jmasa@698 415 }
jmasa@698 416
jmasa@698 417 if (TraceZapUnusedHeapArea) {
jmasa@698 418 // s1
jmasa@698 419 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
jmasa@698 420 "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 421 s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
jmasa@698 422 gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", "
jmasa@698 423 PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 424 delta1_left.start(), delta1_left.end(), delta1_right.start(),
jmasa@698 425 delta1_right.end());
jmasa@698 426
jmasa@698 427 // s2
jmasa@698 428 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
jmasa@698 429 "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 430 s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
jmasa@698 431 gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", "
jmasa@698 432 PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 433 delta2_left.start(), delta2_left.end(), delta2_right.start(),
jmasa@698 434 delta2_right.end());
jmasa@698 435 }
jmasa@698 436
jmasa@698 437 }
jmasa@698 438 #endif // NOT PRODUCT
duke@435 439
duke@435 440 void PSYoungGen::resize_spaces(size_t requested_eden_size,
duke@435 441 size_t requested_survivor_size) {
duke@435 442 assert(UseAdaptiveSizePolicy, "sanity check");
duke@435 443 assert(requested_eden_size > 0 && requested_survivor_size > 0,
duke@435 444 "just checking");
duke@435 445
duke@435 446 // We require eden and to space to be empty
duke@435 447 if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
duke@435 448 return;
duke@435 449 }
duke@435 450
duke@435 451 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 452 gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
duke@435 453 SIZE_FORMAT
duke@435 454 ", requested_survivor_size: " SIZE_FORMAT ")",
duke@435 455 requested_eden_size, requested_survivor_size);
duke@435 456 gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 457 SIZE_FORMAT,
duke@435 458 eden_space()->bottom(),
duke@435 459 eden_space()->end(),
duke@435 460 pointer_delta(eden_space()->end(),
duke@435 461 eden_space()->bottom(),
duke@435 462 sizeof(char)));
duke@435 463 gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 464 SIZE_FORMAT,
duke@435 465 from_space()->bottom(),
duke@435 466 from_space()->end(),
duke@435 467 pointer_delta(from_space()->end(),
duke@435 468 from_space()->bottom(),
duke@435 469 sizeof(char)));
duke@435 470 gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 471 SIZE_FORMAT,
duke@435 472 to_space()->bottom(),
duke@435 473 to_space()->end(),
duke@435 474 pointer_delta( to_space()->end(),
duke@435 475 to_space()->bottom(),
duke@435 476 sizeof(char)));
duke@435 477 }
duke@435 478
duke@435 479 // There's nothing to do if the new sizes are the same as the current
duke@435 480 if (requested_survivor_size == to_space()->capacity_in_bytes() &&
duke@435 481 requested_survivor_size == from_space()->capacity_in_bytes() &&
duke@435 482 requested_eden_size == eden_space()->capacity_in_bytes()) {
duke@435 483 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 484 gclog_or_tty->print_cr(" capacities are the right sizes, returning");
duke@435 485 }
duke@435 486 return;
duke@435 487 }
duke@435 488
duke@435 489 char* eden_start = (char*)eden_space()->bottom();
duke@435 490 char* eden_end = (char*)eden_space()->end();
duke@435 491 char* from_start = (char*)from_space()->bottom();
duke@435 492 char* from_end = (char*)from_space()->end();
duke@435 493 char* to_start = (char*)to_space()->bottom();
duke@435 494 char* to_end = (char*)to_space()->end();
duke@435 495
duke@435 496 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jwilhelm@6085 497 const size_t alignment = heap->space_alignment();
duke@435 498 const bool maintain_minimum =
duke@435 499 (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
duke@435 500
jmasa@698 501 bool eden_from_to_order = from_start < to_start;
duke@435 502 // Check whether from space is below to space
jmasa@698 503 if (eden_from_to_order) {
duke@435 504 // Eden, from, to
jmasa@698 505 eden_from_to_order = true;
duke@435 506 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 507 gclog_or_tty->print_cr(" Eden, from, to:");
duke@435 508 }
duke@435 509
duke@435 510 // Set eden
duke@435 511 // "requested_eden_size" is a goal for the size of eden
duke@435 512 // and may not be attainable. "eden_size" below is
duke@435 513 // calculated based on the location of from-space and
duke@435 514 // the goal for the size of eden. from-space is
duke@435 515 // fixed in place because it contains live data.
duke@435 516 // The calculation is done this way to avoid 32bit
duke@435 517 // overflow (i.e., eden_start + requested_eden_size
duke@435 518 // may too large for representation in 32bits).
duke@435 519 size_t eden_size;
duke@435 520 if (maintain_minimum) {
duke@435 521 // Only make eden larger than the requested size if
duke@435 522 // the minimum size of the generation has to be maintained.
duke@435 523 // This could be done in general but policy at a higher
duke@435 524 // level is determining a requested size for eden and that
duke@435 525 // should be honored unless there is a fundamental reason.
duke@435 526 eden_size = pointer_delta(from_start,
duke@435 527 eden_start,
duke@435 528 sizeof(char));
duke@435 529 } else {
duke@435 530 eden_size = MIN2(requested_eden_size,
duke@435 531 pointer_delta(from_start, eden_start, sizeof(char)));
duke@435 532 }
duke@435 533
duke@435 534 eden_end = eden_start + eden_size;
jcoomes@1844 535 assert(eden_end >= eden_start, "addition overflowed");
duke@435 536
duke@435 537 // To may resize into from space as long as it is clear of live data.
duke@435 538 // From space must remain page aligned, though, so we need to do some
duke@435 539 // extra calculations.
duke@435 540
duke@435 541 // First calculate an optimal to-space
jmasa@698 542 to_end = (char*)virtual_space()->high();
duke@435 543 to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
duke@435 544 sizeof(char));
duke@435 545
duke@435 546 // Does the optimal to-space overlap from-space?
duke@435 547 if (to_start < (char*)from_space()->end()) {
duke@435 548 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 549
duke@435 550 // Calculate the minimum offset possible for from_end
duke@435 551 size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
duke@435 552
duke@435 553 // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
duke@435 554 if (from_size == 0) {
duke@435 555 from_size = alignment;
duke@435 556 } else {
duke@435 557 from_size = align_size_up(from_size, alignment);
duke@435 558 }
duke@435 559
duke@435 560 from_end = from_start + from_size;
duke@435 561 assert(from_end > from_start, "addition overflow or from_size problem");
duke@435 562
duke@435 563 guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
duke@435 564
duke@435 565 // Now update to_start with the new from_end
duke@435 566 to_start = MAX2(from_end, to_start);
duke@435 567 }
duke@435 568
duke@435 569 guarantee(to_start != to_end, "to space is zero sized");
duke@435 570
duke@435 571 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 572 gclog_or_tty->print_cr(" [eden_start .. eden_end): "
duke@435 573 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 574 eden_start,
duke@435 575 eden_end,
duke@435 576 pointer_delta(eden_end, eden_start, sizeof(char)));
duke@435 577 gclog_or_tty->print_cr(" [from_start .. from_end): "
duke@435 578 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 579 from_start,
duke@435 580 from_end,
duke@435 581 pointer_delta(from_end, from_start, sizeof(char)));
duke@435 582 gclog_or_tty->print_cr(" [ to_start .. to_end): "
duke@435 583 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 584 to_start,
duke@435 585 to_end,
duke@435 586 pointer_delta( to_end, to_start, sizeof(char)));
duke@435 587 }
duke@435 588 } else {
duke@435 589 // Eden, to, from
duke@435 590 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 591 gclog_or_tty->print_cr(" Eden, to, from:");
duke@435 592 }
duke@435 593
duke@435 594 // To space gets priority over eden resizing. Note that we position
duke@435 595 // to space as if we were able to resize from space, even though from
duke@435 596 // space is not modified.
duke@435 597 // Giving eden priority was tried and gave poorer performance.
jmasa@698 598 to_end = (char*)pointer_delta(virtual_space()->high(),
duke@435 599 (char*)requested_survivor_size,
duke@435 600 sizeof(char));
duke@435 601 to_end = MIN2(to_end, from_start);
duke@435 602 to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
duke@435 603 sizeof(char));
duke@435 604 // if the space sizes are to be increased by several times then
duke@435 605 // 'to_start' will point beyond the young generation. In this case
duke@435 606 // 'to_start' should be adjusted.
duke@435 607 to_start = MAX2(to_start, eden_start + alignment);
duke@435 608
duke@435 609 // Compute how big eden can be, then adjust end.
duke@435 610 // See comments above on calculating eden_end.
duke@435 611 size_t eden_size;
duke@435 612 if (maintain_minimum) {
duke@435 613 eden_size = pointer_delta(to_start, eden_start, sizeof(char));
duke@435 614 } else {
duke@435 615 eden_size = MIN2(requested_eden_size,
duke@435 616 pointer_delta(to_start, eden_start, sizeof(char)));
duke@435 617 }
duke@435 618 eden_end = eden_start + eden_size;
jcoomes@1844 619 assert(eden_end >= eden_start, "addition overflowed");
duke@435 620
duke@435 621 // Could choose to not let eden shrink
duke@435 622 // to_start = MAX2(to_start, eden_end);
duke@435 623
duke@435 624 // Don't let eden shrink down to 0 or less.
duke@435 625 eden_end = MAX2(eden_end, eden_start + alignment);
duke@435 626 to_start = MAX2(to_start, eden_end);
duke@435 627
duke@435 628 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 629 gclog_or_tty->print_cr(" [eden_start .. eden_end): "
duke@435 630 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 631 eden_start,
duke@435 632 eden_end,
duke@435 633 pointer_delta(eden_end, eden_start, sizeof(char)));
duke@435 634 gclog_or_tty->print_cr(" [ to_start .. to_end): "
duke@435 635 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 636 to_start,
duke@435 637 to_end,
duke@435 638 pointer_delta( to_end, to_start, sizeof(char)));
duke@435 639 gclog_or_tty->print_cr(" [from_start .. from_end): "
duke@435 640 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 641 from_start,
duke@435 642 from_end,
duke@435 643 pointer_delta(from_end, from_start, sizeof(char)));
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647
duke@435 648 guarantee((HeapWord*)from_start <= from_space()->bottom(),
duke@435 649 "from start moved to the right");
duke@435 650 guarantee((HeapWord*)from_end >= from_space()->top(),
duke@435 651 "from end moved into live data");
duke@435 652 assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
duke@435 653 assert(is_object_aligned((intptr_t)from_start), "checking alignment");
duke@435 654 assert(is_object_aligned((intptr_t)to_start), "checking alignment");
duke@435 655
duke@435 656 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
duke@435 657 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 658 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
duke@435 659
duke@435 660 // Let's make sure the call to initialize doesn't reset "top"!
duke@435 661 HeapWord* old_from_top = from_space()->top();
duke@435 662
duke@435 663 // For PrintAdaptiveSizePolicy block below
duke@435 664 size_t old_from = from_space()->capacity_in_bytes();
duke@435 665 size_t old_to = to_space()->capacity_in_bytes();
duke@435 666
jmasa@698 667 if (ZapUnusedHeapArea) {
jmasa@698 668 // NUMA is a special case because a numa space is not mangled
jmasa@698 669 // in order to not prematurely bind its address to memory to
jmasa@698 670 // the wrong memory (i.e., don't want the GC thread to first
jmasa@698 671 // touch the memory). The survivor spaces are not numa
jmasa@698 672 // spaces and are mangled.
jmasa@698 673 if (UseNUMA) {
jmasa@698 674 if (eden_from_to_order) {
jmasa@698 675 mangle_survivors(from_space(), fromMR, to_space(), toMR);
jmasa@698 676 } else {
jmasa@698 677 mangle_survivors(to_space(), toMR, from_space(), fromMR);
jmasa@698 678 }
jmasa@698 679 }
jmasa@698 680
jmasa@698 681 // If not mangling the spaces, do some checking to verify that
jmasa@698 682 // the spaces are already mangled.
jmasa@698 683 // The spaces should be correctly mangled at this point so
jmasa@698 684 // do some checking here. Note that they are not being mangled
jmasa@698 685 // in the calls to initialize().
jmasa@698 686 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 687 // the bottom or end of one space may have moved into an area
jmasa@698 688 // covered by another space and a failure of the check may
jmasa@698 689 // not correctly indicate which space is not properly mangled.
jmasa@698 690 HeapWord* limit = (HeapWord*) virtual_space()->high();
jmasa@698 691 eden_space()->check_mangled_unused_area(limit);
jmasa@698 692 from_space()->check_mangled_unused_area(limit);
jmasa@698 693 to_space()->check_mangled_unused_area(limit);
jmasa@698 694 }
jmasa@698 695 // When an existing space is being initialized, it is not
jmasa@698 696 // mangled because the space has been previously mangled.
jmasa@698 697 eden_space()->initialize(edenMR,
jmasa@698 698 SpaceDecorator::Clear,
jmasa@698 699 SpaceDecorator::DontMangle);
jmasa@698 700 to_space()->initialize(toMR,
jmasa@698 701 SpaceDecorator::Clear,
jmasa@698 702 SpaceDecorator::DontMangle);
jmasa@698 703 from_space()->initialize(fromMR,
jmasa@698 704 SpaceDecorator::DontClear,
jmasa@698 705 SpaceDecorator::DontMangle);
duke@435 706
duke@435 707 assert(from_space()->top() == old_from_top, "from top changed!");
duke@435 708
duke@435 709 if (PrintAdaptiveSizePolicy) {
duke@435 710 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 711 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 712
duke@435 713 gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
duke@435 714 "collection: %d "
duke@435 715 "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
duke@435 716 "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
duke@435 717 heap->total_collections(),
duke@435 718 old_from, old_to,
duke@435 719 from_space()->capacity_in_bytes(),
duke@435 720 to_space()->capacity_in_bytes());
duke@435 721 gclog_or_tty->cr();
duke@435 722 }
duke@435 723 }
duke@435 724
duke@435 725 void PSYoungGen::swap_spaces() {
duke@435 726 MutableSpace* s = from_space();
duke@435 727 _from_space = to_space();
duke@435 728 _to_space = s;
duke@435 729
duke@435 730 // Now update the decorators.
duke@435 731 PSMarkSweepDecorator* md = from_mark_sweep();
duke@435 732 _from_mark_sweep = to_mark_sweep();
duke@435 733 _to_mark_sweep = md;
duke@435 734
duke@435 735 assert(from_mark_sweep()->space() == from_space(), "Sanity");
duke@435 736 assert(to_mark_sweep()->space() == to_space(), "Sanity");
duke@435 737 }
duke@435 738
duke@435 739 size_t PSYoungGen::capacity_in_bytes() const {
duke@435 740 return eden_space()->capacity_in_bytes()
duke@435 741 + from_space()->capacity_in_bytes(); // to_space() is only used during scavenge
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 size_t PSYoungGen::used_in_bytes() const {
duke@435 746 return eden_space()->used_in_bytes()
duke@435 747 + from_space()->used_in_bytes(); // to_space() is only used during scavenge
duke@435 748 }
duke@435 749
duke@435 750
duke@435 751 size_t PSYoungGen::free_in_bytes() const {
duke@435 752 return eden_space()->free_in_bytes()
duke@435 753 + from_space()->free_in_bytes(); // to_space() is only used during scavenge
duke@435 754 }
duke@435 755
duke@435 756 size_t PSYoungGen::capacity_in_words() const {
duke@435 757 return eden_space()->capacity_in_words()
duke@435 758 + from_space()->capacity_in_words(); // to_space() is only used during scavenge
duke@435 759 }
duke@435 760
duke@435 761
duke@435 762 size_t PSYoungGen::used_in_words() const {
duke@435 763 return eden_space()->used_in_words()
duke@435 764 + from_space()->used_in_words(); // to_space() is only used during scavenge
duke@435 765 }
duke@435 766
duke@435 767
duke@435 768 size_t PSYoungGen::free_in_words() const {
duke@435 769 return eden_space()->free_in_words()
duke@435 770 + from_space()->free_in_words(); // to_space() is only used during scavenge
duke@435 771 }
duke@435 772
duke@435 773 void PSYoungGen::object_iterate(ObjectClosure* blk) {
duke@435 774 eden_space()->object_iterate(blk);
duke@435 775 from_space()->object_iterate(blk);
duke@435 776 to_space()->object_iterate(blk);
duke@435 777 }
duke@435 778
duke@435 779 void PSYoungGen::precompact() {
duke@435 780 eden_mark_sweep()->precompact();
duke@435 781 from_mark_sweep()->precompact();
duke@435 782 to_mark_sweep()->precompact();
duke@435 783 }
duke@435 784
duke@435 785 void PSYoungGen::adjust_pointers() {
duke@435 786 eden_mark_sweep()->adjust_pointers();
duke@435 787 from_mark_sweep()->adjust_pointers();
duke@435 788 to_mark_sweep()->adjust_pointers();
duke@435 789 }
duke@435 790
duke@435 791 void PSYoungGen::compact() {
duke@435 792 eden_mark_sweep()->compact(ZapUnusedHeapArea);
duke@435 793 from_mark_sweep()->compact(ZapUnusedHeapArea);
duke@435 794 // Mark sweep stores preserved markOops in to space, don't disturb!
duke@435 795 to_mark_sweep()->compact(false);
duke@435 796 }
duke@435 797
duke@435 798 void PSYoungGen::print() const { print_on(tty); }
duke@435 799 void PSYoungGen::print_on(outputStream* st) const {
duke@435 800 st->print(" %-15s", "PSYoungGen");
duke@435 801 if (PrintGCDetails && Verbose) {
duke@435 802 st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
duke@435 803 capacity_in_bytes(), used_in_bytes());
duke@435 804 } else {
duke@435 805 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
duke@435 806 capacity_in_bytes()/K, used_in_bytes()/K);
duke@435 807 }
jmasa@698 808 virtual_space()->print_space_boundaries_on(st);
duke@435 809 st->print(" eden"); eden_space()->print_on(st);
duke@435 810 st->print(" from"); from_space()->print_on(st);
duke@435 811 st->print(" to "); to_space()->print_on(st);
duke@435 812 }
duke@435 813
jmasa@4391 814 // Note that a space is not printed before the [NAME:
duke@435 815 void PSYoungGen::print_used_change(size_t prev_used) const {
jmasa@4391 816 gclog_or_tty->print("[%s:", name());
duke@435 817 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 818 "->" SIZE_FORMAT "K"
duke@435 819 "(" SIZE_FORMAT "K)",
duke@435 820 prev_used / K, used_in_bytes() / K,
duke@435 821 capacity_in_bytes() / K);
duke@435 822 gclog_or_tty->print("]");
duke@435 823 }
duke@435 824
duke@435 825 size_t PSYoungGen::available_for_expansion() {
duke@435 826 ShouldNotReachHere();
duke@435 827 return 0;
duke@435 828 }
duke@435 829
duke@435 830 size_t PSYoungGen::available_for_contraction() {
duke@435 831 ShouldNotReachHere();
duke@435 832 return 0;
duke@435 833 }
duke@435 834
duke@435 835 size_t PSYoungGen::available_to_min_gen() {
duke@435 836 assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
duke@435 837 return virtual_space()->committed_size() - min_gen_size();
duke@435 838 }
duke@435 839
duke@435 840 // This method assumes that from-space has live data and that
duke@435 841 // any shrinkage of the young gen is limited by location of
duke@435 842 // from-space.
duke@435 843 size_t PSYoungGen::available_to_live() {
duke@435 844 size_t delta_in_survivor = 0;
duke@435 845 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jwilhelm@6085 846 const size_t space_alignment = heap->space_alignment();
jwilhelm@6085 847 const size_t gen_alignment = heap->generation_alignment();
duke@435 848
duke@435 849 MutableSpace* space_shrinking = NULL;
duke@435 850 if (from_space()->end() > to_space()->end()) {
duke@435 851 space_shrinking = from_space();
duke@435 852 } else {
duke@435 853 space_shrinking = to_space();
duke@435 854 }
duke@435 855
duke@435 856 // Include any space that is committed but not included in
duke@435 857 // the survivor spaces.
duke@435 858 assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
duke@435 859 "Survivor space beyond high end");
duke@435 860 size_t unused_committed = pointer_delta(virtual_space()->high(),
duke@435 861 space_shrinking->end(), sizeof(char));
duke@435 862
duke@435 863 if (space_shrinking->is_empty()) {
duke@435 864 // Don't let the space shrink to 0
duke@435 865 assert(space_shrinking->capacity_in_bytes() >= space_alignment,
duke@435 866 "Space is too small");
duke@435 867 delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
duke@435 868 } else {
duke@435 869 delta_in_survivor = pointer_delta(space_shrinking->end(),
duke@435 870 space_shrinking->top(),
duke@435 871 sizeof(char));
duke@435 872 }
duke@435 873
duke@435 874 size_t delta_in_bytes = unused_committed + delta_in_survivor;
duke@435 875 delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
duke@435 876 return delta_in_bytes;
duke@435 877 }
duke@435 878
duke@435 879 // Return the number of bytes available for resizing down the young
duke@435 880 // generation. This is the minimum of
duke@435 881 // input "bytes"
duke@435 882 // bytes to the minimum young gen size
duke@435 883 // bytes to the size currently being used + some small extra
duke@435 884 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
duke@435 885 // Allow shrinkage into the current eden but keep eden large enough
duke@435 886 // to maintain the minimum young gen size
duke@435 887 bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
duke@435 888 return align_size_down(bytes, virtual_space()->alignment());
duke@435 889 }
duke@435 890
duke@435 891 void PSYoungGen::reset_after_change() {
duke@435 892 ShouldNotReachHere();
duke@435 893 }
duke@435 894
duke@435 895 void PSYoungGen::reset_survivors_after_shrink() {
duke@435 896 _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
duke@435 897 (HeapWord*)virtual_space()->high_boundary());
duke@435 898 PSScavenge::reference_processor()->set_span(_reserved);
duke@435 899
duke@435 900 MutableSpace* space_shrinking = NULL;
duke@435 901 if (from_space()->end() > to_space()->end()) {
duke@435 902 space_shrinking = from_space();
duke@435 903 } else {
duke@435 904 space_shrinking = to_space();
duke@435 905 }
duke@435 906
duke@435 907 HeapWord* new_end = (HeapWord*)virtual_space()->high();
duke@435 908 assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
duke@435 909 // Was there a shrink of the survivor space?
duke@435 910 if (new_end < space_shrinking->end()) {
duke@435 911 MemRegion mr(space_shrinking->bottom(), new_end);
jmasa@698 912 space_shrinking->initialize(mr,
jmasa@698 913 SpaceDecorator::DontClear,
jmasa@698 914 SpaceDecorator::Mangle);
duke@435 915 }
duke@435 916 }
duke@435 917
duke@435 918 // This method currently does not expect to expand into eden (i.e.,
duke@435 919 // the virtual space boundaries is expected to be consistent
duke@435 920 // with the eden boundaries..
duke@435 921 void PSYoungGen::post_resize() {
duke@435 922 assert_locked_or_safepoint(Heap_lock);
duke@435 923 assert((eden_space()->bottom() < to_space()->bottom()) &&
duke@435 924 (eden_space()->bottom() < from_space()->bottom()),
duke@435 925 "Eden is assumed to be below the survivor spaces");
duke@435 926
duke@435 927 MemRegion cmr((HeapWord*)virtual_space()->low(),
duke@435 928 (HeapWord*)virtual_space()->high());
duke@435 929 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 930 space_invariants();
duke@435 931 }
duke@435 932
duke@435 933
duke@435 934
duke@435 935 void PSYoungGen::update_counters() {
duke@435 936 if (UsePerfData) {
duke@435 937 _eden_counters->update_all();
duke@435 938 _from_counters->update_all();
duke@435 939 _to_counters->update_all();
duke@435 940 _gen_counters->update_all();
duke@435 941 }
duke@435 942 }
duke@435 943
brutisso@3711 944 void PSYoungGen::verify() {
brutisso@3711 945 eden_space()->verify();
brutisso@3711 946 from_space()->verify();
brutisso@3711 947 to_space()->verify();
duke@435 948 }
jmasa@698 949
jmasa@698 950 #ifndef PRODUCT
jmasa@698 951 void PSYoungGen::record_spaces_top() {
jmasa@698 952 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 953 eden_space()->set_top_for_allocations();
jmasa@698 954 from_space()->set_top_for_allocations();
jmasa@698 955 to_space()->set_top_for_allocations();
jmasa@698 956 }
jmasa@698 957 #endif

mercurial