src/share/vm/code/relocInfo.hpp

Thu, 24 May 2018 18:41:44 +0800

author
aoqi
date
Thu, 24 May 2018 18:41:44 +0800
changeset 8856
ac27a9c85bea
parent 6876
710a3c8b516e
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
aoqi@0 31 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
aoqi@0 32 #define SHARE_VM_CODE_RELOCINFO_HPP
aoqi@0 33
aoqi@0 34 #include "memory/allocation.hpp"
aoqi@0 35 #include "utilities/top.hpp"
aoqi@0 36
aoqi@0 37 class NativeMovConstReg;
aoqi@0 38
aoqi@0 39 // Types in this file:
aoqi@0 40 // relocInfo
aoqi@0 41 // One element of an array of halfwords encoding compressed relocations.
aoqi@0 42 // Also, the source of relocation types (relocInfo::oop_type, ...).
aoqi@0 43 // Relocation
aoqi@0 44 // A flyweight object representing a single relocation.
aoqi@0 45 // It is fully unpacked from the compressed relocation array.
aoqi@0 46 // metadata_Relocation, ... (subclasses of Relocation)
aoqi@0 47 // The location of some type-specific operations (metadata_addr, ...).
aoqi@0 48 // Also, the source of relocation specs (metadata_Relocation::spec, ...).
aoqi@0 49 // oop_Relocation, ... (subclasses of Relocation)
aoqi@0 50 // oops in the code stream (strings, class loaders)
aoqi@0 51 // Also, the source of relocation specs (oop_Relocation::spec, ...).
aoqi@0 52 // RelocationHolder
aoqi@0 53 // A ValueObj type which acts as a union holding a Relocation object.
aoqi@0 54 // Represents a relocation spec passed into a CodeBuffer during assembly.
aoqi@0 55 // RelocIterator
aoqi@0 56 // A StackObj which iterates over the relocations associated with
aoqi@0 57 // a range of code addresses. Can be used to operate a copy of code.
aoqi@0 58 // BoundRelocation
aoqi@0 59 // An _internal_ type shared by packers and unpackers of relocations.
aoqi@0 60 // It pastes together a RelocationHolder with some pointers into
aoqi@0 61 // code and relocInfo streams.
aoqi@0 62
aoqi@0 63
aoqi@0 64 // Notes on relocType:
aoqi@0 65 //
aoqi@0 66 // These hold enough information to read or write a value embedded in
aoqi@0 67 // the instructions of an CodeBlob. They're used to update:
aoqi@0 68 //
aoqi@0 69 // 1) embedded oops (isOop() == true)
aoqi@0 70 // 2) inline caches (isIC() == true)
aoqi@0 71 // 3) runtime calls (isRuntimeCall() == true)
aoqi@0 72 // 4) internal word ref (isInternalWord() == true)
aoqi@0 73 // 5) external word ref (isExternalWord() == true)
aoqi@0 74 //
aoqi@0 75 // when objects move (GC) or if code moves (compacting the code heap).
aoqi@0 76 // They are also used to patch the code (if a call site must change)
aoqi@0 77 //
aoqi@0 78 // A relocInfo is represented in 16 bits:
aoqi@0 79 // 4 bits indicating the relocation type
aoqi@0 80 // 12 bits indicating the offset from the previous relocInfo address
aoqi@0 81 //
aoqi@0 82 // The offsets accumulate along the relocInfo stream to encode the
aoqi@0 83 // address within the CodeBlob, which is named RelocIterator::addr().
aoqi@0 84 // The address of a particular relocInfo always points to the first
aoqi@0 85 // byte of the relevant instruction (and not to any of its subfields
aoqi@0 86 // or embedded immediate constants).
aoqi@0 87 //
aoqi@0 88 // The offset value is scaled appropriately for the target machine.
aoqi@0 89 // (See relocInfo_<arch>.hpp for the offset scaling.)
aoqi@0 90 //
aoqi@0 91 // On some machines, there may also be a "format" field which may provide
aoqi@0 92 // additional information about the format of the instruction stream
aoqi@0 93 // at the corresponding code address. The format value is usually zero.
aoqi@0 94 // Any machine (such as Intel) whose instructions can sometimes contain
aoqi@0 95 // more than one relocatable constant needs format codes to distinguish
aoqi@0 96 // which operand goes with a given relocation.
aoqi@0 97 //
aoqi@0 98 // If the target machine needs N format bits, the offset has 12-N bits,
aoqi@0 99 // the format is encoded between the offset and the type, and the
aoqi@0 100 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
aoqi@0 101 //
aoqi@0 102 // If the type is "data_prefix_tag" then the offset bits are further encoded,
aoqi@0 103 // and in fact represent not a code-stream offset but some inline data.
aoqi@0 104 // The data takes the form of a counted sequence of halfwords, which
aoqi@0 105 // precedes the actual relocation record. (Clients never see it directly.)
aoqi@0 106 // The interpetation of this extra data depends on the relocation type.
aoqi@0 107 //
aoqi@0 108 // On machines that have 32-bit immediate fields, there is usually
aoqi@0 109 // little need for relocation "prefix" data, because the instruction stream
aoqi@0 110 // is a perfectly reasonable place to store the value. On machines in
aoqi@0 111 // which 32-bit values must be "split" across instructions, the relocation
aoqi@0 112 // data is the "true" specification of the value, which is then applied
aoqi@0 113 // to some field of the instruction (22 or 13 bits, on SPARC).
aoqi@0 114 //
aoqi@0 115 // Whenever the location of the CodeBlob changes, any PC-relative
aoqi@0 116 // relocations, and any internal_word_type relocations, must be reapplied.
aoqi@0 117 // After the GC runs, oop_type relocations must be reapplied.
aoqi@0 118 //
aoqi@0 119 //
aoqi@0 120 // Here are meanings of the types:
aoqi@0 121 //
aoqi@0 122 // relocInfo::none -- a filler record
aoqi@0 123 // Value: none
aoqi@0 124 // Instruction: The corresponding code address is ignored
aoqi@0 125 // Data: Any data prefix and format code are ignored
aoqi@0 126 // (This means that any relocInfo can be disabled by setting
aoqi@0 127 // its type to none. See relocInfo::remove.)
aoqi@0 128 //
aoqi@0 129 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
aoqi@0 130 // Value: an oop, or else the address (handle) of an oop
aoqi@0 131 // Instruction types: memory (load), set (load address)
aoqi@0 132 // Data: [] an oop stored in 4 bytes of instruction
aoqi@0 133 // [n] n is the index of an oop in the CodeBlob's oop pool
aoqi@0 134 // [[N]n l] and l is a byte offset to be applied to the oop
aoqi@0 135 // [Nn Ll] both index and offset may be 32 bits if necessary
aoqi@0 136 // Here is a special hack, used only by the old compiler:
aoqi@0 137 // [[N]n 00] the value is the __address__ of the nth oop in the pool
aoqi@0 138 // (Note that the offset allows optimal references to class variables.)
aoqi@0 139 //
aoqi@0 140 // relocInfo::internal_word_type -- an address within the same CodeBlob
aoqi@0 141 // relocInfo::section_word_type -- same, but can refer to another section
aoqi@0 142 // Value: an address in the CodeBlob's code or constants section
aoqi@0 143 // Instruction types: memory (load), set (load address)
aoqi@0 144 // Data: [] stored in 4 bytes of instruction
aoqi@0 145 // [[L]l] a relative offset (see [About Offsets] below)
aoqi@0 146 // In the case of section_word_type, the offset is relative to a section
aoqi@0 147 // base address, and the section number (e.g., SECT_INSTS) is encoded
aoqi@0 148 // into the low two bits of the offset L.
aoqi@0 149 //
aoqi@0 150 // relocInfo::external_word_type -- a fixed address in the runtime system
aoqi@0 151 // Value: an address
aoqi@0 152 // Instruction types: memory (load), set (load address)
aoqi@0 153 // Data: [] stored in 4 bytes of instruction
aoqi@0 154 // [n] the index of a "well-known" stub (usual case on RISC)
aoqi@0 155 // [Ll] a 32-bit address
aoqi@0 156 //
aoqi@0 157 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
aoqi@0 158 // Value: an address
aoqi@0 159 // Instruction types: PC-relative call (or a PC-relative branch)
aoqi@0 160 // Data: [] stored in 4 bytes of instruction
aoqi@0 161 //
aoqi@0 162 // relocInfo::static_call_type -- a static call
aoqi@0 163 // Value: an CodeBlob, a stub, or a fixup routine
aoqi@0 164 // Instruction types: a call
aoqi@0 165 // Data: []
aoqi@0 166 // The identity of the callee is extracted from debugging information.
aoqi@0 167 // //%note reloc_3
aoqi@0 168 //
aoqi@0 169 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
aoqi@0 170 // cache)
aoqi@0 171 // Value: an CodeBlob, a stub, the interpreter, or a fixup routine
aoqi@0 172 // Instruction types: a call, plus some associated set-oop instructions
aoqi@0 173 // Data: [] the associated set-oops are adjacent to the call
aoqi@0 174 // [n] n is a relative offset to the first set-oop
aoqi@0 175 // [[N]n l] and l is a limit within which the set-oops occur
aoqi@0 176 // [Nn Ll] both n and l may be 32 bits if necessary
aoqi@0 177 // The identity of the callee is extracted from debugging information.
aoqi@0 178 //
aoqi@0 179 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
aoqi@0 180 //
aoqi@0 181 // Same info as a static_call_type. We use a special type, so the handling of
aoqi@0 182 // virtuals and statics are separated.
aoqi@0 183 //
aoqi@0 184 //
aoqi@0 185 // The offset n points to the first set-oop. (See [About Offsets] below.)
aoqi@0 186 // In turn, the set-oop instruction specifies or contains an oop cell devoted
aoqi@0 187 // exclusively to the IC call, which can be patched along with the call.
aoqi@0 188 //
aoqi@0 189 // The locations of any other set-oops are found by searching the relocation
aoqi@0 190 // information starting at the first set-oop, and continuing until all
aoqi@0 191 // relocations up through l have been inspected. The value l is another
aoqi@0 192 // relative offset. (Both n and l are relative to the call's first byte.)
aoqi@0 193 //
aoqi@0 194 // The limit l of the search is exclusive. However, if it points within
aoqi@0 195 // the call (e.g., offset zero), it is adjusted to point after the call and
aoqi@0 196 // any associated machine-specific delay slot.
aoqi@0 197 //
aoqi@0 198 // Since the offsets could be as wide as 32-bits, these conventions
aoqi@0 199 // put no restrictions whatever upon code reorganization.
aoqi@0 200 //
aoqi@0 201 // The compiler is responsible for ensuring that transition from a clean
aoqi@0 202 // state to a monomorphic compiled state is MP-safe. This implies that
aoqi@0 203 // the system must respond well to intermediate states where a random
aoqi@0 204 // subset of the set-oops has been correctly from the clean state
aoqi@0 205 // upon entry to the VEP of the compiled method. In the case of a
aoqi@0 206 // machine (Intel) with a single set-oop instruction, the 32-bit
aoqi@0 207 // immediate field must not straddle a unit of memory coherence.
aoqi@0 208 // //%note reloc_3
aoqi@0 209 //
aoqi@0 210 // relocInfo::static_stub_type -- an extra stub for each static_call_type
aoqi@0 211 // Value: none
aoqi@0 212 // Instruction types: a virtual call: { set_oop; jump; }
aoqi@0 213 // Data: [[N]n] the offset of the associated static_call reloc
aoqi@0 214 // This stub becomes the target of a static call which must be upgraded
aoqi@0 215 // to a virtual call (because the callee is interpreted).
aoqi@0 216 // See [About Offsets] below.
aoqi@0 217 // //%note reloc_2
aoqi@0 218 //
aoqi@0 219 // For example:
aoqi@0 220 //
aoqi@0 221 // INSTRUCTIONS RELOC: TYPE PREFIX DATA
aoqi@0 222 // ------------ ---- -----------
aoqi@0 223 // sethi %hi(myObject), R oop_type [n(myObject)]
aoqi@0 224 // ld [R+%lo(myObject)+fldOffset], R2 oop_type [n(myObject) fldOffset]
aoqi@0 225 // add R2, 1, R2
aoqi@0 226 // st R2, [R+%lo(myObject)+fldOffset] oop_type [n(myObject) fldOffset]
aoqi@0 227 //%note reloc_1
aoqi@0 228 //
aoqi@0 229 // This uses 4 instruction words, 8 relocation halfwords,
aoqi@0 230 // and an entry (which is sharable) in the CodeBlob's oop pool,
aoqi@0 231 // for a total of 36 bytes.
aoqi@0 232 //
aoqi@0 233 // Note that the compiler is responsible for ensuring the "fldOffset" when
aoqi@0 234 // added to "%lo(myObject)" does not overflow the immediate fields of the
aoqi@0 235 // memory instructions.
aoqi@0 236 //
aoqi@0 237 //
aoqi@0 238 // [About Offsets] Relative offsets are supplied to this module as
aoqi@0 239 // positive byte offsets, but they may be internally stored scaled
aoqi@0 240 // and/or negated, depending on what is most compact for the target
aoqi@0 241 // system. Since the object pointed to by the offset typically
aoqi@0 242 // precedes the relocation address, it is profitable to store
aoqi@0 243 // these negative offsets as positive numbers, but this decision
aoqi@0 244 // is internal to the relocation information abstractions.
aoqi@0 245 //
aoqi@0 246
aoqi@0 247 class Relocation;
aoqi@0 248 class CodeBuffer;
aoqi@0 249 class CodeSection;
aoqi@0 250 class RelocIterator;
aoqi@0 251
aoqi@0 252 class relocInfo VALUE_OBJ_CLASS_SPEC {
aoqi@0 253 friend class RelocIterator;
aoqi@0 254 public:
aoqi@0 255 enum relocType {
aoqi@0 256 none = 0, // Used when no relocation should be generated
aoqi@0 257 oop_type = 1, // embedded oop
aoqi@0 258 virtual_call_type = 2, // a standard inline cache call for a virtual send
aoqi@0 259 opt_virtual_call_type = 3, // a virtual call that has been statically bound (i.e., no IC cache)
aoqi@0 260 static_call_type = 4, // a static send
aoqi@0 261 static_stub_type = 5, // stub-entry for static send (takes care of interpreter case)
aoqi@0 262 runtime_call_type = 6, // call to fixed external routine
aoqi@0 263 external_word_type = 7, // reference to fixed external address
aoqi@0 264 internal_word_type = 8, // reference within the current code blob
aoqi@0 265 section_word_type = 9, // internal, but a cross-section reference
aoqi@0 266 poll_type = 10, // polling instruction for safepoints
aoqi@0 267 poll_return_type = 11, // polling instruction for safepoints at return
aoqi@0 268 metadata_type = 12, // metadata that used to be oops
aoqi@0 269 trampoline_stub_type = 13, // stub-entry for trampoline
aoqi@1 270 #ifndef MIPS64
aoqi@0 271 yet_unused_type_1 = 14, // Still unused
aoqi@1 272 #else
aoqi@1 273 internal_pc_type = 14, // tag for internal data,??
aoqi@1 274 #endif
aoqi@0 275 data_prefix_tag = 15, // tag for a prefix (carries data arguments)
aoqi@0 276 type_mask = 15 // A mask which selects only the above values
aoqi@0 277 };
aoqi@0 278
aoqi@0 279 protected:
aoqi@0 280 unsigned short _value;
aoqi@0 281
aoqi@0 282 enum RawBitsToken { RAW_BITS };
aoqi@0 283 relocInfo(relocType type, RawBitsToken ignore, int bits)
aoqi@0 284 : _value((type << nontype_width) + bits) { }
aoqi@0 285
aoqi@0 286 relocInfo(relocType type, RawBitsToken ignore, int off, int f)
aoqi@0 287 : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
aoqi@0 288
aoqi@0 289 public:
aoqi@0 290 // constructor
aoqi@0 291 relocInfo(relocType type, int offset, int format = 0)
aoqi@0 292 #ifndef ASSERT
aoqi@0 293 {
aoqi@0 294 (*this) = relocInfo(type, RAW_BITS, offset, format);
aoqi@0 295 }
aoqi@0 296 #else
aoqi@0 297 // Put a bunch of assertions out-of-line.
aoqi@0 298 ;
aoqi@0 299 #endif
aoqi@0 300
aoqi@0 301 #define APPLY_TO_RELOCATIONS(visitor) \
aoqi@0 302 visitor(oop) \
aoqi@0 303 visitor(metadata) \
aoqi@0 304 visitor(virtual_call) \
aoqi@0 305 visitor(opt_virtual_call) \
aoqi@0 306 visitor(static_call) \
aoqi@0 307 visitor(static_stub) \
aoqi@0 308 visitor(runtime_call) \
aoqi@0 309 visitor(external_word) \
aoqi@0 310 visitor(internal_word) \
aoqi@0 311 visitor(poll) \
aoqi@0 312 visitor(poll_return) \
aoqi@0 313 visitor(trampoline_stub) \
aoqi@1 314 NOT_MIPS64(visitor(section_word)) MIPS64_ONLY(visitor(internal_pc)) \
aoqi@0 315
aoqi@0 316
aoqi@0 317 public:
aoqi@0 318 enum {
aoqi@0 319 value_width = sizeof(unsigned short) * BitsPerByte,
aoqi@0 320 type_width = 4, // == log2(type_mask+1)
aoqi@0 321 nontype_width = value_width - type_width,
aoqi@0 322 datalen_width = nontype_width-1,
aoqi@0 323 datalen_tag = 1 << datalen_width, // or-ed into _value
aoqi@0 324 datalen_limit = 1 << datalen_width,
aoqi@0 325 datalen_mask = (1 << datalen_width)-1
aoqi@0 326 };
aoqi@0 327
aoqi@0 328 // accessors
aoqi@0 329 public:
aoqi@0 330 relocType type() const { return (relocType)((unsigned)_value >> nontype_width); }
aoqi@0 331 int format() const { return format_mask==0? 0: format_mask &
aoqi@0 332 ((unsigned)_value >> offset_width); }
aoqi@0 333 int addr_offset() const { assert(!is_prefix(), "must have offset");
aoqi@0 334 return (_value & offset_mask)*offset_unit; }
aoqi@0 335
aoqi@0 336 protected:
aoqi@0 337 const short* data() const { assert(is_datalen(), "must have data");
aoqi@0 338 return (const short*)(this + 1); }
aoqi@0 339 int datalen() const { assert(is_datalen(), "must have data");
aoqi@0 340 return (_value & datalen_mask); }
aoqi@0 341 int immediate() const { assert(is_immediate(), "must have immed");
aoqi@0 342 return (_value & datalen_mask); }
aoqi@0 343 public:
aoqi@0 344 static int addr_unit() { return offset_unit; }
aoqi@0 345 static int offset_limit() { return (1 << offset_width) * offset_unit; }
aoqi@0 346
aoqi@0 347 void set_type(relocType type);
aoqi@0 348 void set_format(int format);
aoqi@0 349
aoqi@0 350 void remove() { set_type(none); }
aoqi@0 351
aoqi@0 352 protected:
aoqi@0 353 bool is_none() const { return type() == none; }
aoqi@0 354 bool is_prefix() const { return type() == data_prefix_tag; }
aoqi@0 355 bool is_datalen() const { assert(is_prefix(), "must be prefix");
aoqi@0 356 return (_value & datalen_tag) != 0; }
aoqi@0 357 bool is_immediate() const { assert(is_prefix(), "must be prefix");
aoqi@0 358 return (_value & datalen_tag) == 0; }
aoqi@0 359
aoqi@0 360 public:
aoqi@0 361 // Occasionally records of type relocInfo::none will appear in the stream.
aoqi@0 362 // We do not bother to filter these out, but clients should ignore them.
aoqi@0 363 // These records serve as "filler" in three ways:
aoqi@0 364 // - to skip large spans of unrelocated code (this is rare)
aoqi@0 365 // - to pad out the relocInfo array to the required oop alignment
aoqi@0 366 // - to disable old relocation information which is no longer applicable
aoqi@0 367
aoqi@0 368 inline friend relocInfo filler_relocInfo();
aoqi@0 369
aoqi@0 370 // Every non-prefix relocation may be preceded by at most one prefix,
aoqi@0 371 // which supplies 1 or more halfwords of associated data. Conventionally,
aoqi@0 372 // an int is represented by 0, 1, or 2 halfwords, depending on how
aoqi@0 373 // many bits are required to represent the value. (In addition,
aoqi@0 374 // if the sole halfword is a 10-bit unsigned number, it is made
aoqi@0 375 // "immediate" in the prefix header word itself. This optimization
aoqi@0 376 // is invisible outside this module.)
aoqi@0 377
aoqi@0 378 inline friend relocInfo prefix_relocInfo(int datalen);
aoqi@0 379
aoqi@0 380 protected:
aoqi@0 381 // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
aoqi@0 382 static relocInfo immediate_relocInfo(int data0) {
aoqi@0 383 assert(fits_into_immediate(data0), "data0 in limits");
aoqi@0 384 return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
aoqi@0 385 }
aoqi@0 386 static bool fits_into_immediate(int data0) {
aoqi@0 387 return (data0 >= 0 && data0 < datalen_limit);
aoqi@0 388 }
aoqi@0 389
aoqi@0 390 public:
aoqi@0 391 // Support routines for compilers.
aoqi@0 392
aoqi@0 393 // This routine takes an infant relocInfo (unprefixed) and
aoqi@0 394 // edits in its prefix, if any. It also updates dest.locs_end.
aoqi@0 395 void initialize(CodeSection* dest, Relocation* reloc);
aoqi@0 396
aoqi@0 397 // This routine updates a prefix and returns the limit pointer.
aoqi@0 398 // It tries to compress the prefix from 32 to 16 bits, and if
aoqi@0 399 // successful returns a reduced "prefix_limit" pointer.
aoqi@0 400 relocInfo* finish_prefix(short* prefix_limit);
aoqi@0 401
aoqi@0 402 // bit-packers for the data array:
aoqi@0 403
aoqi@0 404 // As it happens, the bytes within the shorts are ordered natively,
aoqi@0 405 // but the shorts within the word are ordered big-endian.
aoqi@0 406 // This is an arbitrary choice, made this way mainly to ease debugging.
aoqi@0 407 static int data0_from_int(jint x) { return x >> value_width; }
aoqi@0 408 static int data1_from_int(jint x) { return (short)x; }
aoqi@0 409 static jint jint_from_data(short* data) {
aoqi@0 410 return (data[0] << value_width) + (unsigned short)data[1];
aoqi@0 411 }
aoqi@0 412
aoqi@0 413 static jint short_data_at(int n, short* data, int datalen) {
aoqi@0 414 return datalen > n ? data[n] : 0;
aoqi@0 415 }
aoqi@0 416
aoqi@0 417 static jint jint_data_at(int n, short* data, int datalen) {
aoqi@0 418 return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
aoqi@0 419 }
aoqi@0 420
aoqi@0 421 // Update methods for relocation information
aoqi@0 422 // (since code is dynamically patched, we also need to dynamically update the relocation info)
aoqi@0 423 // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
aoqi@0 424 static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
aoqi@0 425 static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
aoqi@0 426
aoqi@0 427 // Machine dependent stuff
aoqi@0 428 #ifdef TARGET_ARCH_x86
aoqi@0 429 # include "relocInfo_x86.hpp"
aoqi@0 430 #endif
aoqi@0 431 #ifdef TARGET_ARCH_sparc
aoqi@0 432 # include "relocInfo_sparc.hpp"
aoqi@0 433 #endif
aoqi@0 434 #ifdef TARGET_ARCH_zero
aoqi@0 435 # include "relocInfo_zero.hpp"
aoqi@0 436 #endif
aoqi@0 437 #ifdef TARGET_ARCH_arm
aoqi@0 438 # include "relocInfo_arm.hpp"
aoqi@0 439 #endif
aoqi@0 440 #ifdef TARGET_ARCH_ppc
aoqi@0 441 # include "relocInfo_ppc.hpp"
aoqi@0 442 #endif
aoqi@1 443 #ifdef TARGET_ARCH_mips
aoqi@1 444 # include "relocInfo_mips.hpp"
aoqi@1 445 #endif
aoqi@0 446
aoqi@0 447
aoqi@0 448 protected:
aoqi@0 449 // Derived constant, based on format_width which is PD:
aoqi@0 450 enum {
aoqi@0 451 offset_width = nontype_width - format_width,
aoqi@0 452 offset_mask = (1<<offset_width) - 1,
aoqi@0 453 format_mask = (1<<format_width) - 1
aoqi@0 454 };
aoqi@0 455 public:
aoqi@0 456 enum {
aoqi@0 457 // Conservatively large estimate of maximum length (in shorts)
aoqi@0 458 // of any relocation record.
aoqi@0 459 // Extended format is length prefix, data words, and tag/offset suffix.
aoqi@0 460 length_limit = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
aoqi@0 461 have_format = format_width > 0
aoqi@0 462 };
aoqi@0 463 };
aoqi@0 464
aoqi@0 465 #define FORWARD_DECLARE_EACH_CLASS(name) \
aoqi@0 466 class name##_Relocation;
aoqi@0 467 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
aoqi@0 468 #undef FORWARD_DECLARE_EACH_CLASS
aoqi@0 469
aoqi@0 470
aoqi@0 471
aoqi@0 472 inline relocInfo filler_relocInfo() {
aoqi@0 473 return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
aoqi@0 474 }
aoqi@0 475
aoqi@0 476 inline relocInfo prefix_relocInfo(int datalen = 0) {
aoqi@0 477 assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
aoqi@0 478 return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
aoqi@0 479 }
aoqi@0 480
aoqi@0 481
aoqi@0 482 // Holder for flyweight relocation objects.
aoqi@0 483 // Although the flyweight subclasses are of varying sizes,
aoqi@0 484 // the holder is "one size fits all".
aoqi@0 485 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
aoqi@0 486 friend class Relocation;
aoqi@0 487 friend class CodeSection;
aoqi@0 488
aoqi@0 489 private:
aoqi@0 490 // this preallocated memory must accommodate all subclasses of Relocation
aoqi@0 491 // (this number is assertion-checked in Relocation::operator new)
aoqi@0 492 enum { _relocbuf_size = 5 };
aoqi@0 493 void* _relocbuf[ _relocbuf_size ];
aoqi@0 494
aoqi@0 495 public:
aoqi@0 496 Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
aoqi@0 497 inline relocInfo::relocType type() const;
aoqi@0 498
aoqi@0 499 // Add a constant offset to a relocation. Helper for class Address.
aoqi@0 500 RelocationHolder plus(int offset) const;
aoqi@0 501
aoqi@0 502 inline RelocationHolder(); // initializes type to none
aoqi@0 503
aoqi@0 504 inline RelocationHolder(Relocation* r); // make a copy
aoqi@0 505
aoqi@0 506 static const RelocationHolder none;
aoqi@0 507 };
aoqi@0 508
aoqi@0 509 // A RelocIterator iterates through the relocation information of a CodeBlob.
aoqi@0 510 // It is a variable BoundRelocation which is able to take on successive
aoqi@0 511 // values as it is advanced through a code stream.
aoqi@0 512 // Usage:
aoqi@0 513 // RelocIterator iter(nm);
aoqi@0 514 // while (iter.next()) {
aoqi@0 515 // iter.reloc()->some_operation();
aoqi@0 516 // }
aoqi@0 517 // or:
aoqi@0 518 // RelocIterator iter(nm);
aoqi@0 519 // while (iter.next()) {
aoqi@0 520 // switch (iter.type()) {
aoqi@0 521 // case relocInfo::oop_type :
aoqi@0 522 // case relocInfo::ic_type :
aoqi@0 523 // case relocInfo::prim_type :
aoqi@0 524 // case relocInfo::uncommon_type :
aoqi@0 525 // case relocInfo::runtime_call_type :
aoqi@0 526 // case relocInfo::internal_word_type:
aoqi@0 527 // case relocInfo::external_word_type:
aoqi@0 528 // ...
aoqi@0 529 // }
aoqi@0 530 // }
aoqi@0 531
aoqi@0 532 class RelocIterator : public StackObj {
aoqi@0 533 enum { SECT_LIMIT = 3 }; // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
aoqi@0 534 friend class Relocation;
aoqi@0 535 friend class relocInfo; // for change_reloc_info_for_address only
aoqi@0 536 typedef relocInfo::relocType relocType;
aoqi@0 537
aoqi@0 538 private:
aoqi@0 539 address _limit; // stop producing relocations after this _addr
aoqi@0 540 relocInfo* _current; // the current relocation information
aoqi@0 541 relocInfo* _end; // end marker; we're done iterating when _current == _end
aoqi@0 542 nmethod* _code; // compiled method containing _addr
aoqi@0 543 address _addr; // instruction to which the relocation applies
aoqi@0 544 short _databuf; // spare buffer for compressed data
aoqi@0 545 short* _data; // pointer to the relocation's data
aoqi@0 546 short _datalen; // number of halfwords in _data
aoqi@0 547 char _format; // position within the instruction
aoqi@0 548
aoqi@0 549 // Base addresses needed to compute targets of section_word_type relocs.
aoqi@0 550 address _section_start[SECT_LIMIT];
aoqi@0 551 address _section_end [SECT_LIMIT];
aoqi@0 552
aoqi@0 553 void set_has_current(bool b) {
aoqi@0 554 _datalen = !b ? -1 : 0;
aoqi@0 555 debug_only(_data = NULL);
aoqi@0 556 }
aoqi@0 557 void set_current(relocInfo& ri) {
aoqi@0 558 _current = &ri;
aoqi@0 559 set_has_current(true);
aoqi@0 560 }
aoqi@0 561
aoqi@0 562 RelocationHolder _rh; // where the current relocation is allocated
aoqi@0 563
aoqi@0 564 relocInfo* current() const { assert(has_current(), "must have current");
aoqi@0 565 return _current; }
aoqi@0 566
aoqi@0 567 void set_limits(address begin, address limit);
aoqi@0 568
aoqi@0 569 void advance_over_prefix(); // helper method
aoqi@0 570
aoqi@0 571 void initialize_misc();
aoqi@0 572
aoqi@0 573 void initialize(nmethod* nm, address begin, address limit);
aoqi@0 574
aoqi@0 575 RelocIterator() { initialize_misc(); }
aoqi@0 576
aoqi@0 577 public:
aoqi@0 578 // constructor
aoqi@0 579 RelocIterator(nmethod* nm, address begin = NULL, address limit = NULL);
aoqi@0 580 RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
aoqi@0 581
aoqi@0 582 // get next reloc info, return !eos
aoqi@0 583 bool next() {
aoqi@0 584 _current++;
aoqi@0 585 assert(_current <= _end, "must not overrun relocInfo");
aoqi@0 586 if (_current == _end) {
aoqi@0 587 set_has_current(false);
aoqi@0 588 return false;
aoqi@0 589 }
aoqi@0 590 set_has_current(true);
aoqi@0 591
aoqi@0 592 if (_current->is_prefix()) {
aoqi@0 593 advance_over_prefix();
aoqi@0 594 assert(!current()->is_prefix(), "only one prefix at a time");
aoqi@0 595 }
aoqi@0 596
aoqi@0 597 _addr += _current->addr_offset();
aoqi@0 598
aoqi@0 599 if (_limit != NULL && _addr >= _limit) {
aoqi@0 600 set_has_current(false);
aoqi@0 601 return false;
aoqi@0 602 }
aoqi@0 603
aoqi@0 604 if (relocInfo::have_format) _format = current()->format();
aoqi@0 605 return true;
aoqi@0 606 }
aoqi@0 607
aoqi@0 608 // accessors
aoqi@0 609 address limit() const { return _limit; }
aoqi@0 610 void set_limit(address x);
aoqi@0 611 relocType type() const { return current()->type(); }
aoqi@0 612 int format() const { return (relocInfo::have_format) ? current()->format() : 0; }
aoqi@0 613 address addr() const { return _addr; }
aoqi@0 614 nmethod* code() const { return _code; }
aoqi@0 615 short* data() const { return _data; }
aoqi@0 616 int datalen() const { return _datalen; }
aoqi@0 617 bool has_current() const { return _datalen >= 0; }
aoqi@0 618
aoqi@0 619 void set_addr(address addr) { _addr = addr; }
aoqi@0 620 bool addr_in_const() const;
aoqi@0 621
aoqi@0 622 address section_start(int n) const {
aoqi@0 623 assert(_section_start[n], "must be initialized");
aoqi@0 624 return _section_start[n];
aoqi@0 625 }
aoqi@0 626 address section_end(int n) const {
aoqi@0 627 assert(_section_end[n], "must be initialized");
aoqi@0 628 return _section_end[n];
aoqi@0 629 }
aoqi@0 630
aoqi@0 631 // The address points to the affected displacement part of the instruction.
aoqi@0 632 // For RISC, this is just the whole instruction.
aoqi@0 633 // For Intel, this is an unaligned 32-bit word.
aoqi@0 634
aoqi@0 635 // type-specific relocation accessors: oop_Relocation* oop_reloc(), etc.
aoqi@0 636 #define EACH_TYPE(name) \
aoqi@0 637 inline name##_Relocation* name##_reloc();
aoqi@0 638 APPLY_TO_RELOCATIONS(EACH_TYPE)
aoqi@0 639 #undef EACH_TYPE
aoqi@0 640 // generic relocation accessor; switches on type to call the above
aoqi@0 641 Relocation* reloc();
aoqi@0 642
aoqi@0 643 // CodeBlob's have relocation indexes for faster random access:
aoqi@0 644 static int locs_and_index_size(int code_size, int locs_size);
aoqi@0 645 // Store an index into [dest_start+dest_count..dest_end).
aoqi@0 646 // At dest_start[0..dest_count] is the actual relocation information.
aoqi@0 647 // Everything else up to dest_end is free space for the index.
aoqi@0 648 static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
aoqi@0 649
aoqi@0 650 #ifndef PRODUCT
aoqi@0 651 public:
aoqi@0 652 void print();
aoqi@0 653 void print_current();
aoqi@0 654 #endif
aoqi@0 655 };
aoqi@0 656
aoqi@0 657
aoqi@0 658 // A Relocation is a flyweight object allocated within a RelocationHolder.
aoqi@0 659 // It represents the relocation data of relocation record.
aoqi@0 660 // So, the RelocIterator unpacks relocInfos into Relocations.
aoqi@0 661
aoqi@0 662 class Relocation VALUE_OBJ_CLASS_SPEC {
aoqi@0 663 friend class RelocationHolder;
aoqi@0 664 friend class RelocIterator;
aoqi@0 665
aoqi@0 666 private:
aoqi@0 667 static void guarantee_size();
aoqi@0 668
aoqi@0 669 // When a relocation has been created by a RelocIterator,
aoqi@0 670 // this field is non-null. It allows the relocation to know
aoqi@0 671 // its context, such as the address to which it applies.
aoqi@0 672 RelocIterator* _binding;
aoqi@0 673
aoqi@0 674 protected:
aoqi@0 675 RelocIterator* binding() const {
aoqi@0 676 assert(_binding != NULL, "must be bound");
aoqi@0 677 return _binding;
aoqi@0 678 }
aoqi@0 679 void set_binding(RelocIterator* b) {
aoqi@0 680 assert(_binding == NULL, "must be unbound");
aoqi@0 681 _binding = b;
aoqi@0 682 assert(_binding != NULL, "must now be bound");
aoqi@0 683 }
aoqi@0 684
aoqi@0 685 Relocation() {
aoqi@0 686 _binding = NULL;
aoqi@0 687 }
aoqi@0 688
aoqi@0 689 static RelocationHolder newHolder() {
aoqi@0 690 return RelocationHolder();
aoqi@0 691 }
aoqi@0 692
aoqi@0 693 public:
aoqi@0 694 void* operator new(size_t size, const RelocationHolder& holder) throw() {
aoqi@0 695 if (size > sizeof(holder._relocbuf)) guarantee_size();
aoqi@0 696 assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
aoqi@0 697 return holder.reloc();
aoqi@0 698 }
aoqi@0 699
aoqi@0 700 // make a generic relocation for a given type (if possible)
aoqi@0 701 static RelocationHolder spec_simple(relocInfo::relocType rtype);
aoqi@0 702
aoqi@0 703 // here is the type-specific hook which writes relocation data:
aoqi@0 704 virtual void pack_data_to(CodeSection* dest) { }
aoqi@0 705
aoqi@0 706 // here is the type-specific hook which reads (unpacks) relocation data:
aoqi@0 707 virtual void unpack_data() {
aoqi@0 708 assert(datalen()==0 || type()==relocInfo::none, "no data here");
aoqi@0 709 }
aoqi@0 710
aoqi@0 711 static bool is_reloc_index(intptr_t index) {
aoqi@0 712 return 0 < index && index < os::vm_page_size();
aoqi@0 713 }
aoqi@0 714
aoqi@0 715 protected:
aoqi@0 716 // Helper functions for pack_data_to() and unpack_data().
aoqi@0 717
aoqi@0 718 // Most of the compression logic is confined here.
aoqi@0 719 // (The "immediate data" mechanism of relocInfo works independently
aoqi@0 720 // of this stuff, and acts to further compress most 1-word data prefixes.)
aoqi@0 721
aoqi@0 722 // A variable-width int is encoded as a short if it will fit in 16 bits.
aoqi@0 723 // The decoder looks at datalen to decide whether to unpack short or jint.
aoqi@0 724 // Most relocation records are quite simple, containing at most two ints.
aoqi@0 725
aoqi@0 726 static bool is_short(jint x) { return x == (short)x; }
aoqi@0 727 static short* add_short(short* p, int x) { *p++ = x; return p; }
aoqi@0 728 static short* add_jint (short* p, jint x) {
aoqi@0 729 *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
aoqi@0 730 return p;
aoqi@0 731 }
aoqi@0 732 static short* add_var_int(short* p, jint x) { // add a variable-width int
aoqi@0 733 if (is_short(x)) p = add_short(p, x);
aoqi@0 734 else p = add_jint (p, x);
aoqi@0 735 return p;
aoqi@0 736 }
aoqi@0 737
aoqi@0 738 static short* pack_1_int_to(short* p, jint x0) {
aoqi@0 739 // Format is one of: [] [x] [Xx]
aoqi@0 740 if (x0 != 0) p = add_var_int(p, x0);
aoqi@0 741 return p;
aoqi@0 742 }
aoqi@0 743 int unpack_1_int() {
aoqi@0 744 assert(datalen() <= 2, "too much data");
aoqi@0 745 return relocInfo::jint_data_at(0, data(), datalen());
aoqi@0 746 }
aoqi@0 747
aoqi@0 748 // With two ints, the short form is used only if both ints are short.
aoqi@0 749 short* pack_2_ints_to(short* p, jint x0, jint x1) {
aoqi@0 750 // Format is one of: [] [x y?] [Xx Y?y]
aoqi@0 751 if (x0 == 0 && x1 == 0) {
aoqi@0 752 // no halfwords needed to store zeroes
aoqi@0 753 } else if (is_short(x0) && is_short(x1)) {
aoqi@0 754 // 1-2 halfwords needed to store shorts
aoqi@0 755 p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
aoqi@0 756 } else {
aoqi@0 757 // 3-4 halfwords needed to store jints
aoqi@0 758 p = add_jint(p, x0); p = add_var_int(p, x1);
aoqi@0 759 }
aoqi@0 760 return p;
aoqi@0 761 }
aoqi@0 762 void unpack_2_ints(jint& x0, jint& x1) {
aoqi@0 763 int dlen = datalen();
aoqi@0 764 short* dp = data();
aoqi@0 765 if (dlen <= 2) {
aoqi@0 766 x0 = relocInfo::short_data_at(0, dp, dlen);
aoqi@0 767 x1 = relocInfo::short_data_at(1, dp, dlen);
aoqi@0 768 } else {
aoqi@0 769 assert(dlen <= 4, "too much data");
aoqi@0 770 x0 = relocInfo::jint_data_at(0, dp, dlen);
aoqi@0 771 x1 = relocInfo::jint_data_at(2, dp, dlen);
aoqi@0 772 }
aoqi@0 773 }
aoqi@0 774
aoqi@0 775 protected:
aoqi@0 776 // platform-dependent utilities for decoding and patching instructions
aoqi@0 777 void pd_set_data_value (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
aoqi@0 778 void pd_verify_data_value (address x, intptr_t off) { pd_set_data_value(x, off, true); }
aoqi@0 779 address pd_call_destination (address orig_addr = NULL);
aoqi@0 780 void pd_set_call_destination (address x);
aoqi@0 781
aoqi@0 782 // this extracts the address of an address in the code stream instead of the reloc data
aoqi@0 783 address* pd_address_in_code ();
aoqi@0 784
aoqi@0 785 // this extracts an address from the code stream instead of the reloc data
aoqi@0 786 address pd_get_address_from_code ();
aoqi@0 787
aoqi@0 788 // these convert from byte offsets, to scaled offsets, to addresses
aoqi@0 789 static jint scaled_offset(address x, address base) {
aoqi@0 790 int byte_offset = x - base;
aoqi@0 791 int offset = -byte_offset / relocInfo::addr_unit();
aoqi@0 792 assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
aoqi@0 793 return offset;
aoqi@0 794 }
aoqi@0 795 static jint scaled_offset_null_special(address x, address base) {
aoqi@0 796 // Some relocations treat offset=0 as meaning NULL.
aoqi@0 797 // Handle this extra convention carefully.
aoqi@0 798 if (x == NULL) return 0;
aoqi@0 799 assert(x != base, "offset must not be zero");
aoqi@0 800 return scaled_offset(x, base);
aoqi@0 801 }
aoqi@0 802 static address address_from_scaled_offset(jint offset, address base) {
aoqi@0 803 int byte_offset = -( offset * relocInfo::addr_unit() );
aoqi@0 804 return base + byte_offset;
aoqi@0 805 }
aoqi@0 806
aoqi@0 807 // these convert between indexes and addresses in the runtime system
aoqi@0 808 static int32_t runtime_address_to_index(address runtime_address);
aoqi@0 809 static address index_to_runtime_address(int32_t index);
aoqi@0 810
aoqi@0 811 // helpers for mapping between old and new addresses after a move or resize
aoqi@0 812 address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 813 address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 814 void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
aoqi@0 815
aoqi@0 816 public:
aoqi@0 817 // accessors which only make sense for a bound Relocation
aoqi@0 818 address addr() const { return binding()->addr(); }
aoqi@0 819 nmethod* code() const { return binding()->code(); }
aoqi@0 820 bool addr_in_const() const { return binding()->addr_in_const(); }
aoqi@0 821 protected:
aoqi@0 822 short* data() const { return binding()->data(); }
aoqi@0 823 int datalen() const { return binding()->datalen(); }
aoqi@0 824 int format() const { return binding()->format(); }
aoqi@0 825
aoqi@0 826 public:
aoqi@0 827 virtual relocInfo::relocType type() { return relocInfo::none; }
aoqi@0 828
aoqi@0 829 // is it a call instruction?
aoqi@0 830 virtual bool is_call() { return false; }
aoqi@0 831
aoqi@0 832 // is it a data movement instruction?
aoqi@0 833 virtual bool is_data() { return false; }
aoqi@0 834
aoqi@0 835 // some relocations can compute their own values
aoqi@0 836 virtual address value();
aoqi@0 837
aoqi@0 838 // all relocations are able to reassert their values
aoqi@0 839 virtual void set_value(address x);
aoqi@0 840
aoqi@0 841 virtual void clear_inline_cache() { }
aoqi@0 842
aoqi@0 843 // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
aoqi@0 844 // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
aoqi@0 845 // probably a reasonable assumption, since empty caches simplifies code reloacation.
aoqi@0 846 virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
aoqi@0 847
aoqi@0 848 void print();
aoqi@0 849 };
aoqi@0 850
aoqi@0 851
aoqi@0 852 // certain inlines must be deferred until class Relocation is defined:
aoqi@0 853
aoqi@0 854 inline RelocationHolder::RelocationHolder() {
aoqi@0 855 // initialize the vtbl, just to keep things type-safe
aoqi@0 856 new(*this) Relocation();
aoqi@0 857 }
aoqi@0 858
aoqi@0 859
aoqi@0 860 inline RelocationHolder::RelocationHolder(Relocation* r) {
aoqi@0 861 // wordwise copy from r (ok if it copies garbage after r)
aoqi@0 862 for (int i = 0; i < _relocbuf_size; i++) {
aoqi@0 863 _relocbuf[i] = ((void**)r)[i];
aoqi@0 864 }
aoqi@0 865 }
aoqi@0 866
aoqi@0 867
aoqi@0 868 relocInfo::relocType RelocationHolder::type() const {
aoqi@0 869 return reloc()->type();
aoqi@0 870 }
aoqi@0 871
aoqi@0 872 // A DataRelocation always points at a memory or load-constant instruction..
aoqi@0 873 // It is absolute on most machines, and the constant is split on RISCs.
aoqi@0 874 // The specific subtypes are oop, external_word, and internal_word.
aoqi@0 875 // By convention, the "value" does not include a separately reckoned "offset".
aoqi@0 876 class DataRelocation : public Relocation {
aoqi@0 877 public:
aoqi@0 878 bool is_data() { return true; }
aoqi@0 879
aoqi@0 880 // both target and offset must be computed somehow from relocation data
aoqi@0 881 virtual int offset() { return 0; }
aoqi@0 882 address value() = 0;
aoqi@0 883 void set_value(address x) { set_value(x, offset()); }
aoqi@0 884 void set_value(address x, intptr_t o) {
aoqi@0 885 if (addr_in_const())
aoqi@0 886 *(address*)addr() = x;
aoqi@0 887 else
aoqi@0 888 pd_set_data_value(x, o);
aoqi@0 889 }
aoqi@0 890 void verify_value(address x) {
aoqi@0 891 if (addr_in_const())
aoqi@0 892 assert(*(address*)addr() == x, "must agree");
aoqi@0 893 else
aoqi@0 894 pd_verify_data_value(x, offset());
aoqi@0 895 }
aoqi@0 896
aoqi@0 897 // The "o" (displacement) argument is relevant only to split relocations
aoqi@0 898 // on RISC machines. In some CPUs (SPARC), the set-hi and set-lo ins'ns
aoqi@0 899 // can encode more than 32 bits between them. This allows compilers to
aoqi@0 900 // share set-hi instructions between addresses that differ by a small
aoqi@0 901 // offset (e.g., different static variables in the same class).
aoqi@0 902 // On such machines, the "x" argument to set_value on all set-lo
aoqi@0 903 // instructions must be the same as the "x" argument for the
aoqi@0 904 // corresponding set-hi instructions. The "o" arguments for the
aoqi@0 905 // set-hi instructions are ignored, and must not affect the high-half
aoqi@0 906 // immediate constant. The "o" arguments for the set-lo instructions are
aoqi@0 907 // added into the low-half immediate constant, and must not overflow it.
aoqi@0 908 };
aoqi@0 909
aoqi@0 910 // A CallRelocation always points at a call instruction.
aoqi@0 911 // It is PC-relative on most machines.
aoqi@0 912 class CallRelocation : public Relocation {
aoqi@0 913 public:
aoqi@0 914 bool is_call() { return true; }
aoqi@0 915
aoqi@0 916 address destination() { return pd_call_destination(); }
aoqi@0 917 void set_destination(address x); // pd_set_call_destination
aoqi@0 918
aoqi@0 919 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 920 address value() { return destination(); }
aoqi@0 921 void set_value(address x) { set_destination(x); }
aoqi@0 922 };
aoqi@0 923
aoqi@0 924 class oop_Relocation : public DataRelocation {
aoqi@0 925 relocInfo::relocType type() { return relocInfo::oop_type; }
aoqi@0 926
aoqi@0 927 public:
aoqi@0 928 // encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll]
aoqi@0 929 // an oop in the CodeBlob's oop pool
aoqi@0 930 static RelocationHolder spec(int oop_index, int offset = 0) {
aoqi@0 931 assert(oop_index > 0, "must be a pool-resident oop");
aoqi@0 932 RelocationHolder rh = newHolder();
aoqi@0 933 new(rh) oop_Relocation(oop_index, offset);
aoqi@0 934 return rh;
aoqi@0 935 }
aoqi@0 936 // an oop in the instruction stream
aoqi@0 937 static RelocationHolder spec_for_immediate() {
aoqi@0 938 const int oop_index = 0;
aoqi@0 939 const int offset = 0; // if you want an offset, use the oop pool
aoqi@0 940 RelocationHolder rh = newHolder();
aoqi@0 941 new(rh) oop_Relocation(oop_index, offset);
aoqi@0 942 return rh;
aoqi@0 943 }
aoqi@0 944
aoqi@0 945 private:
aoqi@0 946 jint _oop_index; // if > 0, index into CodeBlob::oop_at
aoqi@0 947 jint _offset; // byte offset to apply to the oop itself
aoqi@0 948
aoqi@0 949 oop_Relocation(int oop_index, int offset) {
aoqi@0 950 _oop_index = oop_index; _offset = offset;
aoqi@0 951 }
aoqi@0 952
aoqi@0 953 friend class RelocIterator;
aoqi@0 954 oop_Relocation() { }
aoqi@0 955
aoqi@0 956 public:
aoqi@0 957 int oop_index() { return _oop_index; }
aoqi@0 958 int offset() { return _offset; }
aoqi@0 959
aoqi@0 960 // data is packed in "2_ints" format: [i o] or [Ii Oo]
aoqi@0 961 void pack_data_to(CodeSection* dest);
aoqi@0 962 void unpack_data();
aoqi@0 963
aoqi@0 964 void fix_oop_relocation(); // reasserts oop value
aoqi@0 965
aoqi@0 966 void verify_oop_relocation();
aoqi@0 967
aoqi@0 968 address value() { return (address) *oop_addr(); }
aoqi@0 969
aoqi@0 970 bool oop_is_immediate() { return oop_index() == 0; }
aoqi@0 971
aoqi@0 972 oop* oop_addr(); // addr or &pool[jint_data]
aoqi@0 973 oop oop_value(); // *oop_addr
aoqi@0 974 // Note: oop_value transparently converts Universe::non_oop_word to NULL.
aoqi@0 975 };
aoqi@0 976
aoqi@0 977
aoqi@0 978 // copy of oop_Relocation for now but may delete stuff in both/either
aoqi@0 979 class metadata_Relocation : public DataRelocation {
aoqi@0 980 relocInfo::relocType type() { return relocInfo::metadata_type; }
aoqi@0 981
aoqi@0 982 public:
aoqi@0 983 // encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll]
aoqi@0 984 // an metadata in the CodeBlob's metadata pool
aoqi@0 985 static RelocationHolder spec(int metadata_index, int offset = 0) {
aoqi@0 986 assert(metadata_index > 0, "must be a pool-resident metadata");
aoqi@0 987 RelocationHolder rh = newHolder();
aoqi@0 988 new(rh) metadata_Relocation(metadata_index, offset);
aoqi@0 989 return rh;
aoqi@0 990 }
aoqi@0 991 // an metadata in the instruction stream
aoqi@0 992 static RelocationHolder spec_for_immediate() {
aoqi@0 993 const int metadata_index = 0;
aoqi@0 994 const int offset = 0; // if you want an offset, use the metadata pool
aoqi@0 995 RelocationHolder rh = newHolder();
aoqi@0 996 new(rh) metadata_Relocation(metadata_index, offset);
aoqi@0 997 return rh;
aoqi@0 998 }
aoqi@0 999
aoqi@0 1000 private:
aoqi@0 1001 jint _metadata_index; // if > 0, index into nmethod::metadata_at
aoqi@0 1002 jint _offset; // byte offset to apply to the metadata itself
aoqi@0 1003
aoqi@0 1004 metadata_Relocation(int metadata_index, int offset) {
aoqi@0 1005 _metadata_index = metadata_index; _offset = offset;
aoqi@0 1006 }
aoqi@0 1007
aoqi@0 1008 friend class RelocIterator;
aoqi@0 1009 metadata_Relocation() { }
aoqi@0 1010
aoqi@0 1011 // Fixes a Metadata pointer in the code. Most platforms embeds the
aoqi@0 1012 // Metadata pointer in the code at compile time so this is empty
aoqi@0 1013 // for them.
aoqi@0 1014 void pd_fix_value(address x);
aoqi@0 1015
aoqi@0 1016 public:
aoqi@0 1017 int metadata_index() { return _metadata_index; }
aoqi@0 1018 int offset() { return _offset; }
aoqi@0 1019
aoqi@0 1020 // data is packed in "2_ints" format: [i o] or [Ii Oo]
aoqi@0 1021 void pack_data_to(CodeSection* dest);
aoqi@0 1022 void unpack_data();
aoqi@0 1023
aoqi@0 1024 void fix_metadata_relocation(); // reasserts metadata value
aoqi@0 1025
aoqi@0 1026 void verify_metadata_relocation();
aoqi@0 1027
aoqi@0 1028 address value() { return (address) *metadata_addr(); }
aoqi@0 1029
aoqi@0 1030 bool metadata_is_immediate() { return metadata_index() == 0; }
aoqi@0 1031
aoqi@0 1032 Metadata** metadata_addr(); // addr or &pool[jint_data]
aoqi@0 1033 Metadata* metadata_value(); // *metadata_addr
aoqi@0 1034 // Note: metadata_value transparently converts Universe::non_metadata_word to NULL.
aoqi@0 1035 };
aoqi@0 1036
aoqi@1 1037 #ifdef MIPS64
aoqi@1 1038 // to handle the set_last_java_frame pc
aoqi@1 1039 class internal_pc_Relocation : public Relocation {
aoqi@1 1040 relocInfo::relocType type() { return relocInfo::internal_pc_type; }
aoqi@1 1041 public:
aoqi@1 1042 address pc() {pd_get_address_from_code();}
aoqi@1 1043 //void fix_relocation_at_move(intptr_t delta);
aoqi@1 1044 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@1 1045 };
aoqi@1 1046 #endif
aoqi@0 1047
aoqi@0 1048 class virtual_call_Relocation : public CallRelocation {
aoqi@0 1049 relocInfo::relocType type() { return relocInfo::virtual_call_type; }
aoqi@0 1050
aoqi@0 1051 public:
aoqi@0 1052 // "cached_value" points to the first associated set-oop.
aoqi@0 1053 // The oop_limit helps find the last associated set-oop.
aoqi@0 1054 // (See comments at the top of this file.)
aoqi@0 1055 static RelocationHolder spec(address cached_value) {
aoqi@0 1056 RelocationHolder rh = newHolder();
aoqi@0 1057 new(rh) virtual_call_Relocation(cached_value);
aoqi@0 1058 return rh;
aoqi@0 1059 }
aoqi@0 1060
aoqi@0 1061 virtual_call_Relocation(address cached_value) {
aoqi@0 1062 _cached_value = cached_value;
aoqi@0 1063 assert(cached_value != NULL, "first oop address must be specified");
aoqi@0 1064 }
aoqi@0 1065
aoqi@0 1066 private:
aoqi@0 1067 address _cached_value; // location of set-value instruction
aoqi@0 1068
aoqi@0 1069 friend class RelocIterator;
aoqi@0 1070 virtual_call_Relocation() { }
aoqi@0 1071
aoqi@0 1072
aoqi@0 1073 public:
aoqi@0 1074 address cached_value();
aoqi@0 1075
aoqi@0 1076 // data is packed as scaled offsets in "2_ints" format: [f l] or [Ff Ll]
aoqi@0 1077 // oop_limit is set to 0 if the limit falls somewhere within the call.
aoqi@0 1078 // When unpacking, a zero oop_limit is taken to refer to the end of the call.
aoqi@0 1079 // (This has the effect of bringing in the call's delay slot on SPARC.)
aoqi@0 1080 void pack_data_to(CodeSection* dest);
aoqi@0 1081 void unpack_data();
aoqi@0 1082
aoqi@0 1083 void clear_inline_cache();
aoqi@0 1084 };
aoqi@0 1085
aoqi@0 1086
aoqi@0 1087 class opt_virtual_call_Relocation : public CallRelocation {
aoqi@0 1088 relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
aoqi@0 1089
aoqi@0 1090 public:
aoqi@0 1091 static RelocationHolder spec() {
aoqi@0 1092 RelocationHolder rh = newHolder();
aoqi@0 1093 new(rh) opt_virtual_call_Relocation();
aoqi@0 1094 return rh;
aoqi@0 1095 }
aoqi@0 1096
aoqi@0 1097 private:
aoqi@0 1098 friend class RelocIterator;
aoqi@0 1099 opt_virtual_call_Relocation() { }
aoqi@0 1100
aoqi@0 1101 public:
aoqi@0 1102 void clear_inline_cache();
aoqi@0 1103
aoqi@0 1104 // find the matching static_stub
aoqi@0 1105 address static_stub();
aoqi@0 1106 };
aoqi@0 1107
aoqi@0 1108
aoqi@0 1109 class static_call_Relocation : public CallRelocation {
aoqi@0 1110 relocInfo::relocType type() { return relocInfo::static_call_type; }
aoqi@0 1111
aoqi@0 1112 public:
aoqi@0 1113 static RelocationHolder spec() {
aoqi@0 1114 RelocationHolder rh = newHolder();
aoqi@0 1115 new(rh) static_call_Relocation();
aoqi@0 1116 return rh;
aoqi@0 1117 }
aoqi@0 1118
aoqi@0 1119 private:
aoqi@0 1120 friend class RelocIterator;
aoqi@0 1121 static_call_Relocation() { }
aoqi@0 1122
aoqi@0 1123 public:
aoqi@0 1124 void clear_inline_cache();
aoqi@0 1125
aoqi@0 1126 // find the matching static_stub
aoqi@0 1127 address static_stub();
aoqi@0 1128 };
aoqi@0 1129
aoqi@0 1130 class static_stub_Relocation : public Relocation {
aoqi@0 1131 relocInfo::relocType type() { return relocInfo::static_stub_type; }
aoqi@0 1132
aoqi@0 1133 public:
aoqi@0 1134 static RelocationHolder spec(address static_call) {
aoqi@0 1135 RelocationHolder rh = newHolder();
aoqi@0 1136 new(rh) static_stub_Relocation(static_call);
aoqi@0 1137 return rh;
aoqi@0 1138 }
aoqi@0 1139
aoqi@0 1140 private:
aoqi@0 1141 address _static_call; // location of corresponding static_call
aoqi@0 1142
aoqi@0 1143 static_stub_Relocation(address static_call) {
aoqi@0 1144 _static_call = static_call;
aoqi@0 1145 }
aoqi@0 1146
aoqi@0 1147 friend class RelocIterator;
aoqi@0 1148 static_stub_Relocation() { }
aoqi@0 1149
aoqi@0 1150 public:
aoqi@0 1151 void clear_inline_cache();
aoqi@0 1152
aoqi@0 1153 address static_call() { return _static_call; }
aoqi@0 1154
aoqi@0 1155 // data is packed as a scaled offset in "1_int" format: [c] or [Cc]
aoqi@0 1156 void pack_data_to(CodeSection* dest);
aoqi@0 1157 void unpack_data();
aoqi@0 1158 };
aoqi@0 1159
aoqi@0 1160 class runtime_call_Relocation : public CallRelocation {
aoqi@0 1161 relocInfo::relocType type() { return relocInfo::runtime_call_type; }
aoqi@0 1162
aoqi@0 1163 public:
aoqi@0 1164 static RelocationHolder spec() {
aoqi@0 1165 RelocationHolder rh = newHolder();
aoqi@0 1166 new(rh) runtime_call_Relocation();
aoqi@0 1167 return rh;
aoqi@0 1168 }
aoqi@0 1169
aoqi@0 1170 private:
aoqi@0 1171 friend class RelocIterator;
aoqi@0 1172 runtime_call_Relocation() { }
aoqi@0 1173
aoqi@0 1174 public:
aoqi@0 1175 };
aoqi@0 1176
aoqi@0 1177 // Trampoline Relocations.
aoqi@0 1178 // A trampoline allows to encode a small branch in the code, even if there
aoqi@0 1179 // is the chance that this branch can not reach all possible code locations.
aoqi@0 1180 // If the relocation finds that a branch is too far for the instruction
aoqi@0 1181 // in the code, it can patch it to jump to the trampoline where is
aoqi@0 1182 // sufficient space for a far branch. Needed on PPC.
aoqi@0 1183 class trampoline_stub_Relocation : public Relocation {
aoqi@0 1184 relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
aoqi@0 1185
aoqi@0 1186 public:
aoqi@0 1187 static RelocationHolder spec(address static_call) {
aoqi@0 1188 RelocationHolder rh = newHolder();
aoqi@0 1189 return (new (rh) trampoline_stub_Relocation(static_call));
aoqi@0 1190 }
aoqi@0 1191
aoqi@0 1192 private:
aoqi@0 1193 address _owner; // Address of the NativeCall that owns the trampoline.
aoqi@0 1194
aoqi@0 1195 trampoline_stub_Relocation(address owner) {
aoqi@0 1196 _owner = owner;
aoqi@0 1197 }
aoqi@0 1198
aoqi@0 1199 friend class RelocIterator;
aoqi@0 1200 trampoline_stub_Relocation() { }
aoqi@0 1201
aoqi@0 1202 public:
aoqi@0 1203
aoqi@0 1204 // Return the address of the NativeCall that owns the trampoline.
aoqi@0 1205 address owner() { return _owner; }
aoqi@0 1206
aoqi@0 1207 void pack_data_to(CodeSection * dest);
aoqi@0 1208 void unpack_data();
aoqi@0 1209
aoqi@0 1210 // Find the trampoline stub for a call.
aoqi@0 1211 static address get_trampoline_for(address call, nmethod* code);
aoqi@0 1212 };
aoqi@0 1213
aoqi@0 1214 class external_word_Relocation : public DataRelocation {
aoqi@0 1215 relocInfo::relocType type() { return relocInfo::external_word_type; }
aoqi@0 1216
aoqi@0 1217 public:
aoqi@0 1218 static RelocationHolder spec(address target) {
aoqi@0 1219 assert(target != NULL, "must not be null");
aoqi@0 1220 RelocationHolder rh = newHolder();
aoqi@0 1221 new(rh) external_word_Relocation(target);
aoqi@0 1222 return rh;
aoqi@0 1223 }
aoqi@0 1224
aoqi@0 1225 // Use this one where all 32/64 bits of the target live in the code stream.
aoqi@0 1226 // The target must be an intptr_t, and must be absolute (not relative).
aoqi@0 1227 static RelocationHolder spec_for_immediate() {
aoqi@0 1228 RelocationHolder rh = newHolder();
aoqi@0 1229 new(rh) external_word_Relocation(NULL);
aoqi@0 1230 return rh;
aoqi@0 1231 }
aoqi@0 1232
aoqi@0 1233 // Some address looking values aren't safe to treat as relocations
aoqi@0 1234 // and should just be treated as constants.
aoqi@0 1235 static bool can_be_relocated(address target) {
aoqi@0 1236 return target != NULL && !is_reloc_index((intptr_t)target);
aoqi@0 1237 }
aoqi@0 1238
aoqi@0 1239 private:
aoqi@0 1240 address _target; // address in runtime
aoqi@0 1241
aoqi@0 1242 external_word_Relocation(address target) {
aoqi@0 1243 _target = target;
aoqi@0 1244 }
aoqi@0 1245
aoqi@0 1246 friend class RelocIterator;
aoqi@0 1247 external_word_Relocation() { }
aoqi@0 1248
aoqi@0 1249 public:
aoqi@0 1250 // data is packed as a well-known address in "1_int" format: [a] or [Aa]
aoqi@0 1251 // The function runtime_address_to_index is used to turn full addresses
aoqi@0 1252 // to short indexes, if they are pre-registered by the stub mechanism.
aoqi@0 1253 // If the "a" value is 0 (i.e., _target is NULL), the address is stored
aoqi@0 1254 // in the code stream. See external_word_Relocation::target().
aoqi@0 1255 void pack_data_to(CodeSection* dest);
aoqi@0 1256 void unpack_data();
aoqi@0 1257
aoqi@0 1258 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 1259 address target(); // if _target==NULL, fetch addr from code stream
aoqi@0 1260 address value() { return target(); }
aoqi@0 1261 };
aoqi@0 1262
aoqi@0 1263 class internal_word_Relocation : public DataRelocation {
aoqi@0 1264 relocInfo::relocType type() { return relocInfo::internal_word_type; }
aoqi@0 1265
aoqi@0 1266 public:
aoqi@0 1267 static RelocationHolder spec(address target) {
aoqi@0 1268 assert(target != NULL, "must not be null");
aoqi@0 1269 RelocationHolder rh = newHolder();
aoqi@0 1270 new(rh) internal_word_Relocation(target);
aoqi@0 1271 return rh;
aoqi@0 1272 }
aoqi@0 1273
aoqi@0 1274 // use this one where all the bits of the target can fit in the code stream:
aoqi@0 1275 static RelocationHolder spec_for_immediate() {
aoqi@0 1276 RelocationHolder rh = newHolder();
aoqi@0 1277 new(rh) internal_word_Relocation(NULL);
aoqi@0 1278 return rh;
aoqi@0 1279 }
aoqi@0 1280
aoqi@0 1281 internal_word_Relocation(address target) {
aoqi@0 1282 _target = target;
aoqi@0 1283 _section = -1; // self-relative
aoqi@0 1284 }
aoqi@0 1285
aoqi@0 1286 protected:
aoqi@0 1287 address _target; // address in CodeBlob
aoqi@0 1288 int _section; // section providing base address, if any
aoqi@0 1289
aoqi@0 1290 friend class RelocIterator;
aoqi@0 1291 internal_word_Relocation() { }
aoqi@0 1292
aoqi@0 1293 // bit-width of LSB field in packed offset, if section >= 0
aoqi@0 1294 enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
aoqi@0 1295
aoqi@0 1296 public:
aoqi@0 1297 // data is packed as a scaled offset in "1_int" format: [o] or [Oo]
aoqi@0 1298 // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
aoqi@0 1299 // in the code stream. See internal_word_Relocation::target().
aoqi@0 1300 // If _section is not -1, it is appended to the low bits of the offset.
aoqi@0 1301 void pack_data_to(CodeSection* dest);
aoqi@0 1302 void unpack_data();
aoqi@0 1303
aoqi@0 1304 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 1305 address target(); // if _target==NULL, fetch addr from code stream
aoqi@0 1306 int section() { return _section; }
aoqi@0 1307 address value() { return target(); }
aoqi@0 1308 };
aoqi@0 1309
aoqi@0 1310 class section_word_Relocation : public internal_word_Relocation {
aoqi@0 1311 relocInfo::relocType type() { return relocInfo::section_word_type; }
aoqi@0 1312
aoqi@0 1313 public:
aoqi@0 1314 static RelocationHolder spec(address target, int section) {
aoqi@0 1315 RelocationHolder rh = newHolder();
aoqi@0 1316 new(rh) section_word_Relocation(target, section);
aoqi@0 1317 return rh;
aoqi@0 1318 }
aoqi@0 1319
aoqi@0 1320 section_word_Relocation(address target, int section) {
aoqi@0 1321 assert(target != NULL, "must not be null");
aoqi@0 1322 assert(section >= 0, "must be a valid section");
aoqi@0 1323 _target = target;
aoqi@0 1324 _section = section;
aoqi@0 1325 }
aoqi@0 1326
aoqi@0 1327 //void pack_data_to -- inherited
aoqi@0 1328 void unpack_data();
aoqi@0 1329
aoqi@0 1330 private:
aoqi@0 1331 friend class RelocIterator;
aoqi@0 1332 section_word_Relocation() { }
aoqi@0 1333 };
aoqi@0 1334
aoqi@0 1335
aoqi@0 1336 class poll_Relocation : public Relocation {
aoqi@0 1337 bool is_data() { return true; }
aoqi@0 1338 relocInfo::relocType type() { return relocInfo::poll_type; }
aoqi@0 1339 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 1340 };
aoqi@0 1341
aoqi@0 1342 class poll_return_Relocation : public Relocation {
aoqi@0 1343 bool is_data() { return true; }
aoqi@0 1344 relocInfo::relocType type() { return relocInfo::poll_return_type; }
aoqi@0 1345 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
aoqi@0 1346 };
aoqi@0 1347
aoqi@0 1348 // We know all the xxx_Relocation classes, so now we can define these:
aoqi@0 1349 #define EACH_CASE(name) \
aoqi@0 1350 inline name##_Relocation* RelocIterator::name##_reloc() { \
aoqi@0 1351 assert(type() == relocInfo::name##_type, "type must agree"); \
aoqi@0 1352 /* The purpose of the placed "new" is to re-use the same */ \
aoqi@0 1353 /* stack storage for each new iteration. */ \
aoqi@0 1354 name##_Relocation* r = new(_rh) name##_Relocation(); \
aoqi@0 1355 r->set_binding(this); \
aoqi@0 1356 r->name##_Relocation::unpack_data(); \
aoqi@0 1357 return r; \
aoqi@0 1358 }
aoqi@0 1359 APPLY_TO_RELOCATIONS(EACH_CASE);
aoqi@0 1360 #undef EACH_CASE
aoqi@0 1361
aoqi@0 1362 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
aoqi@0 1363 initialize(nm, begin, limit);
aoqi@0 1364 }
aoqi@0 1365
aoqi@0 1366 #endif // SHARE_VM_CODE_RELOCINFO_HPP

mercurial