src/share/vm/opto/lcm.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4691
571076d3c79d
child 5111
70120f47d403
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
stefank@2314 28 #include "opto/c2compiler.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/machnode.hpp"
stefank@2314 32 #include "opto/runtime.hpp"
stefank@2314 33 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 34 # include "adfiles/ad_x86_32.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 37 # include "adfiles/ad_x86_64.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 40 # include "adfiles/ad_sparc.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 43 # include "adfiles/ad_zero.hpp"
stefank@2314 44 #endif
roland@2683 45 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 46 # include "adfiles/ad_arm.hpp"
roland@2683 47 #endif
jcoomes@2993 48 #ifdef TARGET_ARCH_MODEL_ppc
jcoomes@2993 49 # include "adfiles/ad_ppc.hpp"
jcoomes@2993 50 #endif
stefank@2314 51
duke@435 52 // Optimization - Graph Style
duke@435 53
duke@435 54 //------------------------------implicit_null_check----------------------------
duke@435 55 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 56 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 57 // I can generate a memory op if there is not one nearby.
duke@435 58 // The proj is the control projection for the not-null case.
kvn@1930 59 // The val is the pointer being checked for nullness or
kvn@1930 60 // decodeHeapOop_not_null node if it did not fold into address.
duke@435 61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
duke@435 62 // Assume if null check need for 0 offset then always needed
duke@435 63 // Intel solaris doesn't support any null checks yet and no
duke@435 64 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 65 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 66
duke@435 67 // Make sure the ptr-is-null path appears to be uncommon!
duke@435 68 float f = end()->as_MachIf()->_prob;
duke@435 69 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 70 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 71
duke@435 72 uint bidx = 0; // Capture index of value into memop
duke@435 73 bool was_store; // Memory op is a store op
duke@435 74
duke@435 75 // Get the successor block for if the test ptr is non-null
duke@435 76 Block* not_null_block; // this one goes with the proj
duke@435 77 Block* null_block;
duke@435 78 if (_nodes[_nodes.size()-1] == proj) {
duke@435 79 null_block = _succs[0];
duke@435 80 not_null_block = _succs[1];
duke@435 81 } else {
duke@435 82 assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
duke@435 83 not_null_block = _succs[0];
duke@435 84 null_block = _succs[1];
duke@435 85 }
kvn@767 86 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 87 null_block = null_block->_succs[0];
kvn@767 88 }
duke@435 89
duke@435 90 // Search the exception block for an uncommon trap.
duke@435 91 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 92 // we need an uncommon trap. Briefly, we need a way to
duke@435 93 // detect failure of this optimization, as in 6366351.)
duke@435 94 {
duke@435 95 bool found_trap = false;
duke@435 96 for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
duke@435 97 Node* nn = null_block->_nodes[i1];
duke@435 98 if (nn->is_MachCall() &&
twisti@2103 99 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
duke@435 100 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 101 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 102 jint tr_con = trtype->is_int()->get_con();
duke@435 103 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 104 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 105 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 106 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 107 && action != Deoptimization::Action_none) {
duke@435 108 // This uncommon trap is sure to recompile, eventually.
duke@435 109 // When that happens, C->too_many_traps will prevent
duke@435 110 // this transformation from happening again.
duke@435 111 found_trap = true;
duke@435 112 }
duke@435 113 }
duke@435 114 break;
duke@435 115 }
duke@435 116 }
duke@435 117 if (!found_trap) {
duke@435 118 // We did not find an uncommon trap.
duke@435 119 return;
duke@435 120 }
duke@435 121 }
duke@435 122
kvn@1930 123 // Check for decodeHeapOop_not_null node which did not fold into address
kvn@1930 124 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 125 val = (Node*)(((intptr_t)val) & ~1);
kvn@1930 126
kvn@1930 127 assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
kvn@1930 128 (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
kvn@1930 129
duke@435 130 // Search the successor block for a load or store who's base value is also
duke@435 131 // the tested value. There may be several.
duke@435 132 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 133 MachNode *best = NULL; // Best found so far
duke@435 134 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 135 Node *m = val->out(i);
duke@435 136 if( !m->is_Mach() ) continue;
duke@435 137 MachNode *mach = m->as_Mach();
duke@435 138 was_store = false;
kvn@2048 139 int iop = mach->ideal_Opcode();
kvn@2048 140 switch( iop ) {
duke@435 141 case Op_LoadB:
kvn@3882 142 case Op_LoadUB:
twisti@993 143 case Op_LoadUS:
duke@435 144 case Op_LoadD:
duke@435 145 case Op_LoadF:
duke@435 146 case Op_LoadI:
duke@435 147 case Op_LoadL:
duke@435 148 case Op_LoadP:
coleenp@548 149 case Op_LoadN:
duke@435 150 case Op_LoadS:
duke@435 151 case Op_LoadKlass:
kvn@599 152 case Op_LoadNKlass:
duke@435 153 case Op_LoadRange:
duke@435 154 case Op_LoadD_unaligned:
duke@435 155 case Op_LoadL_unaligned:
kvn@1586 156 assert(mach->in(2) == val, "should be address");
duke@435 157 break;
duke@435 158 case Op_StoreB:
duke@435 159 case Op_StoreC:
duke@435 160 case Op_StoreCM:
duke@435 161 case Op_StoreD:
duke@435 162 case Op_StoreF:
duke@435 163 case Op_StoreI:
duke@435 164 case Op_StoreL:
duke@435 165 case Op_StoreP:
coleenp@548 166 case Op_StoreN:
roland@4159 167 case Op_StoreNKlass:
duke@435 168 was_store = true; // Memory op is a store op
duke@435 169 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 170 // If the value being nul-checked is in another slot, it means we
duke@435 171 // are storing the checked value, which does NOT check the value!
duke@435 172 if( mach->in(2) != val ) continue;
duke@435 173 break; // Found a memory op?
duke@435 174 case Op_StrComp:
cfang@1116 175 case Op_StrEquals:
cfang@1116 176 case Op_StrIndexOf:
rasbold@604 177 case Op_AryEq:
kvn@4479 178 case Op_EncodeISOArray:
duke@435 179 // Not a legit memory op for implicit null check regardless of
duke@435 180 // embedded loads
duke@435 181 continue;
duke@435 182 default: // Also check for embedded loads
duke@435 183 if( !mach->needs_anti_dependence_check() )
duke@435 184 continue; // Not an memory op; skip it
kvn@2048 185 if( must_clone[iop] ) {
kvn@2048 186 // Do not move nodes which produce flags because
kvn@2048 187 // RA will try to clone it to place near branch and
kvn@2048 188 // it will cause recompilation, see clone_node().
kvn@2048 189 continue;
kvn@2048 190 }
kvn@1586 191 {
kvn@1930 192 // Check that value is used in memory address in
kvn@1930 193 // instructions with embedded load (CmpP val1,(val2+off)).
kvn@1586 194 Node* base;
kvn@1586 195 Node* index;
kvn@1586 196 const MachOper* oper = mach->memory_inputs(base, index);
kvn@1586 197 if (oper == NULL || oper == (MachOper*)-1) {
kvn@1586 198 continue; // Not an memory op; skip it
kvn@1586 199 }
kvn@1586 200 if (val == base ||
kvn@1586 201 val == index && val->bottom_type()->isa_narrowoop()) {
kvn@1586 202 break; // Found it
kvn@1586 203 } else {
kvn@1586 204 continue; // Skip it
kvn@1586 205 }
kvn@1586 206 }
duke@435 207 break;
duke@435 208 }
duke@435 209 // check if the offset is not too high for implicit exception
duke@435 210 {
duke@435 211 intptr_t offset = 0;
duke@435 212 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 213 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 214 if (base == NULL || base == NodeSentinel) {
kvn@767 215 // Narrow oop address doesn't have base, only index
kvn@767 216 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 217 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 218 continue; // Give up if offset is beyond page size
duke@435 219 // cannot reason about it; is probably not implicit null exception
duke@435 220 } else {
kvn@1077 221 const TypePtr* tptr;
kvn@1077 222 if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
kvn@1077 223 // 32-bits narrow oop can be the base of address expressions
kvn@1077 224 tptr = base->bottom_type()->make_ptr();
kvn@1077 225 } else {
kvn@1077 226 // only regular oops are expected here
kvn@1077 227 tptr = base->bottom_type()->is_ptr();
kvn@1077 228 }
duke@435 229 // Give up if offset is not a compile-time constant
duke@435 230 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 231 continue;
duke@435 232 offset += tptr->_offset; // correct if base is offseted
duke@435 233 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 234 continue; // Give up is reference is beyond 4K page size
duke@435 235 }
duke@435 236 }
duke@435 237
duke@435 238 // Check ctrl input to see if the null-check dominates the memory op
duke@435 239 Block *cb = cfg->_bbs[mach->_idx];
duke@435 240 cb = cb->_idom; // Always hoist at least 1 block
duke@435 241 if( !was_store ) { // Stores can be hoisted only one block
duke@435 242 while( cb->_dom_depth > (_dom_depth + 1))
duke@435 243 cb = cb->_idom; // Hoist loads as far as we want
duke@435 244 // The non-null-block should dominate the memory op, too. Live
duke@435 245 // range spilling will insert a spill in the non-null-block if it is
duke@435 246 // needs to spill the memory op for an implicit null check.
duke@435 247 if (cb->_dom_depth == (_dom_depth + 1)) {
duke@435 248 if (cb != not_null_block) continue;
duke@435 249 cb = cb->_idom;
duke@435 250 }
duke@435 251 }
duke@435 252 if( cb != this ) continue;
duke@435 253
duke@435 254 // Found a memory user; see if it can be hoisted to check-block
duke@435 255 uint vidx = 0; // Capture index of value into memop
duke@435 256 uint j;
duke@435 257 for( j = mach->req()-1; j > 0; j-- ) {
kvn@1930 258 if( mach->in(j) == val ) {
kvn@1930 259 vidx = j;
kvn@1930 260 // Ignore DecodeN val which could be hoisted to where needed.
kvn@1930 261 if( is_decoden ) continue;
kvn@1930 262 }
duke@435 263 // Block of memory-op input
duke@435 264 Block *inb = cfg->_bbs[mach->in(j)->_idx];
duke@435 265 Block *b = this; // Start from nul check
duke@435 266 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 267 b = b->_idom; // search upwards for input
duke@435 268 // See if input dominates null check
duke@435 269 if( b != inb )
duke@435 270 break;
duke@435 271 }
duke@435 272 if( j > 0 )
duke@435 273 continue;
duke@435 274 Block *mb = cfg->_bbs[mach->_idx];
duke@435 275 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 276 // Give up hoisting if we have to move the store past any load.
duke@435 277 if( was_store ) {
duke@435 278 Block *b = mb; // Start searching here for a local load
duke@435 279 // mach use (faulting) trying to hoist
duke@435 280 // n might be blocker to hoisting
duke@435 281 while( b != this ) {
duke@435 282 uint k;
duke@435 283 for( k = 1; k < b->_nodes.size(); k++ ) {
duke@435 284 Node *n = b->_nodes[k];
duke@435 285 if( n->needs_anti_dependence_check() &&
duke@435 286 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 287 break; // Found anti-dependent load
duke@435 288 }
duke@435 289 if( k < b->_nodes.size() )
duke@435 290 break; // Found anti-dependent load
duke@435 291 // Make sure control does not do a merge (would have to check allpaths)
duke@435 292 if( b->num_preds() != 2 ) break;
duke@435 293 b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
duke@435 294 }
duke@435 295 if( b != this ) continue;
duke@435 296 }
duke@435 297
duke@435 298 // Make sure this memory op is not already being used for a NullCheck
duke@435 299 Node *e = mb->end();
duke@435 300 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 301 continue; // Already being used as a NULL check
duke@435 302
duke@435 303 // Found a candidate! Pick one with least dom depth - the highest
duke@435 304 // in the dom tree should be closest to the null check.
duke@435 305 if( !best ||
duke@435 306 cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
duke@435 307 best = mach;
duke@435 308 bidx = vidx;
duke@435 309
duke@435 310 }
duke@435 311 }
duke@435 312 // No candidate!
duke@435 313 if( !best ) return;
duke@435 314
duke@435 315 // ---- Found an implicit null check
duke@435 316 extern int implicit_null_checks;
duke@435 317 implicit_null_checks++;
duke@435 318
kvn@1930 319 if( is_decoden ) {
kvn@1930 320 // Check if we need to hoist decodeHeapOop_not_null first.
kvn@1930 321 Block *valb = cfg->_bbs[val->_idx];
kvn@1930 322 if( this != valb && this->_dom_depth < valb->_dom_depth ) {
kvn@1930 323 // Hoist it up to the end of the test block.
kvn@1930 324 valb->find_remove(val);
kvn@1930 325 this->add_inst(val);
kvn@1930 326 cfg->_bbs.map(val->_idx,this);
kvn@1930 327 // DecodeN on x86 may kill flags. Check for flag-killing projections
kvn@1930 328 // that also need to be hoisted.
kvn@1930 329 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
kvn@1930 330 Node* n = val->fast_out(j);
kvn@3040 331 if( n->is_MachProj() ) {
kvn@1930 332 cfg->_bbs[n->_idx]->find_remove(n);
kvn@1930 333 this->add_inst(n);
kvn@1930 334 cfg->_bbs.map(n->_idx,this);
kvn@1930 335 }
kvn@1930 336 }
kvn@1930 337 }
kvn@1930 338 }
duke@435 339 // Hoist the memory candidate up to the end of the test block.
duke@435 340 Block *old_block = cfg->_bbs[best->_idx];
duke@435 341 old_block->find_remove(best);
duke@435 342 add_inst(best);
duke@435 343 cfg->_bbs.map(best->_idx,this);
duke@435 344
duke@435 345 // Move the control dependence
duke@435 346 if (best->in(0) && best->in(0) == old_block->_nodes[0])
duke@435 347 best->set_req(0, _nodes[0]);
duke@435 348
duke@435 349 // Check for flag-killing projections that also need to be hoisted
duke@435 350 // Should be DU safe because no edge updates.
duke@435 351 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 352 Node* n = best->fast_out(j);
kvn@3040 353 if( n->is_MachProj() ) {
duke@435 354 cfg->_bbs[n->_idx]->find_remove(n);
duke@435 355 add_inst(n);
duke@435 356 cfg->_bbs.map(n->_idx,this);
duke@435 357 }
duke@435 358 }
duke@435 359
duke@435 360 Compile *C = cfg->C;
duke@435 361 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 362 // One of two graph shapes got matched:
duke@435 363 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 364 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 365 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 366 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 367 // We need to flip the projections to keep the same semantics.
duke@435 368 if( proj->Opcode() == Op_IfTrue ) {
duke@435 369 // Swap order of projections in basic block to swap branch targets
duke@435 370 Node *tmp1 = _nodes[end_idx()+1];
duke@435 371 Node *tmp2 = _nodes[end_idx()+2];
duke@435 372 _nodes.map(end_idx()+1, tmp2);
duke@435 373 _nodes.map(end_idx()+2, tmp1);
kvn@4115 374 Node *tmp = new (C) Node(C->top()); // Use not NULL input
duke@435 375 tmp1->replace_by(tmp);
duke@435 376 tmp2->replace_by(tmp1);
duke@435 377 tmp->replace_by(tmp2);
duke@435 378 tmp->destruct();
duke@435 379 }
duke@435 380
duke@435 381 // Remove the existing null check; use a new implicit null check instead.
duke@435 382 // Since schedule-local needs precise def-use info, we need to correct
duke@435 383 // it as well.
duke@435 384 Node *old_tst = proj->in(0);
duke@435 385 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
duke@435 386 _nodes.map(end_idx(),nul_chk);
duke@435 387 cfg->_bbs.map(nul_chk->_idx,this);
duke@435 388 // Redirect users of old_test to nul_chk
duke@435 389 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 390 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 391 // Clean-up any dead code
duke@435 392 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 393 old_tst->set_req(i3, NULL);
duke@435 394
duke@435 395 cfg->latency_from_uses(nul_chk);
duke@435 396 cfg->latency_from_uses(best);
duke@435 397 }
duke@435 398
duke@435 399
duke@435 400 //------------------------------select-----------------------------------------
duke@435 401 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 402 // one choice, then use it. Projections take top priority for correctness
duke@435 403 // reasons - if I see a projection, then it is next. There are a number of
duke@435 404 // other special cases, for instructions that consume condition codes, et al.
duke@435 405 // These are chosen immediately. Some instructions are required to immediately
duke@435 406 // precede the last instruction in the block, and these are taken last. Of the
duke@435 407 // remaining cases (most), choose the instruction with the greatest latency
duke@435 408 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 409 // routine). If there is a tie, choose the instruction with the most inputs.
roland@3447 410 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 411
duke@435 412 // If only a single entry on the stack, use it
duke@435 413 uint cnt = worklist.size();
duke@435 414 if (cnt == 1) {
duke@435 415 Node *n = worklist[0];
duke@435 416 worklist.map(0,worklist.pop());
duke@435 417 return n;
duke@435 418 }
duke@435 419
duke@435 420 uint choice = 0; // Bigger is most important
duke@435 421 uint latency = 0; // Bigger is scheduled first
duke@435 422 uint score = 0; // Bigger is better
kvn@688 423 int idx = -1; // Index in worklist
shade@4691 424 int cand_cnt = 0; // Candidate count
duke@435 425
duke@435 426 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 427 // Order in worklist is used to break ties.
duke@435 428 // See caller for how this is used to delay scheduling
duke@435 429 // of induction variable increments to after the other
duke@435 430 // uses of the phi are scheduled.
duke@435 431 Node *n = worklist[i]; // Get Node on worklist
duke@435 432
duke@435 433 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 434 if( n->is_Proj() || // Projections always win
duke@435 435 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 436 iop == Op_CreateEx || // Create-exception must start block
duke@435 437 iop == Op_CheckCastPP
duke@435 438 ) {
duke@435 439 worklist.map(i,worklist.pop());
duke@435 440 return n;
duke@435 441 }
duke@435 442
duke@435 443 // Final call in a block must be adjacent to 'catch'
duke@435 444 Node *e = end();
duke@435 445 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 446 continue;
duke@435 447
duke@435 448 // Memory op for an implicit null check has to be at the end of the block
duke@435 449 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 450 continue;
duke@435 451
kvn@3882 452 // Schedule IV increment last.
kvn@3882 453 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
kvn@3882 454 e->in(1)->in(1) == n && n->is_iteratively_computed())
kvn@3882 455 continue;
kvn@3882 456
duke@435 457 uint n_choice = 2;
duke@435 458
duke@435 459 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 460 // branch is the last instruction in the basic block) force it to the
duke@435 461 // end of the basic block
duke@435 462 if ( must_clone[iop] ) {
duke@435 463 // See if any use is a branch
duke@435 464 bool found_machif = false;
duke@435 465
duke@435 466 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 467 Node* use = n->fast_out(j);
duke@435 468
duke@435 469 // The use is a conditional branch, make them adjacent
duke@435 470 if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
duke@435 471 found_machif = true;
duke@435 472 break;
duke@435 473 }
duke@435 474
duke@435 475 // More than this instruction pending for successor to be ready,
duke@435 476 // don't choose this if other opportunities are ready
roland@3447 477 if (ready_cnt.at(use->_idx) > 1)
duke@435 478 n_choice = 1;
duke@435 479 }
duke@435 480
duke@435 481 // loop terminated, prefer not to use this instruction
duke@435 482 if (found_machif)
duke@435 483 continue;
duke@435 484 }
duke@435 485
duke@435 486 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 487 // condition code. If so, choose this first
duke@435 488 for (uint j = 0; j < n->req() ; j++) {
duke@435 489 Node *inn = n->in(j);
duke@435 490 if (inn) {
duke@435 491 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 492 n_choice = 3;
duke@435 493 break;
duke@435 494 }
duke@435 495 }
duke@435 496 }
duke@435 497
duke@435 498 // MachTemps should be scheduled last so they are near their uses
duke@435 499 if (n->is_MachTemp()) {
duke@435 500 n_choice = 1;
duke@435 501 }
duke@435 502
kvn@2040 503 uint n_latency = cfg->_node_latency->at_grow(n->_idx);
duke@435 504 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 505
duke@435 506 // Keep best latency found
shade@4691 507 cand_cnt++;
shade@4691 508 if (choice < n_choice ||
shade@4691 509 (choice == n_choice &&
shade@4691 510 ((StressLCM && Compile::randomized_select(cand_cnt)) ||
shade@4691 511 (!StressLCM &&
shade@4691 512 (latency < n_latency ||
shade@4691 513 (latency == n_latency &&
shade@4691 514 (score < n_score))))))) {
duke@435 515 choice = n_choice;
duke@435 516 latency = n_latency;
duke@435 517 score = n_score;
duke@435 518 idx = i; // Also keep index in worklist
duke@435 519 }
duke@435 520 } // End of for all ready nodes in worklist
duke@435 521
kvn@688 522 assert(idx >= 0, "index should be set");
kvn@688 523 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 524
kvn@688 525 worklist.map((uint)idx, worklist.pop()); // Compress worklist
duke@435 526 return n;
duke@435 527 }
duke@435 528
duke@435 529
duke@435 530 //------------------------------set_next_call----------------------------------
duke@435 531 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
duke@435 532 if( next_call.test_set(n->_idx) ) return;
duke@435 533 for( uint i=0; i<n->len(); i++ ) {
duke@435 534 Node *m = n->in(i);
duke@435 535 if( !m ) continue; // must see all nodes in block that precede call
duke@435 536 if( bbs[m->_idx] == this )
duke@435 537 set_next_call( m, next_call, bbs );
duke@435 538 }
duke@435 539 }
duke@435 540
duke@435 541 //------------------------------needed_for_next_call---------------------------
duke@435 542 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 543 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 544 // next subroutine call get priority - basically it moves things NOT needed
duke@435 545 // for the next call till after the call. This prevents me from trying to
duke@435 546 // carry lots of stuff live across a call.
duke@435 547 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
duke@435 548 // Find the next control-defining Node in this block
duke@435 549 Node* call = NULL;
duke@435 550 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 551 Node* m = this_call->fast_out(i);
duke@435 552 if( bbs[m->_idx] == this && // Local-block user
duke@435 553 m != this_call && // Not self-start node
kvn@3040 554 m->is_MachCall() )
duke@435 555 call = m;
duke@435 556 break;
duke@435 557 }
duke@435 558 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 559 // Set next-call for all inputs to this call
duke@435 560 set_next_call(call, next_call, bbs);
duke@435 561 }
duke@435 562
roland@3316 563 //------------------------------add_call_kills-------------------------------------
roland@3316 564 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
roland@3316 565 // Fill in the kill mask for the call
roland@3316 566 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
roland@3316 567 if( !regs.Member(r) ) { // Not already defined by the call
roland@3316 568 // Save-on-call register?
roland@3316 569 if ((save_policy[r] == 'C') ||
roland@3316 570 (save_policy[r] == 'A') ||
roland@3316 571 ((save_policy[r] == 'E') && exclude_soe)) {
roland@3316 572 proj->_rout.Insert(r);
roland@3316 573 }
roland@3316 574 }
roland@3316 575 }
roland@3316 576 }
roland@3316 577
roland@3316 578
duke@435 579 //------------------------------sched_call-------------------------------------
roland@3447 580 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
duke@435 581 RegMask regs;
duke@435 582
duke@435 583 // Schedule all the users of the call right now. All the users are
duke@435 584 // projection Nodes, so they must be scheduled next to the call.
duke@435 585 // Collect all the defined registers.
duke@435 586 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 587 Node* n = mcall->fast_out(i);
kvn@3040 588 assert( n->is_MachProj(), "" );
roland@3447 589 int n_cnt = ready_cnt.at(n->_idx)-1;
roland@3447 590 ready_cnt.at_put(n->_idx, n_cnt);
roland@3447 591 assert( n_cnt == 0, "" );
duke@435 592 // Schedule next to call
duke@435 593 _nodes.map(node_cnt++, n);
duke@435 594 // Collect defined registers
duke@435 595 regs.OR(n->out_RegMask());
duke@435 596 // Check for scheduling the next control-definer
duke@435 597 if( n->bottom_type() == Type::CONTROL )
duke@435 598 // Warm up next pile of heuristic bits
duke@435 599 needed_for_next_call(n, next_call, bbs);
duke@435 600
duke@435 601 // Children of projections are now all ready
duke@435 602 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 603 Node* m = n->fast_out(j); // Get user
duke@435 604 if( bbs[m->_idx] != this ) continue;
duke@435 605 if( m->is_Phi() ) continue;
roland@3447 606 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 607 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 608 if( m_cnt == 0 )
duke@435 609 worklist.push(m);
duke@435 610 }
duke@435 611
duke@435 612 }
duke@435 613
duke@435 614 // Act as if the call defines the Frame Pointer.
duke@435 615 // Certainly the FP is alive and well after the call.
duke@435 616 regs.Insert(matcher.c_frame_pointer());
duke@435 617
duke@435 618 // Set all registers killed and not already defined by the call.
duke@435 619 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 620 int op = mcall->ideal_Opcode();
kvn@4115 621 MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
duke@435 622 bbs.map(proj->_idx,this);
duke@435 623 _nodes.insert(node_cnt++, proj);
duke@435 624
duke@435 625 // Select the right register save policy.
duke@435 626 const char * save_policy;
duke@435 627 switch (op) {
duke@435 628 case Op_CallRuntime:
duke@435 629 case Op_CallLeaf:
duke@435 630 case Op_CallLeafNoFP:
duke@435 631 // Calling C code so use C calling convention
duke@435 632 save_policy = matcher._c_reg_save_policy;
duke@435 633 break;
duke@435 634
duke@435 635 case Op_CallStaticJava:
duke@435 636 case Op_CallDynamicJava:
duke@435 637 // Calling Java code so use Java calling convention
duke@435 638 save_policy = matcher._register_save_policy;
duke@435 639 break;
duke@435 640
duke@435 641 default:
duke@435 642 ShouldNotReachHere();
duke@435 643 }
duke@435 644
duke@435 645 // When using CallRuntime mark SOE registers as killed by the call
duke@435 646 // so values that could show up in the RegisterMap aren't live in a
duke@435 647 // callee saved register since the register wouldn't know where to
duke@435 648 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 649 // have debug info on them. Strictly speaking this only needs to be
duke@435 650 // done for oops since idealreg2debugmask takes care of debug info
duke@435 651 // references but there no way to handle oops differently than other
duke@435 652 // pointers as far as the kill mask goes.
duke@435 653 bool exclude_soe = op == Op_CallRuntime;
duke@435 654
twisti@1572 655 // If the call is a MethodHandle invoke, we need to exclude the
twisti@1572 656 // register which is used to save the SP value over MH invokes from
twisti@1572 657 // the mask. Otherwise this register could be used for
twisti@1572 658 // deoptimization information.
twisti@1572 659 if (op == Op_CallStaticJava) {
twisti@1572 660 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
twisti@1572 661 if (mcallstaticjava->_method_handle_invoke)
twisti@1572 662 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
twisti@1572 663 }
twisti@1572 664
roland@3316 665 add_call_kills(proj, regs, save_policy, exclude_soe);
duke@435 666
duke@435 667 return node_cnt;
duke@435 668 }
duke@435 669
duke@435 670
duke@435 671 //------------------------------schedule_local---------------------------------
duke@435 672 // Topological sort within a block. Someday become a real scheduler.
roland@3447 673 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
duke@435 674 // Already "sorted" are the block start Node (as the first entry), and
duke@435 675 // the block-ending Node and any trailing control projections. We leave
duke@435 676 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 677 // Node. Everything else gets topo-sorted.
duke@435 678
duke@435 679 #ifndef PRODUCT
duke@435 680 if (cfg->trace_opto_pipelining()) {
duke@435 681 tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
duke@435 682 for (uint i = 0;i < _nodes.size();i++) {
duke@435 683 tty->print("# ");
duke@435 684 _nodes[i]->fast_dump();
duke@435 685 }
duke@435 686 tty->print_cr("#");
duke@435 687 }
duke@435 688 #endif
duke@435 689
duke@435 690 // RootNode is already sorted
duke@435 691 if( _nodes.size() == 1 ) return true;
duke@435 692
duke@435 693 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
duke@435 694 uint node_cnt = end_idx();
duke@435 695 uint phi_cnt = 1;
duke@435 696 uint i;
duke@435 697 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
duke@435 698 Node *n = _nodes[i];
duke@435 699 if( n->is_Phi() || // Found a PhiNode or ParmNode
duke@435 700 (n->is_Proj() && n->in(0) == head()) ) {
duke@435 701 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
duke@435 702 _nodes.map(i,_nodes[phi_cnt]);
duke@435 703 _nodes.map(phi_cnt++,n); // swap Phi/Parm up front
duke@435 704 } else { // All others
duke@435 705 // Count block-local inputs to 'n'
duke@435 706 uint cnt = n->len(); // Input count
duke@435 707 uint local = 0;
duke@435 708 for( uint j=0; j<cnt; j++ ) {
duke@435 709 Node *m = n->in(j);
duke@435 710 if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
duke@435 711 local++; // One more block-local input
duke@435 712 }
roland@3447 713 ready_cnt.at_put(n->_idx, local); // Count em up
duke@435 714
never@2780 715 #ifdef ASSERT
never@2780 716 if( UseConcMarkSweepGC || UseG1GC ) {
never@2780 717 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
never@2780 718 // Check the precedence edges
never@2780 719 for (uint prec = n->req(); prec < n->len(); prec++) {
never@2780 720 Node* oop_store = n->in(prec);
never@2780 721 if (oop_store != NULL) {
never@2780 722 assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
never@2780 723 }
never@2780 724 }
never@2780 725 }
never@2780 726 }
never@2780 727 #endif
never@2780 728
duke@435 729 // A few node types require changing a required edge to a precedence edge
duke@435 730 // before allocation.
kvn@1535 731 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
kvn@1535 732 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
kvn@1535 733 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
kvn@688 734 // MemBarAcquire could be created without Precedent edge.
kvn@688 735 // del_req() replaces the specified edge with the last input edge
kvn@688 736 // and then removes the last edge. If the specified edge > number of
kvn@688 737 // edges the last edge will be moved outside of the input edges array
kvn@688 738 // and the edge will be lost. This is why this code should be
kvn@688 739 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 740 Node *x = n->in(TypeFunc::Parms);
duke@435 741 n->del_req(TypeFunc::Parms);
duke@435 742 n->add_prec(x);
duke@435 743 }
duke@435 744 }
duke@435 745 }
duke@435 746 for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
roland@3447 747 ready_cnt.at_put(_nodes[i2]->_idx, 0);
duke@435 748
duke@435 749 // All the prescheduled guys do not hold back internal nodes
duke@435 750 uint i3;
duke@435 751 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
duke@435 752 Node *n = _nodes[i3]; // Get pre-scheduled
duke@435 753 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 754 Node* m = n->fast_out(j);
roland@3447 755 if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
roland@3447 756 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 757 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
roland@3447 758 }
duke@435 759 }
duke@435 760 }
duke@435 761
duke@435 762 Node_List delay;
duke@435 763 // Make a worklist
duke@435 764 Node_List worklist;
duke@435 765 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
duke@435 766 Node *m = _nodes[i4];
roland@3447 767 if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
duke@435 768 if (m->is_iteratively_computed()) {
duke@435 769 // Push induction variable increments last to allow other uses
duke@435 770 // of the phi to be scheduled first. The select() method breaks
duke@435 771 // ties in scheduling by worklist order.
duke@435 772 delay.push(m);
never@560 773 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 774 // Force the CreateEx to the top of the list so it's processed
never@560 775 // first and ends up at the start of the block.
never@560 776 worklist.insert(0, m);
duke@435 777 } else {
duke@435 778 worklist.push(m); // Then on to worklist!
duke@435 779 }
duke@435 780 }
duke@435 781 }
duke@435 782 while (delay.size()) {
duke@435 783 Node* d = delay.pop();
duke@435 784 worklist.push(d);
duke@435 785 }
duke@435 786
duke@435 787 // Warm up the 'next_call' heuristic bits
duke@435 788 needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
duke@435 789
duke@435 790 #ifndef PRODUCT
duke@435 791 if (cfg->trace_opto_pipelining()) {
duke@435 792 for (uint j=0; j<_nodes.size(); j++) {
duke@435 793 Node *n = _nodes[j];
duke@435 794 int idx = n->_idx;
roland@3447 795 tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
kvn@2040 796 tty->print("latency:%3d ", cfg->_node_latency->at_grow(idx));
duke@435 797 tty->print("%4d: %s\n", idx, n->Name());
duke@435 798 }
duke@435 799 }
duke@435 800 #endif
duke@435 801
roland@3447 802 uint max_idx = (uint)ready_cnt.length();
duke@435 803 // Pull from worklist and schedule
duke@435 804 while( worklist.size() ) { // Worklist is not ready
duke@435 805
duke@435 806 #ifndef PRODUCT
duke@435 807 if (cfg->trace_opto_pipelining()) {
duke@435 808 tty->print("# ready list:");
duke@435 809 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 810 Node *n = worklist[i]; // Get Node on worklist
duke@435 811 tty->print(" %d", n->_idx);
duke@435 812 }
duke@435 813 tty->cr();
duke@435 814 }
duke@435 815 #endif
duke@435 816
duke@435 817 // Select and pop a ready guy from worklist
duke@435 818 Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
duke@435 819 _nodes.map(phi_cnt++,n); // Schedule him next
duke@435 820
duke@435 821 #ifndef PRODUCT
duke@435 822 if (cfg->trace_opto_pipelining()) {
duke@435 823 tty->print("# select %d: %s", n->_idx, n->Name());
kvn@2040 824 tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
duke@435 825 n->dump();
duke@435 826 if (Verbose) {
duke@435 827 tty->print("# ready list:");
duke@435 828 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 829 Node *n = worklist[i]; // Get Node on worklist
duke@435 830 tty->print(" %d", n->_idx);
duke@435 831 }
duke@435 832 tty->cr();
duke@435 833 }
duke@435 834 }
duke@435 835
duke@435 836 #endif
duke@435 837 if( n->is_MachCall() ) {
duke@435 838 MachCallNode *mcall = n->as_MachCall();
duke@435 839 phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 840 continue;
duke@435 841 }
roland@3316 842
roland@3316 843 if (n->is_Mach() && n->as_Mach()->has_call()) {
roland@3316 844 RegMask regs;
roland@3316 845 regs.Insert(matcher.c_frame_pointer());
roland@3316 846 regs.OR(n->out_RegMask());
roland@3316 847
kvn@4115 848 MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
roland@3316 849 cfg->_bbs.map(proj->_idx,this);
roland@3316 850 _nodes.insert(phi_cnt++, proj);
roland@3316 851
roland@3316 852 add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
roland@3316 853 }
roland@3316 854
duke@435 855 // Children are now all ready
duke@435 856 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 857 Node* m = n->fast_out(i5); // Get user
duke@435 858 if( cfg->_bbs[m->_idx] != this ) continue;
duke@435 859 if( m->is_Phi() ) continue;
roland@3447 860 if (m->_idx >= max_idx) { // new node, skip it
roland@3316 861 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
roland@3316 862 continue;
roland@3316 863 }
roland@3447 864 int m_cnt = ready_cnt.at(m->_idx)-1;
roland@3447 865 ready_cnt.at_put(m->_idx, m_cnt);
roland@3447 866 if( m_cnt == 0 )
duke@435 867 worklist.push(m);
duke@435 868 }
duke@435 869 }
duke@435 870
duke@435 871 if( phi_cnt != end_idx() ) {
duke@435 872 // did not schedule all. Retry, Bailout, or Die
duke@435 873 Compile* C = matcher.C;
duke@435 874 if (C->subsume_loads() == true && !C->failing()) {
duke@435 875 // Retry with subsume_loads == false
duke@435 876 // If this is the first failure, the sentinel string will "stick"
duke@435 877 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 878 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 879 }
duke@435 880 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 881 return false;
duke@435 882 }
duke@435 883
duke@435 884 #ifndef PRODUCT
duke@435 885 if (cfg->trace_opto_pipelining()) {
duke@435 886 tty->print_cr("#");
duke@435 887 tty->print_cr("# after schedule_local");
duke@435 888 for (uint i = 0;i < _nodes.size();i++) {
duke@435 889 tty->print("# ");
duke@435 890 _nodes[i]->fast_dump();
duke@435 891 }
duke@435 892 tty->cr();
duke@435 893 }
duke@435 894 #endif
duke@435 895
duke@435 896
duke@435 897 return true;
duke@435 898 }
duke@435 899
duke@435 900 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 901 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 902 for (uint l = 0; l < use->len(); l++) {
duke@435 903 if (use->in(l) == old_def) {
duke@435 904 if (l < use->req()) {
duke@435 905 use->set_req(l, new_def);
duke@435 906 } else {
duke@435 907 use->rm_prec(l);
duke@435 908 use->add_prec(new_def);
duke@435 909 l--;
duke@435 910 }
duke@435 911 }
duke@435 912 }
duke@435 913 }
duke@435 914
duke@435 915 //------------------------------catch_cleanup_find_cloned_def------------------
duke@435 916 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 917 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 918
duke@435 919 // The use is some block below the Catch. Find and return the clone of the def
duke@435 920 // that dominates the use. If there is no clone in a dominating block, then
duke@435 921 // create a phi for the def in a dominating block.
duke@435 922
duke@435 923 // Find which successor block dominates this use. The successor
duke@435 924 // blocks must all be single-entry (from the Catch only; I will have
duke@435 925 // split blocks to make this so), hence they all dominate.
duke@435 926 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 927 use_blk = use_blk->_idom;
duke@435 928
duke@435 929 // Find the successor
duke@435 930 Node *fixup = NULL;
duke@435 931
duke@435 932 uint j;
duke@435 933 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 934 if( use_blk == def_blk->_succs[j] )
duke@435 935 break;
duke@435 936
duke@435 937 if( j == def_blk->_num_succs ) {
duke@435 938 // Block at same level in dom-tree is not a successor. It needs a
duke@435 939 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 940 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 941 for(uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 942 inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
duke@435 943 }
duke@435 944
duke@435 945 // Check to see if the use_blk already has an identical phi inserted.
duke@435 946 // If it exists, it will be at the first position since all uses of a
duke@435 947 // def are processed together.
duke@435 948 Node *phi = use_blk->_nodes[1];
duke@435 949 if( phi->is_Phi() ) {
duke@435 950 fixup = phi;
duke@435 951 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 952 if (phi->in(k) != inputs[k]) {
duke@435 953 // Not a match
duke@435 954 fixup = NULL;
duke@435 955 break;
duke@435 956 }
duke@435 957 }
duke@435 958 }
duke@435 959
duke@435 960 // If an existing PhiNode was not found, make a new one.
duke@435 961 if (fixup == NULL) {
duke@435 962 Node *new_phi = PhiNode::make(use_blk->head(), def);
duke@435 963 use_blk->_nodes.insert(1, new_phi);
duke@435 964 bbs.map(new_phi->_idx, use_blk);
duke@435 965 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 966 new_phi->set_req(k, inputs[k]);
duke@435 967 }
duke@435 968 fixup = new_phi;
duke@435 969 }
duke@435 970
duke@435 971 } else {
duke@435 972 // Found the use just below the Catch. Make it use the clone.
duke@435 973 fixup = use_blk->_nodes[n_clone_idx];
duke@435 974 }
duke@435 975
duke@435 976 return fixup;
duke@435 977 }
duke@435 978
duke@435 979 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 980 // Fix all input edges in use that reference "def". The use is in the same
duke@435 981 // block as the def and both have been cloned in each successor block.
duke@435 982 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 983
duke@435 984 // Both the use and def have been cloned. For each successor block,
duke@435 985 // get the clone of the use, and make its input the clone of the def
duke@435 986 // found in that block.
duke@435 987
duke@435 988 uint use_idx = blk->find_node(use);
duke@435 989 uint offset_idx = use_idx - beg;
duke@435 990 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 991 // Get clone in each successor block
duke@435 992 Block *sb = blk->_succs[k];
duke@435 993 Node *clone = sb->_nodes[offset_idx+1];
duke@435 994 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 995
duke@435 996 // Make use-clone reference the def-clone
duke@435 997 catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
duke@435 998 }
duke@435 999 }
duke@435 1000
duke@435 1001 //------------------------------catch_cleanup_inter_block---------------------
duke@435 1002 // Fix all input edges in use that reference "def". The use is in a different
duke@435 1003 // block than the def.
duke@435 1004 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 1005 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 1006
duke@435 1007 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
duke@435 1008 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 1009 }
duke@435 1010
duke@435 1011 //------------------------------call_catch_cleanup-----------------------------
duke@435 1012 // If we inserted any instructions between a Call and his CatchNode,
duke@435 1013 // clone the instructions on all paths below the Catch.
bharadwaj@4315 1014 void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
duke@435 1015
duke@435 1016 // End of region to clone
duke@435 1017 uint end = end_idx();
duke@435 1018 if( !_nodes[end]->is_Catch() ) return;
duke@435 1019 // Start of region to clone
duke@435 1020 uint beg = end;
kvn@3040 1021 while(!_nodes[beg-1]->is_MachProj() ||
kvn@3040 1022 !_nodes[beg-1]->in(0)->is_MachCall() ) {
duke@435 1023 beg--;
duke@435 1024 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 1025 }
duke@435 1026 // Range of inserted instructions is [beg, end)
duke@435 1027 if( beg == end ) return;
duke@435 1028
duke@435 1029 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 1030 // 'end' indices.
duke@435 1031 for( uint i = 0; i < _num_succs; i++ ) {
duke@435 1032 Block *sb = _succs[i];
duke@435 1033 // Clone the entire area; ignoring the edge fixup for now.
duke@435 1034 for( uint j = end; j > beg; j-- ) {
kvn@2048 1035 // It is safe here to clone a node with anti_dependence
kvn@2048 1036 // since clones dominate on each path.
duke@435 1037 Node *clone = _nodes[j-1]->clone();
duke@435 1038 sb->_nodes.insert( 1, clone );
duke@435 1039 bbs.map(clone->_idx,sb);
duke@435 1040 }
duke@435 1041 }
duke@435 1042
duke@435 1043
duke@435 1044 // Fixup edges. Check the def-use info per cloned Node
duke@435 1045 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 1046 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
duke@435 1047 Node *n = _nodes[i2]; // Node that got cloned
duke@435 1048 // Need DU safe iterator because of edge manipulation in calls.
duke@435 1049 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 1050 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 1051 out->push(n->fast_out(j1));
duke@435 1052 }
duke@435 1053 uint max = out->size();
duke@435 1054 for (uint j = 0; j < max; j++) {// For all users
duke@435 1055 Node *use = out->pop();
duke@435 1056 Block *buse = bbs[use->_idx];
duke@435 1057 if( use->is_Phi() ) {
duke@435 1058 for( uint k = 1; k < use->req(); k++ )
duke@435 1059 if( use->in(k) == n ) {
duke@435 1060 Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
duke@435 1061 use->set_req(k, fixup);
duke@435 1062 }
duke@435 1063 } else {
duke@435 1064 if (this == buse) {
duke@435 1065 catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
duke@435 1066 } else {
duke@435 1067 catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
duke@435 1068 }
duke@435 1069 }
duke@435 1070 } // End for all users
duke@435 1071
duke@435 1072 } // End of for all Nodes in cloned area
duke@435 1073
duke@435 1074 // Remove the now-dead cloned ops
duke@435 1075 for(uint i3 = beg; i3 < end; i3++ ) {
bharadwaj@4315 1076 _nodes[beg]->disconnect_inputs(NULL, C);
duke@435 1077 _nodes.remove(beg);
duke@435 1078 }
duke@435 1079
duke@435 1080 // If the successor blocks have a CreateEx node, move it back to the top
duke@435 1081 for(uint i4 = 0; i4 < _num_succs; i4++ ) {
duke@435 1082 Block *sb = _succs[i4];
duke@435 1083 uint new_cnt = end - beg;
duke@435 1084 // Remove any newly created, but dead, nodes.
duke@435 1085 for( uint j = new_cnt; j > 0; j-- ) {
duke@435 1086 Node *n = sb->_nodes[j];
duke@435 1087 if (n->outcnt() == 0 &&
duke@435 1088 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
bharadwaj@4315 1089 n->disconnect_inputs(NULL, C);
duke@435 1090 sb->_nodes.remove(j);
duke@435 1091 new_cnt--;
duke@435 1092 }
duke@435 1093 }
duke@435 1094 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 1095 if (new_cnt > 0) {
duke@435 1096 Node *cex = sb->_nodes[1+new_cnt];
duke@435 1097 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 1098 sb->_nodes.remove(1+new_cnt);
duke@435 1099 sb->_nodes.insert(1,cex);
duke@435 1100 }
duke@435 1101 }
duke@435 1102 }
duke@435 1103 }

mercurial