src/share/vm/opto/mulnode.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 839
78c058bc5cdc
child 993
3b5ac9e7e6ea
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_mulnode.cpp.incl"
duke@435 29
duke@435 30
duke@435 31 //=============================================================================
duke@435 32 //------------------------------hash-------------------------------------------
duke@435 33 // Hash function over MulNodes. Needs to be commutative; i.e., I swap
duke@435 34 // (commute) inputs to MulNodes willy-nilly so the hash function must return
duke@435 35 // the same value in the presence of edge swapping.
duke@435 36 uint MulNode::hash() const {
duke@435 37 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
duke@435 38 }
duke@435 39
duke@435 40 //------------------------------Identity---------------------------------------
duke@435 41 // Multiplying a one preserves the other argument
duke@435 42 Node *MulNode::Identity( PhaseTransform *phase ) {
duke@435 43 register const Type *one = mul_id(); // The multiplicative identity
duke@435 44 if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
duke@435 45 if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
duke@435 46
duke@435 47 return this;
duke@435 48 }
duke@435 49
duke@435 50 //------------------------------Ideal------------------------------------------
duke@435 51 // We also canonicalize the Node, moving constants to the right input,
duke@435 52 // and flatten expressions (so that 1+x+2 becomes x+3).
duke@435 53 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 54 const Type *t1 = phase->type( in(1) );
duke@435 55 const Type *t2 = phase->type( in(2) );
duke@435 56 Node *progress = NULL; // Progress flag
duke@435 57 // We are OK if right is a constant, or right is a load and
duke@435 58 // left is a non-constant.
duke@435 59 if( !(t2->singleton() ||
duke@435 60 (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
duke@435 61 if( t1->singleton() || // Left input is a constant?
duke@435 62 // Otherwise, sort inputs (commutativity) to help value numbering.
duke@435 63 (in(1)->_idx > in(2)->_idx) ) {
duke@435 64 swap_edges(1, 2);
duke@435 65 const Type *t = t1;
duke@435 66 t1 = t2;
duke@435 67 t2 = t;
duke@435 68 progress = this; // Made progress
duke@435 69 }
duke@435 70 }
duke@435 71
duke@435 72 // If the right input is a constant, and the left input is a product of a
duke@435 73 // constant, flatten the expression tree.
duke@435 74 uint op = Opcode();
duke@435 75 if( t2->singleton() && // Right input is a constant?
duke@435 76 op != Op_MulF && // Float & double cannot reassociate
duke@435 77 op != Op_MulD ) {
duke@435 78 if( t2 == Type::TOP ) return NULL;
duke@435 79 Node *mul1 = in(1);
duke@435 80 #ifdef ASSERT
duke@435 81 // Check for dead loop
duke@435 82 int op1 = mul1->Opcode();
duke@435 83 if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
duke@435 84 ( op1 == mul_opcode() || op1 == add_opcode() ) &&
duke@435 85 ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
duke@435 86 phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
duke@435 87 assert(false, "dead loop in MulNode::Ideal");
duke@435 88 #endif
duke@435 89
duke@435 90 if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply?
duke@435 91 // Mul of a constant?
duke@435 92 const Type *t12 = phase->type( mul1->in(2) );
duke@435 93 if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
duke@435 94 // Compute new constant; check for overflow
duke@435 95 const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
duke@435 96 if( tcon01->singleton() ) {
duke@435 97 // The Mul of the flattened expression
duke@435 98 set_req(1, mul1->in(1));
duke@435 99 set_req(2, phase->makecon( tcon01 ));
duke@435 100 t2 = tcon01;
duke@435 101 progress = this; // Made progress
duke@435 102 }
duke@435 103 }
duke@435 104 }
duke@435 105 // If the right input is a constant, and the left input is an add of a
duke@435 106 // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
duke@435 107 const Node *add1 = in(1);
duke@435 108 if( add1->Opcode() == add_opcode() ) { // Left input is an add?
duke@435 109 // Add of a constant?
duke@435 110 const Type *t12 = phase->type( add1->in(2) );
duke@435 111 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
duke@435 112 assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
duke@435 113 // Compute new constant; check for overflow
duke@435 114 const Type *tcon01 = mul_ring(t2,t12);
duke@435 115 if( tcon01->singleton() ) {
duke@435 116
duke@435 117 // Convert (X+con1)*con0 into X*con0
duke@435 118 Node *mul = clone(); // mul = ()*con0
duke@435 119 mul->set_req(1,add1->in(1)); // mul = X*con0
duke@435 120 mul = phase->transform(mul);
duke@435 121
duke@435 122 Node *add2 = add1->clone();
duke@435 123 add2->set_req(1, mul); // X*con0 + con0*con1
duke@435 124 add2->set_req(2, phase->makecon(tcon01) );
duke@435 125 progress = add2;
duke@435 126 }
duke@435 127 }
duke@435 128 } // End of is left input an add
duke@435 129 } // End of is right input a Mul
duke@435 130
duke@435 131 return progress;
duke@435 132 }
duke@435 133
duke@435 134 //------------------------------Value-----------------------------------------
duke@435 135 const Type *MulNode::Value( PhaseTransform *phase ) const {
duke@435 136 const Type *t1 = phase->type( in(1) );
duke@435 137 const Type *t2 = phase->type( in(2) );
duke@435 138 // Either input is TOP ==> the result is TOP
duke@435 139 if( t1 == Type::TOP ) return Type::TOP;
duke@435 140 if( t2 == Type::TOP ) return Type::TOP;
duke@435 141
duke@435 142 // Either input is ZERO ==> the result is ZERO.
duke@435 143 // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
duke@435 144 int op = Opcode();
duke@435 145 if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
duke@435 146 const Type *zero = add_id(); // The multiplicative zero
duke@435 147 if( t1->higher_equal( zero ) ) return zero;
duke@435 148 if( t2->higher_equal( zero ) ) return zero;
duke@435 149 }
duke@435 150
duke@435 151 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 152 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
duke@435 153 return bottom_type();
duke@435 154
rasbold@839 155 #if defined(IA32)
rasbold@839 156 // Can't trust native compilers to properly fold strict double
rasbold@839 157 // multiplication with round-to-zero on this platform.
rasbold@839 158 if (op == Op_MulD && phase->C->method()->is_strict()) {
rasbold@839 159 return TypeD::DOUBLE;
rasbold@839 160 }
rasbold@839 161 #endif
rasbold@839 162
duke@435 163 return mul_ring(t1,t2); // Local flavor of type multiplication
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 //=============================================================================
duke@435 168 //------------------------------Ideal------------------------------------------
duke@435 169 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
duke@435 170 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 171 // Swap constant to right
duke@435 172 jint con;
duke@435 173 if ((con = in(1)->find_int_con(0)) != 0) {
duke@435 174 swap_edges(1, 2);
duke@435 175 // Finish rest of method to use info in 'con'
duke@435 176 } else if ((con = in(2)->find_int_con(0)) == 0) {
duke@435 177 return MulNode::Ideal(phase, can_reshape);
duke@435 178 }
duke@435 179
duke@435 180 // Now we have a constant Node on the right and the constant in con
duke@435 181 if( con == 0 ) return NULL; // By zero is handled by Value call
duke@435 182 if( con == 1 ) return NULL; // By one is handled by Identity call
duke@435 183
duke@435 184 // Check for negative constant; if so negate the final result
duke@435 185 bool sign_flip = false;
duke@435 186 if( con < 0 ) {
duke@435 187 con = -con;
duke@435 188 sign_flip = true;
duke@435 189 }
duke@435 190
duke@435 191 // Get low bit; check for being the only bit
duke@435 192 Node *res = NULL;
duke@435 193 jint bit1 = con & -con; // Extract low bit
duke@435 194 if( bit1 == con ) { // Found a power of 2?
duke@435 195 res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
duke@435 196 } else {
duke@435 197
duke@435 198 // Check for constant with 2 bits set
duke@435 199 jint bit2 = con-bit1;
duke@435 200 bit2 = bit2 & -bit2; // Extract 2nd bit
duke@435 201 if( bit2 + bit1 == con ) { // Found all bits in con?
duke@435 202 Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
duke@435 203 Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
duke@435 204 res = new (phase->C, 3) AddINode( n2, n1 );
duke@435 205
duke@435 206 } else if (is_power_of_2(con+1)) {
duke@435 207 // Sleezy: power-of-2 -1. Next time be generic.
duke@435 208 jint temp = (jint) (con + 1);
duke@435 209 Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
duke@435 210 res = new (phase->C, 3) SubINode( n1, in(1) );
duke@435 211 } else {
duke@435 212 return MulNode::Ideal(phase, can_reshape);
duke@435 213 }
duke@435 214 }
duke@435 215
duke@435 216 if( sign_flip ) { // Need to negate result?
duke@435 217 res = phase->transform(res);// Transform, before making the zero con
duke@435 218 res = new (phase->C, 3) SubINode(phase->intcon(0),res);
duke@435 219 }
duke@435 220
duke@435 221 return res; // Return final result
duke@435 222 }
duke@435 223
duke@435 224 //------------------------------mul_ring---------------------------------------
duke@435 225 // Compute the product type of two integer ranges into this node.
duke@435 226 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 227 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 228 const TypeInt *r1 = t1->is_int();
duke@435 229
duke@435 230 // Fetch endpoints of all ranges
duke@435 231 int32 lo0 = r0->_lo;
duke@435 232 double a = (double)lo0;
duke@435 233 int32 hi0 = r0->_hi;
duke@435 234 double b = (double)hi0;
duke@435 235 int32 lo1 = r1->_lo;
duke@435 236 double c = (double)lo1;
duke@435 237 int32 hi1 = r1->_hi;
duke@435 238 double d = (double)hi1;
duke@435 239
duke@435 240 // Compute all endpoints & check for overflow
duke@435 241 int32 A = lo0*lo1;
duke@435 242 if( (double)A != a*c ) return TypeInt::INT; // Overflow?
duke@435 243 int32 B = lo0*hi1;
duke@435 244 if( (double)B != a*d ) return TypeInt::INT; // Overflow?
duke@435 245 int32 C = hi0*lo1;
duke@435 246 if( (double)C != b*c ) return TypeInt::INT; // Overflow?
duke@435 247 int32 D = hi0*hi1;
duke@435 248 if( (double)D != b*d ) return TypeInt::INT; // Overflow?
duke@435 249
duke@435 250 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
duke@435 251 else { lo0 = B; hi0 = A; }
duke@435 252 if( C < D ) {
duke@435 253 if( C < lo0 ) lo0 = C;
duke@435 254 if( D > hi0 ) hi0 = D;
duke@435 255 } else {
duke@435 256 if( D < lo0 ) lo0 = D;
duke@435 257 if( C > hi0 ) hi0 = C;
duke@435 258 }
duke@435 259 return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
duke@435 260 }
duke@435 261
duke@435 262
duke@435 263 //=============================================================================
duke@435 264 //------------------------------Ideal------------------------------------------
duke@435 265 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
duke@435 266 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 267 // Swap constant to right
duke@435 268 jlong con;
duke@435 269 if ((con = in(1)->find_long_con(0)) != 0) {
duke@435 270 swap_edges(1, 2);
duke@435 271 // Finish rest of method to use info in 'con'
duke@435 272 } else if ((con = in(2)->find_long_con(0)) == 0) {
duke@435 273 return MulNode::Ideal(phase, can_reshape);
duke@435 274 }
duke@435 275
duke@435 276 // Now we have a constant Node on the right and the constant in con
duke@435 277 if( con == CONST64(0) ) return NULL; // By zero is handled by Value call
duke@435 278 if( con == CONST64(1) ) return NULL; // By one is handled by Identity call
duke@435 279
duke@435 280 // Check for negative constant; if so negate the final result
duke@435 281 bool sign_flip = false;
duke@435 282 if( con < 0 ) {
duke@435 283 con = -con;
duke@435 284 sign_flip = true;
duke@435 285 }
duke@435 286
duke@435 287 // Get low bit; check for being the only bit
duke@435 288 Node *res = NULL;
duke@435 289 jlong bit1 = con & -con; // Extract low bit
duke@435 290 if( bit1 == con ) { // Found a power of 2?
duke@435 291 res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
duke@435 292 } else {
duke@435 293
duke@435 294 // Check for constant with 2 bits set
duke@435 295 jlong bit2 = con-bit1;
duke@435 296 bit2 = bit2 & -bit2; // Extract 2nd bit
duke@435 297 if( bit2 + bit1 == con ) { // Found all bits in con?
duke@435 298 Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
duke@435 299 Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
duke@435 300 res = new (phase->C, 3) AddLNode( n2, n1 );
duke@435 301
duke@435 302 } else if (is_power_of_2_long(con+1)) {
duke@435 303 // Sleezy: power-of-2 -1. Next time be generic.
duke@435 304 jlong temp = (jlong) (con + 1);
duke@435 305 Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
duke@435 306 res = new (phase->C, 3) SubLNode( n1, in(1) );
duke@435 307 } else {
duke@435 308 return MulNode::Ideal(phase, can_reshape);
duke@435 309 }
duke@435 310 }
duke@435 311
duke@435 312 if( sign_flip ) { // Need to negate result?
duke@435 313 res = phase->transform(res);// Transform, before making the zero con
duke@435 314 res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
duke@435 315 }
duke@435 316
duke@435 317 return res; // Return final result
duke@435 318 }
duke@435 319
duke@435 320 //------------------------------mul_ring---------------------------------------
duke@435 321 // Compute the product type of two integer ranges into this node.
duke@435 322 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 323 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 324 const TypeLong *r1 = t1->is_long();
duke@435 325
duke@435 326 // Fetch endpoints of all ranges
duke@435 327 jlong lo0 = r0->_lo;
duke@435 328 double a = (double)lo0;
duke@435 329 jlong hi0 = r0->_hi;
duke@435 330 double b = (double)hi0;
duke@435 331 jlong lo1 = r1->_lo;
duke@435 332 double c = (double)lo1;
duke@435 333 jlong hi1 = r1->_hi;
duke@435 334 double d = (double)hi1;
duke@435 335
duke@435 336 // Compute all endpoints & check for overflow
duke@435 337 jlong A = lo0*lo1;
duke@435 338 if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
duke@435 339 jlong B = lo0*hi1;
duke@435 340 if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
duke@435 341 jlong C = hi0*lo1;
duke@435 342 if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
duke@435 343 jlong D = hi0*hi1;
duke@435 344 if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
duke@435 345
duke@435 346 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
duke@435 347 else { lo0 = B; hi0 = A; }
duke@435 348 if( C < D ) {
duke@435 349 if( C < lo0 ) lo0 = C;
duke@435 350 if( D > hi0 ) hi0 = D;
duke@435 351 } else {
duke@435 352 if( D < lo0 ) lo0 = D;
duke@435 353 if( C > hi0 ) hi0 = C;
duke@435 354 }
duke@435 355 return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
duke@435 356 }
duke@435 357
duke@435 358 //=============================================================================
duke@435 359 //------------------------------mul_ring---------------------------------------
duke@435 360 // Compute the product type of two double ranges into this node.
duke@435 361 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 362 if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
duke@435 363 return TypeF::make( t0->getf() * t1->getf() );
duke@435 364 }
duke@435 365
duke@435 366 //=============================================================================
duke@435 367 //------------------------------mul_ring---------------------------------------
duke@435 368 // Compute the product type of two double ranges into this node.
duke@435 369 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 370 if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
rasbold@839 371 // We must be multiplying 2 double constants.
duke@435 372 return TypeD::make( t0->getd() * t1->getd() );
duke@435 373 }
duke@435 374
duke@435 375 //=============================================================================
rasbold@580 376 //------------------------------Value------------------------------------------
rasbold@580 377 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
rasbold@580 378 // Either input is TOP ==> the result is TOP
rasbold@580 379 const Type *t1 = phase->type( in(1) );
rasbold@580 380 const Type *t2 = phase->type( in(2) );
rasbold@580 381 if( t1 == Type::TOP ) return Type::TOP;
rasbold@580 382 if( t2 == Type::TOP ) return Type::TOP;
rasbold@580 383
rasbold@580 384 // Either input is BOTTOM ==> the result is the local BOTTOM
rasbold@580 385 const Type *bot = bottom_type();
rasbold@580 386 if( (t1 == bot) || (t2 == bot) ||
rasbold@580 387 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
rasbold@580 388 return bot;
rasbold@580 389
rasbold@580 390 // It is not worth trying to constant fold this stuff!
rasbold@580 391 return TypeLong::LONG;
rasbold@580 392 }
rasbold@580 393
rasbold@580 394 //=============================================================================
duke@435 395 //------------------------------mul_ring---------------------------------------
duke@435 396 // Supplied function returns the product of the inputs IN THE CURRENT RING.
duke@435 397 // For the logical operations the ring's MUL is really a logical AND function.
duke@435 398 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 399 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 400 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
duke@435 401 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 402 const TypeInt *r1 = t1->is_int();
duke@435 403 int widen = MAX2(r0->_widen,r1->_widen);
duke@435 404
duke@435 405 // If either input is a constant, might be able to trim cases
duke@435 406 if( !r0->is_con() && !r1->is_con() )
duke@435 407 return TypeInt::INT; // No constants to be had
duke@435 408
duke@435 409 // Both constants? Return bits
duke@435 410 if( r0->is_con() && r1->is_con() )
duke@435 411 return TypeInt::make( r0->get_con() & r1->get_con() );
duke@435 412
duke@435 413 if( r0->is_con() && r0->get_con() > 0 )
duke@435 414 return TypeInt::make(0, r0->get_con(), widen);
duke@435 415
duke@435 416 if( r1->is_con() && r1->get_con() > 0 )
duke@435 417 return TypeInt::make(0, r1->get_con(), widen);
duke@435 418
duke@435 419 if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
duke@435 420 return TypeInt::BOOL;
duke@435 421 }
duke@435 422
duke@435 423 return TypeInt::INT; // No constants to be had
duke@435 424 }
duke@435 425
duke@435 426 //------------------------------Identity---------------------------------------
duke@435 427 // Masking off the high bits of an unsigned load is not required
duke@435 428 Node *AndINode::Identity( PhaseTransform *phase ) {
duke@435 429
duke@435 430 // x & x => x
duke@435 431 if (phase->eqv(in(1), in(2))) return in(1);
duke@435 432
duke@435 433 Node *load = in(1);
duke@435 434 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 435 if( t2 && t2->is_con() ) {
duke@435 436 int con = t2->get_con();
duke@435 437 // Masking off high bits which are always zero is useless.
duke@435 438 const TypeInt* t1 = phase->type( in(1) )->isa_int();
duke@435 439 if (t1 != NULL && t1->_lo >= 0) {
duke@435 440 jint t1_support = ((jint)1 << (1 + log2_intptr(t1->_hi))) - 1;
duke@435 441 if ((t1_support & con) == t1_support)
duke@435 442 return load;
duke@435 443 }
duke@435 444 uint lop = load->Opcode();
duke@435 445 if( lop == Op_LoadC &&
duke@435 446 con == 0x0000FFFF ) // Already zero-extended
duke@435 447 return load;
duke@435 448 // Masking off the high bits of a unsigned-shift-right is not
duke@435 449 // needed either.
duke@435 450 if( lop == Op_URShiftI ) {
duke@435 451 const TypeInt *t12 = phase->type( load->in(2) )->isa_int();
duke@435 452 if( t12 && t12->is_con() ) {
duke@435 453 int shift_con = t12->get_con();
duke@435 454 int mask = max_juint >> shift_con;
duke@435 455 if( (mask&con) == mask ) // If AND is useless, skip it
duke@435 456 return load;
duke@435 457 }
duke@435 458 }
duke@435 459 }
duke@435 460 return MulNode::Identity(phase);
duke@435 461 }
duke@435 462
duke@435 463 //------------------------------Ideal------------------------------------------
duke@435 464 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 465 // Special case constant AND mask
duke@435 466 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 467 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
duke@435 468 const int mask = t2->get_con();
duke@435 469 Node *load = in(1);
duke@435 470 uint lop = load->Opcode();
duke@435 471
duke@435 472 // Masking bits off of a Character? Hi bits are already zero.
duke@435 473 if( lop == Op_LoadC &&
duke@435 474 (mask & 0xFFFF0000) ) // Can we make a smaller mask?
duke@435 475 return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
duke@435 476
duke@435 477 // Masking bits off of a Short? Loading a Character does some masking
duke@435 478 if( lop == Op_LoadS &&
duke@435 479 (mask & 0xFFFF0000) == 0 ) {
duke@435 480 Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control),
duke@435 481 load->in(MemNode::Memory),
duke@435 482 load->in(MemNode::Address),
duke@435 483 load->adr_type());
duke@435 484 ldc = phase->transform(ldc);
duke@435 485 return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF));
duke@435 486 }
duke@435 487
duke@435 488 // Masking sign bits off of a Byte? Let the matcher use an unsigned load
duke@435 489 if( lop == Op_LoadB &&
duke@435 490 (!in(0) && load->in(0)) &&
duke@435 491 (mask == 0x000000FF) ) {
duke@435 492 // Associate this node with the LoadB, so the matcher can see them together.
duke@435 493 // If we don't do this, it is common for the LoadB to have one control
duke@435 494 // edge, and the store or call containing this AndI to have a different
duke@435 495 // control edge. This will cause Label_Root to group the AndI with
duke@435 496 // the encoding store or call, so the matcher has no chance to match
duke@435 497 // this AndI together with the LoadB. Setting the control edge here
duke@435 498 // prevents Label_Root from grouping the AndI with the store or call,
duke@435 499 // if it has a control edge that is inconsistent with the LoadB.
duke@435 500 set_req(0, load->in(0));
duke@435 501 return this;
duke@435 502 }
duke@435 503
duke@435 504 // Masking off sign bits? Dont make them!
duke@435 505 if( lop == Op_RShiftI ) {
duke@435 506 const TypeInt *t12 = phase->type(load->in(2))->isa_int();
duke@435 507 if( t12 && t12->is_con() ) { // Shift is by a constant
duke@435 508 int shift = t12->get_con();
duke@435 509 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 510 const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
duke@435 511 // If the AND'ing of the 2 masks has no bits, then only original shifted
duke@435 512 // bits survive. NO sign-extension bits survive the maskings.
duke@435 513 if( (sign_bits_mask & mask) == 0 ) {
duke@435 514 // Use zero-fill shift instead
duke@435 515 Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
duke@435 516 return new (phase->C, 3) AndINode( zshift, in(2) );
duke@435 517 }
duke@435 518 }
duke@435 519 }
duke@435 520
duke@435 521 // Check for 'negate/and-1', a pattern emitted when someone asks for
duke@435 522 // 'mod 2'. Negate leaves the low order bit unchanged (think: complement
duke@435 523 // plus 1) and the mask is of the low order bit. Skip the negate.
duke@435 524 if( lop == Op_SubI && mask == 1 && load->in(1) &&
duke@435 525 phase->type(load->in(1)) == TypeInt::ZERO )
duke@435 526 return new (phase->C, 3) AndINode( load->in(2), in(2) );
duke@435 527
duke@435 528 return MulNode::Ideal(phase, can_reshape);
duke@435 529 }
duke@435 530
duke@435 531 //=============================================================================
duke@435 532 //------------------------------mul_ring---------------------------------------
duke@435 533 // Supplied function returns the product of the inputs IN THE CURRENT RING.
duke@435 534 // For the logical operations the ring's MUL is really a logical AND function.
duke@435 535 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 536 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 537 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
duke@435 538 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 539 const TypeLong *r1 = t1->is_long();
duke@435 540 int widen = MAX2(r0->_widen,r1->_widen);
duke@435 541
duke@435 542 // If either input is a constant, might be able to trim cases
duke@435 543 if( !r0->is_con() && !r1->is_con() )
duke@435 544 return TypeLong::LONG; // No constants to be had
duke@435 545
duke@435 546 // Both constants? Return bits
duke@435 547 if( r0->is_con() && r1->is_con() )
duke@435 548 return TypeLong::make( r0->get_con() & r1->get_con() );
duke@435 549
duke@435 550 if( r0->is_con() && r0->get_con() > 0 )
duke@435 551 return TypeLong::make(CONST64(0), r0->get_con(), widen);
duke@435 552
duke@435 553 if( r1->is_con() && r1->get_con() > 0 )
duke@435 554 return TypeLong::make(CONST64(0), r1->get_con(), widen);
duke@435 555
duke@435 556 return TypeLong::LONG; // No constants to be had
duke@435 557 }
duke@435 558
duke@435 559 //------------------------------Identity---------------------------------------
duke@435 560 // Masking off the high bits of an unsigned load is not required
duke@435 561 Node *AndLNode::Identity( PhaseTransform *phase ) {
duke@435 562
duke@435 563 // x & x => x
duke@435 564 if (phase->eqv(in(1), in(2))) return in(1);
duke@435 565
duke@435 566 Node *usr = in(1);
duke@435 567 const TypeLong *t2 = phase->type( in(2) )->isa_long();
duke@435 568 if( t2 && t2->is_con() ) {
duke@435 569 jlong con = t2->get_con();
duke@435 570 // Masking off high bits which are always zero is useless.
duke@435 571 const TypeLong* t1 = phase->type( in(1) )->isa_long();
duke@435 572 if (t1 != NULL && t1->_lo >= 0) {
duke@435 573 jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
duke@435 574 if ((t1_support & con) == t1_support)
duke@435 575 return usr;
duke@435 576 }
duke@435 577 uint lop = usr->Opcode();
duke@435 578 // Masking off the high bits of a unsigned-shift-right is not
duke@435 579 // needed either.
duke@435 580 if( lop == Op_URShiftL ) {
duke@435 581 const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
duke@435 582 if( t12 && t12->is_con() ) {
duke@435 583 int shift_con = t12->get_con();
duke@435 584 jlong mask = max_julong >> shift_con;
duke@435 585 if( (mask&con) == mask ) // If AND is useless, skip it
duke@435 586 return usr;
duke@435 587 }
duke@435 588 }
duke@435 589 }
duke@435 590 return MulNode::Identity(phase);
duke@435 591 }
duke@435 592
duke@435 593 //------------------------------Ideal------------------------------------------
duke@435 594 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 595 // Special case constant AND mask
duke@435 596 const TypeLong *t2 = phase->type( in(2) )->isa_long();
duke@435 597 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
duke@435 598 const jlong mask = t2->get_con();
duke@435 599
duke@435 600 Node *rsh = in(1);
duke@435 601 uint rop = rsh->Opcode();
duke@435 602
duke@435 603 // Masking off sign bits? Dont make them!
duke@435 604 if( rop == Op_RShiftL ) {
duke@435 605 const TypeInt *t12 = phase->type(rsh->in(2))->isa_int();
duke@435 606 if( t12 && t12->is_con() ) { // Shift is by a constant
duke@435 607 int shift = t12->get_con();
duke@435 608 shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
duke@435 609 const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1);
duke@435 610 // If the AND'ing of the 2 masks has no bits, then only original shifted
duke@435 611 // bits survive. NO sign-extension bits survive the maskings.
duke@435 612 if( (sign_bits_mask & mask) == 0 ) {
duke@435 613 // Use zero-fill shift instead
duke@435 614 Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(rsh->in(1),rsh->in(2)));
duke@435 615 return new (phase->C, 3) AndLNode( zshift, in(2) );
duke@435 616 }
duke@435 617 }
duke@435 618 }
duke@435 619
duke@435 620 return MulNode::Ideal(phase, can_reshape);
duke@435 621 }
duke@435 622
duke@435 623 //=============================================================================
duke@435 624 //------------------------------Identity---------------------------------------
duke@435 625 Node *LShiftINode::Identity( PhaseTransform *phase ) {
duke@435 626 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 627 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
duke@435 628 }
duke@435 629
duke@435 630 //------------------------------Ideal------------------------------------------
duke@435 631 // If the right input is a constant, and the left input is an add of a
duke@435 632 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
duke@435 633 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 634 const Type *t = phase->type( in(2) );
duke@435 635 if( t == Type::TOP ) return NULL; // Right input is dead
duke@435 636 const TypeInt *t2 = t->isa_int();
duke@435 637 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 638 const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count
duke@435 639
duke@435 640 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 641
duke@435 642 // Left input is an add of a constant?
duke@435 643 Node *add1 = in(1);
duke@435 644 int add1_op = add1->Opcode();
duke@435 645 if( add1_op == Op_AddI ) { // Left input is an add?
duke@435 646 assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
duke@435 647 const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
duke@435 648 if( t12 && t12->is_con() ){ // Left input is an add of a con?
duke@435 649 // Transform is legal, but check for profit. Avoid breaking 'i2s'
duke@435 650 // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
duke@435 651 if( con < 16 ) {
duke@435 652 // Compute X << con0
duke@435 653 Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
duke@435 654 // Compute X<<con0 + (con1<<con0)
duke@435 655 return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
duke@435 656 }
duke@435 657 }
duke@435 658 }
duke@435 659
duke@435 660 // Check for "(x>>c0)<<c0" which just masks off low bits
duke@435 661 if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
duke@435 662 add1->in(2) == in(2) )
duke@435 663 // Convert to "(x & -(1<<c0))"
duke@435 664 return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
duke@435 665
duke@435 666 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
duke@435 667 if( add1_op == Op_AndI ) {
duke@435 668 Node *add2 = add1->in(1);
duke@435 669 int add2_op = add2->Opcode();
duke@435 670 if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
duke@435 671 add2->in(2) == in(2) ) {
duke@435 672 // Convert to "(x & (Y<<c0))"
duke@435 673 Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
duke@435 674 return new (phase->C, 3) AndINode( add2->in(1), y_sh );
duke@435 675 }
duke@435 676 }
duke@435 677
duke@435 678 // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
duke@435 679 // before shifting them away.
duke@435 680 const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
duke@435 681 if( add1_op == Op_AndI &&
duke@435 682 phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
duke@435 683 return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
duke@435 684
duke@435 685 return NULL;
duke@435 686 }
duke@435 687
duke@435 688 //------------------------------Value------------------------------------------
duke@435 689 // A LShiftINode shifts its input2 left by input1 amount.
duke@435 690 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
duke@435 691 const Type *t1 = phase->type( in(1) );
duke@435 692 const Type *t2 = phase->type( in(2) );
duke@435 693 // Either input is TOP ==> the result is TOP
duke@435 694 if( t1 == Type::TOP ) return Type::TOP;
duke@435 695 if( t2 == Type::TOP ) return Type::TOP;
duke@435 696
duke@435 697 // Left input is ZERO ==> the result is ZERO.
duke@435 698 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 699 // Shift by zero does nothing
duke@435 700 if( t2 == TypeInt::ZERO ) return t1;
duke@435 701
duke@435 702 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 703 if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
duke@435 704 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 705 return TypeInt::INT;
duke@435 706
duke@435 707 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 708 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 709
duke@435 710 if (!r2->is_con())
duke@435 711 return TypeInt::INT;
duke@435 712
duke@435 713 uint shift = r2->get_con();
duke@435 714 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 715 // Shift by a multiple of 32 does nothing:
duke@435 716 if (shift == 0) return t1;
duke@435 717
duke@435 718 // If the shift is a constant, shift the bounds of the type,
duke@435 719 // unless this could lead to an overflow.
duke@435 720 if (!r1->is_con()) {
duke@435 721 jint lo = r1->_lo, hi = r1->_hi;
duke@435 722 if (((lo << shift) >> shift) == lo &&
duke@435 723 ((hi << shift) >> shift) == hi) {
duke@435 724 // No overflow. The range shifts up cleanly.
duke@435 725 return TypeInt::make((jint)lo << (jint)shift,
duke@435 726 (jint)hi << (jint)shift,
duke@435 727 MAX2(r1->_widen,r2->_widen));
duke@435 728 }
duke@435 729 return TypeInt::INT;
duke@435 730 }
duke@435 731
duke@435 732 return TypeInt::make( (jint)r1->get_con() << (jint)shift );
duke@435 733 }
duke@435 734
duke@435 735 //=============================================================================
duke@435 736 //------------------------------Identity---------------------------------------
duke@435 737 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 738 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 739 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 740 }
duke@435 741
duke@435 742 //------------------------------Ideal------------------------------------------
duke@435 743 // If the right input is a constant, and the left input is an add of a
duke@435 744 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
duke@435 745 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 746 const Type *t = phase->type( in(2) );
duke@435 747 if( t == Type::TOP ) return NULL; // Right input is dead
duke@435 748 const TypeInt *t2 = t->isa_int();
duke@435 749 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 750 const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count
duke@435 751
duke@435 752 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 753
duke@435 754 // Left input is an add of a constant?
duke@435 755 Node *add1 = in(1);
duke@435 756 int add1_op = add1->Opcode();
duke@435 757 if( add1_op == Op_AddL ) { // Left input is an add?
duke@435 758 // Avoid dead data cycles from dead loops
duke@435 759 assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
duke@435 760 const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
duke@435 761 if( t12 && t12->is_con() ){ // Left input is an add of a con?
duke@435 762 // Compute X << con0
duke@435 763 Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
duke@435 764 // Compute X<<con0 + (con1<<con0)
duke@435 765 return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
duke@435 766 }
duke@435 767 }
duke@435 768
duke@435 769 // Check for "(x>>c0)<<c0" which just masks off low bits
duke@435 770 if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
duke@435 771 add1->in(2) == in(2) )
duke@435 772 // Convert to "(x & -(1<<c0))"
duke@435 773 return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
duke@435 774
duke@435 775 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
duke@435 776 if( add1_op == Op_AndL ) {
duke@435 777 Node *add2 = add1->in(1);
duke@435 778 int add2_op = add2->Opcode();
duke@435 779 if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
duke@435 780 add2->in(2) == in(2) ) {
duke@435 781 // Convert to "(x & (Y<<c0))"
duke@435 782 Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
duke@435 783 return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
duke@435 784 }
duke@435 785 }
duke@435 786
duke@435 787 // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
duke@435 788 // before shifting them away.
duke@435 789 const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1);
duke@435 790 if( add1_op == Op_AndL &&
duke@435 791 phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
duke@435 792 return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
duke@435 793
duke@435 794 return NULL;
duke@435 795 }
duke@435 796
duke@435 797 //------------------------------Value------------------------------------------
duke@435 798 // A LShiftLNode shifts its input2 left by input1 amount.
duke@435 799 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 800 const Type *t1 = phase->type( in(1) );
duke@435 801 const Type *t2 = phase->type( in(2) );
duke@435 802 // Either input is TOP ==> the result is TOP
duke@435 803 if( t1 == Type::TOP ) return Type::TOP;
duke@435 804 if( t2 == Type::TOP ) return Type::TOP;
duke@435 805
duke@435 806 // Left input is ZERO ==> the result is ZERO.
duke@435 807 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 808 // Shift by zero does nothing
duke@435 809 if( t2 == TypeInt::ZERO ) return t1;
duke@435 810
duke@435 811 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 812 if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
duke@435 813 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 814 return TypeLong::LONG;
duke@435 815
duke@435 816 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 817 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 818
duke@435 819 if (!r2->is_con())
duke@435 820 return TypeLong::LONG;
duke@435 821
duke@435 822 uint shift = r2->get_con();
duke@435 823 shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
duke@435 824 // Shift by a multiple of 64 does nothing:
duke@435 825 if (shift == 0) return t1;
duke@435 826
duke@435 827 // If the shift is a constant, shift the bounds of the type,
duke@435 828 // unless this could lead to an overflow.
duke@435 829 if (!r1->is_con()) {
duke@435 830 jlong lo = r1->_lo, hi = r1->_hi;
duke@435 831 if (((lo << shift) >> shift) == lo &&
duke@435 832 ((hi << shift) >> shift) == hi) {
duke@435 833 // No overflow. The range shifts up cleanly.
duke@435 834 return TypeLong::make((jlong)lo << (jint)shift,
duke@435 835 (jlong)hi << (jint)shift,
duke@435 836 MAX2(r1->_widen,r2->_widen));
duke@435 837 }
duke@435 838 return TypeLong::LONG;
duke@435 839 }
duke@435 840
duke@435 841 return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
duke@435 842 }
duke@435 843
duke@435 844 //=============================================================================
duke@435 845 //------------------------------Identity---------------------------------------
duke@435 846 Node *RShiftINode::Identity( PhaseTransform *phase ) {
duke@435 847 const TypeInt *t2 = phase->type(in(2))->isa_int();
duke@435 848 if( !t2 ) return this;
duke@435 849 if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
duke@435 850 return in(1);
duke@435 851
duke@435 852 // Check for useless sign-masking
duke@435 853 if( in(1)->Opcode() == Op_LShiftI &&
duke@435 854 in(1)->req() == 3 &&
duke@435 855 in(1)->in(2) == in(2) &&
duke@435 856 t2->is_con() ) {
duke@435 857 uint shift = t2->get_con();
duke@435 858 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 859 // Compute masks for which this shifting doesn't change
duke@435 860 int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
duke@435 861 int hi = ~lo; // 00007FFF
duke@435 862 const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
duke@435 863 if( !t11 ) return this;
duke@435 864 // Does actual value fit inside of mask?
duke@435 865 if( lo <= t11->_lo && t11->_hi <= hi )
duke@435 866 return in(1)->in(1); // Then shifting is a nop
duke@435 867 }
duke@435 868
duke@435 869 return this;
duke@435 870 }
duke@435 871
duke@435 872 //------------------------------Ideal------------------------------------------
duke@435 873 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 874 // Inputs may be TOP if they are dead.
duke@435 875 const TypeInt *t1 = phase->type( in(1) )->isa_int();
duke@435 876 if( !t1 ) return NULL; // Left input is an integer
duke@435 877 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 878 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 879 const TypeInt *t3; // type of in(1).in(2)
duke@435 880 int shift = t2->get_con();
duke@435 881 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 882
duke@435 883 if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 884
duke@435 885 // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
duke@435 886 // Such expressions arise normally from shift chains like (byte)(x >> 24).
duke@435 887 const Node *mask = in(1);
duke@435 888 if( mask->Opcode() == Op_AndI &&
duke@435 889 (t3 = phase->type(mask->in(2))->isa_int()) &&
duke@435 890 t3->is_con() ) {
duke@435 891 Node *x = mask->in(1);
duke@435 892 jint maskbits = t3->get_con();
duke@435 893 // Convert to "(x >> shift) & (mask >> shift)"
duke@435 894 Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
duke@435 895 return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
duke@435 896 }
duke@435 897
duke@435 898 // Check for "(short[i] <<16)>>16" which simply sign-extends
duke@435 899 const Node *shl = in(1);
duke@435 900 if( shl->Opcode() != Op_LShiftI ) return NULL;
duke@435 901
duke@435 902 if( shift == 16 &&
duke@435 903 (t3 = phase->type(shl->in(2))->isa_int()) &&
duke@435 904 t3->is_con(16) ) {
duke@435 905 Node *ld = shl->in(1);
duke@435 906 if( ld->Opcode() == Op_LoadS ) {
duke@435 907 // Sign extension is just useless here. Return a RShiftI of zero instead
duke@435 908 // returning 'ld' directly. We cannot return an old Node directly as
duke@435 909 // that is the job of 'Identity' calls and Identity calls only work on
duke@435 910 // direct inputs ('ld' is an extra Node removed from 'this'). The
duke@435 911 // combined optimization requires Identity only return direct inputs.
duke@435 912 set_req(1, ld);
duke@435 913 set_req(2, phase->intcon(0));
duke@435 914 return this;
duke@435 915 }
duke@435 916 else if( ld->Opcode() == Op_LoadC )
duke@435 917 // Replace zero-extension-load with sign-extension-load
duke@435 918 return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
duke@435 919 ld->in(MemNode::Memory),
duke@435 920 ld->in(MemNode::Address),
duke@435 921 ld->adr_type());
duke@435 922 }
duke@435 923
duke@435 924 // Check for "(byte[i] <<24)>>24" which simply sign-extends
duke@435 925 if( shift == 24 &&
duke@435 926 (t3 = phase->type(shl->in(2))->isa_int()) &&
duke@435 927 t3->is_con(24) ) {
duke@435 928 Node *ld = shl->in(1);
duke@435 929 if( ld->Opcode() == Op_LoadB ) {
duke@435 930 // Sign extension is just useless here
duke@435 931 set_req(1, ld);
duke@435 932 set_req(2, phase->intcon(0));
duke@435 933 return this;
duke@435 934 }
duke@435 935 }
duke@435 936
duke@435 937 return NULL;
duke@435 938 }
duke@435 939
duke@435 940 //------------------------------Value------------------------------------------
duke@435 941 // A RShiftINode shifts its input2 right by input1 amount.
duke@435 942 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
duke@435 943 const Type *t1 = phase->type( in(1) );
duke@435 944 const Type *t2 = phase->type( in(2) );
duke@435 945 // Either input is TOP ==> the result is TOP
duke@435 946 if( t1 == Type::TOP ) return Type::TOP;
duke@435 947 if( t2 == Type::TOP ) return Type::TOP;
duke@435 948
duke@435 949 // Left input is ZERO ==> the result is ZERO.
duke@435 950 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 951 // Shift by zero does nothing
duke@435 952 if( t2 == TypeInt::ZERO ) return t1;
duke@435 953
duke@435 954 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 955 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 956 return TypeInt::INT;
duke@435 957
duke@435 958 if (t2 == TypeInt::INT)
duke@435 959 return TypeInt::INT;
duke@435 960
duke@435 961 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 962 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 963
duke@435 964 // If the shift is a constant, just shift the bounds of the type.
duke@435 965 // For example, if the shift is 31, we just propagate sign bits.
duke@435 966 if (r2->is_con()) {
duke@435 967 uint shift = r2->get_con();
duke@435 968 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 969 // Shift by a multiple of 32 does nothing:
duke@435 970 if (shift == 0) return t1;
duke@435 971 // Calculate reasonably aggressive bounds for the result.
duke@435 972 // This is necessary if we are to correctly type things
duke@435 973 // like (x<<24>>24) == ((byte)x).
duke@435 974 jint lo = (jint)r1->_lo >> (jint)shift;
duke@435 975 jint hi = (jint)r1->_hi >> (jint)shift;
duke@435 976 assert(lo <= hi, "must have valid bounds");
duke@435 977 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 978 #ifdef ASSERT
duke@435 979 // Make sure we get the sign-capture idiom correct.
duke@435 980 if (shift == BitsPerJavaInteger-1) {
duke@435 981 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0");
duke@435 982 if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
duke@435 983 }
duke@435 984 #endif
duke@435 985 return ti;
duke@435 986 }
duke@435 987
duke@435 988 if( !r1->is_con() || !r2->is_con() )
duke@435 989 return TypeInt::INT;
duke@435 990
duke@435 991 // Signed shift right
duke@435 992 return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
duke@435 993 }
duke@435 994
duke@435 995 //=============================================================================
duke@435 996 //------------------------------Identity---------------------------------------
duke@435 997 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 998 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 999 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------Value------------------------------------------
duke@435 1003 // A RShiftLNode shifts its input2 right by input1 amount.
duke@435 1004 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 1005 const Type *t1 = phase->type( in(1) );
duke@435 1006 const Type *t2 = phase->type( in(2) );
duke@435 1007 // Either input is TOP ==> the result is TOP
duke@435 1008 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1009 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1010
duke@435 1011 // Left input is ZERO ==> the result is ZERO.
duke@435 1012 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1013 // Shift by zero does nothing
duke@435 1014 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1015
duke@435 1016 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1017 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1018 return TypeLong::LONG;
duke@435 1019
duke@435 1020 if (t2 == TypeInt::INT)
duke@435 1021 return TypeLong::LONG;
duke@435 1022
duke@435 1023 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 1024 const TypeInt *r2 = t2->is_int (); // Handy access
duke@435 1025
duke@435 1026 // If the shift is a constant, just shift the bounds of the type.
duke@435 1027 // For example, if the shift is 63, we just propagate sign bits.
duke@435 1028 if (r2->is_con()) {
duke@435 1029 uint shift = r2->get_con();
duke@435 1030 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
duke@435 1031 // Shift by a multiple of 64 does nothing:
duke@435 1032 if (shift == 0) return t1;
duke@435 1033 // Calculate reasonably aggressive bounds for the result.
duke@435 1034 // This is necessary if we are to correctly type things
duke@435 1035 // like (x<<24>>24) == ((byte)x).
duke@435 1036 jlong lo = (jlong)r1->_lo >> (jlong)shift;
duke@435 1037 jlong hi = (jlong)r1->_hi >> (jlong)shift;
duke@435 1038 assert(lo <= hi, "must have valid bounds");
duke@435 1039 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1040 #ifdef ASSERT
duke@435 1041 // Make sure we get the sign-capture idiom correct.
duke@435 1042 if (shift == (2*BitsPerJavaInteger)-1) {
duke@435 1043 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0");
duke@435 1044 if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
duke@435 1045 }
duke@435 1046 #endif
duke@435 1047 return tl;
duke@435 1048 }
duke@435 1049
duke@435 1050 return TypeLong::LONG; // Give up
duke@435 1051 }
duke@435 1052
duke@435 1053 //=============================================================================
duke@435 1054 //------------------------------Identity---------------------------------------
duke@435 1055 Node *URShiftINode::Identity( PhaseTransform *phase ) {
duke@435 1056 const TypeInt *ti = phase->type( in(2) )->isa_int();
duke@435 1057 if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
duke@435 1058
duke@435 1059 // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
duke@435 1060 // Happens during new-array length computation.
duke@435 1061 // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
duke@435 1062 Node *add = in(1);
duke@435 1063 if( add->Opcode() == Op_AddI ) {
duke@435 1064 const TypeInt *t2 = phase->type(add->in(2))->isa_int();
duke@435 1065 if( t2 && t2->is_con(wordSize - 1) &&
duke@435 1066 add->in(1)->Opcode() == Op_LShiftI ) {
duke@435 1067 // Check that shift_counts are LogBytesPerWord
duke@435 1068 Node *lshift_count = add->in(1)->in(2);
duke@435 1069 const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
duke@435 1070 if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
duke@435 1071 t_lshift_count == phase->type(in(2)) ) {
duke@435 1072 Node *x = add->in(1)->in(1);
duke@435 1073 const TypeInt *t_x = phase->type(x)->isa_int();
duke@435 1074 if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
duke@435 1075 return x;
duke@435 1076 }
duke@435 1077 }
duke@435 1078 }
duke@435 1079 }
duke@435 1080
duke@435 1081 return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
duke@435 1082 }
duke@435 1083
duke@435 1084 //------------------------------Ideal------------------------------------------
duke@435 1085 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1086 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 1087 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 1088 const int con = t2->get_con() & 31; // Shift count is always masked
duke@435 1089 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
duke@435 1090 // We'll be wanting the right-shift amount as a mask of that many bits
duke@435 1091 const int mask = right_n_bits(BitsPerJavaInteger - con);
duke@435 1092
duke@435 1093 int in1_op = in(1)->Opcode();
duke@435 1094
duke@435 1095 // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
duke@435 1096 if( in1_op == Op_URShiftI ) {
duke@435 1097 const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
duke@435 1098 if( t12 && t12->is_con() ) { // Right input is a constant
duke@435 1099 assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
duke@435 1100 const int con2 = t12->get_con() & 31; // Shift count is always masked
duke@435 1101 const int con3 = con+con2;
duke@435 1102 if( con3 < 32 ) // Only merge shifts if total is < 32
duke@435 1103 return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
duke@435 1104 }
duke@435 1105 }
duke@435 1106
duke@435 1107 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
duke@435 1108 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
duke@435 1109 // If Q is "X << z" the rounding is useless. Look for patterns like
duke@435 1110 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
duke@435 1111 Node *add = in(1);
duke@435 1112 if( in1_op == Op_AddI ) {
duke@435 1113 Node *lshl = add->in(1);
duke@435 1114 if( lshl->Opcode() == Op_LShiftI &&
duke@435 1115 phase->type(lshl->in(2)) == t2 ) {
duke@435 1116 Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
duke@435 1117 Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
duke@435 1118 return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
duke@435 1119 }
duke@435 1120 }
duke@435 1121
duke@435 1122 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
duke@435 1123 // This shortens the mask. Also, if we are extracting a high byte and
duke@435 1124 // storing it to a buffer, the mask will be removed completely.
duke@435 1125 Node *andi = in(1);
duke@435 1126 if( in1_op == Op_AndI ) {
duke@435 1127 const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
duke@435 1128 if( t3 && t3->is_con() ) { // Right input is a constant
duke@435 1129 jint mask2 = t3->get_con();
duke@435 1130 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
duke@435 1131 Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
duke@435 1132 return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
duke@435 1133 // The negative values are easier to materialize than positive ones.
duke@435 1134 // A typical case from address arithmetic is ((x & ~15) >> 4).
duke@435 1135 // It's better to change that to ((x >> 4) & ~0) versus
duke@435 1136 // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64.
duke@435 1137 }
duke@435 1138 }
duke@435 1139
duke@435 1140 // Check for "(X << z ) >>> z" which simply zero-extends
duke@435 1141 Node *shl = in(1);
duke@435 1142 if( in1_op == Op_LShiftI &&
duke@435 1143 phase->type(shl->in(2)) == t2 )
duke@435 1144 return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
duke@435 1145
duke@435 1146 return NULL;
duke@435 1147 }
duke@435 1148
duke@435 1149 //------------------------------Value------------------------------------------
duke@435 1150 // A URShiftINode shifts its input2 right by input1 amount.
duke@435 1151 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
duke@435 1152 // (This is a near clone of RShiftINode::Value.)
duke@435 1153 const Type *t1 = phase->type( in(1) );
duke@435 1154 const Type *t2 = phase->type( in(2) );
duke@435 1155 // Either input is TOP ==> the result is TOP
duke@435 1156 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1157 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1158
duke@435 1159 // Left input is ZERO ==> the result is ZERO.
duke@435 1160 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 1161 // Shift by zero does nothing
duke@435 1162 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1163
duke@435 1164 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1165 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1166 return TypeInt::INT;
duke@435 1167
duke@435 1168 if (t2 == TypeInt::INT)
duke@435 1169 return TypeInt::INT;
duke@435 1170
duke@435 1171 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 1172 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 1173
duke@435 1174 if (r2->is_con()) {
duke@435 1175 uint shift = r2->get_con();
duke@435 1176 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 1177 // Shift by a multiple of 32 does nothing:
duke@435 1178 if (shift == 0) return t1;
duke@435 1179 // Calculate reasonably aggressive bounds for the result.
duke@435 1180 jint lo = (juint)r1->_lo >> (juint)shift;
duke@435 1181 jint hi = (juint)r1->_hi >> (juint)shift;
duke@435 1182 if (r1->_hi >= 0 && r1->_lo < 0) {
duke@435 1183 // If the type has both negative and positive values,
duke@435 1184 // there are two separate sub-domains to worry about:
duke@435 1185 // The positive half and the negative half.
duke@435 1186 jint neg_lo = lo;
duke@435 1187 jint neg_hi = (juint)-1 >> (juint)shift;
duke@435 1188 jint pos_lo = (juint) 0 >> (juint)shift;
duke@435 1189 jint pos_hi = hi;
duke@435 1190 lo = MIN2(neg_lo, pos_lo); // == 0
duke@435 1191 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
duke@435 1192 }
duke@435 1193 assert(lo <= hi, "must have valid bounds");
duke@435 1194 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1195 #ifdef ASSERT
duke@435 1196 // Make sure we get the sign-capture idiom correct.
duke@435 1197 if (shift == BitsPerJavaInteger-1) {
duke@435 1198 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
duke@435 1199 if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1");
duke@435 1200 }
duke@435 1201 #endif
duke@435 1202 return ti;
duke@435 1203 }
duke@435 1204
duke@435 1205 //
duke@435 1206 // Do not support shifted oops in info for GC
duke@435 1207 //
duke@435 1208 // else if( t1->base() == Type::InstPtr ) {
duke@435 1209 //
duke@435 1210 // const TypeInstPtr *o = t1->is_instptr();
duke@435 1211 // if( t1->singleton() )
duke@435 1212 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
duke@435 1213 // }
duke@435 1214 // else if( t1->base() == Type::KlassPtr ) {
duke@435 1215 // const TypeKlassPtr *o = t1->is_klassptr();
duke@435 1216 // if( t1->singleton() )
duke@435 1217 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
duke@435 1218 // }
duke@435 1219
duke@435 1220 return TypeInt::INT;
duke@435 1221 }
duke@435 1222
duke@435 1223 //=============================================================================
duke@435 1224 //------------------------------Identity---------------------------------------
duke@435 1225 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 1226 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 1227 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 1228 }
duke@435 1229
duke@435 1230 //------------------------------Ideal------------------------------------------
duke@435 1231 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1232 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 1233 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 1234 const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
duke@435 1235 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
duke@435 1236 // note: mask computation below does not work for 0 shift count
duke@435 1237 // We'll be wanting the right-shift amount as a mask of that many bits
duke@435 1238 const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1);
duke@435 1239
duke@435 1240 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
duke@435 1241 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
duke@435 1242 // If Q is "X << z" the rounding is useless. Look for patterns like
duke@435 1243 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
duke@435 1244 Node *add = in(1);
duke@435 1245 if( add->Opcode() == Op_AddL ) {
duke@435 1246 Node *lshl = add->in(1);
duke@435 1247 if( lshl->Opcode() == Op_LShiftL &&
duke@435 1248 phase->type(lshl->in(2)) == t2 ) {
duke@435 1249 Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
duke@435 1250 Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
duke@435 1251 return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
duke@435 1256 // This shortens the mask. Also, if we are extracting a high byte and
duke@435 1257 // storing it to a buffer, the mask will be removed completely.
duke@435 1258 Node *andi = in(1);
duke@435 1259 if( andi->Opcode() == Op_AndL ) {
duke@435 1260 const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
duke@435 1261 if( t3 && t3->is_con() ) { // Right input is a constant
duke@435 1262 jlong mask2 = t3->get_con();
duke@435 1263 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
duke@435 1264 Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
duke@435 1265 return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
duke@435 1266 }
duke@435 1267 }
duke@435 1268
duke@435 1269 // Check for "(X << z ) >>> z" which simply zero-extends
duke@435 1270 Node *shl = in(1);
duke@435 1271 if( shl->Opcode() == Op_LShiftL &&
duke@435 1272 phase->type(shl->in(2)) == t2 )
duke@435 1273 return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
duke@435 1274
duke@435 1275 return NULL;
duke@435 1276 }
duke@435 1277
duke@435 1278 //------------------------------Value------------------------------------------
duke@435 1279 // A URShiftINode shifts its input2 right by input1 amount.
duke@435 1280 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 1281 // (This is a near clone of RShiftLNode::Value.)
duke@435 1282 const Type *t1 = phase->type( in(1) );
duke@435 1283 const Type *t2 = phase->type( in(2) );
duke@435 1284 // Either input is TOP ==> the result is TOP
duke@435 1285 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1286 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1287
duke@435 1288 // Left input is ZERO ==> the result is ZERO.
duke@435 1289 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1290 // Shift by zero does nothing
duke@435 1291 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1292
duke@435 1293 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1294 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1295 return TypeLong::LONG;
duke@435 1296
duke@435 1297 if (t2 == TypeInt::INT)
duke@435 1298 return TypeLong::LONG;
duke@435 1299
duke@435 1300 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 1301 const TypeInt *r2 = t2->is_int (); // Handy access
duke@435 1302
duke@435 1303 if (r2->is_con()) {
duke@435 1304 uint shift = r2->get_con();
duke@435 1305 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
duke@435 1306 // Shift by a multiple of 64 does nothing:
duke@435 1307 if (shift == 0) return t1;
duke@435 1308 // Calculate reasonably aggressive bounds for the result.
duke@435 1309 jlong lo = (julong)r1->_lo >> (juint)shift;
duke@435 1310 jlong hi = (julong)r1->_hi >> (juint)shift;
duke@435 1311 if (r1->_hi >= 0 && r1->_lo < 0) {
duke@435 1312 // If the type has both negative and positive values,
duke@435 1313 // there are two separate sub-domains to worry about:
duke@435 1314 // The positive half and the negative half.
duke@435 1315 jlong neg_lo = lo;
duke@435 1316 jlong neg_hi = (julong)-1 >> (juint)shift;
duke@435 1317 jlong pos_lo = (julong) 0 >> (juint)shift;
duke@435 1318 jlong pos_hi = hi;
duke@435 1319 //lo = MIN2(neg_lo, pos_lo); // == 0
duke@435 1320 lo = neg_lo < pos_lo ? neg_lo : pos_lo;
duke@435 1321 //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
duke@435 1322 hi = neg_hi > pos_hi ? neg_hi : pos_hi;
duke@435 1323 }
duke@435 1324 assert(lo <= hi, "must have valid bounds");
duke@435 1325 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1326 #ifdef ASSERT
duke@435 1327 // Make sure we get the sign-capture idiom correct.
duke@435 1328 if (shift == (2*BitsPerJavaInteger)-1) {
duke@435 1329 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
duke@435 1330 if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1");
duke@435 1331 }
duke@435 1332 #endif
duke@435 1333 return tl;
duke@435 1334 }
duke@435 1335
duke@435 1336 return TypeLong::LONG; // Give up
duke@435 1337 }

mercurial