src/share/vm/opto/gcm.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 853
72c5366e5d86
child 987
011517bbcd7b
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_gcm.cpp.incl"
duke@435 31
duke@435 32 //----------------------------schedule_node_into_block-------------------------
duke@435 33 // Insert node n into block b. Look for projections of n and make sure they
duke@435 34 // are in b also.
duke@435 35 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
duke@435 36 // Set basic block of n, Add n to b,
duke@435 37 _bbs.map(n->_idx, b);
duke@435 38 b->add_inst(n);
duke@435 39
duke@435 40 // After Matching, nearly any old Node may have projections trailing it.
duke@435 41 // These are usually machine-dependent flags. In any case, they might
duke@435 42 // float to another block below this one. Move them up.
duke@435 43 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 44 Node* use = n->fast_out(i);
duke@435 45 if (use->is_Proj()) {
duke@435 46 Block* buse = _bbs[use->_idx];
duke@435 47 if (buse != b) { // In wrong block?
duke@435 48 if (buse != NULL)
duke@435 49 buse->find_remove(use); // Remove from wrong block
duke@435 50 _bbs.map(use->_idx, b); // Re-insert in this block
duke@435 51 b->add_inst(use);
duke@435 52 }
duke@435 53 }
duke@435 54 }
duke@435 55 }
duke@435 56
duke@435 57
duke@435 58 //------------------------------schedule_pinned_nodes--------------------------
duke@435 59 // Set the basic block for Nodes pinned into blocks
duke@435 60 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
duke@435 61 // Allocate node stack of size C->unique()+8 to avoid frequent realloc
duke@435 62 GrowableArray <Node *> spstack(C->unique()+8);
duke@435 63 spstack.push(_root);
duke@435 64 while ( spstack.is_nonempty() ) {
duke@435 65 Node *n = spstack.pop();
duke@435 66 if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
duke@435 67 if( n->pinned() && !_bbs.lookup(n->_idx) ) { // Pinned? Nail it down!
duke@435 68 Node *input = n->in(0);
duke@435 69 assert( input, "pinned Node must have Control" );
duke@435 70 while( !input->is_block_start() )
duke@435 71 input = input->in(0);
duke@435 72 Block *b = _bbs[input->_idx]; // Basic block of controlling input
duke@435 73 schedule_node_into_block(n, b);
duke@435 74 }
duke@435 75 for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs
duke@435 76 if( n->in(i) != NULL )
duke@435 77 spstack.push(n->in(i));
duke@435 78 }
duke@435 79 }
duke@435 80 }
duke@435 81 }
duke@435 82
duke@435 83 #ifdef ASSERT
duke@435 84 // Assert that new input b2 is dominated by all previous inputs.
duke@435 85 // Check this by by seeing that it is dominated by b1, the deepest
duke@435 86 // input observed until b2.
duke@435 87 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
duke@435 88 if (b1 == NULL) return;
duke@435 89 assert(b1->_dom_depth < b2->_dom_depth, "sanity");
duke@435 90 Block* tmp = b2;
duke@435 91 while (tmp != b1 && tmp != NULL) {
duke@435 92 tmp = tmp->_idom;
duke@435 93 }
duke@435 94 if (tmp != b1) {
duke@435 95 // Detected an unschedulable graph. Print some nice stuff and die.
duke@435 96 tty->print_cr("!!! Unschedulable graph !!!");
duke@435 97 for (uint j=0; j<n->len(); j++) { // For all inputs
duke@435 98 Node* inn = n->in(j); // Get input
duke@435 99 if (inn == NULL) continue; // Ignore NULL, missing inputs
duke@435 100 Block* inb = bbs[inn->_idx];
duke@435 101 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
duke@435 102 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
duke@435 103 inn->dump();
duke@435 104 }
duke@435 105 tty->print("Failing node: ");
duke@435 106 n->dump();
duke@435 107 assert(false, "unscheduable graph");
duke@435 108 }
duke@435 109 }
duke@435 110 #endif
duke@435 111
duke@435 112 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
duke@435 113 // Find the last input dominated by all other inputs.
duke@435 114 Block* deepb = NULL; // Deepest block so far
duke@435 115 int deepb_dom_depth = 0;
duke@435 116 for (uint k = 0; k < n->len(); k++) { // For all inputs
duke@435 117 Node* inn = n->in(k); // Get input
duke@435 118 if (inn == NULL) continue; // Ignore NULL, missing inputs
duke@435 119 Block* inb = bbs[inn->_idx];
duke@435 120 assert(inb != NULL, "must already have scheduled this input");
duke@435 121 if (deepb_dom_depth < (int) inb->_dom_depth) {
duke@435 122 // The new inb must be dominated by the previous deepb.
duke@435 123 // The various inputs must be linearly ordered in the dom
duke@435 124 // tree, or else there will not be a unique deepest block.
duke@435 125 DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
duke@435 126 deepb = inb; // Save deepest block
duke@435 127 deepb_dom_depth = deepb->_dom_depth;
duke@435 128 }
duke@435 129 }
duke@435 130 assert(deepb != NULL, "must be at least one input to n");
duke@435 131 return deepb;
duke@435 132 }
duke@435 133
duke@435 134
duke@435 135 //------------------------------schedule_early---------------------------------
duke@435 136 // Find the earliest Block any instruction can be placed in. Some instructions
duke@435 137 // are pinned into Blocks. Unpinned instructions can appear in last block in
duke@435 138 // which all their inputs occur.
duke@435 139 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
duke@435 140 // Allocate stack with enough space to avoid frequent realloc
duke@435 141 Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
duke@435 142 // roots.push(_root); _root will be processed among C->top() inputs
duke@435 143 roots.push(C->top());
duke@435 144 visited.set(C->top()->_idx);
duke@435 145
duke@435 146 while (roots.size() != 0) {
duke@435 147 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 148 // on stack's top.
duke@435 149 Node *nstack_top_n = roots.pop();
duke@435 150 uint nstack_top_i = 0;
duke@435 151 //while_nstack_nonempty:
duke@435 152 while (true) {
duke@435 153 // Get parent node and next input's index from stack's top.
duke@435 154 Node *n = nstack_top_n;
duke@435 155 uint i = nstack_top_i;
duke@435 156
duke@435 157 if (i == 0) {
duke@435 158 // Special control input processing.
duke@435 159 // While I am here, go ahead and look for Nodes which are taking control
duke@435 160 // from a is_block_proj Node. After I inserted RegionNodes to make proper
duke@435 161 // blocks, the control at a is_block_proj more properly comes from the
duke@435 162 // Region being controlled by the block_proj Node.
duke@435 163 const Node *in0 = n->in(0);
duke@435 164 if (in0 != NULL) { // Control-dependent?
duke@435 165 const Node *p = in0->is_block_proj();
duke@435 166 if (p != NULL && p != n) { // Control from a block projection?
duke@435 167 // Find trailing Region
duke@435 168 Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
duke@435 169 uint j = 0;
duke@435 170 if (pb->_num_succs != 1) { // More then 1 successor?
duke@435 171 // Search for successor
duke@435 172 uint max = pb->_nodes.size();
duke@435 173 assert( max > 1, "" );
duke@435 174 uint start = max - pb->_num_succs;
duke@435 175 // Find which output path belongs to projection
duke@435 176 for (j = start; j < max; j++) {
duke@435 177 if( pb->_nodes[j] == in0 )
duke@435 178 break;
duke@435 179 }
duke@435 180 assert( j < max, "must find" );
duke@435 181 // Change control to match head of successor basic block
duke@435 182 j -= start;
duke@435 183 }
duke@435 184 n->set_req(0, pb->_succs[j]->head());
duke@435 185 }
duke@435 186 } else { // n->in(0) == NULL
duke@435 187 if (n->req() == 1) { // This guy is a constant with NO inputs?
duke@435 188 n->set_req(0, _root);
duke@435 189 }
duke@435 190 }
duke@435 191 }
duke@435 192
duke@435 193 // First, visit all inputs and force them to get a block. If an
duke@435 194 // input is already in a block we quit following inputs (to avoid
duke@435 195 // cycles). Instead we put that Node on a worklist to be handled
duke@435 196 // later (since IT'S inputs may not have a block yet).
duke@435 197 bool done = true; // Assume all n's inputs will be processed
duke@435 198 while (i < n->len()) { // For all inputs
duke@435 199 Node *in = n->in(i); // Get input
duke@435 200 ++i;
duke@435 201 if (in == NULL) continue; // Ignore NULL, missing inputs
duke@435 202 int is_visited = visited.test_set(in->_idx);
duke@435 203 if (!_bbs.lookup(in->_idx)) { // Missing block selection?
duke@435 204 if (is_visited) {
duke@435 205 // assert( !visited.test(in->_idx), "did not schedule early" );
duke@435 206 return false;
duke@435 207 }
duke@435 208 nstack.push(n, i); // Save parent node and next input's index.
duke@435 209 nstack_top_n = in; // Process current input now.
duke@435 210 nstack_top_i = 0;
duke@435 211 done = false; // Not all n's inputs processed.
duke@435 212 break; // continue while_nstack_nonempty;
duke@435 213 } else if (!is_visited) { // Input not yet visited?
duke@435 214 roots.push(in); // Visit this guy later, using worklist
duke@435 215 }
duke@435 216 }
duke@435 217 if (done) {
duke@435 218 // All of n's inputs have been processed, complete post-processing.
duke@435 219
duke@435 220 // Some instructions are pinned into a block. These include Region,
duke@435 221 // Phi, Start, Return, and other control-dependent instructions and
duke@435 222 // any projections which depend on them.
duke@435 223 if (!n->pinned()) {
duke@435 224 // Set earliest legal block.
duke@435 225 _bbs.map(n->_idx, find_deepest_input(n, _bbs));
duke@435 226 }
duke@435 227
duke@435 228 if (nstack.is_empty()) {
duke@435 229 // Finished all nodes on stack.
duke@435 230 // Process next node on the worklist 'roots'.
duke@435 231 break;
duke@435 232 }
duke@435 233 // Get saved parent node and next input's index.
duke@435 234 nstack_top_n = nstack.node();
duke@435 235 nstack_top_i = nstack.index();
duke@435 236 nstack.pop();
duke@435 237 } // if (done)
duke@435 238 } // while (true)
duke@435 239 } // while (roots.size() != 0)
duke@435 240 return true;
duke@435 241 }
duke@435 242
duke@435 243 //------------------------------dom_lca----------------------------------------
duke@435 244 // Find least common ancestor in dominator tree
duke@435 245 // LCA is a current notion of LCA, to be raised above 'this'.
duke@435 246 // As a convenient boundary condition, return 'this' if LCA is NULL.
duke@435 247 // Find the LCA of those two nodes.
duke@435 248 Block* Block::dom_lca(Block* LCA) {
duke@435 249 if (LCA == NULL || LCA == this) return this;
duke@435 250
duke@435 251 Block* anc = this;
duke@435 252 while (anc->_dom_depth > LCA->_dom_depth)
duke@435 253 anc = anc->_idom; // Walk up till anc is as high as LCA
duke@435 254
duke@435 255 while (LCA->_dom_depth > anc->_dom_depth)
duke@435 256 LCA = LCA->_idom; // Walk up till LCA is as high as anc
duke@435 257
duke@435 258 while (LCA != anc) { // Walk both up till they are the same
duke@435 259 LCA = LCA->_idom;
duke@435 260 anc = anc->_idom;
duke@435 261 }
duke@435 262
duke@435 263 return LCA;
duke@435 264 }
duke@435 265
duke@435 266 //--------------------------raise_LCA_above_use--------------------------------
duke@435 267 // We are placing a definition, and have been given a def->use edge.
duke@435 268 // The definition must dominate the use, so move the LCA upward in the
duke@435 269 // dominator tree to dominate the use. If the use is a phi, adjust
duke@435 270 // the LCA only with the phi input paths which actually use this def.
duke@435 271 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
duke@435 272 Block* buse = bbs[use->_idx];
duke@435 273 if (buse == NULL) return LCA; // Unused killing Projs have no use block
duke@435 274 if (!use->is_Phi()) return buse->dom_lca(LCA);
duke@435 275 uint pmax = use->req(); // Number of Phi inputs
duke@435 276 // Why does not this loop just break after finding the matching input to
duke@435 277 // the Phi? Well...it's like this. I do not have true def-use/use-def
duke@435 278 // chains. Means I cannot distinguish, from the def-use direction, which
duke@435 279 // of many use-defs lead from the same use to the same def. That is, this
duke@435 280 // Phi might have several uses of the same def. Each use appears in a
duke@435 281 // different predecessor block. But when I enter here, I cannot distinguish
duke@435 282 // which use-def edge I should find the predecessor block for. So I find
duke@435 283 // them all. Means I do a little extra work if a Phi uses the same value
duke@435 284 // more than once.
duke@435 285 for (uint j=1; j<pmax; j++) { // For all inputs
duke@435 286 if (use->in(j) == def) { // Found matching input?
duke@435 287 Block* pred = bbs[buse->pred(j)->_idx];
duke@435 288 LCA = pred->dom_lca(LCA);
duke@435 289 }
duke@435 290 }
duke@435 291 return LCA;
duke@435 292 }
duke@435 293
duke@435 294 //----------------------------raise_LCA_above_marks----------------------------
duke@435 295 // Return a new LCA that dominates LCA and any of its marked predecessors.
duke@435 296 // Search all my parents up to 'early' (exclusive), looking for predecessors
duke@435 297 // which are marked with the given index. Return the LCA (in the dom tree)
duke@435 298 // of all marked blocks. If there are none marked, return the original
duke@435 299 // LCA.
duke@435 300 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
duke@435 301 Block* early, Block_Array &bbs) {
duke@435 302 Block_List worklist;
duke@435 303 worklist.push(LCA);
duke@435 304 while (worklist.size() > 0) {
duke@435 305 Block* mid = worklist.pop();
duke@435 306 if (mid == early) continue; // stop searching here
duke@435 307
duke@435 308 // Test and set the visited bit.
duke@435 309 if (mid->raise_LCA_visited() == mark) continue; // already visited
duke@435 310
duke@435 311 // Don't process the current LCA, otherwise the search may terminate early
duke@435 312 if (mid != LCA && mid->raise_LCA_mark() == mark) {
duke@435 313 // Raise the LCA.
duke@435 314 LCA = mid->dom_lca(LCA);
duke@435 315 if (LCA == early) break; // stop searching everywhere
duke@435 316 assert(early->dominates(LCA), "early is high enough");
duke@435 317 // Resume searching at that point, skipping intermediate levels.
duke@435 318 worklist.push(LCA);
kvn@650 319 if (LCA == mid)
kvn@650 320 continue; // Don't mark as visited to avoid early termination.
duke@435 321 } else {
duke@435 322 // Keep searching through this block's predecessors.
duke@435 323 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
duke@435 324 Block* mid_parent = bbs[ mid->pred(j)->_idx ];
duke@435 325 worklist.push(mid_parent);
duke@435 326 }
duke@435 327 }
kvn@650 328 mid->set_raise_LCA_visited(mark);
duke@435 329 }
duke@435 330 return LCA;
duke@435 331 }
duke@435 332
duke@435 333 //--------------------------memory_early_block--------------------------------
duke@435 334 // This is a variation of find_deepest_input, the heart of schedule_early.
duke@435 335 // Find the "early" block for a load, if we considered only memory and
duke@435 336 // address inputs, that is, if other data inputs were ignored.
duke@435 337 //
duke@435 338 // Because a subset of edges are considered, the resulting block will
duke@435 339 // be earlier (at a shallower dom_depth) than the true schedule_early
duke@435 340 // point of the node. We compute this earlier block as a more permissive
duke@435 341 // site for anti-dependency insertion, but only if subsume_loads is enabled.
duke@435 342 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
duke@435 343 Node* base;
duke@435 344 Node* index;
duke@435 345 Node* store = load->in(MemNode::Memory);
duke@435 346 load->as_Mach()->memory_inputs(base, index);
duke@435 347
duke@435 348 assert(base != NodeSentinel && index != NodeSentinel,
duke@435 349 "unexpected base/index inputs");
duke@435 350
duke@435 351 Node* mem_inputs[4];
duke@435 352 int mem_inputs_length = 0;
duke@435 353 if (base != NULL) mem_inputs[mem_inputs_length++] = base;
duke@435 354 if (index != NULL) mem_inputs[mem_inputs_length++] = index;
duke@435 355 if (store != NULL) mem_inputs[mem_inputs_length++] = store;
duke@435 356
duke@435 357 // In the comparision below, add one to account for the control input,
duke@435 358 // which may be null, but always takes up a spot in the in array.
duke@435 359 if (mem_inputs_length + 1 < (int) load->req()) {
duke@435 360 // This "load" has more inputs than just the memory, base and index inputs.
duke@435 361 // For purposes of checking anti-dependences, we need to start
duke@435 362 // from the early block of only the address portion of the instruction,
duke@435 363 // and ignore other blocks that may have factored into the wider
duke@435 364 // schedule_early calculation.
duke@435 365 if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
duke@435 366
duke@435 367 Block* deepb = NULL; // Deepest block so far
duke@435 368 int deepb_dom_depth = 0;
duke@435 369 for (int i = 0; i < mem_inputs_length; i++) {
duke@435 370 Block* inb = bbs[mem_inputs[i]->_idx];
duke@435 371 if (deepb_dom_depth < (int) inb->_dom_depth) {
duke@435 372 // The new inb must be dominated by the previous deepb.
duke@435 373 // The various inputs must be linearly ordered in the dom
duke@435 374 // tree, or else there will not be a unique deepest block.
duke@435 375 DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
duke@435 376 deepb = inb; // Save deepest block
duke@435 377 deepb_dom_depth = deepb->_dom_depth;
duke@435 378 }
duke@435 379 }
duke@435 380 early = deepb;
duke@435 381 }
duke@435 382
duke@435 383 return early;
duke@435 384 }
duke@435 385
duke@435 386 //--------------------------insert_anti_dependences---------------------------
duke@435 387 // A load may need to witness memory that nearby stores can overwrite.
duke@435 388 // For each nearby store, either insert an "anti-dependence" edge
duke@435 389 // from the load to the store, or else move LCA upward to force the
duke@435 390 // load to (eventually) be scheduled in a block above the store.
duke@435 391 //
duke@435 392 // Do not add edges to stores on distinct control-flow paths;
duke@435 393 // only add edges to stores which might interfere.
duke@435 394 //
duke@435 395 // Return the (updated) LCA. There will not be any possibly interfering
duke@435 396 // store between the load's "early block" and the updated LCA.
duke@435 397 // Any stores in the updated LCA will have new precedence edges
duke@435 398 // back to the load. The caller is expected to schedule the load
duke@435 399 // in the LCA, in which case the precedence edges will make LCM
duke@435 400 // preserve anti-dependences. The caller may also hoist the load
duke@435 401 // above the LCA, if it is not the early block.
duke@435 402 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
duke@435 403 assert(load->needs_anti_dependence_check(), "must be a load of some sort");
duke@435 404 assert(LCA != NULL, "");
duke@435 405 DEBUG_ONLY(Block* LCA_orig = LCA);
duke@435 406
duke@435 407 // Compute the alias index. Loads and stores with different alias indices
duke@435 408 // do not need anti-dependence edges.
duke@435 409 uint load_alias_idx = C->get_alias_index(load->adr_type());
duke@435 410 #ifdef ASSERT
duke@435 411 if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
duke@435 412 (PrintOpto || VerifyAliases ||
duke@435 413 PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 414 // Load nodes should not consume all of memory.
duke@435 415 // Reporting a bottom type indicates a bug in adlc.
duke@435 416 // If some particular type of node validly consumes all of memory,
duke@435 417 // sharpen the preceding "if" to exclude it, so we can catch bugs here.
duke@435 418 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
duke@435 419 load->dump(2);
duke@435 420 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
duke@435 421 }
duke@435 422 #endif
duke@435 423 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
duke@435 424 "String compare is only known 'load' that does not conflict with any stores");
duke@435 425
duke@435 426 if (!C->alias_type(load_alias_idx)->is_rewritable()) {
duke@435 427 // It is impossible to spoil this load by putting stores before it,
duke@435 428 // because we know that the stores will never update the value
duke@435 429 // which 'load' must witness.
duke@435 430 return LCA;
duke@435 431 }
duke@435 432
duke@435 433 node_idx_t load_index = load->_idx;
duke@435 434
duke@435 435 // Note the earliest legal placement of 'load', as determined by
duke@435 436 // by the unique point in the dom tree where all memory effects
duke@435 437 // and other inputs are first available. (Computed by schedule_early.)
duke@435 438 // For normal loads, 'early' is the shallowest place (dom graph wise)
duke@435 439 // to look for anti-deps between this load and any store.
duke@435 440 Block* early = _bbs[load_index];
duke@435 441
duke@435 442 // If we are subsuming loads, compute an "early" block that only considers
duke@435 443 // memory or address inputs. This block may be different than the
duke@435 444 // schedule_early block in that it could be at an even shallower depth in the
duke@435 445 // dominator tree, and allow for a broader discovery of anti-dependences.
duke@435 446 if (C->subsume_loads()) {
duke@435 447 early = memory_early_block(load, early, _bbs);
duke@435 448 }
duke@435 449
duke@435 450 ResourceArea *area = Thread::current()->resource_area();
duke@435 451 Node_List worklist_mem(area); // prior memory state to store
duke@435 452 Node_List worklist_store(area); // possible-def to explore
kvn@466 453 Node_List worklist_visited(area); // visited mergemem nodes
duke@435 454 Node_List non_early_stores(area); // all relevant stores outside of early
duke@435 455 bool must_raise_LCA = false;
duke@435 456
duke@435 457 #ifdef TRACK_PHI_INPUTS
duke@435 458 // %%% This extra checking fails because MergeMem nodes are not GVNed.
duke@435 459 // Provide "phi_inputs" to check if every input to a PhiNode is from the
duke@435 460 // original memory state. This indicates a PhiNode for which should not
duke@435 461 // prevent the load from sinking. For such a block, set_raise_LCA_mark
duke@435 462 // may be overly conservative.
duke@435 463 // Mechanism: count inputs seen for each Phi encountered in worklist_store.
duke@435 464 DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
duke@435 465 #endif
duke@435 466
duke@435 467 // 'load' uses some memory state; look for users of the same state.
duke@435 468 // Recurse through MergeMem nodes to the stores that use them.
duke@435 469
duke@435 470 // Each of these stores is a possible definition of memory
duke@435 471 // that 'load' needs to use. We need to force 'load'
duke@435 472 // to occur before each such store. When the store is in
duke@435 473 // the same block as 'load', we insert an anti-dependence
duke@435 474 // edge load->store.
duke@435 475
duke@435 476 // The relevant stores "nearby" the load consist of a tree rooted
duke@435 477 // at initial_mem, with internal nodes of type MergeMem.
duke@435 478 // Therefore, the branches visited by the worklist are of this form:
duke@435 479 // initial_mem -> (MergeMem ->)* store
duke@435 480 // The anti-dependence constraints apply only to the fringe of this tree.
duke@435 481
duke@435 482 Node* initial_mem = load->in(MemNode::Memory);
duke@435 483 worklist_store.push(initial_mem);
kvn@466 484 worklist_visited.push(initial_mem);
duke@435 485 worklist_mem.push(NULL);
duke@435 486 while (worklist_store.size() > 0) {
duke@435 487 // Examine a nearby store to see if it might interfere with our load.
duke@435 488 Node* mem = worklist_mem.pop();
duke@435 489 Node* store = worklist_store.pop();
duke@435 490 uint op = store->Opcode();
duke@435 491
duke@435 492 // MergeMems do not directly have anti-deps.
duke@435 493 // Treat them as internal nodes in a forward tree of memory states,
duke@435 494 // the leaves of which are each a 'possible-def'.
duke@435 495 if (store == initial_mem // root (exclusive) of tree we are searching
duke@435 496 || op == Op_MergeMem // internal node of tree we are searching
duke@435 497 ) {
duke@435 498 mem = store; // It's not a possibly interfering store.
kvn@466 499 if (store == initial_mem)
kvn@466 500 initial_mem = NULL; // only process initial memory once
kvn@466 501
duke@435 502 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 503 store = mem->fast_out(i);
duke@435 504 if (store->is_MergeMem()) {
duke@435 505 // Be sure we don't get into combinatorial problems.
duke@435 506 // (Allow phis to be repeated; they can merge two relevant states.)
kvn@466 507 uint j = worklist_visited.size();
kvn@466 508 for (; j > 0; j--) {
kvn@466 509 if (worklist_visited.at(j-1) == store) break;
duke@435 510 }
kvn@466 511 if (j > 0) continue; // already on work list; do not repeat
kvn@466 512 worklist_visited.push(store);
duke@435 513 }
duke@435 514 worklist_mem.push(mem);
duke@435 515 worklist_store.push(store);
duke@435 516 }
duke@435 517 continue;
duke@435 518 }
duke@435 519
duke@435 520 if (op == Op_MachProj || op == Op_Catch) continue;
duke@435 521 if (store->needs_anti_dependence_check()) continue; // not really a store
duke@435 522
duke@435 523 // Compute the alias index. Loads and stores with different alias
duke@435 524 // indices do not need anti-dependence edges. Wide MemBar's are
duke@435 525 // anti-dependent on everything (except immutable memories).
duke@435 526 const TypePtr* adr_type = store->adr_type();
duke@435 527 if (!C->can_alias(adr_type, load_alias_idx)) continue;
duke@435 528
duke@435 529 // Most slow-path runtime calls do NOT modify Java memory, but
duke@435 530 // they can block and so write Raw memory.
duke@435 531 if (store->is_Mach()) {
duke@435 532 MachNode* mstore = store->as_Mach();
duke@435 533 if (load_alias_idx != Compile::AliasIdxRaw) {
duke@435 534 // Check for call into the runtime using the Java calling
duke@435 535 // convention (and from there into a wrapper); it has no
duke@435 536 // _method. Can't do this optimization for Native calls because
duke@435 537 // they CAN write to Java memory.
duke@435 538 if (mstore->ideal_Opcode() == Op_CallStaticJava) {
duke@435 539 assert(mstore->is_MachSafePoint(), "");
duke@435 540 MachSafePointNode* ms = (MachSafePointNode*) mstore;
duke@435 541 assert(ms->is_MachCallJava(), "");
duke@435 542 MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
duke@435 543 if (mcj->_method == NULL) {
duke@435 544 // These runtime calls do not write to Java visible memory
duke@435 545 // (other than Raw) and so do not require anti-dependence edges.
duke@435 546 continue;
duke@435 547 }
duke@435 548 }
duke@435 549 // Same for SafePoints: they read/write Raw but only read otherwise.
duke@435 550 // This is basically a workaround for SafePoints only defining control
duke@435 551 // instead of control + memory.
duke@435 552 if (mstore->ideal_Opcode() == Op_SafePoint)
duke@435 553 continue;
duke@435 554 } else {
duke@435 555 // Some raw memory, such as the load of "top" at an allocation,
duke@435 556 // can be control dependent on the previous safepoint. See
duke@435 557 // comments in GraphKit::allocate_heap() about control input.
duke@435 558 // Inserting an anti-dep between such a safepoint and a use
duke@435 559 // creates a cycle, and will cause a subsequent failure in
duke@435 560 // local scheduling. (BugId 4919904)
duke@435 561 // (%%% How can a control input be a safepoint and not a projection??)
duke@435 562 if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
duke@435 563 continue;
duke@435 564 }
duke@435 565 }
duke@435 566
duke@435 567 // Identify a block that the current load must be above,
duke@435 568 // or else observe that 'store' is all the way up in the
duke@435 569 // earliest legal block for 'load'. In the latter case,
duke@435 570 // immediately insert an anti-dependence edge.
duke@435 571 Block* store_block = _bbs[store->_idx];
duke@435 572 assert(store_block != NULL, "unused killing projections skipped above");
duke@435 573
duke@435 574 if (store->is_Phi()) {
duke@435 575 // 'load' uses memory which is one (or more) of the Phi's inputs.
duke@435 576 // It must be scheduled not before the Phi, but rather before
duke@435 577 // each of the relevant Phi inputs.
duke@435 578 //
duke@435 579 // Instead of finding the LCA of all inputs to a Phi that match 'mem',
duke@435 580 // we mark each corresponding predecessor block and do a combined
duke@435 581 // hoisting operation later (raise_LCA_above_marks).
duke@435 582 //
duke@435 583 // Do not assert(store_block != early, "Phi merging memory after access")
duke@435 584 // PhiNode may be at start of block 'early' with backedge to 'early'
duke@435 585 DEBUG_ONLY(bool found_match = false);
duke@435 586 for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
duke@435 587 if (store->in(j) == mem) { // Found matching input?
duke@435 588 DEBUG_ONLY(found_match = true);
duke@435 589 Block* pred_block = _bbs[store_block->pred(j)->_idx];
duke@435 590 if (pred_block != early) {
duke@435 591 // If any predecessor of the Phi matches the load's "early block",
duke@435 592 // we do not need a precedence edge between the Phi and 'load'
duke@435 593 // since the load will be forced into a block preceeding the Phi.
duke@435 594 pred_block->set_raise_LCA_mark(load_index);
duke@435 595 assert(!LCA_orig->dominates(pred_block) ||
duke@435 596 early->dominates(pred_block), "early is high enough");
duke@435 597 must_raise_LCA = true;
duke@435 598 }
duke@435 599 }
duke@435 600 }
duke@435 601 assert(found_match, "no worklist bug");
duke@435 602 #ifdef TRACK_PHI_INPUTS
duke@435 603 #ifdef ASSERT
duke@435 604 // This assert asks about correct handling of PhiNodes, which may not
duke@435 605 // have all input edges directly from 'mem'. See BugId 4621264
duke@435 606 int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
duke@435 607 // Increment by exactly one even if there are multiple copies of 'mem'
duke@435 608 // coming into the phi, because we will run this block several times
duke@435 609 // if there are several copies of 'mem'. (That's how DU iterators work.)
duke@435 610 phi_inputs.at_put(store->_idx, num_mem_inputs);
duke@435 611 assert(PhiNode::Input + num_mem_inputs < store->req(),
duke@435 612 "Expect at least one phi input will not be from original memory state");
duke@435 613 #endif //ASSERT
duke@435 614 #endif //TRACK_PHI_INPUTS
duke@435 615 } else if (store_block != early) {
duke@435 616 // 'store' is between the current LCA and earliest possible block.
duke@435 617 // Label its block, and decide later on how to raise the LCA
duke@435 618 // to include the effect on LCA of this store.
duke@435 619 // If this store's block gets chosen as the raised LCA, we
duke@435 620 // will find him on the non_early_stores list and stick him
duke@435 621 // with a precedence edge.
duke@435 622 // (But, don't bother if LCA is already raised all the way.)
duke@435 623 if (LCA != early) {
duke@435 624 store_block->set_raise_LCA_mark(load_index);
duke@435 625 must_raise_LCA = true;
duke@435 626 non_early_stores.push(store);
duke@435 627 }
duke@435 628 } else {
duke@435 629 // Found a possibly-interfering store in the load's 'early' block.
duke@435 630 // This means 'load' cannot sink at all in the dominator tree.
duke@435 631 // Add an anti-dep edge, and squeeze 'load' into the highest block.
duke@435 632 assert(store != load->in(0), "dependence cycle found");
duke@435 633 if (verify) {
duke@435 634 assert(store->find_edge(load) != -1, "missing precedence edge");
duke@435 635 } else {
duke@435 636 store->add_prec(load);
duke@435 637 }
duke@435 638 LCA = early;
duke@435 639 // This turns off the process of gathering non_early_stores.
duke@435 640 }
duke@435 641 }
duke@435 642 // (Worklist is now empty; all nearby stores have been visited.)
duke@435 643
duke@435 644 // Finished if 'load' must be scheduled in its 'early' block.
duke@435 645 // If we found any stores there, they have already been given
duke@435 646 // precedence edges.
duke@435 647 if (LCA == early) return LCA;
duke@435 648
duke@435 649 // We get here only if there are no possibly-interfering stores
duke@435 650 // in the load's 'early' block. Move LCA up above all predecessors
duke@435 651 // which contain stores we have noted.
duke@435 652 //
duke@435 653 // The raised LCA block can be a home to such interfering stores,
duke@435 654 // but its predecessors must not contain any such stores.
duke@435 655 //
duke@435 656 // The raised LCA will be a lower bound for placing the load,
duke@435 657 // preventing the load from sinking past any block containing
duke@435 658 // a store that may invalidate the memory state required by 'load'.
duke@435 659 if (must_raise_LCA)
duke@435 660 LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
duke@435 661 if (LCA == early) return LCA;
duke@435 662
duke@435 663 // Insert anti-dependence edges from 'load' to each store
duke@435 664 // in the non-early LCA block.
duke@435 665 // Mine the non_early_stores list for such stores.
duke@435 666 if (LCA->raise_LCA_mark() == load_index) {
duke@435 667 while (non_early_stores.size() > 0) {
duke@435 668 Node* store = non_early_stores.pop();
duke@435 669 Block* store_block = _bbs[store->_idx];
duke@435 670 if (store_block == LCA) {
duke@435 671 // add anti_dependence from store to load in its own block
duke@435 672 assert(store != load->in(0), "dependence cycle found");
duke@435 673 if (verify) {
duke@435 674 assert(store->find_edge(load) != -1, "missing precedence edge");
duke@435 675 } else {
duke@435 676 store->add_prec(load);
duke@435 677 }
duke@435 678 } else {
duke@435 679 assert(store_block->raise_LCA_mark() == load_index, "block was marked");
duke@435 680 // Any other stores we found must be either inside the new LCA
duke@435 681 // or else outside the original LCA. In the latter case, they
duke@435 682 // did not interfere with any use of 'load'.
duke@435 683 assert(LCA->dominates(store_block)
duke@435 684 || !LCA_orig->dominates(store_block), "no stray stores");
duke@435 685 }
duke@435 686 }
duke@435 687 }
duke@435 688
duke@435 689 // Return the highest block containing stores; any stores
duke@435 690 // within that block have been given anti-dependence edges.
duke@435 691 return LCA;
duke@435 692 }
duke@435 693
duke@435 694 // This class is used to iterate backwards over the nodes in the graph.
duke@435 695
duke@435 696 class Node_Backward_Iterator {
duke@435 697
duke@435 698 private:
duke@435 699 Node_Backward_Iterator();
duke@435 700
duke@435 701 public:
duke@435 702 // Constructor for the iterator
duke@435 703 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
duke@435 704
duke@435 705 // Postincrement operator to iterate over the nodes
duke@435 706 Node *next();
duke@435 707
duke@435 708 private:
duke@435 709 VectorSet &_visited;
duke@435 710 Node_List &_stack;
duke@435 711 Block_Array &_bbs;
duke@435 712 };
duke@435 713
duke@435 714 // Constructor for the Node_Backward_Iterator
duke@435 715 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
duke@435 716 : _visited(visited), _stack(stack), _bbs(bbs) {
duke@435 717 // The stack should contain exactly the root
duke@435 718 stack.clear();
duke@435 719 stack.push(root);
duke@435 720
duke@435 721 // Clear the visited bits
duke@435 722 visited.Clear();
duke@435 723 }
duke@435 724
duke@435 725 // Iterator for the Node_Backward_Iterator
duke@435 726 Node *Node_Backward_Iterator::next() {
duke@435 727
duke@435 728 // If the _stack is empty, then just return NULL: finished.
duke@435 729 if ( !_stack.size() )
duke@435 730 return NULL;
duke@435 731
duke@435 732 // '_stack' is emulating a real _stack. The 'visit-all-users' loop has been
duke@435 733 // made stateless, so I do not need to record the index 'i' on my _stack.
duke@435 734 // Instead I visit all users each time, scanning for unvisited users.
duke@435 735 // I visit unvisited not-anti-dependence users first, then anti-dependent
duke@435 736 // children next.
duke@435 737 Node *self = _stack.pop();
duke@435 738
duke@435 739 // I cycle here when I am entering a deeper level of recursion.
duke@435 740 // The key variable 'self' was set prior to jumping here.
duke@435 741 while( 1 ) {
duke@435 742
duke@435 743 _visited.set(self->_idx);
duke@435 744
duke@435 745 // Now schedule all uses as late as possible.
duke@435 746 uint src = self->is_Proj() ? self->in(0)->_idx : self->_idx;
duke@435 747 uint src_rpo = _bbs[src]->_rpo;
duke@435 748
duke@435 749 // Schedule all nodes in a post-order visit
duke@435 750 Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
duke@435 751
duke@435 752 // Scan for unvisited nodes
duke@435 753 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
duke@435 754 // For all uses, schedule late
duke@435 755 Node* n = self->fast_out(i); // Use
duke@435 756
duke@435 757 // Skip already visited children
duke@435 758 if ( _visited.test(n->_idx) )
duke@435 759 continue;
duke@435 760
duke@435 761 // do not traverse backward control edges
duke@435 762 Node *use = n->is_Proj() ? n->in(0) : n;
duke@435 763 uint use_rpo = _bbs[use->_idx]->_rpo;
duke@435 764
duke@435 765 if ( use_rpo < src_rpo )
duke@435 766 continue;
duke@435 767
duke@435 768 // Phi nodes always precede uses in a basic block
duke@435 769 if ( use_rpo == src_rpo && use->is_Phi() )
duke@435 770 continue;
duke@435 771
duke@435 772 unvisited = n; // Found unvisited
duke@435 773
duke@435 774 // Check for possible-anti-dependent
duke@435 775 if( !n->needs_anti_dependence_check() )
duke@435 776 break; // Not visited, not anti-dep; schedule it NOW
duke@435 777 }
duke@435 778
duke@435 779 // Did I find an unvisited not-anti-dependent Node?
duke@435 780 if ( !unvisited )
duke@435 781 break; // All done with children; post-visit 'self'
duke@435 782
duke@435 783 // Visit the unvisited Node. Contains the obvious push to
duke@435 784 // indicate I'm entering a deeper level of recursion. I push the
duke@435 785 // old state onto the _stack and set a new state and loop (recurse).
duke@435 786 _stack.push(self);
duke@435 787 self = unvisited;
duke@435 788 } // End recursion loop
duke@435 789
duke@435 790 return self;
duke@435 791 }
duke@435 792
duke@435 793 //------------------------------ComputeLatenciesBackwards----------------------
duke@435 794 // Compute the latency of all the instructions.
duke@435 795 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
duke@435 796 #ifndef PRODUCT
duke@435 797 if (trace_opto_pipelining())
duke@435 798 tty->print("\n#---- ComputeLatenciesBackwards ----\n");
duke@435 799 #endif
duke@435 800
duke@435 801 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
duke@435 802 Node *n;
duke@435 803
duke@435 804 // Walk over all the nodes from last to first
duke@435 805 while (n = iter.next()) {
duke@435 806 // Set the latency for the definitions of this instruction
duke@435 807 partial_latency_of_defs(n);
duke@435 808 }
duke@435 809 } // end ComputeLatenciesBackwards
duke@435 810
duke@435 811 //------------------------------partial_latency_of_defs------------------------
duke@435 812 // Compute the latency impact of this node on all defs. This computes
duke@435 813 // a number that increases as we approach the beginning of the routine.
duke@435 814 void PhaseCFG::partial_latency_of_defs(Node *n) {
duke@435 815 // Set the latency for this instruction
duke@435 816 #ifndef PRODUCT
duke@435 817 if (trace_opto_pipelining()) {
duke@435 818 tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
duke@435 819 n->_idx, _node_latency.at_grow(n->_idx));
duke@435 820 dump();
duke@435 821 }
duke@435 822 #endif
duke@435 823
duke@435 824 if (n->is_Proj())
duke@435 825 n = n->in(0);
duke@435 826
duke@435 827 if (n->is_Root())
duke@435 828 return;
duke@435 829
duke@435 830 uint nlen = n->len();
duke@435 831 uint use_latency = _node_latency.at_grow(n->_idx);
duke@435 832 uint use_pre_order = _bbs[n->_idx]->_pre_order;
duke@435 833
duke@435 834 for ( uint j=0; j<nlen; j++ ) {
duke@435 835 Node *def = n->in(j);
duke@435 836
duke@435 837 if (!def || def == n)
duke@435 838 continue;
duke@435 839
duke@435 840 // Walk backwards thru projections
duke@435 841 if (def->is_Proj())
duke@435 842 def = def->in(0);
duke@435 843
duke@435 844 #ifndef PRODUCT
duke@435 845 if (trace_opto_pipelining()) {
duke@435 846 tty->print("# in(%2d): ", j);
duke@435 847 def->dump();
duke@435 848 }
duke@435 849 #endif
duke@435 850
duke@435 851 // If the defining block is not known, assume it is ok
duke@435 852 Block *def_block = _bbs[def->_idx];
duke@435 853 uint def_pre_order = def_block ? def_block->_pre_order : 0;
duke@435 854
duke@435 855 if ( (use_pre_order < def_pre_order) ||
duke@435 856 (use_pre_order == def_pre_order && n->is_Phi()) )
duke@435 857 continue;
duke@435 858
duke@435 859 uint delta_latency = n->latency(j);
duke@435 860 uint current_latency = delta_latency + use_latency;
duke@435 861
duke@435 862 if (_node_latency.at_grow(def->_idx) < current_latency) {
duke@435 863 _node_latency.at_put_grow(def->_idx, current_latency);
duke@435 864 }
duke@435 865
duke@435 866 #ifndef PRODUCT
duke@435 867 if (trace_opto_pipelining()) {
duke@435 868 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
duke@435 869 use_latency, j, delta_latency, current_latency, def->_idx,
duke@435 870 _node_latency.at_grow(def->_idx));
duke@435 871 }
duke@435 872 #endif
duke@435 873 }
duke@435 874 }
duke@435 875
duke@435 876 //------------------------------latency_from_use-------------------------------
duke@435 877 // Compute the latency of a specific use
duke@435 878 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
duke@435 879 // If self-reference, return no latency
duke@435 880 if (use == n || use->is_Root())
duke@435 881 return 0;
duke@435 882
duke@435 883 uint def_pre_order = _bbs[def->_idx]->_pre_order;
duke@435 884 uint latency = 0;
duke@435 885
duke@435 886 // If the use is not a projection, then it is simple...
duke@435 887 if (!use->is_Proj()) {
duke@435 888 #ifndef PRODUCT
duke@435 889 if (trace_opto_pipelining()) {
duke@435 890 tty->print("# out(): ");
duke@435 891 use->dump();
duke@435 892 }
duke@435 893 #endif
duke@435 894
duke@435 895 uint use_pre_order = _bbs[use->_idx]->_pre_order;
duke@435 896
duke@435 897 if (use_pre_order < def_pre_order)
duke@435 898 return 0;
duke@435 899
duke@435 900 if (use_pre_order == def_pre_order && use->is_Phi())
duke@435 901 return 0;
duke@435 902
duke@435 903 uint nlen = use->len();
duke@435 904 uint nl = _node_latency.at_grow(use->_idx);
duke@435 905
duke@435 906 for ( uint j=0; j<nlen; j++ ) {
duke@435 907 if (use->in(j) == n) {
duke@435 908 // Change this if we want local latencies
duke@435 909 uint ul = use->latency(j);
duke@435 910 uint l = ul + nl;
duke@435 911 if (latency < l) latency = l;
duke@435 912 #ifndef PRODUCT
duke@435 913 if (trace_opto_pipelining()) {
duke@435 914 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
duke@435 915 nl, j, ul, l, latency);
duke@435 916 }
duke@435 917 #endif
duke@435 918 }
duke@435 919 }
duke@435 920 } else {
duke@435 921 // This is a projection, just grab the latency of the use(s)
duke@435 922 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
duke@435 923 uint l = latency_from_use(use, def, use->fast_out(j));
duke@435 924 if (latency < l) latency = l;
duke@435 925 }
duke@435 926 }
duke@435 927
duke@435 928 return latency;
duke@435 929 }
duke@435 930
duke@435 931 //------------------------------latency_from_uses------------------------------
duke@435 932 // Compute the latency of this instruction relative to all of it's uses.
duke@435 933 // This computes a number that increases as we approach the beginning of the
duke@435 934 // routine.
duke@435 935 void PhaseCFG::latency_from_uses(Node *n) {
duke@435 936 // Set the latency for this instruction
duke@435 937 #ifndef PRODUCT
duke@435 938 if (trace_opto_pipelining()) {
duke@435 939 tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
duke@435 940 n->_idx, _node_latency.at_grow(n->_idx));
duke@435 941 dump();
duke@435 942 }
duke@435 943 #endif
duke@435 944 uint latency=0;
duke@435 945 const Node *def = n->is_Proj() ? n->in(0): n;
duke@435 946
duke@435 947 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 948 uint l = latency_from_use(n, def, n->fast_out(i));
duke@435 949
duke@435 950 if (latency < l) latency = l;
duke@435 951 }
duke@435 952
duke@435 953 _node_latency.at_put_grow(n->_idx, latency);
duke@435 954 }
duke@435 955
duke@435 956 //------------------------------hoist_to_cheaper_block-------------------------
duke@435 957 // Pick a block for node self, between early and LCA, that is a cheaper
duke@435 958 // alternative to LCA.
duke@435 959 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
duke@435 960 const double delta = 1+PROB_UNLIKELY_MAG(4);
duke@435 961 Block* least = LCA;
duke@435 962 double least_freq = least->_freq;
duke@435 963 uint target = _node_latency.at_grow(self->_idx);
duke@435 964 uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
duke@435 965 uint end_latency = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
duke@435 966 bool in_latency = (target <= start_latency);
duke@435 967 const Block* root_block = _bbs[_root->_idx];
duke@435 968
duke@435 969 // Turn off latency scheduling if scheduling is just plain off
duke@435 970 if (!C->do_scheduling())
duke@435 971 in_latency = true;
duke@435 972
duke@435 973 // Do not hoist (to cover latency) instructions which target a
duke@435 974 // single register. Hoisting stretches the live range of the
duke@435 975 // single register and may force spilling.
duke@435 976 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
duke@435 977 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
duke@435 978 in_latency = true;
duke@435 979
duke@435 980 #ifndef PRODUCT
duke@435 981 if (trace_opto_pipelining()) {
duke@435 982 tty->print("# Find cheaper block for latency %d: ",
duke@435 983 _node_latency.at_grow(self->_idx));
duke@435 984 self->dump();
duke@435 985 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
duke@435 986 LCA->_pre_order,
duke@435 987 LCA->_nodes[0]->_idx,
duke@435 988 start_latency,
duke@435 989 LCA->_nodes[LCA->end_idx()]->_idx,
duke@435 990 end_latency,
duke@435 991 least_freq);
duke@435 992 }
duke@435 993 #endif
duke@435 994
duke@435 995 // Walk up the dominator tree from LCA (Lowest common ancestor) to
duke@435 996 // the earliest legal location. Capture the least execution frequency.
duke@435 997 while (LCA != early) {
duke@435 998 LCA = LCA->_idom; // Follow up the dominator tree
duke@435 999
duke@435 1000 if (LCA == NULL) {
duke@435 1001 // Bailout without retry
duke@435 1002 C->record_method_not_compilable("late schedule failed: LCA == NULL");
duke@435 1003 return least;
duke@435 1004 }
duke@435 1005
duke@435 1006 // Don't hoist machine instructions to the root basic block
duke@435 1007 if (mach && LCA == root_block)
duke@435 1008 break;
duke@435 1009
duke@435 1010 uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
duke@435 1011 uint end_idx = LCA->end_idx();
duke@435 1012 uint end_lat = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
duke@435 1013 double LCA_freq = LCA->_freq;
duke@435 1014 #ifndef PRODUCT
duke@435 1015 if (trace_opto_pipelining()) {
duke@435 1016 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
duke@435 1017 LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
duke@435 1018 }
duke@435 1019 #endif
duke@435 1020 if (LCA_freq < least_freq || // Better Frequency
duke@435 1021 ( !in_latency && // No block containing latency
duke@435 1022 LCA_freq < least_freq * delta && // No worse frequency
duke@435 1023 target >= end_lat && // within latency range
duke@435 1024 !self->is_iteratively_computed() ) // But don't hoist IV increments
duke@435 1025 // because they may end up above other uses of their phi forcing
duke@435 1026 // their result register to be different from their input.
duke@435 1027 ) {
duke@435 1028 least = LCA; // Found cheaper block
duke@435 1029 least_freq = LCA_freq;
duke@435 1030 start_latency = start_lat;
duke@435 1031 end_latency = end_lat;
duke@435 1032 if (target <= start_lat)
duke@435 1033 in_latency = true;
duke@435 1034 }
duke@435 1035 }
duke@435 1036
duke@435 1037 #ifndef PRODUCT
duke@435 1038 if (trace_opto_pipelining()) {
duke@435 1039 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
duke@435 1040 least->_pre_order, start_latency, least_freq);
duke@435 1041 }
duke@435 1042 #endif
duke@435 1043
duke@435 1044 // See if the latency needs to be updated
duke@435 1045 if (target < end_latency) {
duke@435 1046 #ifndef PRODUCT
duke@435 1047 if (trace_opto_pipelining()) {
duke@435 1048 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
duke@435 1049 }
duke@435 1050 #endif
duke@435 1051 _node_latency.at_put_grow(self->_idx, end_latency);
duke@435 1052 partial_latency_of_defs(self);
duke@435 1053 }
duke@435 1054
duke@435 1055 return least;
duke@435 1056 }
duke@435 1057
duke@435 1058
duke@435 1059 //------------------------------schedule_late-----------------------------------
duke@435 1060 // Now schedule all codes as LATE as possible. This is the LCA in the
duke@435 1061 // dominator tree of all USES of a value. Pick the block with the least
duke@435 1062 // loop nesting depth that is lowest in the dominator tree.
duke@435 1063 extern const char must_clone[];
duke@435 1064 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
duke@435 1065 #ifndef PRODUCT
duke@435 1066 if (trace_opto_pipelining())
duke@435 1067 tty->print("\n#---- schedule_late ----\n");
duke@435 1068 #endif
duke@435 1069
duke@435 1070 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
duke@435 1071 Node *self;
duke@435 1072
duke@435 1073 // Walk over all the nodes from last to first
duke@435 1074 while (self = iter.next()) {
duke@435 1075 Block* early = _bbs[self->_idx]; // Earliest legal placement
duke@435 1076
duke@435 1077 if (self->is_top()) {
duke@435 1078 // Top node goes in bb #2 with other constants.
duke@435 1079 // It must be special-cased, because it has no out edges.
duke@435 1080 early->add_inst(self);
duke@435 1081 continue;
duke@435 1082 }
duke@435 1083
duke@435 1084 // No uses, just terminate
duke@435 1085 if (self->outcnt() == 0) {
duke@435 1086 assert(self->Opcode() == Op_MachProj, "sanity");
duke@435 1087 continue; // Must be a dead machine projection
duke@435 1088 }
duke@435 1089
duke@435 1090 // If node is pinned in the block, then no scheduling can be done.
duke@435 1091 if( self->pinned() ) // Pinned in block?
duke@435 1092 continue;
duke@435 1093
duke@435 1094 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
duke@435 1095 if (mach) {
duke@435 1096 switch (mach->ideal_Opcode()) {
duke@435 1097 case Op_CreateEx:
duke@435 1098 // Don't move exception creation
duke@435 1099 early->add_inst(self);
duke@435 1100 continue;
duke@435 1101 break;
duke@435 1102 case Op_CheckCastPP:
duke@435 1103 // Don't move CheckCastPP nodes away from their input, if the input
duke@435 1104 // is a rawptr (5071820).
duke@435 1105 Node *def = self->in(1);
duke@435 1106 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
duke@435 1107 early->add_inst(self);
duke@435 1108 continue;
duke@435 1109 }
duke@435 1110 break;
duke@435 1111 }
duke@435 1112 }
duke@435 1113
duke@435 1114 // Gather LCA of all uses
duke@435 1115 Block *LCA = NULL;
duke@435 1116 {
duke@435 1117 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
duke@435 1118 // For all uses, find LCA
duke@435 1119 Node* use = self->fast_out(i);
duke@435 1120 LCA = raise_LCA_above_use(LCA, use, self, _bbs);
duke@435 1121 }
duke@435 1122 } // (Hide defs of imax, i from rest of block.)
duke@435 1123
duke@435 1124 // Place temps in the block of their use. This isn't a
duke@435 1125 // requirement for correctness but it reduces useless
duke@435 1126 // interference between temps and other nodes.
duke@435 1127 if (mach != NULL && mach->is_MachTemp()) {
duke@435 1128 _bbs.map(self->_idx, LCA);
duke@435 1129 LCA->add_inst(self);
duke@435 1130 continue;
duke@435 1131 }
duke@435 1132
duke@435 1133 // Check if 'self' could be anti-dependent on memory
duke@435 1134 if (self->needs_anti_dependence_check()) {
duke@435 1135 // Hoist LCA above possible-defs and insert anti-dependences to
duke@435 1136 // defs in new LCA block.
duke@435 1137 LCA = insert_anti_dependences(LCA, self);
duke@435 1138 }
duke@435 1139
duke@435 1140 if (early->_dom_depth > LCA->_dom_depth) {
duke@435 1141 // Somehow the LCA has moved above the earliest legal point.
duke@435 1142 // (One way this can happen is via memory_early_block.)
duke@435 1143 if (C->subsume_loads() == true && !C->failing()) {
duke@435 1144 // Retry with subsume_loads == false
duke@435 1145 // If this is the first failure, the sentinel string will "stick"
duke@435 1146 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 1147 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 1148 } else {
duke@435 1149 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
duke@435 1150 C->record_method_not_compilable("late schedule failed: incorrect graph");
duke@435 1151 }
duke@435 1152 return;
duke@435 1153 }
duke@435 1154
duke@435 1155 // If there is no opportunity to hoist, then we're done.
duke@435 1156 bool try_to_hoist = (LCA != early);
duke@435 1157
duke@435 1158 // Must clone guys stay next to use; no hoisting allowed.
duke@435 1159 // Also cannot hoist guys that alter memory or are otherwise not
duke@435 1160 // allocatable (hoisting can make a value live longer, leading to
duke@435 1161 // anti and output dependency problems which are normally resolved
duke@435 1162 // by the register allocator giving everyone a different register).
duke@435 1163 if (mach != NULL && must_clone[mach->ideal_Opcode()])
duke@435 1164 try_to_hoist = false;
duke@435 1165
duke@435 1166 Block* late = NULL;
duke@435 1167 if (try_to_hoist) {
duke@435 1168 // Now find the block with the least execution frequency.
duke@435 1169 // Start at the latest schedule and work up to the earliest schedule
duke@435 1170 // in the dominator tree. Thus the Node will dominate all its uses.
duke@435 1171 late = hoist_to_cheaper_block(LCA, early, self);
duke@435 1172 } else {
duke@435 1173 // Just use the LCA of the uses.
duke@435 1174 late = LCA;
duke@435 1175 }
duke@435 1176
duke@435 1177 // Put the node into target block
duke@435 1178 schedule_node_into_block(self, late);
duke@435 1179
duke@435 1180 #ifdef ASSERT
duke@435 1181 if (self->needs_anti_dependence_check()) {
duke@435 1182 // since precedence edges are only inserted when we're sure they
duke@435 1183 // are needed make sure that after placement in a block we don't
duke@435 1184 // need any new precedence edges.
duke@435 1185 verify_anti_dependences(late, self);
duke@435 1186 }
duke@435 1187 #endif
duke@435 1188 } // Loop until all nodes have been visited
duke@435 1189
duke@435 1190 } // end ScheduleLate
duke@435 1191
duke@435 1192 //------------------------------GlobalCodeMotion-------------------------------
duke@435 1193 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
duke@435 1194 ResourceMark rm;
duke@435 1195
duke@435 1196 #ifndef PRODUCT
duke@435 1197 if (trace_opto_pipelining()) {
duke@435 1198 tty->print("\n---- Start GlobalCodeMotion ----\n");
duke@435 1199 }
duke@435 1200 #endif
duke@435 1201
duke@435 1202 // Initialize the bbs.map for things on the proj_list
duke@435 1203 uint i;
duke@435 1204 for( i=0; i < proj_list.size(); i++ )
duke@435 1205 _bbs.map(proj_list[i]->_idx, NULL);
duke@435 1206
duke@435 1207 // Set the basic block for Nodes pinned into blocks
duke@435 1208 Arena *a = Thread::current()->resource_area();
duke@435 1209 VectorSet visited(a);
duke@435 1210 schedule_pinned_nodes( visited );
duke@435 1211
duke@435 1212 // Find the earliest Block any instruction can be placed in. Some
duke@435 1213 // instructions are pinned into Blocks. Unpinned instructions can
duke@435 1214 // appear in last block in which all their inputs occur.
duke@435 1215 visited.Clear();
duke@435 1216 Node_List stack(a);
duke@435 1217 stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
duke@435 1218 if (!schedule_early(visited, stack)) {
duke@435 1219 // Bailout without retry
duke@435 1220 C->record_method_not_compilable("early schedule failed");
duke@435 1221 return;
duke@435 1222 }
duke@435 1223
duke@435 1224 // Build Def-Use edges.
duke@435 1225 proj_list.push(_root); // Add real root as another root
duke@435 1226 proj_list.pop();
duke@435 1227
duke@435 1228 // Compute the latency information (via backwards walk) for all the
duke@435 1229 // instructions in the graph
duke@435 1230 GrowableArray<uint> node_latency;
duke@435 1231 _node_latency = node_latency;
duke@435 1232
duke@435 1233 if( C->do_scheduling() )
duke@435 1234 ComputeLatenciesBackwards(visited, stack);
duke@435 1235
duke@435 1236 // Now schedule all codes as LATE as possible. This is the LCA in the
duke@435 1237 // dominator tree of all USES of a value. Pick the block with the least
duke@435 1238 // loop nesting depth that is lowest in the dominator tree.
duke@435 1239 // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
duke@435 1240 schedule_late(visited, stack);
duke@435 1241 if( C->failing() ) {
duke@435 1242 // schedule_late fails only when graph is incorrect.
duke@435 1243 assert(!VerifyGraphEdges, "verification should have failed");
duke@435 1244 return;
duke@435 1245 }
duke@435 1246
duke@435 1247 unique = C->unique();
duke@435 1248
duke@435 1249 #ifndef PRODUCT
duke@435 1250 if (trace_opto_pipelining()) {
duke@435 1251 tty->print("\n---- Detect implicit null checks ----\n");
duke@435 1252 }
duke@435 1253 #endif
duke@435 1254
duke@435 1255 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 1256 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 1257 // I can generate a memory op if there is not one nearby.
duke@435 1258 if (C->is_method_compilation()) {
duke@435 1259 // Don't do it for natives, adapters, or runtime stubs
duke@435 1260 int allowed_reasons = 0;
duke@435 1261 // ...and don't do it when there have been too many traps, globally.
duke@435 1262 for (int reason = (int)Deoptimization::Reason_none+1;
duke@435 1263 reason < Compile::trapHistLength; reason++) {
duke@435 1264 assert(reason < BitsPerInt, "recode bit map");
duke@435 1265 if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
duke@435 1266 allowed_reasons |= nth_bit(reason);
duke@435 1267 }
duke@435 1268 // By reversing the loop direction we get a very minor gain on mpegaudio.
duke@435 1269 // Feel free to revert to a forward loop for clarity.
duke@435 1270 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
duke@435 1271 for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
duke@435 1272 Node *proj = matcher._null_check_tests[i ];
duke@435 1273 Node *val = matcher._null_check_tests[i+1];
duke@435 1274 _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
duke@435 1275 // The implicit_null_check will only perform the transformation
duke@435 1276 // if the null branch is truly uncommon, *and* it leads to an
duke@435 1277 // uncommon trap. Combined with the too_many_traps guards
duke@435 1278 // above, this prevents SEGV storms reported in 6366351,
duke@435 1279 // by recompiling offending methods without this optimization.
duke@435 1280 }
duke@435 1281 }
duke@435 1282
duke@435 1283 #ifndef PRODUCT
duke@435 1284 if (trace_opto_pipelining()) {
duke@435 1285 tty->print("\n---- Start Local Scheduling ----\n");
duke@435 1286 }
duke@435 1287 #endif
duke@435 1288
duke@435 1289 // Schedule locally. Right now a simple topological sort.
duke@435 1290 // Later, do a real latency aware scheduler.
duke@435 1291 int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
duke@435 1292 memset( ready_cnt, -1, C->unique() * sizeof(int) );
duke@435 1293 visited.Clear();
duke@435 1294 for (i = 0; i < _num_blocks; i++) {
duke@435 1295 if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
duke@435 1296 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
duke@435 1297 C->record_method_not_compilable("local schedule failed");
duke@435 1298 }
duke@435 1299 return;
duke@435 1300 }
duke@435 1301 }
duke@435 1302
duke@435 1303 // If we inserted any instructions between a Call and his CatchNode,
duke@435 1304 // clone the instructions on all paths below the Catch.
duke@435 1305 for( i=0; i < _num_blocks; i++ )
duke@435 1306 _blocks[i]->call_catch_cleanup(_bbs);
duke@435 1307
duke@435 1308 #ifndef PRODUCT
duke@435 1309 if (trace_opto_pipelining()) {
duke@435 1310 tty->print("\n---- After GlobalCodeMotion ----\n");
duke@435 1311 for (uint i = 0; i < _num_blocks; i++) {
duke@435 1312 _blocks[i]->dump();
duke@435 1313 }
duke@435 1314 }
duke@435 1315 #endif
duke@435 1316 }
duke@435 1317
duke@435 1318
duke@435 1319 //------------------------------Estimate_Block_Frequency-----------------------
duke@435 1320 // Estimate block frequencies based on IfNode probabilities.
duke@435 1321 void PhaseCFG::Estimate_Block_Frequency() {
rasbold@853 1322
rasbold@853 1323 // Force conditional branches leading to uncommon traps to be unlikely,
rasbold@853 1324 // not because we get to the uncommon_trap with less relative frequency,
rasbold@853 1325 // but because an uncommon_trap typically causes a deopt, so we only get
rasbold@853 1326 // there once.
rasbold@853 1327 if (C->do_freq_based_layout()) {
rasbold@853 1328 Block_List worklist;
rasbold@853 1329 Block* root_blk = _blocks[0];
rasbold@853 1330 for (uint i = 1; i < root_blk->num_preds(); i++) {
rasbold@853 1331 Block *pb = _bbs[root_blk->pred(i)->_idx];
rasbold@853 1332 if (pb->has_uncommon_code()) {
rasbold@853 1333 worklist.push(pb);
rasbold@853 1334 }
rasbold@853 1335 }
rasbold@853 1336 while (worklist.size() > 0) {
rasbold@853 1337 Block* uct = worklist.pop();
rasbold@853 1338 if (uct == _broot) continue;
rasbold@853 1339 for (uint i = 1; i < uct->num_preds(); i++) {
rasbold@853 1340 Block *pb = _bbs[uct->pred(i)->_idx];
rasbold@853 1341 if (pb->_num_succs == 1) {
rasbold@853 1342 worklist.push(pb);
rasbold@853 1343 } else if (pb->num_fall_throughs() == 2) {
rasbold@853 1344 pb->update_uncommon_branch(uct);
rasbold@853 1345 }
rasbold@853 1346 }
rasbold@853 1347 }
rasbold@853 1348 }
duke@435 1349
duke@435 1350 // Create the loop tree and calculate loop depth.
duke@435 1351 _root_loop = create_loop_tree();
duke@435 1352 _root_loop->compute_loop_depth(0);
duke@435 1353
duke@435 1354 // Compute block frequency of each block, relative to a single loop entry.
duke@435 1355 _root_loop->compute_freq();
duke@435 1356
duke@435 1357 // Adjust all frequencies to be relative to a single method entry
rasbold@853 1358 _root_loop->_freq = 1.0;
duke@435 1359 _root_loop->scale_freq();
duke@435 1360
duke@435 1361 // force paths ending at uncommon traps to be infrequent
rasbold@853 1362 if (!C->do_freq_based_layout()) {
rasbold@853 1363 Block_List worklist;
rasbold@853 1364 Block* root_blk = _blocks[0];
rasbold@853 1365 for (uint i = 1; i < root_blk->num_preds(); i++) {
rasbold@853 1366 Block *pb = _bbs[root_blk->pred(i)->_idx];
rasbold@853 1367 if (pb->has_uncommon_code()) {
rasbold@853 1368 worklist.push(pb);
rasbold@853 1369 }
duke@435 1370 }
rasbold@853 1371 while (worklist.size() > 0) {
rasbold@853 1372 Block* uct = worklist.pop();
rasbold@853 1373 uct->_freq = PROB_MIN;
rasbold@853 1374 for (uint i = 1; i < uct->num_preds(); i++) {
rasbold@853 1375 Block *pb = _bbs[uct->pred(i)->_idx];
rasbold@853 1376 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
rasbold@853 1377 worklist.push(pb);
rasbold@853 1378 }
duke@435 1379 }
duke@435 1380 }
duke@435 1381 }
duke@435 1382
duke@435 1383 #ifndef PRODUCT
duke@435 1384 if (PrintCFGBlockFreq) {
duke@435 1385 tty->print_cr("CFG Block Frequencies");
duke@435 1386 _root_loop->dump_tree();
duke@435 1387 if (Verbose) {
duke@435 1388 tty->print_cr("PhaseCFG dump");
duke@435 1389 dump();
duke@435 1390 tty->print_cr("Node dump");
duke@435 1391 _root->dump(99999);
duke@435 1392 }
duke@435 1393 }
duke@435 1394 #endif
duke@435 1395 }
duke@435 1396
duke@435 1397 //----------------------------create_loop_tree--------------------------------
duke@435 1398 // Create a loop tree from the CFG
duke@435 1399 CFGLoop* PhaseCFG::create_loop_tree() {
duke@435 1400
duke@435 1401 #ifdef ASSERT
duke@435 1402 assert( _blocks[0] == _broot, "" );
duke@435 1403 for (uint i = 0; i < _num_blocks; i++ ) {
duke@435 1404 Block *b = _blocks[i];
duke@435 1405 // Check that _loop field are clear...we could clear them if not.
duke@435 1406 assert(b->_loop == NULL, "clear _loop expected");
duke@435 1407 // Sanity check that the RPO numbering is reflected in the _blocks array.
duke@435 1408 // It doesn't have to be for the loop tree to be built, but if it is not,
duke@435 1409 // then the blocks have been reordered since dom graph building...which
duke@435 1410 // may question the RPO numbering
duke@435 1411 assert(b->_rpo == i, "unexpected reverse post order number");
duke@435 1412 }
duke@435 1413 #endif
duke@435 1414
duke@435 1415 int idct = 0;
duke@435 1416 CFGLoop* root_loop = new CFGLoop(idct++);
duke@435 1417
duke@435 1418 Block_List worklist;
duke@435 1419
duke@435 1420 // Assign blocks to loops
duke@435 1421 for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
duke@435 1422 Block *b = _blocks[i];
duke@435 1423
duke@435 1424 if (b->head()->is_Loop()) {
duke@435 1425 Block* loop_head = b;
duke@435 1426 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
duke@435 1427 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
duke@435 1428 Block* tail = _bbs[tail_n->_idx];
duke@435 1429
duke@435 1430 // Defensively filter out Loop nodes for non-single-entry loops.
duke@435 1431 // For all reasonable loops, the head occurs before the tail in RPO.
duke@435 1432 if (i <= tail->_rpo) {
duke@435 1433
duke@435 1434 // The tail and (recursive) predecessors of the tail
duke@435 1435 // are made members of a new loop.
duke@435 1436
duke@435 1437 assert(worklist.size() == 0, "nonempty worklist");
duke@435 1438 CFGLoop* nloop = new CFGLoop(idct++);
duke@435 1439 assert(loop_head->_loop == NULL, "just checking");
duke@435 1440 loop_head->_loop = nloop;
duke@435 1441 // Add to nloop so push_pred() will skip over inner loops
duke@435 1442 nloop->add_member(loop_head);
duke@435 1443 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
duke@435 1444
duke@435 1445 while (worklist.size() > 0) {
duke@435 1446 Block* member = worklist.pop();
duke@435 1447 if (member != loop_head) {
duke@435 1448 for (uint j = 1; j < member->num_preds(); j++) {
duke@435 1449 nloop->push_pred(member, j, worklist, _bbs);
duke@435 1450 }
duke@435 1451 }
duke@435 1452 }
duke@435 1453 }
duke@435 1454 }
duke@435 1455 }
duke@435 1456
duke@435 1457 // Create a member list for each loop consisting
duke@435 1458 // of both blocks and (immediate child) loops.
duke@435 1459 for (uint i = 0; i < _num_blocks; i++) {
duke@435 1460 Block *b = _blocks[i];
duke@435 1461 CFGLoop* lp = b->_loop;
duke@435 1462 if (lp == NULL) {
duke@435 1463 // Not assigned to a loop. Add it to the method's pseudo loop.
duke@435 1464 b->_loop = root_loop;
duke@435 1465 lp = root_loop;
duke@435 1466 }
duke@435 1467 if (lp == root_loop || b != lp->head()) { // loop heads are already members
duke@435 1468 lp->add_member(b);
duke@435 1469 }
duke@435 1470 if (lp != root_loop) {
duke@435 1471 if (lp->parent() == NULL) {
duke@435 1472 // Not a nested loop. Make it a child of the method's pseudo loop.
duke@435 1473 root_loop->add_nested_loop(lp);
duke@435 1474 }
duke@435 1475 if (b == lp->head()) {
duke@435 1476 // Add nested loop to member list of parent loop.
duke@435 1477 lp->parent()->add_member(lp);
duke@435 1478 }
duke@435 1479 }
duke@435 1480 }
duke@435 1481
duke@435 1482 return root_loop;
duke@435 1483 }
duke@435 1484
duke@435 1485 //------------------------------push_pred--------------------------------------
duke@435 1486 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
duke@435 1487 Node* pred_n = blk->pred(i);
duke@435 1488 Block* pred = node_to_blk[pred_n->_idx];
duke@435 1489 CFGLoop *pred_loop = pred->_loop;
duke@435 1490 if (pred_loop == NULL) {
duke@435 1491 // Filter out blocks for non-single-entry loops.
duke@435 1492 // For all reasonable loops, the head occurs before the tail in RPO.
duke@435 1493 if (pred->_rpo > head()->_rpo) {
duke@435 1494 pred->_loop = this;
duke@435 1495 worklist.push(pred);
duke@435 1496 }
duke@435 1497 } else if (pred_loop != this) {
duke@435 1498 // Nested loop.
duke@435 1499 while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
duke@435 1500 pred_loop = pred_loop->_parent;
duke@435 1501 }
duke@435 1502 // Make pred's loop be a child
duke@435 1503 if (pred_loop->_parent == NULL) {
duke@435 1504 add_nested_loop(pred_loop);
duke@435 1505 // Continue with loop entry predecessor.
duke@435 1506 Block* pred_head = pred_loop->head();
duke@435 1507 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
duke@435 1508 assert(pred_head != head(), "loop head in only one loop");
duke@435 1509 push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
duke@435 1510 } else {
duke@435 1511 assert(pred_loop->_parent == this && _parent == NULL, "just checking");
duke@435 1512 }
duke@435 1513 }
duke@435 1514 }
duke@435 1515
duke@435 1516 //------------------------------add_nested_loop--------------------------------
duke@435 1517 // Make cl a child of the current loop in the loop tree.
duke@435 1518 void CFGLoop::add_nested_loop(CFGLoop* cl) {
duke@435 1519 assert(_parent == NULL, "no parent yet");
duke@435 1520 assert(cl != this, "not my own parent");
duke@435 1521 cl->_parent = this;
duke@435 1522 CFGLoop* ch = _child;
duke@435 1523 if (ch == NULL) {
duke@435 1524 _child = cl;
duke@435 1525 } else {
duke@435 1526 while (ch->_sibling != NULL) { ch = ch->_sibling; }
duke@435 1527 ch->_sibling = cl;
duke@435 1528 }
duke@435 1529 }
duke@435 1530
duke@435 1531 //------------------------------compute_loop_depth-----------------------------
duke@435 1532 // Store the loop depth in each CFGLoop object.
duke@435 1533 // Recursively walk the children to do the same for them.
duke@435 1534 void CFGLoop::compute_loop_depth(int depth) {
duke@435 1535 _depth = depth;
duke@435 1536 CFGLoop* ch = _child;
duke@435 1537 while (ch != NULL) {
duke@435 1538 ch->compute_loop_depth(depth + 1);
duke@435 1539 ch = ch->_sibling;
duke@435 1540 }
duke@435 1541 }
duke@435 1542
duke@435 1543 //------------------------------compute_freq-----------------------------------
duke@435 1544 // Compute the frequency of each block and loop, relative to a single entry
duke@435 1545 // into the dominating loop head.
duke@435 1546 void CFGLoop::compute_freq() {
duke@435 1547 // Bottom up traversal of loop tree (visit inner loops first.)
duke@435 1548 // Set loop head frequency to 1.0, then transitively
duke@435 1549 // compute frequency for all successors in the loop,
duke@435 1550 // as well as for each exit edge. Inner loops are
duke@435 1551 // treated as single blocks with loop exit targets
duke@435 1552 // as the successor blocks.
duke@435 1553
duke@435 1554 // Nested loops first
duke@435 1555 CFGLoop* ch = _child;
duke@435 1556 while (ch != NULL) {
duke@435 1557 ch->compute_freq();
duke@435 1558 ch = ch->_sibling;
duke@435 1559 }
duke@435 1560 assert (_members.length() > 0, "no empty loops");
duke@435 1561 Block* hd = head();
duke@435 1562 hd->_freq = 1.0f;
duke@435 1563 for (int i = 0; i < _members.length(); i++) {
duke@435 1564 CFGElement* s = _members.at(i);
duke@435 1565 float freq = s->_freq;
duke@435 1566 if (s->is_block()) {
duke@435 1567 Block* b = s->as_Block();
duke@435 1568 for (uint j = 0; j < b->_num_succs; j++) {
duke@435 1569 Block* sb = b->_succs[j];
duke@435 1570 update_succ_freq(sb, freq * b->succ_prob(j));
duke@435 1571 }
duke@435 1572 } else {
duke@435 1573 CFGLoop* lp = s->as_CFGLoop();
duke@435 1574 assert(lp->_parent == this, "immediate child");
duke@435 1575 for (int k = 0; k < lp->_exits.length(); k++) {
duke@435 1576 Block* eb = lp->_exits.at(k).get_target();
duke@435 1577 float prob = lp->_exits.at(k).get_prob();
duke@435 1578 update_succ_freq(eb, freq * prob);
duke@435 1579 }
duke@435 1580 }
duke@435 1581 }
duke@435 1582
duke@435 1583 // For all loops other than the outer, "method" loop,
duke@435 1584 // sum and normalize the exit probability. The "method" loop
duke@435 1585 // should keep the initial exit probability of 1, so that
duke@435 1586 // inner blocks do not get erroneously scaled.
duke@435 1587 if (_depth != 0) {
duke@435 1588 // Total the exit probabilities for this loop.
duke@435 1589 float exits_sum = 0.0f;
duke@435 1590 for (int i = 0; i < _exits.length(); i++) {
duke@435 1591 exits_sum += _exits.at(i).get_prob();
duke@435 1592 }
duke@435 1593
duke@435 1594 // Normalize the exit probabilities. Until now, the
duke@435 1595 // probabilities estimate the possibility of exit per
duke@435 1596 // a single loop iteration; afterward, they estimate
duke@435 1597 // the probability of exit per loop entry.
duke@435 1598 for (int i = 0; i < _exits.length(); i++) {
duke@435 1599 Block* et = _exits.at(i).get_target();
rasbold@853 1600 float new_prob = 0.0f;
rasbold@853 1601 if (_exits.at(i).get_prob() > 0.0f) {
rasbold@853 1602 new_prob = _exits.at(i).get_prob() / exits_sum;
rasbold@853 1603 }
duke@435 1604 BlockProbPair bpp(et, new_prob);
duke@435 1605 _exits.at_put(i, bpp);
duke@435 1606 }
duke@435 1607
rasbold@853 1608 // Save the total, but guard against unreasonable probability,
duke@435 1609 // as the value is used to estimate the loop trip count.
duke@435 1610 // An infinite trip count would blur relative block
duke@435 1611 // frequencies.
duke@435 1612 if (exits_sum > 1.0f) exits_sum = 1.0;
duke@435 1613 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
duke@435 1614 _exit_prob = exits_sum;
duke@435 1615 }
duke@435 1616 }
duke@435 1617
duke@435 1618 //------------------------------succ_prob-------------------------------------
duke@435 1619 // Determine the probability of reaching successor 'i' from the receiver block.
duke@435 1620 float Block::succ_prob(uint i) {
duke@435 1621 int eidx = end_idx();
duke@435 1622 Node *n = _nodes[eidx]; // Get ending Node
rasbold@743 1623
rasbold@743 1624 int op = n->Opcode();
rasbold@743 1625 if (n->is_Mach()) {
rasbold@743 1626 if (n->is_MachNullCheck()) {
rasbold@743 1627 // Can only reach here if called after lcm. The original Op_If is gone,
rasbold@743 1628 // so we attempt to infer the probability from one or both of the
rasbold@743 1629 // successor blocks.
rasbold@743 1630 assert(_num_succs == 2, "expecting 2 successors of a null check");
rasbold@743 1631 // If either successor has only one predecessor, then the
rasbold@743 1632 // probabiltity estimate can be derived using the
rasbold@743 1633 // relative frequency of the successor and this block.
rasbold@743 1634 if (_succs[i]->num_preds() == 2) {
rasbold@743 1635 return _succs[i]->_freq / _freq;
rasbold@743 1636 } else if (_succs[1-i]->num_preds() == 2) {
rasbold@743 1637 return 1 - (_succs[1-i]->_freq / _freq);
rasbold@743 1638 } else {
rasbold@743 1639 // Estimate using both successor frequencies
rasbold@743 1640 float freq = _succs[i]->_freq;
rasbold@743 1641 return freq / (freq + _succs[1-i]->_freq);
rasbold@743 1642 }
rasbold@743 1643 }
rasbold@743 1644 op = n->as_Mach()->ideal_Opcode();
rasbold@743 1645 }
rasbold@743 1646
duke@435 1647
duke@435 1648 // Switch on branch type
duke@435 1649 switch( op ) {
duke@435 1650 case Op_CountedLoopEnd:
duke@435 1651 case Op_If: {
duke@435 1652 assert (i < 2, "just checking");
duke@435 1653 // Conditionals pass on only part of their frequency
duke@435 1654 float prob = n->as_MachIf()->_prob;
duke@435 1655 assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
duke@435 1656 // If succ[i] is the FALSE branch, invert path info
duke@435 1657 if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
duke@435 1658 return 1.0f - prob; // not taken
duke@435 1659 } else {
duke@435 1660 return prob; // taken
duke@435 1661 }
duke@435 1662 }
duke@435 1663
duke@435 1664 case Op_Jump:
duke@435 1665 // Divide the frequency between all successors evenly
duke@435 1666 return 1.0f/_num_succs;
duke@435 1667
duke@435 1668 case Op_Catch: {
duke@435 1669 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
duke@435 1670 if (ci->_con == CatchProjNode::fall_through_index) {
duke@435 1671 // Fall-thru path gets the lion's share.
duke@435 1672 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
duke@435 1673 } else {
duke@435 1674 // Presume exceptional paths are equally unlikely
duke@435 1675 return PROB_UNLIKELY_MAG(5);
duke@435 1676 }
duke@435 1677 }
duke@435 1678
duke@435 1679 case Op_Root:
duke@435 1680 case Op_Goto:
duke@435 1681 // Pass frequency straight thru to target
duke@435 1682 return 1.0f;
duke@435 1683
duke@435 1684 case Op_NeverBranch:
duke@435 1685 return 0.0f;
duke@435 1686
duke@435 1687 case Op_TailCall:
duke@435 1688 case Op_TailJump:
duke@435 1689 case Op_Return:
duke@435 1690 case Op_Halt:
duke@435 1691 case Op_Rethrow:
duke@435 1692 // Do not push out freq to root block
duke@435 1693 return 0.0f;
duke@435 1694
duke@435 1695 default:
duke@435 1696 ShouldNotReachHere();
duke@435 1697 }
duke@435 1698
duke@435 1699 return 0.0f;
duke@435 1700 }
duke@435 1701
rasbold@853 1702 //------------------------------num_fall_throughs-----------------------------
rasbold@853 1703 // Return the number of fall-through candidates for a block
rasbold@853 1704 int Block::num_fall_throughs() {
rasbold@853 1705 int eidx = end_idx();
rasbold@853 1706 Node *n = _nodes[eidx]; // Get ending Node
rasbold@853 1707
rasbold@853 1708 int op = n->Opcode();
rasbold@853 1709 if (n->is_Mach()) {
rasbold@853 1710 if (n->is_MachNullCheck()) {
rasbold@853 1711 // In theory, either side can fall-thru, for simplicity sake,
rasbold@853 1712 // let's say only the false branch can now.
rasbold@853 1713 return 1;
rasbold@853 1714 }
rasbold@853 1715 op = n->as_Mach()->ideal_Opcode();
rasbold@853 1716 }
rasbold@853 1717
rasbold@853 1718 // Switch on branch type
rasbold@853 1719 switch( op ) {
rasbold@853 1720 case Op_CountedLoopEnd:
rasbold@853 1721 case Op_If:
rasbold@853 1722 return 2;
rasbold@853 1723
rasbold@853 1724 case Op_Root:
rasbold@853 1725 case Op_Goto:
rasbold@853 1726 return 1;
rasbold@853 1727
rasbold@853 1728 case Op_Catch: {
rasbold@853 1729 for (uint i = 0; i < _num_succs; i++) {
rasbold@853 1730 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
rasbold@853 1731 if (ci->_con == CatchProjNode::fall_through_index) {
rasbold@853 1732 return 1;
rasbold@853 1733 }
rasbold@853 1734 }
rasbold@853 1735 return 0;
rasbold@853 1736 }
rasbold@853 1737
rasbold@853 1738 case Op_Jump:
rasbold@853 1739 case Op_NeverBranch:
rasbold@853 1740 case Op_TailCall:
rasbold@853 1741 case Op_TailJump:
rasbold@853 1742 case Op_Return:
rasbold@853 1743 case Op_Halt:
rasbold@853 1744 case Op_Rethrow:
rasbold@853 1745 return 0;
rasbold@853 1746
rasbold@853 1747 default:
rasbold@853 1748 ShouldNotReachHere();
rasbold@853 1749 }
rasbold@853 1750
rasbold@853 1751 return 0;
rasbold@853 1752 }
rasbold@853 1753
rasbold@853 1754 //------------------------------succ_fall_through-----------------------------
rasbold@853 1755 // Return true if a specific successor could be fall-through target.
rasbold@853 1756 bool Block::succ_fall_through(uint i) {
rasbold@853 1757 int eidx = end_idx();
rasbold@853 1758 Node *n = _nodes[eidx]; // Get ending Node
rasbold@853 1759
rasbold@853 1760 int op = n->Opcode();
rasbold@853 1761 if (n->is_Mach()) {
rasbold@853 1762 if (n->is_MachNullCheck()) {
rasbold@853 1763 // In theory, either side can fall-thru, for simplicity sake,
rasbold@853 1764 // let's say only the false branch can now.
rasbold@853 1765 return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
rasbold@853 1766 }
rasbold@853 1767 op = n->as_Mach()->ideal_Opcode();
rasbold@853 1768 }
rasbold@853 1769
rasbold@853 1770 // Switch on branch type
rasbold@853 1771 switch( op ) {
rasbold@853 1772 case Op_CountedLoopEnd:
rasbold@853 1773 case Op_If:
rasbold@853 1774 case Op_Root:
rasbold@853 1775 case Op_Goto:
rasbold@853 1776 return true;
rasbold@853 1777
rasbold@853 1778 case Op_Catch: {
rasbold@853 1779 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
rasbold@853 1780 return ci->_con == CatchProjNode::fall_through_index;
rasbold@853 1781 }
rasbold@853 1782
rasbold@853 1783 case Op_Jump:
rasbold@853 1784 case Op_NeverBranch:
rasbold@853 1785 case Op_TailCall:
rasbold@853 1786 case Op_TailJump:
rasbold@853 1787 case Op_Return:
rasbold@853 1788 case Op_Halt:
rasbold@853 1789 case Op_Rethrow:
rasbold@853 1790 return false;
rasbold@853 1791
rasbold@853 1792 default:
rasbold@853 1793 ShouldNotReachHere();
rasbold@853 1794 }
rasbold@853 1795
rasbold@853 1796 return false;
rasbold@853 1797 }
rasbold@853 1798
rasbold@853 1799 //------------------------------update_uncommon_branch------------------------
rasbold@853 1800 // Update the probability of a two-branch to be uncommon
rasbold@853 1801 void Block::update_uncommon_branch(Block* ub) {
rasbold@853 1802 int eidx = end_idx();
rasbold@853 1803 Node *n = _nodes[eidx]; // Get ending Node
rasbold@853 1804
rasbold@853 1805 int op = n->as_Mach()->ideal_Opcode();
rasbold@853 1806
rasbold@853 1807 assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
rasbold@853 1808 assert(num_fall_throughs() == 2, "must be a two way branch block");
rasbold@853 1809
rasbold@853 1810 // Which successor is ub?
rasbold@853 1811 uint s;
rasbold@853 1812 for (s = 0; s <_num_succs; s++) {
rasbold@853 1813 if (_succs[s] == ub) break;
rasbold@853 1814 }
rasbold@853 1815 assert(s < 2, "uncommon successor must be found");
rasbold@853 1816
rasbold@853 1817 // If ub is the true path, make the proability small, else
rasbold@853 1818 // ub is the false path, and make the probability large
rasbold@853 1819 bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
rasbold@853 1820
rasbold@853 1821 // Get existing probability
rasbold@853 1822 float p = n->as_MachIf()->_prob;
rasbold@853 1823
rasbold@853 1824 if (invert) p = 1.0 - p;
rasbold@853 1825 if (p > PROB_MIN) {
rasbold@853 1826 p = PROB_MIN;
rasbold@853 1827 }
rasbold@853 1828 if (invert) p = 1.0 - p;
rasbold@853 1829
rasbold@853 1830 n->as_MachIf()->_prob = p;
rasbold@853 1831 }
rasbold@853 1832
duke@435 1833 //------------------------------update_succ_freq-------------------------------
duke@435 1834 // Update the appropriate frequency associated with block 'b', a succesor of
duke@435 1835 // a block in this loop.
duke@435 1836 void CFGLoop::update_succ_freq(Block* b, float freq) {
duke@435 1837 if (b->_loop == this) {
duke@435 1838 if (b == head()) {
duke@435 1839 // back branch within the loop
duke@435 1840 // Do nothing now, the loop carried frequency will be
duke@435 1841 // adjust later in scale_freq().
duke@435 1842 } else {
duke@435 1843 // simple branch within the loop
duke@435 1844 b->_freq += freq;
duke@435 1845 }
duke@435 1846 } else if (!in_loop_nest(b)) {
duke@435 1847 // branch is exit from this loop
duke@435 1848 BlockProbPair bpp(b, freq);
duke@435 1849 _exits.append(bpp);
duke@435 1850 } else {
duke@435 1851 // branch into nested loop
duke@435 1852 CFGLoop* ch = b->_loop;
duke@435 1853 ch->_freq += freq;
duke@435 1854 }
duke@435 1855 }
duke@435 1856
duke@435 1857 //------------------------------in_loop_nest-----------------------------------
duke@435 1858 // Determine if block b is in the receiver's loop nest.
duke@435 1859 bool CFGLoop::in_loop_nest(Block* b) {
duke@435 1860 int depth = _depth;
duke@435 1861 CFGLoop* b_loop = b->_loop;
duke@435 1862 int b_depth = b_loop->_depth;
duke@435 1863 if (depth == b_depth) {
duke@435 1864 return true;
duke@435 1865 }
duke@435 1866 while (b_depth > depth) {
duke@435 1867 b_loop = b_loop->_parent;
duke@435 1868 b_depth = b_loop->_depth;
duke@435 1869 }
duke@435 1870 return b_loop == this;
duke@435 1871 }
duke@435 1872
duke@435 1873 //------------------------------scale_freq-------------------------------------
duke@435 1874 // Scale frequency of loops and blocks by trip counts from outer loops
duke@435 1875 // Do a top down traversal of loop tree (visit outer loops first.)
duke@435 1876 void CFGLoop::scale_freq() {
duke@435 1877 float loop_freq = _freq * trip_count();
duke@435 1878 for (int i = 0; i < _members.length(); i++) {
duke@435 1879 CFGElement* s = _members.at(i);
duke@435 1880 s->_freq *= loop_freq;
duke@435 1881 }
duke@435 1882 CFGLoop* ch = _child;
duke@435 1883 while (ch != NULL) {
duke@435 1884 ch->scale_freq();
duke@435 1885 ch = ch->_sibling;
duke@435 1886 }
duke@435 1887 }
duke@435 1888
duke@435 1889 #ifndef PRODUCT
duke@435 1890 //------------------------------dump_tree--------------------------------------
duke@435 1891 void CFGLoop::dump_tree() const {
duke@435 1892 dump();
duke@435 1893 if (_child != NULL) _child->dump_tree();
duke@435 1894 if (_sibling != NULL) _sibling->dump_tree();
duke@435 1895 }
duke@435 1896
duke@435 1897 //------------------------------dump-------------------------------------------
duke@435 1898 void CFGLoop::dump() const {
duke@435 1899 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 1900 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
duke@435 1901 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
duke@435 1902 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 1903 tty->print(" members:", _id);
duke@435 1904 int k = 0;
duke@435 1905 for (int i = 0; i < _members.length(); i++) {
duke@435 1906 if (k++ >= 6) {
duke@435 1907 tty->print("\n ");
duke@435 1908 for (int j = 0; j < _depth+1; j++) tty->print(" ");
duke@435 1909 k = 0;
duke@435 1910 }
duke@435 1911 CFGElement *s = _members.at(i);
duke@435 1912 if (s->is_block()) {
duke@435 1913 Block *b = s->as_Block();
duke@435 1914 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
duke@435 1915 } else {
duke@435 1916 CFGLoop* lp = s->as_CFGLoop();
duke@435 1917 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
duke@435 1918 }
duke@435 1919 }
duke@435 1920 tty->print("\n");
duke@435 1921 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 1922 tty->print(" exits: ");
duke@435 1923 k = 0;
duke@435 1924 for (int i = 0; i < _exits.length(); i++) {
duke@435 1925 if (k++ >= 7) {
duke@435 1926 tty->print("\n ");
duke@435 1927 for (int j = 0; j < _depth+1; j++) tty->print(" ");
duke@435 1928 k = 0;
duke@435 1929 }
duke@435 1930 Block *blk = _exits.at(i).get_target();
duke@435 1931 float prob = _exits.at(i).get_prob();
duke@435 1932 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
duke@435 1933 }
duke@435 1934 tty->print("\n");
duke@435 1935 }
duke@435 1936 #endif

mercurial