src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 739
dc7f315e41f7
child 955
52a431267315
child 1045
70998f2e05ef
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime_x86_64.cpp.incl"
duke@435 27
duke@435 28 DeoptimizationBlob *SharedRuntime::_deopt_blob;
duke@435 29 #ifdef COMPILER2
duke@435 30 UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
duke@435 31 ExceptionBlob *OptoRuntime::_exception_blob;
duke@435 32 #endif // COMPILER2
duke@435 33
duke@435 34 SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 35 SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
duke@435 36 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 37 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 38 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 39 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 40 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 41
duke@435 42 #define __ masm->
duke@435 43
duke@435 44 class SimpleRuntimeFrame {
duke@435 45
duke@435 46 public:
duke@435 47
duke@435 48 // Most of the runtime stubs have this simple frame layout.
duke@435 49 // This class exists to make the layout shared in one place.
duke@435 50 // Offsets are for compiler stack slots, which are jints.
duke@435 51 enum layout {
duke@435 52 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 53 // will override any oopMap setting for it. We must therefore force the layout
duke@435 54 // so that it agrees with the frame sender code.
duke@435 55 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 56 rbp_off2,
duke@435 57 return_off, return_off2,
duke@435 58 framesize
duke@435 59 };
duke@435 60 };
duke@435 61
duke@435 62 class RegisterSaver {
duke@435 63 // Capture info about frame layout. Layout offsets are in jint
duke@435 64 // units because compiler frame slots are jints.
duke@435 65 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 66 enum layout {
duke@435 67 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
duke@435 68 xmm_off = fpu_state_off + 160/BytesPerInt, // offset in fxsave save area
duke@435 69 DEF_XMM_OFFS(0),
duke@435 70 DEF_XMM_OFFS(1),
duke@435 71 DEF_XMM_OFFS(2),
duke@435 72 DEF_XMM_OFFS(3),
duke@435 73 DEF_XMM_OFFS(4),
duke@435 74 DEF_XMM_OFFS(5),
duke@435 75 DEF_XMM_OFFS(6),
duke@435 76 DEF_XMM_OFFS(7),
duke@435 77 DEF_XMM_OFFS(8),
duke@435 78 DEF_XMM_OFFS(9),
duke@435 79 DEF_XMM_OFFS(10),
duke@435 80 DEF_XMM_OFFS(11),
duke@435 81 DEF_XMM_OFFS(12),
duke@435 82 DEF_XMM_OFFS(13),
duke@435 83 DEF_XMM_OFFS(14),
duke@435 84 DEF_XMM_OFFS(15),
duke@435 85 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
duke@435 86 fpu_stateH_end,
duke@435 87 r15_off, r15H_off,
duke@435 88 r14_off, r14H_off,
duke@435 89 r13_off, r13H_off,
duke@435 90 r12_off, r12H_off,
duke@435 91 r11_off, r11H_off,
duke@435 92 r10_off, r10H_off,
duke@435 93 r9_off, r9H_off,
duke@435 94 r8_off, r8H_off,
duke@435 95 rdi_off, rdiH_off,
duke@435 96 rsi_off, rsiH_off,
duke@435 97 ignore_off, ignoreH_off, // extra copy of rbp
duke@435 98 rsp_off, rspH_off,
duke@435 99 rbx_off, rbxH_off,
duke@435 100 rdx_off, rdxH_off,
duke@435 101 rcx_off, rcxH_off,
duke@435 102 rax_off, raxH_off,
duke@435 103 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
duke@435 104 align_off, alignH_off,
duke@435 105 flags_off, flagsH_off,
duke@435 106 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 107 // will override any oopMap setting for it. We must therefore force the layout
duke@435 108 // so that it agrees with the frame sender code.
duke@435 109 rbp_off, rbpH_off, // copy of rbp we will restore
duke@435 110 return_off, returnH_off, // slot for return address
duke@435 111 reg_save_size // size in compiler stack slots
duke@435 112 };
duke@435 113
duke@435 114 public:
duke@435 115 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
duke@435 116 static void restore_live_registers(MacroAssembler* masm);
duke@435 117
duke@435 118 // Offsets into the register save area
duke@435 119 // Used by deoptimization when it is managing result register
duke@435 120 // values on its own
duke@435 121
duke@435 122 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; }
never@739 123 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; }
duke@435 124 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; }
duke@435 125 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; }
duke@435 126 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
duke@435 127
duke@435 128 // During deoptimization only the result registers need to be restored,
duke@435 129 // all the other values have already been extracted.
duke@435 130 static void restore_result_registers(MacroAssembler* masm);
duke@435 131 };
duke@435 132
duke@435 133 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
duke@435 134
duke@435 135 // Always make the frame size 16-byte aligned
duke@435 136 int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
duke@435 137 reg_save_size*BytesPerInt, 16);
duke@435 138 // OopMap frame size is in compiler stack slots (jint's) not bytes or words
duke@435 139 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
duke@435 140 // The caller will allocate additional_frame_words
duke@435 141 int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
duke@435 142 // CodeBlob frame size is in words.
duke@435 143 int frame_size_in_words = frame_size_in_bytes / wordSize;
duke@435 144 *total_frame_words = frame_size_in_words;
duke@435 145
duke@435 146 // Save registers, fpu state, and flags.
duke@435 147 // We assume caller has already pushed the return address onto the
duke@435 148 // stack, so rsp is 8-byte aligned here.
duke@435 149 // We push rpb twice in this sequence because we want the real rbp
duke@435 150 // to be under the return like a normal enter.
duke@435 151
duke@435 152 __ enter(); // rsp becomes 16-byte aligned here
duke@435 153 __ push_CPU_state(); // Push a multiple of 16 bytes
duke@435 154 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 155 // Allocate argument register save area
never@739 156 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 157 }
duke@435 158
duke@435 159 // Set an oopmap for the call site. This oopmap will map all
duke@435 160 // oop-registers and debug-info registers as callee-saved. This
duke@435 161 // will allow deoptimization at this safepoint to find all possible
duke@435 162 // debug-info recordings, as well as let GC find all oops.
duke@435 163
duke@435 164 OopMapSet *oop_maps = new OopMapSet();
duke@435 165 OopMap* map = new OopMap(frame_size_in_slots, 0);
duke@435 166 map->set_callee_saved(VMRegImpl::stack2reg( rax_off + additional_frame_slots), rax->as_VMReg());
duke@435 167 map->set_callee_saved(VMRegImpl::stack2reg( rcx_off + additional_frame_slots), rcx->as_VMReg());
duke@435 168 map->set_callee_saved(VMRegImpl::stack2reg( rdx_off + additional_frame_slots), rdx->as_VMReg());
duke@435 169 map->set_callee_saved(VMRegImpl::stack2reg( rbx_off + additional_frame_slots), rbx->as_VMReg());
duke@435 170 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 171 // and the location where rbp was saved by is ignored
duke@435 172 map->set_callee_saved(VMRegImpl::stack2reg( rsi_off + additional_frame_slots), rsi->as_VMReg());
duke@435 173 map->set_callee_saved(VMRegImpl::stack2reg( rdi_off + additional_frame_slots), rdi->as_VMReg());
duke@435 174 map->set_callee_saved(VMRegImpl::stack2reg( r8_off + additional_frame_slots), r8->as_VMReg());
duke@435 175 map->set_callee_saved(VMRegImpl::stack2reg( r9_off + additional_frame_slots), r9->as_VMReg());
duke@435 176 map->set_callee_saved(VMRegImpl::stack2reg( r10_off + additional_frame_slots), r10->as_VMReg());
duke@435 177 map->set_callee_saved(VMRegImpl::stack2reg( r11_off + additional_frame_slots), r11->as_VMReg());
duke@435 178 map->set_callee_saved(VMRegImpl::stack2reg( r12_off + additional_frame_slots), r12->as_VMReg());
duke@435 179 map->set_callee_saved(VMRegImpl::stack2reg( r13_off + additional_frame_slots), r13->as_VMReg());
duke@435 180 map->set_callee_saved(VMRegImpl::stack2reg( r14_off + additional_frame_slots), r14->as_VMReg());
duke@435 181 map->set_callee_saved(VMRegImpl::stack2reg( r15_off + additional_frame_slots), r15->as_VMReg());
duke@435 182 map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off + additional_frame_slots), xmm0->as_VMReg());
duke@435 183 map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off + additional_frame_slots), xmm1->as_VMReg());
duke@435 184 map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off + additional_frame_slots), xmm2->as_VMReg());
duke@435 185 map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off + additional_frame_slots), xmm3->as_VMReg());
duke@435 186 map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off + additional_frame_slots), xmm4->as_VMReg());
duke@435 187 map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off + additional_frame_slots), xmm5->as_VMReg());
duke@435 188 map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off + additional_frame_slots), xmm6->as_VMReg());
duke@435 189 map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off + additional_frame_slots), xmm7->as_VMReg());
duke@435 190 map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off + additional_frame_slots), xmm8->as_VMReg());
duke@435 191 map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off + additional_frame_slots), xmm9->as_VMReg());
duke@435 192 map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
duke@435 193 map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
duke@435 194 map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
duke@435 195 map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
duke@435 196 map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
duke@435 197 map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
duke@435 198
duke@435 199 // %%% These should all be a waste but we'll keep things as they were for now
duke@435 200 if (true) {
duke@435 201 map->set_callee_saved(VMRegImpl::stack2reg( raxH_off + additional_frame_slots),
duke@435 202 rax->as_VMReg()->next());
duke@435 203 map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off + additional_frame_slots),
duke@435 204 rcx->as_VMReg()->next());
duke@435 205 map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off + additional_frame_slots),
duke@435 206 rdx->as_VMReg()->next());
duke@435 207 map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off + additional_frame_slots),
duke@435 208 rbx->as_VMReg()->next());
duke@435 209 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 210 map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off + additional_frame_slots),
duke@435 211 rsi->as_VMReg()->next());
duke@435 212 map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off + additional_frame_slots),
duke@435 213 rdi->as_VMReg()->next());
duke@435 214 map->set_callee_saved(VMRegImpl::stack2reg( r8H_off + additional_frame_slots),
duke@435 215 r8->as_VMReg()->next());
duke@435 216 map->set_callee_saved(VMRegImpl::stack2reg( r9H_off + additional_frame_slots),
duke@435 217 r9->as_VMReg()->next());
duke@435 218 map->set_callee_saved(VMRegImpl::stack2reg( r10H_off + additional_frame_slots),
duke@435 219 r10->as_VMReg()->next());
duke@435 220 map->set_callee_saved(VMRegImpl::stack2reg( r11H_off + additional_frame_slots),
duke@435 221 r11->as_VMReg()->next());
duke@435 222 map->set_callee_saved(VMRegImpl::stack2reg( r12H_off + additional_frame_slots),
duke@435 223 r12->as_VMReg()->next());
duke@435 224 map->set_callee_saved(VMRegImpl::stack2reg( r13H_off + additional_frame_slots),
duke@435 225 r13->as_VMReg()->next());
duke@435 226 map->set_callee_saved(VMRegImpl::stack2reg( r14H_off + additional_frame_slots),
duke@435 227 r14->as_VMReg()->next());
duke@435 228 map->set_callee_saved(VMRegImpl::stack2reg( r15H_off + additional_frame_slots),
duke@435 229 r15->as_VMReg()->next());
duke@435 230 map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off + additional_frame_slots),
duke@435 231 xmm0->as_VMReg()->next());
duke@435 232 map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off + additional_frame_slots),
duke@435 233 xmm1->as_VMReg()->next());
duke@435 234 map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off + additional_frame_slots),
duke@435 235 xmm2->as_VMReg()->next());
duke@435 236 map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off + additional_frame_slots),
duke@435 237 xmm3->as_VMReg()->next());
duke@435 238 map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off + additional_frame_slots),
duke@435 239 xmm4->as_VMReg()->next());
duke@435 240 map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off + additional_frame_slots),
duke@435 241 xmm5->as_VMReg()->next());
duke@435 242 map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off + additional_frame_slots),
duke@435 243 xmm6->as_VMReg()->next());
duke@435 244 map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off + additional_frame_slots),
duke@435 245 xmm7->as_VMReg()->next());
duke@435 246 map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off + additional_frame_slots),
duke@435 247 xmm8->as_VMReg()->next());
duke@435 248 map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off + additional_frame_slots),
duke@435 249 xmm9->as_VMReg()->next());
duke@435 250 map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
duke@435 251 xmm10->as_VMReg()->next());
duke@435 252 map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
duke@435 253 xmm11->as_VMReg()->next());
duke@435 254 map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
duke@435 255 xmm12->as_VMReg()->next());
duke@435 256 map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
duke@435 257 xmm13->as_VMReg()->next());
duke@435 258 map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
duke@435 259 xmm14->as_VMReg()->next());
duke@435 260 map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
duke@435 261 xmm15->as_VMReg()->next());
duke@435 262 }
duke@435 263
duke@435 264 return map;
duke@435 265 }
duke@435 266
duke@435 267 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 268 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 269 // Pop arg register save area
never@739 270 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 271 }
duke@435 272 // Recover CPU state
duke@435 273 __ pop_CPU_state();
duke@435 274 // Get the rbp described implicitly by the calling convention (no oopMap)
never@739 275 __ pop(rbp);
duke@435 276 }
duke@435 277
duke@435 278 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 279
duke@435 280 // Just restore result register. Only used by deoptimization. By
duke@435 281 // now any callee save register that needs to be restored to a c2
duke@435 282 // caller of the deoptee has been extracted into the vframeArray
duke@435 283 // and will be stuffed into the c2i adapter we create for later
duke@435 284 // restoration so only result registers need to be restored here.
duke@435 285
duke@435 286 // Restore fp result register
duke@435 287 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
duke@435 288 // Restore integer result register
never@739 289 __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
never@739 290 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
never@739 291
duke@435 292 // Pop all of the register save are off the stack except the return address
never@739 293 __ addptr(rsp, return_offset_in_bytes());
duke@435 294 }
duke@435 295
duke@435 296 // The java_calling_convention describes stack locations as ideal slots on
duke@435 297 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 298 // (like the placement of the register window) the slots must be biased by
duke@435 299 // the following value.
duke@435 300 static int reg2offset_in(VMReg r) {
duke@435 301 // Account for saved rbp and return address
duke@435 302 // This should really be in_preserve_stack_slots
duke@435 303 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
duke@435 304 }
duke@435 305
duke@435 306 static int reg2offset_out(VMReg r) {
duke@435 307 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 308 }
duke@435 309
duke@435 310 // ---------------------------------------------------------------------------
duke@435 311 // Read the array of BasicTypes from a signature, and compute where the
duke@435 312 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 313 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 314 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 315 // as framesizes are fixed.
duke@435 316 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 317 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 318 // up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 319 // integer registers.
duke@435 320
duke@435 321 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 322 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 323 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 324
duke@435 325 // The Java calling convention is a "shifted" version of the C ABI.
duke@435 326 // By skipping the first C ABI register we can call non-static jni methods
duke@435 327 // with small numbers of arguments without having to shuffle the arguments
duke@435 328 // at all. Since we control the java ABI we ought to at least get some
duke@435 329 // advantage out of it.
duke@435 330
duke@435 331 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 332 VMRegPair *regs,
duke@435 333 int total_args_passed,
duke@435 334 int is_outgoing) {
duke@435 335
duke@435 336 // Create the mapping between argument positions and
duke@435 337 // registers.
duke@435 338 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
duke@435 339 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
duke@435 340 };
duke@435 341 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
duke@435 342 j_farg0, j_farg1, j_farg2, j_farg3,
duke@435 343 j_farg4, j_farg5, j_farg6, j_farg7
duke@435 344 };
duke@435 345
duke@435 346
duke@435 347 uint int_args = 0;
duke@435 348 uint fp_args = 0;
duke@435 349 uint stk_args = 0; // inc by 2 each time
duke@435 350
duke@435 351 for (int i = 0; i < total_args_passed; i++) {
duke@435 352 switch (sig_bt[i]) {
duke@435 353 case T_BOOLEAN:
duke@435 354 case T_CHAR:
duke@435 355 case T_BYTE:
duke@435 356 case T_SHORT:
duke@435 357 case T_INT:
duke@435 358 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 359 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 360 } else {
duke@435 361 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 362 stk_args += 2;
duke@435 363 }
duke@435 364 break;
duke@435 365 case T_VOID:
duke@435 366 // halves of T_LONG or T_DOUBLE
duke@435 367 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 368 regs[i].set_bad();
duke@435 369 break;
duke@435 370 case T_LONG:
duke@435 371 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 372 // fall through
duke@435 373 case T_OBJECT:
duke@435 374 case T_ARRAY:
duke@435 375 case T_ADDRESS:
duke@435 376 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 377 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 378 } else {
duke@435 379 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 380 stk_args += 2;
duke@435 381 }
duke@435 382 break;
duke@435 383 case T_FLOAT:
duke@435 384 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 385 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 386 } else {
duke@435 387 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 388 stk_args += 2;
duke@435 389 }
duke@435 390 break;
duke@435 391 case T_DOUBLE:
duke@435 392 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 393 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 394 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 395 } else {
duke@435 396 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 397 stk_args += 2;
duke@435 398 }
duke@435 399 break;
duke@435 400 default:
duke@435 401 ShouldNotReachHere();
duke@435 402 break;
duke@435 403 }
duke@435 404 }
duke@435 405
duke@435 406 return round_to(stk_args, 2);
duke@435 407 }
duke@435 408
duke@435 409 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 410 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 411 Label L;
duke@435 412 __ verify_oop(rbx);
never@739 413 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 414 __ jcc(Assembler::equal, L);
duke@435 415
duke@435 416 // Save the current stack pointer
never@739 417 __ mov(r13, rsp);
duke@435 418 // Schedule the branch target address early.
duke@435 419 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 420 // rax isn't live so capture return address while we easily can
never@739 421 __ movptr(rax, Address(rsp, 0));
duke@435 422
duke@435 423 // align stack so push_CPU_state doesn't fault
never@739 424 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 425 __ push_CPU_state();
duke@435 426
duke@435 427
duke@435 428 __ verify_oop(rbx);
duke@435 429 // VM needs caller's callsite
duke@435 430 // VM needs target method
duke@435 431 // This needs to be a long call since we will relocate this adapter to
duke@435 432 // the codeBuffer and it may not reach
duke@435 433
duke@435 434 // Allocate argument register save area
duke@435 435 if (frame::arg_reg_save_area_bytes != 0) {
never@739 436 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 437 }
never@739 438 __ mov(c_rarg0, rbx);
never@739 439 __ mov(c_rarg1, rax);
duke@435 440 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
duke@435 441
duke@435 442 // De-allocate argument register save area
duke@435 443 if (frame::arg_reg_save_area_bytes != 0) {
never@739 444 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 445 }
duke@435 446
duke@435 447 __ pop_CPU_state();
duke@435 448 // restore sp
never@739 449 __ mov(rsp, r13);
duke@435 450 __ bind(L);
duke@435 451 }
duke@435 452
duke@435 453 // Helper function to put tags in interpreter stack.
duke@435 454 static void tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
duke@435 455 if (TaggedStackInterpreter) {
duke@435 456 int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
duke@435 457 if (sig == T_OBJECT || sig == T_ARRAY) {
never@739 458 __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagReference);
duke@435 459 } else if (sig == T_LONG || sig == T_DOUBLE) {
duke@435 460 int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
never@739 461 __ movptr(Address(rsp, next_tag_offset), (int32_t) frame::TagValue);
never@739 462 __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
duke@435 463 } else {
never@739 464 __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
duke@435 465 }
duke@435 466 }
duke@435 467 }
duke@435 468
duke@435 469
duke@435 470 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 471 int total_args_passed,
duke@435 472 int comp_args_on_stack,
duke@435 473 const BasicType *sig_bt,
duke@435 474 const VMRegPair *regs,
duke@435 475 Label& skip_fixup) {
duke@435 476 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 477 // at all. We've come from compiled code and are attempting to jump to the
duke@435 478 // interpreter, which means the caller made a static call to get here
duke@435 479 // (vcalls always get a compiled target if there is one). Check for a
duke@435 480 // compiled target. If there is one, we need to patch the caller's call.
duke@435 481 patch_callers_callsite(masm);
duke@435 482
duke@435 483 __ bind(skip_fixup);
duke@435 484
duke@435 485 // Since all args are passed on the stack, total_args_passed *
duke@435 486 // Interpreter::stackElementSize is the space we need. Plus 1 because
duke@435 487 // we also account for the return address location since
duke@435 488 // we store it first rather than hold it in rax across all the shuffling
duke@435 489
duke@435 490 int extraspace = (total_args_passed * Interpreter::stackElementSize()) + wordSize;
duke@435 491
duke@435 492 // stack is aligned, keep it that way
duke@435 493 extraspace = round_to(extraspace, 2*wordSize);
duke@435 494
duke@435 495 // Get return address
never@739 496 __ pop(rax);
duke@435 497
duke@435 498 // set senderSP value
never@739 499 __ mov(r13, rsp);
never@739 500
never@739 501 __ subptr(rsp, extraspace);
duke@435 502
duke@435 503 // Store the return address in the expected location
never@739 504 __ movptr(Address(rsp, 0), rax);
duke@435 505
duke@435 506 // Now write the args into the outgoing interpreter space
duke@435 507 for (int i = 0; i < total_args_passed; i++) {
duke@435 508 if (sig_bt[i] == T_VOID) {
duke@435 509 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 510 continue;
duke@435 511 }
duke@435 512
duke@435 513 // offset to start parameters
duke@435 514 int st_off = (total_args_passed - i) * Interpreter::stackElementSize() +
duke@435 515 Interpreter::value_offset_in_bytes();
duke@435 516 int next_off = st_off - Interpreter::stackElementSize();
duke@435 517
duke@435 518 // Say 4 args:
duke@435 519 // i st_off
duke@435 520 // 0 32 T_LONG
duke@435 521 // 1 24 T_VOID
duke@435 522 // 2 16 T_OBJECT
duke@435 523 // 3 8 T_BOOL
duke@435 524 // - 0 return address
duke@435 525 //
duke@435 526 // However to make thing extra confusing. Because we can fit a long/double in
duke@435 527 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
duke@435 528 // leaves one slot empty and only stores to a single slot. In this case the
duke@435 529 // slot that is occupied is the T_VOID slot. See I said it was confusing.
duke@435 530
duke@435 531 VMReg r_1 = regs[i].first();
duke@435 532 VMReg r_2 = regs[i].second();
duke@435 533 if (!r_1->is_valid()) {
duke@435 534 assert(!r_2->is_valid(), "");
duke@435 535 continue;
duke@435 536 }
duke@435 537 if (r_1->is_stack()) {
duke@435 538 // memory to memory use rax
duke@435 539 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 540 if (!r_2->is_valid()) {
duke@435 541 // sign extend??
duke@435 542 __ movl(rax, Address(rsp, ld_off));
never@739 543 __ movptr(Address(rsp, st_off), rax);
duke@435 544 tag_stack(masm, sig_bt[i], st_off);
duke@435 545
duke@435 546 } else {
duke@435 547
duke@435 548 __ movq(rax, Address(rsp, ld_off));
duke@435 549
duke@435 550 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 551 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 552 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 553 // ld_off == LSW, ld_off+wordSize == MSW
duke@435 554 // st_off == MSW, next_off == LSW
duke@435 555 __ movq(Address(rsp, next_off), rax);
duke@435 556 #ifdef ASSERT
duke@435 557 // Overwrite the unused slot with known junk
duke@435 558 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 559 __ movptr(Address(rsp, st_off), rax);
duke@435 560 #endif /* ASSERT */
duke@435 561 tag_stack(masm, sig_bt[i], next_off);
duke@435 562 } else {
duke@435 563 __ movq(Address(rsp, st_off), rax);
duke@435 564 tag_stack(masm, sig_bt[i], st_off);
duke@435 565 }
duke@435 566 }
duke@435 567 } else if (r_1->is_Register()) {
duke@435 568 Register r = r_1->as_Register();
duke@435 569 if (!r_2->is_valid()) {
duke@435 570 // must be only an int (or less ) so move only 32bits to slot
duke@435 571 // why not sign extend??
duke@435 572 __ movl(Address(rsp, st_off), r);
duke@435 573 tag_stack(masm, sig_bt[i], st_off);
duke@435 574 } else {
duke@435 575 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 576 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 577 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 578 // long/double in gpr
duke@435 579 #ifdef ASSERT
duke@435 580 // Overwrite the unused slot with known junk
duke@435 581 __ mov64(rax, CONST64(0xdeadffffdeadaaab));
never@739 582 __ movptr(Address(rsp, st_off), rax);
duke@435 583 #endif /* ASSERT */
duke@435 584 __ movq(Address(rsp, next_off), r);
duke@435 585 tag_stack(masm, sig_bt[i], next_off);
duke@435 586 } else {
never@739 587 __ movptr(Address(rsp, st_off), r);
duke@435 588 tag_stack(masm, sig_bt[i], st_off);
duke@435 589 }
duke@435 590 }
duke@435 591 } else {
duke@435 592 assert(r_1->is_XMMRegister(), "");
duke@435 593 if (!r_2->is_valid()) {
duke@435 594 // only a float use just part of the slot
duke@435 595 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 596 tag_stack(masm, sig_bt[i], st_off);
duke@435 597 } else {
duke@435 598 #ifdef ASSERT
duke@435 599 // Overwrite the unused slot with known junk
duke@435 600 __ mov64(rax, CONST64(0xdeadffffdeadaaac));
never@739 601 __ movptr(Address(rsp, st_off), rax);
duke@435 602 #endif /* ASSERT */
duke@435 603 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
duke@435 604 tag_stack(masm, sig_bt[i], next_off);
duke@435 605 }
duke@435 606 }
duke@435 607 }
duke@435 608
duke@435 609 // Schedule the branch target address early.
never@739 610 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 611 __ jmp(rcx);
duke@435 612 }
duke@435 613
duke@435 614 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 615 int total_args_passed,
duke@435 616 int comp_args_on_stack,
duke@435 617 const BasicType *sig_bt,
duke@435 618 const VMRegPair *regs) {
duke@435 619
duke@435 620 //
duke@435 621 // We will only enter here from an interpreted frame and never from after
duke@435 622 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 623 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 624 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 625 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 626
duke@435 627
duke@435 628 // Note: r13 contains the senderSP on entry. We must preserve it since
duke@435 629 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 630 // code goes non-entrant while we get args ready.
duke@435 631 // In addition we use r13 to locate all the interpreter args as
duke@435 632 // we must align the stack to 16 bytes on an i2c entry else we
duke@435 633 // lose alignment we expect in all compiled code and register
duke@435 634 // save code can segv when fxsave instructions find improperly
duke@435 635 // aligned stack pointer.
duke@435 636
never@739 637 __ movptr(rax, Address(rsp, 0));
duke@435 638
duke@435 639 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 640 // in registers, we will occasionally have no stack args.
duke@435 641 int comp_words_on_stack = 0;
duke@435 642 if (comp_args_on_stack) {
duke@435 643 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 644 // registers are below. By subtracting stack0, we either get a negative
duke@435 645 // number (all values in registers) or the maximum stack slot accessed.
duke@435 646
duke@435 647 // Convert 4-byte c2 stack slots to words.
duke@435 648 comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 649 // Round up to miminum stack alignment, in wordSize
duke@435 650 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 651 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 652 }
duke@435 653
duke@435 654
duke@435 655 // Ensure compiled code always sees stack at proper alignment
never@739 656 __ andptr(rsp, -16);
duke@435 657
duke@435 658 // push the return address and misalign the stack that youngest frame always sees
duke@435 659 // as far as the placement of the call instruction
never@739 660 __ push(rax);
duke@435 661
duke@435 662 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 663 // Pre-load the register-jump target early, to schedule it better.
never@739 664 __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 665
duke@435 666 // Now generate the shuffle code. Pick up all register args and move the
duke@435 667 // rest through the floating point stack top.
duke@435 668 for (int i = 0; i < total_args_passed; i++) {
duke@435 669 if (sig_bt[i] == T_VOID) {
duke@435 670 // Longs and doubles are passed in native word order, but misaligned
duke@435 671 // in the 32-bit build.
duke@435 672 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 673 continue;
duke@435 674 }
duke@435 675
duke@435 676 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 677
duke@435 678 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 679 "scrambled load targets?");
duke@435 680 // Load in argument order going down.
duke@435 681 // int ld_off = (total_args_passed + comp_words_on_stack -i)*wordSize;
duke@435 682 // base ld_off on r13 (sender_sp) as the stack alignment makes offsets from rsp
duke@435 683 // unpredictable
duke@435 684 int ld_off = ((total_args_passed - 1) - i)*Interpreter::stackElementSize();
duke@435 685
duke@435 686 // Point to interpreter value (vs. tag)
duke@435 687 int next_off = ld_off - Interpreter::stackElementSize();
duke@435 688 //
duke@435 689 //
duke@435 690 //
duke@435 691 VMReg r_1 = regs[i].first();
duke@435 692 VMReg r_2 = regs[i].second();
duke@435 693 if (!r_1->is_valid()) {
duke@435 694 assert(!r_2->is_valid(), "");
duke@435 695 continue;
duke@435 696 }
duke@435 697 if (r_1->is_stack()) {
duke@435 698 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 699 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 700 if (!r_2->is_valid()) {
duke@435 701 // sign extend???
duke@435 702 __ movl(rax, Address(r13, ld_off));
never@739 703 __ movptr(Address(rsp, st_off), rax);
duke@435 704 } else {
duke@435 705 //
duke@435 706 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 707 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 708 // So we must adjust where to pick up the data to match the interpreter.
duke@435 709 //
duke@435 710 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 711 // are accessed as negative so LSW is at LOW address
duke@435 712
duke@435 713 // ld_off is MSW so get LSW
duke@435 714 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 715 next_off : ld_off;
duke@435 716 __ movq(rax, Address(r13, offset));
duke@435 717 // st_off is LSW (i.e. reg.first())
duke@435 718 __ movq(Address(rsp, st_off), rax);
duke@435 719 }
duke@435 720 } else if (r_1->is_Register()) { // Register argument
duke@435 721 Register r = r_1->as_Register();
duke@435 722 assert(r != rax, "must be different");
duke@435 723 if (r_2->is_valid()) {
duke@435 724 //
duke@435 725 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 726 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 727 // So we must adjust where to pick up the data to match the interpreter.
duke@435 728
duke@435 729 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 730 next_off : ld_off;
duke@435 731
duke@435 732 // this can be a misaligned move
duke@435 733 __ movq(r, Address(r13, offset));
duke@435 734 } else {
duke@435 735 // sign extend and use a full word?
duke@435 736 __ movl(r, Address(r13, ld_off));
duke@435 737 }
duke@435 738 } else {
duke@435 739 if (!r_2->is_valid()) {
duke@435 740 __ movflt(r_1->as_XMMRegister(), Address(r13, ld_off));
duke@435 741 } else {
duke@435 742 __ movdbl(r_1->as_XMMRegister(), Address(r13, next_off));
duke@435 743 }
duke@435 744 }
duke@435 745 }
duke@435 746
duke@435 747 // 6243940 We might end up in handle_wrong_method if
duke@435 748 // the callee is deoptimized as we race thru here. If that
duke@435 749 // happens we don't want to take a safepoint because the
duke@435 750 // caller frame will look interpreted and arguments are now
duke@435 751 // "compiled" so it is much better to make this transition
duke@435 752 // invisible to the stack walking code. Unfortunately if
duke@435 753 // we try and find the callee by normal means a safepoint
duke@435 754 // is possible. So we stash the desired callee in the thread
duke@435 755 // and the vm will find there should this case occur.
duke@435 756
never@739 757 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
duke@435 758
duke@435 759 // put methodOop where a c2i would expect should we end up there
duke@435 760 // only needed becaus eof c2 resolve stubs return methodOop as a result in
duke@435 761 // rax
never@739 762 __ mov(rax, rbx);
duke@435 763 __ jmp(r11);
duke@435 764 }
duke@435 765
duke@435 766 // ---------------------------------------------------------------
duke@435 767 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 768 int total_args_passed,
duke@435 769 int comp_args_on_stack,
duke@435 770 const BasicType *sig_bt,
duke@435 771 const VMRegPair *regs) {
duke@435 772 address i2c_entry = __ pc();
duke@435 773
duke@435 774 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 775
duke@435 776 // -------------------------------------------------------------------------
duke@435 777 // Generate a C2I adapter. On entry we know rbx holds the methodOop during calls
duke@435 778 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 779 // need to be unpacked into the interpreter layout. This will almost always
duke@435 780 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 781 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 782 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 783 // compiled code, which relys solely on SP and not RBP, get sick).
duke@435 784
duke@435 785 address c2i_unverified_entry = __ pc();
duke@435 786 Label skip_fixup;
duke@435 787 Label ok;
duke@435 788
duke@435 789 Register holder = rax;
duke@435 790 Register receiver = j_rarg0;
duke@435 791 Register temp = rbx;
duke@435 792
duke@435 793 {
duke@435 794 __ verify_oop(holder);
coleenp@548 795 __ load_klass(temp, receiver);
duke@435 796 __ verify_oop(temp);
duke@435 797
never@739 798 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 799 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 800 __ jcc(Assembler::equal, ok);
duke@435 801 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 802
duke@435 803 __ bind(ok);
duke@435 804 // Method might have been compiled since the call site was patched to
duke@435 805 // interpreted if that is the case treat it as a miss so we can get
duke@435 806 // the call site corrected.
never@739 807 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 808 __ jcc(Assembler::equal, skip_fixup);
duke@435 809 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 810 }
duke@435 811
duke@435 812 address c2i_entry = __ pc();
duke@435 813
duke@435 814 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 815
duke@435 816 __ flush();
duke@435 817 return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 818 }
duke@435 819
duke@435 820 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 821 VMRegPair *regs,
duke@435 822 int total_args_passed) {
duke@435 823 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 824 // the arguments NOT counting out_preserve_stack_slots.
duke@435 825
duke@435 826 // NOTE: These arrays will have to change when c1 is ported
duke@435 827 #ifdef _WIN64
duke@435 828 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 829 c_rarg0, c_rarg1, c_rarg2, c_rarg3
duke@435 830 };
duke@435 831 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 832 c_farg0, c_farg1, c_farg2, c_farg3
duke@435 833 };
duke@435 834 #else
duke@435 835 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 836 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
duke@435 837 };
duke@435 838 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 839 c_farg0, c_farg1, c_farg2, c_farg3,
duke@435 840 c_farg4, c_farg5, c_farg6, c_farg7
duke@435 841 };
duke@435 842 #endif // _WIN64
duke@435 843
duke@435 844
duke@435 845 uint int_args = 0;
duke@435 846 uint fp_args = 0;
duke@435 847 uint stk_args = 0; // inc by 2 each time
duke@435 848
duke@435 849 for (int i = 0; i < total_args_passed; i++) {
duke@435 850 switch (sig_bt[i]) {
duke@435 851 case T_BOOLEAN:
duke@435 852 case T_CHAR:
duke@435 853 case T_BYTE:
duke@435 854 case T_SHORT:
duke@435 855 case T_INT:
duke@435 856 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 857 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 858 #ifdef _WIN64
duke@435 859 fp_args++;
duke@435 860 // Allocate slots for callee to stuff register args the stack.
duke@435 861 stk_args += 2;
duke@435 862 #endif
duke@435 863 } else {
duke@435 864 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 865 stk_args += 2;
duke@435 866 }
duke@435 867 break;
duke@435 868 case T_LONG:
duke@435 869 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 870 // fall through
duke@435 871 case T_OBJECT:
duke@435 872 case T_ARRAY:
duke@435 873 case T_ADDRESS:
duke@435 874 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 875 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 876 #ifdef _WIN64
duke@435 877 fp_args++;
duke@435 878 stk_args += 2;
duke@435 879 #endif
duke@435 880 } else {
duke@435 881 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 882 stk_args += 2;
duke@435 883 }
duke@435 884 break;
duke@435 885 case T_FLOAT:
duke@435 886 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 887 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 888 #ifdef _WIN64
duke@435 889 int_args++;
duke@435 890 // Allocate slots for callee to stuff register args the stack.
duke@435 891 stk_args += 2;
duke@435 892 #endif
duke@435 893 } else {
duke@435 894 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 895 stk_args += 2;
duke@435 896 }
duke@435 897 break;
duke@435 898 case T_DOUBLE:
duke@435 899 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 900 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 901 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 902 #ifdef _WIN64
duke@435 903 int_args++;
duke@435 904 // Allocate slots for callee to stuff register args the stack.
duke@435 905 stk_args += 2;
duke@435 906 #endif
duke@435 907 } else {
duke@435 908 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 909 stk_args += 2;
duke@435 910 }
duke@435 911 break;
duke@435 912 case T_VOID: // Halves of longs and doubles
duke@435 913 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 914 regs[i].set_bad();
duke@435 915 break;
duke@435 916 default:
duke@435 917 ShouldNotReachHere();
duke@435 918 break;
duke@435 919 }
duke@435 920 }
duke@435 921 #ifdef _WIN64
duke@435 922 // windows abi requires that we always allocate enough stack space
duke@435 923 // for 4 64bit registers to be stored down.
duke@435 924 if (stk_args < 8) {
duke@435 925 stk_args = 8;
duke@435 926 }
duke@435 927 #endif // _WIN64
duke@435 928
duke@435 929 return stk_args;
duke@435 930 }
duke@435 931
duke@435 932 // On 64 bit we will store integer like items to the stack as
duke@435 933 // 64 bits items (sparc abi) even though java would only store
duke@435 934 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 935 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 936 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 937 if (src.first()->is_stack()) {
duke@435 938 if (dst.first()->is_stack()) {
duke@435 939 // stack to stack
duke@435 940 __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 941 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 942 } else {
duke@435 943 // stack to reg
duke@435 944 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 945 }
duke@435 946 } else if (dst.first()->is_stack()) {
duke@435 947 // reg to stack
duke@435 948 // Do we really have to sign extend???
duke@435 949 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
duke@435 950 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 951 } else {
duke@435 952 // Do we really have to sign extend???
duke@435 953 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 954 if (dst.first() != src.first()) {
duke@435 955 __ movq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 956 }
duke@435 957 }
duke@435 958 }
duke@435 959
duke@435 960
duke@435 961 // An oop arg. Must pass a handle not the oop itself
duke@435 962 static void object_move(MacroAssembler* masm,
duke@435 963 OopMap* map,
duke@435 964 int oop_handle_offset,
duke@435 965 int framesize_in_slots,
duke@435 966 VMRegPair src,
duke@435 967 VMRegPair dst,
duke@435 968 bool is_receiver,
duke@435 969 int* receiver_offset) {
duke@435 970
duke@435 971 // must pass a handle. First figure out the location we use as a handle
duke@435 972
duke@435 973 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
duke@435 974
duke@435 975 // See if oop is NULL if it is we need no handle
duke@435 976
duke@435 977 if (src.first()->is_stack()) {
duke@435 978
duke@435 979 // Oop is already on the stack as an argument
duke@435 980 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 981 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 982 if (is_receiver) {
duke@435 983 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 984 }
duke@435 985
never@739 986 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
never@739 987 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 988 // conditionally move a NULL
never@739 989 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 990 } else {
duke@435 991
duke@435 992 // Oop is in an a register we must store it to the space we reserve
duke@435 993 // on the stack for oop_handles and pass a handle if oop is non-NULL
duke@435 994
duke@435 995 const Register rOop = src.first()->as_Register();
duke@435 996 int oop_slot;
duke@435 997 if (rOop == j_rarg0)
duke@435 998 oop_slot = 0;
duke@435 999 else if (rOop == j_rarg1)
duke@435 1000 oop_slot = 1;
duke@435 1001 else if (rOop == j_rarg2)
duke@435 1002 oop_slot = 2;
duke@435 1003 else if (rOop == j_rarg3)
duke@435 1004 oop_slot = 3;
duke@435 1005 else if (rOop == j_rarg4)
duke@435 1006 oop_slot = 4;
duke@435 1007 else {
duke@435 1008 assert(rOop == j_rarg5, "wrong register");
duke@435 1009 oop_slot = 5;
duke@435 1010 }
duke@435 1011
duke@435 1012 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1013 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1014
duke@435 1015 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1016 // Store oop in handle area, may be NULL
never@739 1017 __ movptr(Address(rsp, offset), rOop);
duke@435 1018 if (is_receiver) {
duke@435 1019 *receiver_offset = offset;
duke@435 1020 }
duke@435 1021
never@739 1022 __ cmpptr(rOop, (int32_t)NULL_WORD);
never@739 1023 __ lea(rHandle, Address(rsp, offset));
duke@435 1024 // conditionally move a NULL from the handle area where it was just stored
never@739 1025 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
duke@435 1026 }
duke@435 1027
duke@435 1028 // If arg is on the stack then place it otherwise it is already in correct reg.
duke@435 1029 if (dst.first()->is_stack()) {
never@739 1030 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1031 }
duke@435 1032 }
duke@435 1033
duke@435 1034 // A float arg may have to do float reg int reg conversion
duke@435 1035 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1036 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1037
duke@435 1038 // The calling conventions assures us that each VMregpair is either
duke@435 1039 // all really one physical register or adjacent stack slots.
duke@435 1040 // This greatly simplifies the cases here compared to sparc.
duke@435 1041
duke@435 1042 if (src.first()->is_stack()) {
duke@435 1043 if (dst.first()->is_stack()) {
duke@435 1044 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1045 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1046 } else {
duke@435 1047 // stack to reg
duke@435 1048 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1049 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
duke@435 1050 }
duke@435 1051 } else if (dst.first()->is_stack()) {
duke@435 1052 // reg to stack
duke@435 1053 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1054 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1055 } else {
duke@435 1056 // reg to reg
duke@435 1057 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1058 if ( src.first() != dst.first()) {
duke@435 1059 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1060 }
duke@435 1061 }
duke@435 1062 }
duke@435 1063
duke@435 1064 // A long move
duke@435 1065 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1066
duke@435 1067 // The calling conventions assures us that each VMregpair is either
duke@435 1068 // all really one physical register or adjacent stack slots.
duke@435 1069 // This greatly simplifies the cases here compared to sparc.
duke@435 1070
duke@435 1071 if (src.is_single_phys_reg() ) {
duke@435 1072 if (dst.is_single_phys_reg()) {
duke@435 1073 if (dst.first() != src.first()) {
never@739 1074 __ mov(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1075 }
duke@435 1076 } else {
duke@435 1077 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1078 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1079 }
duke@435 1080 } else if (dst.is_single_phys_reg()) {
duke@435 1081 assert(src.is_single_reg(), "not a stack pair");
duke@435 1082 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
duke@435 1083 } else {
duke@435 1084 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1085 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1086 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1087 }
duke@435 1088 }
duke@435 1089
duke@435 1090 // A double move
duke@435 1091 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1092
duke@435 1093 // The calling conventions assures us that each VMregpair is either
duke@435 1094 // all really one physical register or adjacent stack slots.
duke@435 1095 // This greatly simplifies the cases here compared to sparc.
duke@435 1096
duke@435 1097 if (src.is_single_phys_reg() ) {
duke@435 1098 if (dst.is_single_phys_reg()) {
duke@435 1099 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1100 if ( src.first() != dst.first()) {
duke@435 1101 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1102 }
duke@435 1103 } else {
duke@435 1104 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1105 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1106 }
duke@435 1107 } else if (dst.is_single_phys_reg()) {
duke@435 1108 assert(src.is_single_reg(), "not a stack pair");
duke@435 1109 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
duke@435 1110 } else {
duke@435 1111 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1112 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1113 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1119 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1120 // which by this time is free to use
duke@435 1121 switch (ret_type) {
duke@435 1122 case T_FLOAT:
duke@435 1123 __ movflt(Address(rbp, -wordSize), xmm0);
duke@435 1124 break;
duke@435 1125 case T_DOUBLE:
duke@435 1126 __ movdbl(Address(rbp, -wordSize), xmm0);
duke@435 1127 break;
duke@435 1128 case T_VOID: break;
duke@435 1129 default: {
never@739 1130 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1131 }
duke@435 1132 }
duke@435 1133 }
duke@435 1134
duke@435 1135 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1136 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1137 // which by this time is free to use
duke@435 1138 switch (ret_type) {
duke@435 1139 case T_FLOAT:
duke@435 1140 __ movflt(xmm0, Address(rbp, -wordSize));
duke@435 1141 break;
duke@435 1142 case T_DOUBLE:
duke@435 1143 __ movdbl(xmm0, Address(rbp, -wordSize));
duke@435 1144 break;
duke@435 1145 case T_VOID: break;
duke@435 1146 default: {
never@739 1147 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1148 }
duke@435 1149 }
duke@435 1150 }
duke@435 1151
duke@435 1152 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1153 for ( int i = first_arg ; i < arg_count ; i++ ) {
duke@435 1154 if (args[i].first()->is_Register()) {
never@739 1155 __ push(args[i].first()->as_Register());
duke@435 1156 } else if (args[i].first()->is_XMMRegister()) {
never@739 1157 __ subptr(rsp, 2*wordSize);
duke@435 1158 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
duke@435 1159 }
duke@435 1160 }
duke@435 1161 }
duke@435 1162
duke@435 1163 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1164 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
duke@435 1165 if (args[i].first()->is_Register()) {
never@739 1166 __ pop(args[i].first()->as_Register());
duke@435 1167 } else if (args[i].first()->is_XMMRegister()) {
duke@435 1168 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
never@739 1169 __ addptr(rsp, 2*wordSize);
duke@435 1170 }
duke@435 1171 }
duke@435 1172 }
duke@435 1173
duke@435 1174 // ---------------------------------------------------------------------------
duke@435 1175 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1176 // in the Java compiled code convention, marshals them to the native
duke@435 1177 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1178 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1179 // returns.
duke@435 1180 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1181 methodHandle method,
duke@435 1182 int total_in_args,
duke@435 1183 int comp_args_on_stack,
duke@435 1184 BasicType *in_sig_bt,
duke@435 1185 VMRegPair *in_regs,
duke@435 1186 BasicType ret_type) {
duke@435 1187 // Native nmethod wrappers never take possesion of the oop arguments.
duke@435 1188 // So the caller will gc the arguments. The only thing we need an
duke@435 1189 // oopMap for is if the call is static
duke@435 1190 //
duke@435 1191 // An OopMap for lock (and class if static)
duke@435 1192 OopMapSet *oop_maps = new OopMapSet();
duke@435 1193 intptr_t start = (intptr_t)__ pc();
duke@435 1194
duke@435 1195 // We have received a description of where all the java arg are located
duke@435 1196 // on entry to the wrapper. We need to convert these args to where
duke@435 1197 // the jni function will expect them. To figure out where they go
duke@435 1198 // we convert the java signature to a C signature by inserting
duke@435 1199 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1200
duke@435 1201 int total_c_args = total_in_args + 1;
duke@435 1202 if (method->is_static()) {
duke@435 1203 total_c_args++;
duke@435 1204 }
duke@435 1205
duke@435 1206 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1207 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1208
duke@435 1209 int argc = 0;
duke@435 1210 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1211 if (method->is_static()) {
duke@435 1212 out_sig_bt[argc++] = T_OBJECT;
duke@435 1213 }
duke@435 1214
duke@435 1215 for (int i = 0; i < total_in_args ; i++ ) {
duke@435 1216 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1217 }
duke@435 1218
duke@435 1219 // Now figure out where the args must be stored and how much stack space
duke@435 1220 // they require.
duke@435 1221 //
duke@435 1222 int out_arg_slots;
duke@435 1223 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1224
duke@435 1225 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1226 // incoming registers
duke@435 1227
duke@435 1228 // Calculate the total number of stack slots we will need.
duke@435 1229
duke@435 1230 // First count the abi requirement plus all of the outgoing args
duke@435 1231 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1232
duke@435 1233 // Now the space for the inbound oop handle area
duke@435 1234
duke@435 1235 int oop_handle_offset = stack_slots;
duke@435 1236 stack_slots += 6*VMRegImpl::slots_per_word;
duke@435 1237
duke@435 1238 // Now any space we need for handlizing a klass if static method
duke@435 1239
duke@435 1240 int oop_temp_slot_offset = 0;
duke@435 1241 int klass_slot_offset = 0;
duke@435 1242 int klass_offset = -1;
duke@435 1243 int lock_slot_offset = 0;
duke@435 1244 bool is_static = false;
duke@435 1245
duke@435 1246 if (method->is_static()) {
duke@435 1247 klass_slot_offset = stack_slots;
duke@435 1248 stack_slots += VMRegImpl::slots_per_word;
duke@435 1249 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1250 is_static = true;
duke@435 1251 }
duke@435 1252
duke@435 1253 // Plus a lock if needed
duke@435 1254
duke@435 1255 if (method->is_synchronized()) {
duke@435 1256 lock_slot_offset = stack_slots;
duke@435 1257 stack_slots += VMRegImpl::slots_per_word;
duke@435 1258 }
duke@435 1259
duke@435 1260 // Now a place (+2) to save return values or temp during shuffling
duke@435 1261 // + 4 for return address (which we own) and saved rbp
duke@435 1262 stack_slots += 6;
duke@435 1263
duke@435 1264 // Ok The space we have allocated will look like:
duke@435 1265 //
duke@435 1266 //
duke@435 1267 // FP-> | |
duke@435 1268 // |---------------------|
duke@435 1269 // | 2 slots for moves |
duke@435 1270 // |---------------------|
duke@435 1271 // | lock box (if sync) |
duke@435 1272 // |---------------------| <- lock_slot_offset
duke@435 1273 // | klass (if static) |
duke@435 1274 // |---------------------| <- klass_slot_offset
duke@435 1275 // | oopHandle area |
duke@435 1276 // |---------------------| <- oop_handle_offset (6 java arg registers)
duke@435 1277 // | outbound memory |
duke@435 1278 // | based arguments |
duke@435 1279 // | |
duke@435 1280 // |---------------------|
duke@435 1281 // | |
duke@435 1282 // SP-> | out_preserved_slots |
duke@435 1283 //
duke@435 1284 //
duke@435 1285
duke@435 1286
duke@435 1287 // Now compute actual number of stack words we need rounding to make
duke@435 1288 // stack properly aligned.
duke@435 1289 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
duke@435 1290
duke@435 1291 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1292
duke@435 1293
duke@435 1294 // First thing make an ic check to see if we should even be here
duke@435 1295
duke@435 1296 // We are free to use all registers as temps without saving them and
duke@435 1297 // restoring them except rbp. rbp is the only callee save register
duke@435 1298 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1299
duke@435 1300
duke@435 1301 const Register ic_reg = rax;
duke@435 1302 const Register receiver = j_rarg0;
coleenp@548 1303 const Register tmp = rdx;
duke@435 1304
duke@435 1305 Label ok;
duke@435 1306 Label exception_pending;
duke@435 1307
duke@435 1308 __ verify_oop(receiver);
never@739 1309 __ push(tmp); // spill (any other registers free here???)
coleenp@548 1310 __ load_klass(tmp, receiver);
coleenp@548 1311 __ cmpq(ic_reg, tmp);
duke@435 1312 __ jcc(Assembler::equal, ok);
duke@435 1313
never@739 1314 __ pop(tmp);
duke@435 1315 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1316
coleenp@548 1317 __ bind(ok);
never@739 1318 __ pop(tmp);
coleenp@548 1319
duke@435 1320 // Verified entry point must be aligned
duke@435 1321 __ align(8);
duke@435 1322
duke@435 1323 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1324
duke@435 1325 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1326 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1327 // instruction fits that requirement.
duke@435 1328
duke@435 1329 // Generate stack overflow check
duke@435 1330
duke@435 1331 if (UseStackBanging) {
duke@435 1332 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1333 } else {
duke@435 1334 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1335 __ fat_nop();
duke@435 1336 }
duke@435 1337
duke@435 1338 // Generate a new frame for the wrapper.
duke@435 1339 __ enter();
duke@435 1340 // -2 because return address is already present and so is saved rbp
never@739 1341 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1342
duke@435 1343 // Frame is now completed as far as size and linkage.
duke@435 1344
duke@435 1345 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1346
duke@435 1347 #ifdef ASSERT
duke@435 1348 {
duke@435 1349 Label L;
never@739 1350 __ mov(rax, rsp);
never@739 1351 __ andptr(rax, -16); // must be 16 byte boundry (see amd64 ABI)
never@739 1352 __ cmpptr(rax, rsp);
duke@435 1353 __ jcc(Assembler::equal, L);
duke@435 1354 __ stop("improperly aligned stack");
duke@435 1355 __ bind(L);
duke@435 1356 }
duke@435 1357 #endif /* ASSERT */
duke@435 1358
duke@435 1359
duke@435 1360 // We use r14 as the oop handle for the receiver/klass
duke@435 1361 // It is callee save so it survives the call to native
duke@435 1362
duke@435 1363 const Register oop_handle_reg = r14;
duke@435 1364
duke@435 1365
duke@435 1366
duke@435 1367 //
duke@435 1368 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1369 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1370 // captured the oops from our caller and have a valid oopMap for
duke@435 1371 // them.
duke@435 1372
duke@435 1373 // -----------------
duke@435 1374 // The Grand Shuffle
duke@435 1375
duke@435 1376 // The Java calling convention is either equal (linux) or denser (win64) than the
duke@435 1377 // c calling convention. However the because of the jni_env argument the c calling
duke@435 1378 // convention always has at least one more (and two for static) arguments than Java.
duke@435 1379 // Therefore if we move the args from java -> c backwards then we will never have
duke@435 1380 // a register->register conflict and we don't have to build a dependency graph
duke@435 1381 // and figure out how to break any cycles.
duke@435 1382 //
duke@435 1383
duke@435 1384 // Record esp-based slot for receiver on stack for non-static methods
duke@435 1385 int receiver_offset = -1;
duke@435 1386
duke@435 1387 // This is a trick. We double the stack slots so we can claim
duke@435 1388 // the oops in the caller's frame. Since we are sure to have
duke@435 1389 // more args than the caller doubling is enough to make
duke@435 1390 // sure we can capture all the incoming oop args from the
duke@435 1391 // caller.
duke@435 1392 //
duke@435 1393 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1394
duke@435 1395 // Mark location of rbp (someday)
duke@435 1396 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
duke@435 1397
duke@435 1398 // Use eax, ebx as temporaries during any memory-memory moves we have to do
duke@435 1399 // All inbound args are referenced based on rbp and all outbound args via rsp.
duke@435 1400
duke@435 1401
duke@435 1402 #ifdef ASSERT
duke@435 1403 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 1404 bool freg_destroyed[XMMRegisterImpl::number_of_registers];
duke@435 1405 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 1406 reg_destroyed[r] = false;
duke@435 1407 }
duke@435 1408 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
duke@435 1409 freg_destroyed[f] = false;
duke@435 1410 }
duke@435 1411
duke@435 1412 #endif /* ASSERT */
duke@435 1413
duke@435 1414
duke@435 1415 int c_arg = total_c_args - 1;
duke@435 1416 for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
duke@435 1417 #ifdef ASSERT
duke@435 1418 if (in_regs[i].first()->is_Register()) {
duke@435 1419 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
duke@435 1420 } else if (in_regs[i].first()->is_XMMRegister()) {
duke@435 1421 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
duke@435 1422 }
duke@435 1423 if (out_regs[c_arg].first()->is_Register()) {
duke@435 1424 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 1425 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
duke@435 1426 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
duke@435 1427 }
duke@435 1428 #endif /* ASSERT */
duke@435 1429 switch (in_sig_bt[i]) {
duke@435 1430 case T_ARRAY:
duke@435 1431 case T_OBJECT:
duke@435 1432 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1433 ((i == 0) && (!is_static)),
duke@435 1434 &receiver_offset);
duke@435 1435 break;
duke@435 1436 case T_VOID:
duke@435 1437 break;
duke@435 1438
duke@435 1439 case T_FLOAT:
duke@435 1440 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1441 break;
duke@435 1442
duke@435 1443 case T_DOUBLE:
duke@435 1444 assert( i + 1 < total_in_args &&
duke@435 1445 in_sig_bt[i + 1] == T_VOID &&
duke@435 1446 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1447 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1448 break;
duke@435 1449
duke@435 1450 case T_LONG :
duke@435 1451 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1452 break;
duke@435 1453
duke@435 1454 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1455
duke@435 1456 default:
duke@435 1457 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 1458 }
duke@435 1459 }
duke@435 1460
duke@435 1461 // point c_arg at the first arg that is already loaded in case we
duke@435 1462 // need to spill before we call out
duke@435 1463 c_arg++;
duke@435 1464
duke@435 1465 // Pre-load a static method's oop into r14. Used both by locking code and
duke@435 1466 // the normal JNI call code.
duke@435 1467 if (method->is_static()) {
duke@435 1468
duke@435 1469 // load oop into a register
duke@435 1470 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1471
duke@435 1472 // Now handlize the static class mirror it's known not-null.
never@739 1473 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1474 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1475
duke@435 1476 // Now get the handle
never@739 1477 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1478 // store the klass handle as second argument
never@739 1479 __ movptr(c_rarg1, oop_handle_reg);
duke@435 1480 // and protect the arg if we must spill
duke@435 1481 c_arg--;
duke@435 1482 }
duke@435 1483
duke@435 1484 // Change state to native (we save the return address in the thread, since it might not
duke@435 1485 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1486 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1487 // We use the same pc/oopMap repeatedly when we call out
duke@435 1488
duke@435 1489 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1490 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1491
duke@435 1492 __ set_last_Java_frame(rsp, noreg, (address)the_pc);
duke@435 1493
duke@435 1494
duke@435 1495 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1496 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1497
duke@435 1498 {
duke@435 1499 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 1500 // protect the args we've loaded
duke@435 1501 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 1502 __ movoop(c_rarg1, JNIHandles::make_local(method()));
duke@435 1503 __ call_VM_leaf(
duke@435 1504 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1505 r15_thread, c_rarg1);
duke@435 1506 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 1507 }
duke@435 1508
duke@435 1509 // Lock a synchronized method
duke@435 1510
duke@435 1511 // Register definitions used by locking and unlocking
duke@435 1512
duke@435 1513 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 1514 const Register obj_reg = rbx; // Will contain the oop
duke@435 1515 const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
duke@435 1516 const Register old_hdr = r13; // value of old header at unlock time
duke@435 1517
duke@435 1518 Label slow_path_lock;
duke@435 1519 Label lock_done;
duke@435 1520
duke@435 1521 if (method->is_synchronized()) {
duke@435 1522
duke@435 1523
duke@435 1524 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1525
duke@435 1526 // Get the handle (the 2nd argument)
never@739 1527 __ mov(oop_handle_reg, c_rarg1);
duke@435 1528
duke@435 1529 // Get address of the box
duke@435 1530
never@739 1531 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 1532
duke@435 1533 // Load the oop from the handle
never@739 1534 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1535
duke@435 1536 if (UseBiasedLocking) {
duke@435 1537 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
duke@435 1538 }
duke@435 1539
duke@435 1540 // Load immediate 1 into swap_reg %rax
duke@435 1541 __ movl(swap_reg, 1);
duke@435 1542
duke@435 1543 // Load (object->mark() | 1) into swap_reg %rax
never@739 1544 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1545
duke@435 1546 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1547 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1548
duke@435 1549 if (os::is_MP()) {
duke@435 1550 __ lock();
duke@435 1551 }
duke@435 1552
duke@435 1553 // src -> dest iff dest == rax else rax <- dest
never@739 1554 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1555 __ jcc(Assembler::equal, lock_done);
duke@435 1556
duke@435 1557 // Hmm should this move to the slow path code area???
duke@435 1558
duke@435 1559 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1560 // 1) (mark & 3) == 0, and
duke@435 1561 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1562 // These 3 tests can be done by evaluating the following
duke@435 1563 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1564 // assuming both stack pointer and pagesize have their
duke@435 1565 // least significant 2 bits clear.
duke@435 1566 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@435 1567
never@739 1568 __ subptr(swap_reg, rsp);
never@739 1569 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1570
duke@435 1571 // Save the test result, for recursive case, the result is zero
never@739 1572 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1573 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1574
duke@435 1575 // Slow path will re-enter here
duke@435 1576
duke@435 1577 __ bind(lock_done);
duke@435 1578 }
duke@435 1579
duke@435 1580
duke@435 1581 // Finally just about ready to make the JNI call
duke@435 1582
duke@435 1583
duke@435 1584 // get JNIEnv* which is first argument to native
duke@435 1585
never@739 1586 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
duke@435 1587
duke@435 1588 // Now set thread in native
never@739 1589 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1590
duke@435 1591 __ call(RuntimeAddress(method->native_function()));
duke@435 1592
duke@435 1593 // Either restore the MXCSR register after returning from the JNI Call
duke@435 1594 // or verify that it wasn't changed.
duke@435 1595 if (RestoreMXCSROnJNICalls) {
never@739 1596 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 1597
duke@435 1598 }
duke@435 1599 else if (CheckJNICalls ) {
never@739 1600 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
duke@435 1601 }
duke@435 1602
duke@435 1603
duke@435 1604 // Unpack native results.
duke@435 1605 switch (ret_type) {
duke@435 1606 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 1607 case T_CHAR : __ movzwl(rax, rax); break;
duke@435 1608 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1609 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1610 case T_INT : /* nothing to do */ break;
duke@435 1611 case T_DOUBLE :
duke@435 1612 case T_FLOAT :
duke@435 1613 // Result is in xmm0 we'll save as needed
duke@435 1614 break;
duke@435 1615 case T_ARRAY: // Really a handle
duke@435 1616 case T_OBJECT: // Really a handle
duke@435 1617 break; // can't de-handlize until after safepoint check
duke@435 1618 case T_VOID: break;
duke@435 1619 case T_LONG: break;
duke@435 1620 default : ShouldNotReachHere();
duke@435 1621 }
duke@435 1622
duke@435 1623 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1624 // This additional state is necessary because reading and testing the synchronization
duke@435 1625 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1626 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1627 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1628 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1629 // didn't see any synchronization is progress, and escapes.
never@739 1630 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1631
duke@435 1632 if(os::is_MP()) {
duke@435 1633 if (UseMembar) {
duke@435 1634 // Force this write out before the read below
duke@435 1635 __ membar(Assembler::Membar_mask_bits(
duke@435 1636 Assembler::LoadLoad | Assembler::LoadStore |
duke@435 1637 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1638 } else {
duke@435 1639 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1640 // We use the current thread pointer to calculate a thread specific
duke@435 1641 // offset to write to within the page. This minimizes bus traffic
duke@435 1642 // due to cache line collision.
duke@435 1643 __ serialize_memory(r15_thread, rcx);
duke@435 1644 }
duke@435 1645 }
duke@435 1646
duke@435 1647
duke@435 1648 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1649 {
duke@435 1650 Label Continue;
duke@435 1651
duke@435 1652 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1653 SafepointSynchronize::_not_synchronized);
duke@435 1654
duke@435 1655 Label L;
duke@435 1656 __ jcc(Assembler::notEqual, L);
duke@435 1657 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1658 __ jcc(Assembler::equal, Continue);
duke@435 1659 __ bind(L);
duke@435 1660
duke@435 1661 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1662 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1663 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1664 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1665 // by hand.
duke@435 1666 //
duke@435 1667 save_native_result(masm, ret_type, stack_slots);
never@739 1668 __ mov(c_rarg0, r15_thread);
never@739 1669 __ mov(r12, rsp); // remember sp
never@739 1670 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1671 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1672 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
never@739 1673 __ mov(rsp, r12); // restore sp
coleenp@548 1674 __ reinit_heapbase();
duke@435 1675 // Restore any method result value
duke@435 1676 restore_native_result(masm, ret_type, stack_slots);
duke@435 1677 __ bind(Continue);
duke@435 1678 }
duke@435 1679
duke@435 1680 // change thread state
duke@435 1681 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1682
duke@435 1683 Label reguard;
duke@435 1684 Label reguard_done;
duke@435 1685 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1686 __ jcc(Assembler::equal, reguard);
duke@435 1687 __ bind(reguard_done);
duke@435 1688
duke@435 1689 // native result if any is live
duke@435 1690
duke@435 1691 // Unlock
duke@435 1692 Label unlock_done;
duke@435 1693 Label slow_path_unlock;
duke@435 1694 if (method->is_synchronized()) {
duke@435 1695
duke@435 1696 // Get locked oop from the handle we passed to jni
never@739 1697 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1698
duke@435 1699 Label done;
duke@435 1700
duke@435 1701 if (UseBiasedLocking) {
duke@435 1702 __ biased_locking_exit(obj_reg, old_hdr, done);
duke@435 1703 }
duke@435 1704
duke@435 1705 // Simple recursive lock?
duke@435 1706
never@739 1707 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
duke@435 1708 __ jcc(Assembler::equal, done);
duke@435 1709
duke@435 1710 // Must save rax if if it is live now because cmpxchg must use it
duke@435 1711 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1712 save_native_result(masm, ret_type, stack_slots);
duke@435 1713 }
duke@435 1714
duke@435 1715
duke@435 1716 // get address of the stack lock
never@739 1717 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 1718 // get old displaced header
never@739 1719 __ movptr(old_hdr, Address(rax, 0));
duke@435 1720
duke@435 1721 // Atomic swap old header if oop still contains the stack lock
duke@435 1722 if (os::is_MP()) {
duke@435 1723 __ lock();
duke@435 1724 }
never@739 1725 __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
duke@435 1726 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1727
duke@435 1728 // slow path re-enters here
duke@435 1729 __ bind(unlock_done);
duke@435 1730 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1731 restore_native_result(masm, ret_type, stack_slots);
duke@435 1732 }
duke@435 1733
duke@435 1734 __ bind(done);
duke@435 1735
duke@435 1736 }
duke@435 1737 {
duke@435 1738 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 1739 save_native_result(masm, ret_type, stack_slots);
duke@435 1740 __ movoop(c_rarg1, JNIHandles::make_local(method()));
duke@435 1741 __ call_VM_leaf(
duke@435 1742 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1743 r15_thread, c_rarg1);
duke@435 1744 restore_native_result(masm, ret_type, stack_slots);
duke@435 1745 }
duke@435 1746
duke@435 1747 __ reset_last_Java_frame(false, true);
duke@435 1748
duke@435 1749 // Unpack oop result
duke@435 1750 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1751 Label L;
never@739 1752 __ testptr(rax, rax);
duke@435 1753 __ jcc(Assembler::zero, L);
never@739 1754 __ movptr(rax, Address(rax, 0));
duke@435 1755 __ bind(L);
duke@435 1756 __ verify_oop(rax);
duke@435 1757 }
duke@435 1758
duke@435 1759 // reset handle block
never@739 1760 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
never@739 1761 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
duke@435 1762
duke@435 1763 // pop our frame
duke@435 1764
duke@435 1765 __ leave();
duke@435 1766
duke@435 1767 // Any exception pending?
never@739 1768 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1769 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1770
duke@435 1771 // Return
duke@435 1772
duke@435 1773 __ ret(0);
duke@435 1774
duke@435 1775 // Unexpected paths are out of line and go here
duke@435 1776
duke@435 1777 // forward the exception
duke@435 1778 __ bind(exception_pending);
duke@435 1779
duke@435 1780 // and forward the exception
duke@435 1781 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1782
duke@435 1783
duke@435 1784 // Slow path locking & unlocking
duke@435 1785 if (method->is_synchronized()) {
duke@435 1786
duke@435 1787 // BEGIN Slow path lock
duke@435 1788 __ bind(slow_path_lock);
duke@435 1789
duke@435 1790 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1791 // args are (oop obj, BasicLock* lock, JavaThread* thread)
duke@435 1792
duke@435 1793 // protect the args we've loaded
duke@435 1794 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 1795
never@739 1796 __ mov(c_rarg0, obj_reg);
never@739 1797 __ mov(c_rarg1, lock_reg);
never@739 1798 __ mov(c_rarg2, r15_thread);
duke@435 1799
duke@435 1800 // Not a leaf but we have last_Java_frame setup as we want
duke@435 1801 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
duke@435 1802 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 1803
duke@435 1804 #ifdef ASSERT
duke@435 1805 { Label L;
never@739 1806 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1807 __ jcc(Assembler::equal, L);
duke@435 1808 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1809 __ bind(L);
duke@435 1810 }
duke@435 1811 #endif
duke@435 1812 __ jmp(lock_done);
duke@435 1813
duke@435 1814 // END Slow path lock
duke@435 1815
duke@435 1816 // BEGIN Slow path unlock
duke@435 1817 __ bind(slow_path_unlock);
duke@435 1818
duke@435 1819 // If we haven't already saved the native result we must save it now as xmm registers
duke@435 1820 // are still exposed.
duke@435 1821
duke@435 1822 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1823 save_native_result(masm, ret_type, stack_slots);
duke@435 1824 }
duke@435 1825
never@739 1826 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
never@739 1827
never@739 1828 __ mov(c_rarg0, obj_reg);
never@739 1829 __ mov(r12, rsp); // remember sp
never@739 1830 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1831 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1832
duke@435 1833 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1834 // NOTE that obj_reg == rbx currently
never@739 1835 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
never@739 1836 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1837
duke@435 1838 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 1839 __ mov(rsp, r12); // restore sp
coleenp@548 1840 __ reinit_heapbase();
duke@435 1841 #ifdef ASSERT
duke@435 1842 {
duke@435 1843 Label L;
never@739 1844 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1845 __ jcc(Assembler::equal, L);
duke@435 1846 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1847 __ bind(L);
duke@435 1848 }
duke@435 1849 #endif /* ASSERT */
duke@435 1850
never@739 1851 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
duke@435 1852
duke@435 1853 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1854 restore_native_result(masm, ret_type, stack_slots);
duke@435 1855 }
duke@435 1856 __ jmp(unlock_done);
duke@435 1857
duke@435 1858 // END Slow path unlock
duke@435 1859
duke@435 1860 } // synchronized
duke@435 1861
duke@435 1862 // SLOW PATH Reguard the stack if needed
duke@435 1863
duke@435 1864 __ bind(reguard);
duke@435 1865 save_native_result(masm, ret_type, stack_slots);
never@739 1866 __ mov(r12, rsp); // remember sp
never@739 1867 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1868 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1869 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 1870 __ mov(rsp, r12); // restore sp
coleenp@548 1871 __ reinit_heapbase();
duke@435 1872 restore_native_result(masm, ret_type, stack_slots);
duke@435 1873 // and continue
duke@435 1874 __ jmp(reguard_done);
duke@435 1875
duke@435 1876
duke@435 1877
duke@435 1878 __ flush();
duke@435 1879
duke@435 1880 nmethod *nm = nmethod::new_native_nmethod(method,
duke@435 1881 masm->code(),
duke@435 1882 vep_offset,
duke@435 1883 frame_complete,
duke@435 1884 stack_slots / VMRegImpl::slots_per_word,
duke@435 1885 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1886 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1887 oop_maps);
duke@435 1888 return nm;
duke@435 1889
duke@435 1890 }
duke@435 1891
kamg@551 1892 #ifdef HAVE_DTRACE_H
kamg@551 1893 // ---------------------------------------------------------------------------
kamg@551 1894 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 1895 // in the Java compiled code convention, marshals them to the native
kamg@551 1896 // abi and then leaves nops at the position you would expect to call a native
kamg@551 1897 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 1898 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 1899 // to dtrace.
kamg@551 1900 //
kamg@551 1901 // The probes are only able to take primitive types and java/lang/String as
kamg@551 1902 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 1903 // strings so that from dtrace point of view java strings are converted to C
kamg@551 1904 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 1905 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 1906 // So any java string larger then this is truncated.
kamg@551 1907
kamg@551 1908 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 1909 static bool offsets_initialized = false;
kamg@551 1910
kamg@551 1911
kamg@551 1912 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
kamg@551 1913 methodHandle method) {
kamg@551 1914
kamg@551 1915
kamg@551 1916 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 1917 // be single threaded in this method.
kamg@551 1918 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 1919
kamg@551 1920 if (!offsets_initialized) {
kamg@551 1921 fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
kamg@551 1922 fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
kamg@551 1923 fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
kamg@551 1924 fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
kamg@551 1925 fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
kamg@551 1926 fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
kamg@551 1927
kamg@551 1928 fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
kamg@551 1929 fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
kamg@551 1930 fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
kamg@551 1931 fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
kamg@551 1932 fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
kamg@551 1933 fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
kamg@551 1934 fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
kamg@551 1935 fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
kamg@551 1936
kamg@551 1937 offsets_initialized = true;
kamg@551 1938 }
kamg@551 1939 // Fill in the signature array, for the calling-convention call.
kamg@551 1940 int total_args_passed = method->size_of_parameters();
kamg@551 1941
kamg@551 1942 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 1943 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 1944
kamg@551 1945 // The signature we are going to use for the trap that dtrace will see
kamg@551 1946 // java/lang/String is converted. We drop "this" and any other object
kamg@551 1947 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 1948 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 1949 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 1950 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 1951
kamg@551 1952 int i=0;
kamg@551 1953 int total_strings = 0;
kamg@551 1954 int first_arg_to_pass = 0;
kamg@551 1955 int total_c_args = 0;
kamg@551 1956
kamg@551 1957 // Skip the receiver as dtrace doesn't want to see it
kamg@551 1958 if( !method->is_static() ) {
kamg@551 1959 in_sig_bt[i++] = T_OBJECT;
kamg@551 1960 first_arg_to_pass = 1;
kamg@551 1961 }
kamg@551 1962
kamg@551 1963 // We need to convert the java args to where a native (non-jni) function
kamg@551 1964 // would expect them. To figure out where they go we convert the java
kamg@551 1965 // signature to a C signature.
kamg@551 1966
kamg@551 1967 SignatureStream ss(method->signature());
kamg@551 1968 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 1969 BasicType bt = ss.type();
kamg@551 1970 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 1971 out_sig_bt[total_c_args++] = bt;
kamg@551 1972 if( bt == T_OBJECT) {
kamg@551 1973 symbolOop s = ss.as_symbol_or_null();
kamg@551 1974 if (s == vmSymbols::java_lang_String()) {
kamg@551 1975 total_strings++;
kamg@551 1976 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 1977 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 1978 s == vmSymbols::java_lang_Character() ||
kamg@551 1979 s == vmSymbols::java_lang_Byte() ||
kamg@551 1980 s == vmSymbols::java_lang_Short() ||
kamg@551 1981 s == vmSymbols::java_lang_Integer() ||
kamg@551 1982 s == vmSymbols::java_lang_Float()) {
kamg@551 1983 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 1984 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 1985 s == vmSymbols::java_lang_Double()) {
kamg@551 1986 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 1987 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1988 }
kamg@551 1989 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 1990 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 1991 // We convert double to long
kamg@551 1992 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 1993 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1994 } else if ( bt == T_FLOAT) {
kamg@551 1995 // We convert float to int
kamg@551 1996 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 1997 }
kamg@551 1998 }
kamg@551 1999
kamg@551 2000 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2001
kamg@551 2002 // Now get the compiled-Java layout as input arguments
kamg@551 2003 int comp_args_on_stack;
kamg@551 2004 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2005 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2006
kamg@551 2007 // Now figure out where the args must be stored and how much stack space
kamg@551 2008 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2009 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2010
kamg@551 2011 int out_arg_slots;
kamg@551 2012 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2013
kamg@551 2014 // Calculate the total number of stack slots we will need.
kamg@551 2015
kamg@551 2016 // First count the abi requirement plus all of the outgoing args
kamg@551 2017 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2018
kamg@551 2019 // Now space for the string(s) we must convert
kamg@551 2020 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2021 for (i = 0; i < total_strings ; i++) {
kamg@551 2022 string_locs[i] = stack_slots;
kamg@551 2023 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2024 }
kamg@551 2025
kamg@551 2026 // Plus the temps we might need to juggle register args
kamg@551 2027 // regs take two slots each
kamg@551 2028 stack_slots += (Argument::n_int_register_parameters_c +
kamg@551 2029 Argument::n_float_register_parameters_c) * 2;
kamg@551 2030
kamg@551 2031
kamg@551 2032 // + 4 for return address (which we own) and saved rbp,
kamg@551 2033
kamg@551 2034 stack_slots += 4;
kamg@551 2035
kamg@551 2036 // Ok The space we have allocated will look like:
kamg@551 2037 //
kamg@551 2038 //
kamg@551 2039 // FP-> | |
kamg@551 2040 // |---------------------|
kamg@551 2041 // | string[n] |
kamg@551 2042 // |---------------------| <- string_locs[n]
kamg@551 2043 // | string[n-1] |
kamg@551 2044 // |---------------------| <- string_locs[n-1]
kamg@551 2045 // | ... |
kamg@551 2046 // | ... |
kamg@551 2047 // |---------------------| <- string_locs[1]
kamg@551 2048 // | string[0] |
kamg@551 2049 // |---------------------| <- string_locs[0]
kamg@551 2050 // | outbound memory |
kamg@551 2051 // | based arguments |
kamg@551 2052 // | |
kamg@551 2053 // |---------------------|
kamg@551 2054 // | |
kamg@551 2055 // SP-> | out_preserved_slots |
kamg@551 2056 //
kamg@551 2057 //
kamg@551 2058
kamg@551 2059 // Now compute actual number of stack words we need rounding to make
kamg@551 2060 // stack properly aligned.
kamg@551 2061 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2062
kamg@551 2063 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2064
kamg@551 2065 intptr_t start = (intptr_t)__ pc();
kamg@551 2066
kamg@551 2067 // First thing make an ic check to see if we should even be here
kamg@551 2068
kamg@551 2069 // We are free to use all registers as temps without saving them and
kamg@551 2070 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2071 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2072
kamg@551 2073 const Register ic_reg = rax;
kamg@551 2074 const Register receiver = rcx;
kamg@551 2075 Label hit;
kamg@551 2076 Label exception_pending;
kamg@551 2077
kamg@551 2078
kamg@551 2079 __ verify_oop(receiver);
kamg@551 2080 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2081 __ jcc(Assembler::equal, hit);
kamg@551 2082
kamg@551 2083 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2084
kamg@551 2085 // verified entry must be aligned for code patching.
kamg@551 2086 // and the first 5 bytes must be in the same cache line
kamg@551 2087 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2088 __ align(8);
kamg@551 2089
kamg@551 2090 __ bind(hit);
kamg@551 2091
kamg@551 2092 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2093
kamg@551 2094
kamg@551 2095 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2096 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2097 // instruction fits that requirement.
kamg@551 2098
kamg@551 2099 // Generate stack overflow check
kamg@551 2100
kamg@551 2101 if (UseStackBanging) {
kamg@551 2102 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2103 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2104 } else {
kamg@551 2105 __ movl(rax, stack_size);
kamg@551 2106 __ bang_stack_size(rax, rbx);
kamg@551 2107 }
kamg@551 2108 } else {
kamg@551 2109 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2110 __ fat_nop();
kamg@551 2111 }
kamg@551 2112
kamg@551 2113 assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2114 "valid size for make_non_entrant");
kamg@551 2115
kamg@551 2116 // Generate a new frame for the wrapper.
kamg@551 2117 __ enter();
kamg@551 2118
kamg@551 2119 // -4 because return address is already present and so is saved rbp,
kamg@551 2120 if (stack_size - 2*wordSize != 0) {
kamg@551 2121 __ subq(rsp, stack_size - 2*wordSize);
kamg@551 2122 }
kamg@551 2123
kamg@551 2124 // Frame is now completed as far a size and linkage.
kamg@551 2125
kamg@551 2126 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2127
kamg@551 2128 int c_arg, j_arg;
kamg@551 2129
kamg@551 2130 // State of input register args
kamg@551 2131
kamg@551 2132 bool live[ConcreteRegisterImpl::number_of_registers];
kamg@551 2133
kamg@551 2134 live[j_rarg0->as_VMReg()->value()] = false;
kamg@551 2135 live[j_rarg1->as_VMReg()->value()] = false;
kamg@551 2136 live[j_rarg2->as_VMReg()->value()] = false;
kamg@551 2137 live[j_rarg3->as_VMReg()->value()] = false;
kamg@551 2138 live[j_rarg4->as_VMReg()->value()] = false;
kamg@551 2139 live[j_rarg5->as_VMReg()->value()] = false;
kamg@551 2140
kamg@551 2141 live[j_farg0->as_VMReg()->value()] = false;
kamg@551 2142 live[j_farg1->as_VMReg()->value()] = false;
kamg@551 2143 live[j_farg2->as_VMReg()->value()] = false;
kamg@551 2144 live[j_farg3->as_VMReg()->value()] = false;
kamg@551 2145 live[j_farg4->as_VMReg()->value()] = false;
kamg@551 2146 live[j_farg5->as_VMReg()->value()] = false;
kamg@551 2147 live[j_farg6->as_VMReg()->value()] = false;
kamg@551 2148 live[j_farg7->as_VMReg()->value()] = false;
kamg@551 2149
kamg@551 2150
kamg@551 2151 bool rax_is_zero = false;
kamg@551 2152
kamg@551 2153 // All args (except strings) destined for the stack are moved first
kamg@551 2154 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2155 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2156 VMRegPair src = in_regs[j_arg];
kamg@551 2157 VMRegPair dst = out_regs[c_arg];
kamg@551 2158
kamg@551 2159 // Get the real reg value or a dummy (rsp)
kamg@551 2160
kamg@551 2161 int src_reg = src.first()->is_reg() ?
kamg@551 2162 src.first()->value() :
kamg@551 2163 rsp->as_VMReg()->value();
kamg@551 2164
kamg@551 2165 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2166 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2167 out_sig_bt[c_arg] != T_INT &&
kamg@551 2168 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 2169 out_sig_bt[c_arg] != T_LONG);
kamg@551 2170
kamg@551 2171 live[src_reg] = !useless;
kamg@551 2172
kamg@551 2173 if (dst.first()->is_stack()) {
kamg@551 2174
kamg@551 2175 // Even though a string arg in a register is still live after this loop
kamg@551 2176 // after the string conversion loop (next) it will be dead so we take
kamg@551 2177 // advantage of that now for simpler code to manage live.
kamg@551 2178
kamg@551 2179 live[src_reg] = false;
kamg@551 2180 switch (in_sig_bt[j_arg]) {
kamg@551 2181
kamg@551 2182 case T_ARRAY:
kamg@551 2183 case T_OBJECT:
kamg@551 2184 {
kamg@551 2185 Address stack_dst(rsp, reg2offset_out(dst.first()));
kamg@551 2186
kamg@551 2187 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2188 // need to unbox a one-word value
kamg@551 2189 Register in_reg = rax;
kamg@551 2190 if ( src.first()->is_reg() ) {
kamg@551 2191 in_reg = src.first()->as_Register();
kamg@551 2192 } else {
kamg@551 2193 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
kamg@551 2194 rax_is_zero = false;
kamg@551 2195 }
kamg@551 2196 Label skipUnbox;
kamg@551 2197 __ movptr(Address(rsp, reg2offset_out(dst.first())),
kamg@551 2198 (int32_t)NULL_WORD);
kamg@551 2199 __ testq(in_reg, in_reg);
kamg@551 2200 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2201
kvn@600 2202 BasicType bt = out_sig_bt[c_arg];
kvn@600 2203 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 2204 Address src1(in_reg, box_offset);
kvn@600 2205 if ( bt == T_LONG ) {
kamg@551 2206 __ movq(in_reg, src1);
kamg@551 2207 __ movq(stack_dst, in_reg);
kamg@551 2208 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2209 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2210 } else {
kamg@551 2211 __ movl(in_reg, src1);
kamg@551 2212 __ movl(stack_dst, in_reg);
kamg@551 2213 }
kamg@551 2214
kamg@551 2215 __ bind(skipUnbox);
kamg@551 2216 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 2217 // Convert the arg to NULL
kamg@551 2218 if (!rax_is_zero) {
kamg@551 2219 __ xorq(rax, rax);
kamg@551 2220 rax_is_zero = true;
kamg@551 2221 }
kamg@551 2222 __ movq(stack_dst, rax);
kamg@551 2223 }
kamg@551 2224 }
kamg@551 2225 break;
kamg@551 2226
kamg@551 2227 case T_VOID:
kamg@551 2228 break;
kamg@551 2229
kamg@551 2230 case T_FLOAT:
kamg@551 2231 // This does the right thing since we know it is destined for the
kamg@551 2232 // stack
kamg@551 2233 float_move(masm, src, dst);
kamg@551 2234 break;
kamg@551 2235
kamg@551 2236 case T_DOUBLE:
kamg@551 2237 // This does the right thing since we know it is destined for the
kamg@551 2238 // stack
kamg@551 2239 double_move(masm, src, dst);
kamg@551 2240 break;
kamg@551 2241
kamg@551 2242 case T_LONG :
kamg@551 2243 long_move(masm, src, dst);
kamg@551 2244 break;
kamg@551 2245
kamg@551 2246 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2247
kamg@551 2248 default:
kamg@551 2249 move32_64(masm, src, dst);
kamg@551 2250 }
kamg@551 2251 }
kamg@551 2252
kamg@551 2253 }
kamg@551 2254
kamg@551 2255 // If we have any strings we must store any register based arg to the stack
kamg@551 2256 // This includes any still live xmm registers too.
kamg@551 2257
kamg@551 2258 int sid = 0;
kamg@551 2259
kamg@551 2260 if (total_strings > 0 ) {
kamg@551 2261 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2262 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2263 VMRegPair src = in_regs[j_arg];
kamg@551 2264 VMRegPair dst = out_regs[c_arg];
kamg@551 2265
kamg@551 2266 if (src.first()->is_reg()) {
kamg@551 2267 Address src_tmp(rbp, fp_offset[src.first()->value()]);
kamg@551 2268
kamg@551 2269 // string oops were left untouched by the previous loop even if the
kamg@551 2270 // eventual (converted) arg is destined for the stack so park them
kamg@551 2271 // away now (except for first)
kamg@551 2272
kamg@551 2273 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2274 Address utf8_addr = Address(
kamg@551 2275 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2276 if (sid != 1) {
kamg@551 2277 // The first string arg won't be killed until after the utf8
kamg@551 2278 // conversion
kamg@551 2279 __ movq(utf8_addr, src.first()->as_Register());
kamg@551 2280 }
kamg@551 2281 } else if (dst.first()->is_reg()) {
kamg@551 2282 if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 2283
kamg@551 2284 // Convert the xmm register to an int and store it in the reserved
kamg@551 2285 // location for the eventual c register arg
kamg@551 2286 XMMRegister f = src.first()->as_XMMRegister();
kamg@551 2287 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 2288 __ movflt(src_tmp, f);
kamg@551 2289 } else {
kamg@551 2290 __ movdbl(src_tmp, f);
kamg@551 2291 }
kamg@551 2292 } else {
kamg@551 2293 // If the arg is an oop type we don't support don't bother to store
kamg@551 2294 // it remember string was handled above.
kamg@551 2295 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2296 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2297 out_sig_bt[c_arg] != T_INT &&
kamg@551 2298 out_sig_bt[c_arg] != T_LONG);
kamg@551 2299
kamg@551 2300 if (!useless) {
kamg@551 2301 __ movq(src_tmp, src.first()->as_Register());
kamg@551 2302 }
kamg@551 2303 }
kamg@551 2304 }
kamg@551 2305 }
kamg@551 2306 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2307 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2308 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2309 }
kamg@551 2310 }
kamg@551 2311
kamg@551 2312 // Now that the volatile registers are safe, convert all the strings
kamg@551 2313 sid = 0;
kamg@551 2314
kamg@551 2315 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2316 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2317 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2318 // It's a string
kamg@551 2319 Address utf8_addr = Address(
kamg@551 2320 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2321 // The first string we find might still be in the original java arg
kamg@551 2322 // register
kamg@551 2323
kamg@551 2324 VMReg src = in_regs[j_arg].first();
kamg@551 2325
kamg@551 2326 // We will need to eventually save the final argument to the trap
kamg@551 2327 // in the von-volatile location dedicated to src. This is the offset
kamg@551 2328 // from fp we will use.
kamg@551 2329 int src_off = src->is_reg() ?
kamg@551 2330 fp_offset[src->value()] : reg2offset_in(src);
kamg@551 2331
kamg@551 2332 // This is where the argument will eventually reside
kamg@551 2333 VMRegPair dst = out_regs[c_arg];
kamg@551 2334
kamg@551 2335 if (src->is_reg()) {
kamg@551 2336 if (sid == 1) {
kamg@551 2337 __ movq(c_rarg0, src->as_Register());
kamg@551 2338 } else {
kamg@551 2339 __ movq(c_rarg0, utf8_addr);
kamg@551 2340 }
kamg@551 2341 } else {
kamg@551 2342 // arg is still in the original location
kamg@551 2343 __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
kamg@551 2344 }
kamg@551 2345 Label done, convert;
kamg@551 2346
kamg@551 2347 // see if the oop is NULL
kamg@551 2348 __ testq(c_rarg0, c_rarg0);
kamg@551 2349 __ jcc(Assembler::notEqual, convert);
kamg@551 2350
kamg@551 2351 if (dst.first()->is_reg()) {
kamg@551 2352 // Save the ptr to utf string in the origina src loc or the tmp
kamg@551 2353 // dedicated to it
kamg@551 2354 __ movq(Address(rbp, src_off), c_rarg0);
kamg@551 2355 } else {
kamg@551 2356 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
kamg@551 2357 }
kamg@551 2358 __ jmp(done);
kamg@551 2359
kamg@551 2360 __ bind(convert);
kamg@551 2361
kamg@551 2362 __ lea(c_rarg1, utf8_addr);
kamg@551 2363 if (dst.first()->is_reg()) {
kamg@551 2364 __ movq(Address(rbp, src_off), c_rarg1);
kamg@551 2365 } else {
kamg@551 2366 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
kamg@551 2367 }
kamg@551 2368 // And do the conversion
kamg@551 2369 __ call(RuntimeAddress(
kamg@551 2370 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
kamg@551 2371
kamg@551 2372 __ bind(done);
kamg@551 2373 }
kamg@551 2374 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2375 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2376 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2377 }
kamg@551 2378 }
kamg@551 2379 // The get_utf call killed all the c_arg registers
kamg@551 2380 live[c_rarg0->as_VMReg()->value()] = false;
kamg@551 2381 live[c_rarg1->as_VMReg()->value()] = false;
kamg@551 2382 live[c_rarg2->as_VMReg()->value()] = false;
kamg@551 2383 live[c_rarg3->as_VMReg()->value()] = false;
kamg@551 2384 live[c_rarg4->as_VMReg()->value()] = false;
kamg@551 2385 live[c_rarg5->as_VMReg()->value()] = false;
kamg@551 2386
kamg@551 2387 live[c_farg0->as_VMReg()->value()] = false;
kamg@551 2388 live[c_farg1->as_VMReg()->value()] = false;
kamg@551 2389 live[c_farg2->as_VMReg()->value()] = false;
kamg@551 2390 live[c_farg3->as_VMReg()->value()] = false;
kamg@551 2391 live[c_farg4->as_VMReg()->value()] = false;
kamg@551 2392 live[c_farg5->as_VMReg()->value()] = false;
kamg@551 2393 live[c_farg6->as_VMReg()->value()] = false;
kamg@551 2394 live[c_farg7->as_VMReg()->value()] = false;
kamg@551 2395 }
kamg@551 2396
kamg@551 2397 // Now we can finally move the register args to their desired locations
kamg@551 2398
kamg@551 2399 rax_is_zero = false;
kamg@551 2400
kamg@551 2401 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2402 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2403
kamg@551 2404 VMRegPair src = in_regs[j_arg];
kamg@551 2405 VMRegPair dst = out_regs[c_arg];
kamg@551 2406
kamg@551 2407 // Only need to look for args destined for the interger registers (since we
kamg@551 2408 // convert float/double args to look like int/long outbound)
kamg@551 2409 if (dst.first()->is_reg()) {
kamg@551 2410 Register r = dst.first()->as_Register();
kamg@551 2411
kamg@551 2412 // Check if the java arg is unsupported and thereofre useless
kamg@551 2413 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2414 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2415 out_sig_bt[c_arg] != T_INT &&
kamg@551 2416 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 2417 out_sig_bt[c_arg] != T_LONG);
kamg@551 2418
kamg@551 2419
kamg@551 2420 // If we're going to kill an existing arg save it first
kamg@551 2421 if (live[dst.first()->value()]) {
kamg@551 2422 // you can't kill yourself
kamg@551 2423 if (src.first() != dst.first()) {
kamg@551 2424 __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
kamg@551 2425 }
kamg@551 2426 }
kamg@551 2427 if (src.first()->is_reg()) {
kamg@551 2428 if (live[src.first()->value()] ) {
kamg@551 2429 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 2430 __ movdl(r, src.first()->as_XMMRegister());
kamg@551 2431 } else if (in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 2432 __ movdq(r, src.first()->as_XMMRegister());
kamg@551 2433 } else if (r != src.first()->as_Register()) {
kamg@551 2434 if (!useless) {
kamg@551 2435 __ movq(r, src.first()->as_Register());
kamg@551 2436 }
kamg@551 2437 }
kamg@551 2438 } else {
kamg@551 2439 // If the arg is an oop type we don't support don't bother to store
kamg@551 2440 // it
kamg@551 2441 if (!useless) {
kamg@551 2442 if (in_sig_bt[j_arg] == T_DOUBLE ||
kamg@551 2443 in_sig_bt[j_arg] == T_LONG ||
kamg@551 2444 in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 2445 __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 2446 } else {
kamg@551 2447 __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 2448 }
kamg@551 2449 }
kamg@551 2450 }
kamg@551 2451 live[src.first()->value()] = false;
kamg@551 2452 } else if (!useless) {
kamg@551 2453 // full sized move even for int should be ok
kamg@551 2454 __ movq(r, Address(rbp, reg2offset_in(src.first())));
kamg@551 2455 }
kamg@551 2456
kamg@551 2457 // At this point r has the original java arg in the final location
kamg@551 2458 // (assuming it wasn't useless). If the java arg was an oop
kamg@551 2459 // we have a bit more to do
kamg@551 2460
kamg@551 2461 if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 2462 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2463 // need to unbox a one-word value
kamg@551 2464 Label skip;
kamg@551 2465 __ testq(r, r);
kamg@551 2466 __ jcc(Assembler::equal, skip);
kvn@600 2467 BasicType bt = out_sig_bt[c_arg];
kvn@600 2468 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 2469 Address src1(r, box_offset);
kvn@600 2470 if ( bt == T_LONG ) {
kamg@551 2471 __ movq(r, src1);
kamg@551 2472 } else {
kamg@551 2473 __ movl(r, src1);
kamg@551 2474 }
kamg@551 2475 __ bind(skip);
kamg@551 2476
kamg@551 2477 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 2478 // Convert the arg to NULL
kamg@551 2479 __ xorq(r, r);
kamg@551 2480 }
kamg@551 2481 }
kamg@551 2482
kamg@551 2483 // dst can longer be holding an input value
kamg@551 2484 live[dst.first()->value()] = false;
kamg@551 2485 }
kamg@551 2486 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2487 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2488 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2489 }
kamg@551 2490 }
kamg@551 2491
kamg@551 2492
kamg@551 2493 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2494 // patch in the trap
kamg@551 2495 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2496
kamg@551 2497 __ nop();
kamg@551 2498
kamg@551 2499
kamg@551 2500 // Return
kamg@551 2501
kamg@551 2502 __ leave();
kamg@551 2503 __ ret(0);
kamg@551 2504
kamg@551 2505 __ flush();
kamg@551 2506
kamg@551 2507 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2508 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2509 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2510 return nm;
kamg@551 2511
kamg@551 2512 }
kamg@551 2513
kamg@551 2514 #endif // HAVE_DTRACE_H
kamg@551 2515
duke@435 2516 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2517 // activation for use during deoptimization
duke@435 2518 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
duke@435 2519 return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
duke@435 2520 }
duke@435 2521
duke@435 2522
duke@435 2523 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2524 return 0;
duke@435 2525 }
duke@435 2526
duke@435 2527
duke@435 2528 //------------------------------generate_deopt_blob----------------------------
duke@435 2529 void SharedRuntime::generate_deopt_blob() {
duke@435 2530 // Allocate space for the code
duke@435 2531 ResourceMark rm;
duke@435 2532 // Setup code generation tools
duke@435 2533 CodeBuffer buffer("deopt_blob", 2048, 1024);
duke@435 2534 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2535 int frame_size_in_words;
duke@435 2536 OopMap* map = NULL;
duke@435 2537 OopMapSet *oop_maps = new OopMapSet();
duke@435 2538
duke@435 2539 // -------------
duke@435 2540 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2541 // address has been pushed on the the stack, and return values are in
duke@435 2542 // registers.
duke@435 2543 // If we are doing a normal deopt then we were called from the patched
duke@435 2544 // nmethod from the point we returned to the nmethod. So the return
duke@435 2545 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2546 // We will adjust the value so it looks like we have the original return
duke@435 2547 // address on the stack (like when we eagerly deoptimized).
duke@435 2548 // In the case of an exception pending when deoptimizing, we enter
duke@435 2549 // with a return address on the stack that points after the call we patched
duke@435 2550 // into the exception handler. We have the following register state from,
duke@435 2551 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
duke@435 2552 // rax: exception oop
duke@435 2553 // rbx: exception handler
duke@435 2554 // rdx: throwing pc
duke@435 2555 // So in this case we simply jam rdx into the useless return address and
duke@435 2556 // the stack looks just like we want.
duke@435 2557 //
duke@435 2558 // At this point we need to de-opt. We save the argument return
duke@435 2559 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2560 // routine captures the return values and returns a structure which
duke@435 2561 // describes the current frame size and the sizes of all replacement frames.
duke@435 2562 // The current frame is compiled code and may contain many inlined
duke@435 2563 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2564 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2565 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2566 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2567 // already been captured in the vframeArray at the time the return PC was
duke@435 2568 // patched.
duke@435 2569 address start = __ pc();
duke@435 2570 Label cont;
duke@435 2571
duke@435 2572 // Prolog for non exception case!
duke@435 2573
duke@435 2574 // Save everything in sight.
duke@435 2575 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 2576
duke@435 2577 // Normal deoptimization. Save exec mode for unpack_frames.
coleenp@548 2578 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
duke@435 2579 __ jmp(cont);
never@739 2580
never@739 2581 int reexecute_offset = __ pc() - start;
never@739 2582
never@739 2583 // Reexecute case
never@739 2584 // return address is the pc describes what bci to do re-execute at
never@739 2585
never@739 2586 // No need to update map as each call to save_live_registers will produce identical oopmap
never@739 2587 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
never@739 2588
never@739 2589 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
never@739 2590 __ jmp(cont);
never@739 2591
duke@435 2592 int exception_offset = __ pc() - start;
duke@435 2593
duke@435 2594 // Prolog for exception case
duke@435 2595
never@739 2596 // all registers are dead at this entry point, except for rax, and
never@739 2597 // rdx which contain the exception oop and exception pc
never@739 2598 // respectively. Set them in TLS and fall thru to the
never@739 2599 // unpack_with_exception_in_tls entry point.
never@739 2600
never@739 2601 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
never@739 2602 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
never@739 2603
never@739 2604 int exception_in_tls_offset = __ pc() - start;
never@739 2605
never@739 2606 // new implementation because exception oop is now passed in JavaThread
never@739 2607
never@739 2608 // Prolog for exception case
never@739 2609 // All registers must be preserved because they might be used by LinearScan
never@739 2610 // Exceptiop oop and throwing PC are passed in JavaThread
never@739 2611 // tos: stack at point of call to method that threw the exception (i.e. only
never@739 2612 // args are on the stack, no return address)
never@739 2613
never@739 2614 // make room on stack for the return address
never@739 2615 // It will be patched later with the throwing pc. The correct value is not
never@739 2616 // available now because loading it from memory would destroy registers.
never@739 2617 __ push(0);
duke@435 2618
duke@435 2619 // Save everything in sight.
duke@435 2620 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 2621
never@739 2622 // Now it is safe to overwrite any register
never@739 2623
duke@435 2624 // Deopt during an exception. Save exec mode for unpack_frames.
coleenp@548 2625 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
duke@435 2626
never@739 2627 // load throwing pc from JavaThread and patch it as the return address
never@739 2628 // of the current frame. Then clear the field in JavaThread
never@739 2629
never@739 2630 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 2631 __ movptr(Address(rbp, wordSize), rdx);
never@739 2632 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 2633
never@739 2634 #ifdef ASSERT
never@739 2635 // verify that there is really an exception oop in JavaThread
never@739 2636 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 2637 __ verify_oop(rax);
never@739 2638
never@739 2639 // verify that there is no pending exception
never@739 2640 Label no_pending_exception;
never@739 2641 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
never@739 2642 __ testptr(rax, rax);
never@739 2643 __ jcc(Assembler::zero, no_pending_exception);
never@739 2644 __ stop("must not have pending exception here");
never@739 2645 __ bind(no_pending_exception);
never@739 2646 #endif
never@739 2647
duke@435 2648 __ bind(cont);
duke@435 2649
duke@435 2650 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2651 // crud. We cannot block on this call, no GC can happen.
duke@435 2652 //
duke@435 2653 // UnrollBlock* fetch_unroll_info(JavaThread* thread)
duke@435 2654
duke@435 2655 // fetch_unroll_info needs to call last_java_frame().
duke@435 2656
duke@435 2657 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 2658 #ifdef ASSERT
duke@435 2659 { Label L;
never@739 2660 __ cmpptr(Address(r15_thread,
duke@435 2661 JavaThread::last_Java_fp_offset()),
never@739 2662 (int32_t)0);
duke@435 2663 __ jcc(Assembler::equal, L);
duke@435 2664 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
duke@435 2665 __ bind(L);
duke@435 2666 }
duke@435 2667 #endif // ASSERT
never@739 2668 __ mov(c_rarg0, r15_thread);
duke@435 2669 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2670
duke@435 2671 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2672 // find any register it might need.
duke@435 2673 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2674
duke@435 2675 __ reset_last_Java_frame(false, false);
duke@435 2676
duke@435 2677 // Load UnrollBlock* into rdi
never@739 2678 __ mov(rdi, rax);
never@739 2679
never@739 2680 Label noException;
never@739 2681 __ cmpl(r12, Deoptimization::Unpack_exception); // Was exception pending?
never@739 2682 __ jcc(Assembler::notEqual, noException);
never@739 2683 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 2684 // QQQ this is useless it was NULL above
never@739 2685 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 2686 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@739 2687 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 2688
never@739 2689 __ verify_oop(rax);
never@739 2690
never@739 2691 // Overwrite the result registers with the exception results.
never@739 2692 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
never@739 2693 // I think this is useless
never@739 2694 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
never@739 2695
never@739 2696 __ bind(noException);
duke@435 2697
duke@435 2698 // Only register save data is on the stack.
duke@435 2699 // Now restore the result registers. Everything else is either dead
duke@435 2700 // or captured in the vframeArray.
duke@435 2701 RegisterSaver::restore_result_registers(masm);
duke@435 2702
duke@435 2703 // All of the register save area has been popped of the stack. Only the
duke@435 2704 // return address remains.
duke@435 2705
duke@435 2706 // Pop all the frames we must move/replace.
duke@435 2707 //
duke@435 2708 // Frame picture (youngest to oldest)
duke@435 2709 // 1: self-frame (no frame link)
duke@435 2710 // 2: deopting frame (no frame link)
duke@435 2711 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2712 //
duke@435 2713 // Note: by leaving the return address of self-frame on the stack
duke@435 2714 // and using the size of frame 2 to adjust the stack
duke@435 2715 // when we are done the return to frame 3 will still be on the stack.
duke@435 2716
duke@435 2717 // Pop deoptimized frame
duke@435 2718 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 2719 __ addptr(rsp, rcx);
duke@435 2720
duke@435 2721 // rsp should be pointing at the return address to the caller (3)
duke@435 2722
duke@435 2723 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2724 if (UseStackBanging) {
duke@435 2725 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2726 __ bang_stack_size(rbx, rcx);
duke@435 2727 }
duke@435 2728
duke@435 2729 // Load address of array of frame pcs into rcx
never@739 2730 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2731
duke@435 2732 // Trash the old pc
never@739 2733 __ addptr(rsp, wordSize);
duke@435 2734
duke@435 2735 // Load address of array of frame sizes into rsi
never@739 2736 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2737
duke@435 2738 // Load counter into rdx
duke@435 2739 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2740
duke@435 2741 // Pick up the initial fp we should save
never@739 2742 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2743
duke@435 2744 // Now adjust the caller's stack to make up for the extra locals
duke@435 2745 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2746 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2747 // value and not the "real" sp value.
duke@435 2748
duke@435 2749 const Register sender_sp = r8;
duke@435 2750
never@739 2751 __ mov(sender_sp, rsp);
duke@435 2752 __ movl(rbx, Address(rdi,
duke@435 2753 Deoptimization::UnrollBlock::
duke@435 2754 caller_adjustment_offset_in_bytes()));
never@739 2755 __ subptr(rsp, rbx);
duke@435 2756
duke@435 2757 // Push interpreter frames in a loop
duke@435 2758 Label loop;
duke@435 2759 __ bind(loop);
never@739 2760 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 2761 #ifdef CC_INTERP
never@739 2762 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
never@739 2763 #ifdef ASSERT
never@739 2764 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2765 __ push(0xDEADDEAD);
never@739 2766 #else /* ASSERT */
never@739 2767 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
never@739 2768 #endif /* ASSERT */
never@739 2769 #else
never@739 2770 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand
never@739 2771 #endif // CC_INTERP
never@739 2772 __ pushptr(Address(rcx, 0)); // Save return address
duke@435 2773 __ enter(); // Save old & set new ebp
never@739 2774 __ subptr(rsp, rbx); // Prolog
never@739 2775 #ifdef CC_INTERP
never@739 2776 __ movptr(Address(rbp,
never@739 2777 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
never@739 2778 sender_sp); // Make it walkable
never@739 2779 #else /* CC_INTERP */
duke@435 2780 // This value is corrected by layout_activation_impl
never@739 2781 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 2782 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
never@739 2783 #endif /* CC_INTERP */
never@739 2784 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 2785 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2786 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
duke@435 2787 __ decrementl(rdx); // Decrement counter
duke@435 2788 __ jcc(Assembler::notZero, loop);
never@739 2789 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 2790
duke@435 2791 // Re-push self-frame
duke@435 2792 __ enter(); // Save old & set new ebp
duke@435 2793
duke@435 2794 // Allocate a full sized register save area.
duke@435 2795 // Return address and rbp are in place, so we allocate two less words.
never@739 2796 __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
duke@435 2797
duke@435 2798 // Restore frame locals after moving the frame
duke@435 2799 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
never@739 2800 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 2801
duke@435 2802 // Call C code. Need thread but NOT official VM entry
duke@435 2803 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2804 // restore return values to their stack-slots with the new SP.
duke@435 2805 //
duke@435 2806 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
duke@435 2807
duke@435 2808 // Use rbp because the frames look interpreted now
duke@435 2809 __ set_last_Java_frame(noreg, rbp, NULL);
duke@435 2810
never@739 2811 __ mov(c_rarg0, r15_thread);
coleenp@548 2812 __ movl(c_rarg1, r14); // second arg: exec_mode
duke@435 2813 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2814
duke@435 2815 // Set an oopmap for the call site
duke@435 2816 oop_maps->add_gc_map(__ pc() - start,
duke@435 2817 new OopMap( frame_size_in_words, 0 ));
duke@435 2818
duke@435 2819 __ reset_last_Java_frame(true, false);
duke@435 2820
duke@435 2821 // Collect return values
duke@435 2822 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
never@739 2823 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
never@739 2824 // I think this is useless (throwing pc?)
never@739 2825 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
duke@435 2826
duke@435 2827 // Pop self-frame.
duke@435 2828 __ leave(); // Epilog
duke@435 2829
duke@435 2830 // Jump to interpreter
duke@435 2831 __ ret(0);
duke@435 2832
duke@435 2833 // Make sure all code is generated
duke@435 2834 masm->flush();
duke@435 2835
never@739 2836 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
never@739 2837 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2838 }
duke@435 2839
duke@435 2840 #ifdef COMPILER2
duke@435 2841 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2842 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2843 // Allocate space for the code
duke@435 2844 ResourceMark rm;
duke@435 2845 // Setup code generation tools
duke@435 2846 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
duke@435 2847 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2848
duke@435 2849 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 2850
duke@435 2851 address start = __ pc();
duke@435 2852
duke@435 2853 // Push self-frame. We get here with a return address on the
duke@435 2854 // stack, so rsp is 8-byte aligned until we allocate our frame.
never@739 2855 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
duke@435 2856
duke@435 2857 // No callee saved registers. rbp is assumed implicitly saved
never@739 2858 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 2859
duke@435 2860 // compiler left unloaded_class_index in j_rarg0 move to where the
duke@435 2861 // runtime expects it.
duke@435 2862 __ movl(c_rarg1, j_rarg0);
duke@435 2863
duke@435 2864 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 2865
duke@435 2866 // Call C code. Need thread but NOT official VM entry
duke@435 2867 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2868 // capture callee-saved registers as well as return values.
duke@435 2869 // Thread is in rdi already.
duke@435 2870 //
duke@435 2871 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
duke@435 2872
never@739 2873 __ mov(c_rarg0, r15_thread);
duke@435 2874 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2875
duke@435 2876 // Set an oopmap for the call site
duke@435 2877 OopMapSet* oop_maps = new OopMapSet();
duke@435 2878 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
duke@435 2879
duke@435 2880 // location of rbp is known implicitly by the frame sender code
duke@435 2881
duke@435 2882 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2883
duke@435 2884 __ reset_last_Java_frame(false, false);
duke@435 2885
duke@435 2886 // Load UnrollBlock* into rdi
never@739 2887 __ mov(rdi, rax);
duke@435 2888
duke@435 2889 // Pop all the frames we must move/replace.
duke@435 2890 //
duke@435 2891 // Frame picture (youngest to oldest)
duke@435 2892 // 1: self-frame (no frame link)
duke@435 2893 // 2: deopting frame (no frame link)
duke@435 2894 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2895
duke@435 2896 // Pop self-frame. We have no frame, and must rely only on rax and rsp.
never@739 2897 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
duke@435 2898
duke@435 2899 // Pop deoptimized frame (int)
duke@435 2900 __ movl(rcx, Address(rdi,
duke@435 2901 Deoptimization::UnrollBlock::
duke@435 2902 size_of_deoptimized_frame_offset_in_bytes()));
never@739 2903 __ addptr(rsp, rcx);
duke@435 2904
duke@435 2905 // rsp should be pointing at the return address to the caller (3)
duke@435 2906
duke@435 2907 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2908 if (UseStackBanging) {
duke@435 2909 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2910 __ bang_stack_size(rbx, rcx);
duke@435 2911 }
duke@435 2912
duke@435 2913 // Load address of array of frame pcs into rcx (address*)
never@739 2914 __ movptr(rcx,
never@739 2915 Address(rdi,
never@739 2916 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2917
duke@435 2918 // Trash the return pc
never@739 2919 __ addptr(rsp, wordSize);
duke@435 2920
duke@435 2921 // Load address of array of frame sizes into rsi (intptr_t*)
never@739 2922 __ movptr(rsi, Address(rdi,
never@739 2923 Deoptimization::UnrollBlock::
never@739 2924 frame_sizes_offset_in_bytes()));
duke@435 2925
duke@435 2926 // Counter
duke@435 2927 __ movl(rdx, Address(rdi,
duke@435 2928 Deoptimization::UnrollBlock::
duke@435 2929 number_of_frames_offset_in_bytes())); // (int)
duke@435 2930
duke@435 2931 // Pick up the initial fp we should save
never@739 2932 __ movptr(rbp,
never@739 2933 Address(rdi,
never@739 2934 Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2935
duke@435 2936 // Now adjust the caller's stack to make up for the extra locals but
duke@435 2937 // record the original sp so that we can save it in the skeletal
duke@435 2938 // interpreter frame and the stack walking of interpreter_sender
duke@435 2939 // will get the unextended sp value and not the "real" sp value.
duke@435 2940
duke@435 2941 const Register sender_sp = r8;
duke@435 2942
never@739 2943 __ mov(sender_sp, rsp);
duke@435 2944 __ movl(rbx, Address(rdi,
duke@435 2945 Deoptimization::UnrollBlock::
duke@435 2946 caller_adjustment_offset_in_bytes())); // (int)
never@739 2947 __ subptr(rsp, rbx);
duke@435 2948
duke@435 2949 // Push interpreter frames in a loop
duke@435 2950 Label loop;
duke@435 2951 __ bind(loop);
never@739 2952 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 2953 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand
never@739 2954 __ pushptr(Address(rcx, 0)); // Save return address
never@739 2955 __ enter(); // Save old & set new rbp
never@739 2956 __ subptr(rsp, rbx); // Prolog
never@739 2957 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
never@739 2958 sender_sp); // Make it walkable
duke@435 2959 // This value is corrected by layout_activation_impl
never@739 2960 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 2961 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 2962 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2963 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2964 __ decrementl(rdx); // Decrement counter
duke@435 2965 __ jcc(Assembler::notZero, loop);
never@739 2966 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 2967
duke@435 2968 // Re-push self-frame
duke@435 2969 __ enter(); // Save old & set new rbp
never@739 2970 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
duke@435 2971 // Prolog
duke@435 2972
duke@435 2973 // Use rbp because the frames look interpreted now
duke@435 2974 __ set_last_Java_frame(noreg, rbp, NULL);
duke@435 2975
duke@435 2976 // Call C code. Need thread but NOT official VM entry
duke@435 2977 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2978 // restore return values to their stack-slots with the new SP.
duke@435 2979 // Thread is in rdi already.
duke@435 2980 //
duke@435 2981 // BasicType unpack_frames(JavaThread* thread, int exec_mode);
duke@435 2982
never@739 2983 __ mov(c_rarg0, r15_thread);
duke@435 2984 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
duke@435 2985 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2986
duke@435 2987 // Set an oopmap for the call site
duke@435 2988 oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
duke@435 2989
duke@435 2990 __ reset_last_Java_frame(true, false);
duke@435 2991
duke@435 2992 // Pop self-frame.
duke@435 2993 __ leave(); // Epilog
duke@435 2994
duke@435 2995 // Jump to interpreter
duke@435 2996 __ ret(0);
duke@435 2997
duke@435 2998 // Make sure all code is generated
duke@435 2999 masm->flush();
duke@435 3000
duke@435 3001 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
duke@435 3002 SimpleRuntimeFrame::framesize >> 1);
duke@435 3003 }
duke@435 3004 #endif // COMPILER2
duke@435 3005
duke@435 3006
duke@435 3007 //------------------------------generate_handler_blob------
duke@435 3008 //
duke@435 3009 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3010 // and setup oopmap.
duke@435 3011 //
duke@435 3012 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 3013 assert(StubRoutines::forward_exception_entry() != NULL,
duke@435 3014 "must be generated before");
duke@435 3015
duke@435 3016 ResourceMark rm;
duke@435 3017 OopMapSet *oop_maps = new OopMapSet();
duke@435 3018 OopMap* map;
duke@435 3019
duke@435 3020 // Allocate space for the code. Setup code generation tools.
duke@435 3021 CodeBuffer buffer("handler_blob", 2048, 1024);
duke@435 3022 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3023
duke@435 3024 address start = __ pc();
duke@435 3025 address call_pc = NULL;
duke@435 3026 int frame_size_in_words;
duke@435 3027
duke@435 3028 // Make room for return address (or push it again)
duke@435 3029 if (!cause_return) {
never@739 3030 __ push(rbx);
duke@435 3031 }
duke@435 3032
duke@435 3033 // Save registers, fpu state, and flags
duke@435 3034 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3035
duke@435 3036 // The following is basically a call_VM. However, we need the precise
duke@435 3037 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3038 // work outselves.
duke@435 3039
duke@435 3040 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3041
duke@435 3042 // The return address must always be correct so that frame constructor never
duke@435 3043 // sees an invalid pc.
duke@435 3044
duke@435 3045 if (!cause_return) {
duke@435 3046 // overwrite the dummy value we pushed on entry
never@739 3047 __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
never@739 3048 __ movptr(Address(rbp, wordSize), c_rarg0);
duke@435 3049 }
duke@435 3050
duke@435 3051 // Do the call
never@739 3052 __ mov(c_rarg0, r15_thread);
duke@435 3053 __ call(RuntimeAddress(call_ptr));
duke@435 3054
duke@435 3055 // Set an oopmap for the call site. This oopmap will map all
duke@435 3056 // oop-registers and debug-info registers as callee-saved. This
duke@435 3057 // will allow deoptimization at this safepoint to find all possible
duke@435 3058 // debug-info recordings, as well as let GC find all oops.
duke@435 3059
duke@435 3060 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3061
duke@435 3062 Label noException;
duke@435 3063
duke@435 3064 __ reset_last_Java_frame(false, false);
duke@435 3065
never@739 3066 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3067 __ jcc(Assembler::equal, noException);
duke@435 3068
duke@435 3069 // Exception pending
duke@435 3070
duke@435 3071 RegisterSaver::restore_live_registers(masm);
duke@435 3072
duke@435 3073 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3074
duke@435 3075 // No exception case
duke@435 3076 __ bind(noException);
duke@435 3077
duke@435 3078 // Normal exit, restore registers and exit.
duke@435 3079 RegisterSaver::restore_live_registers(masm);
duke@435 3080
duke@435 3081 __ ret(0);
duke@435 3082
duke@435 3083 // Make sure all code is generated
duke@435 3084 masm->flush();
duke@435 3085
duke@435 3086 // Fill-out other meta info
duke@435 3087 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3088 }
duke@435 3089
duke@435 3090 //
duke@435 3091 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3092 //
duke@435 3093 // Generate a stub that calls into vm to find out the proper destination
duke@435 3094 // of a java call. All the argument registers are live at this point
duke@435 3095 // but since this is generic code we don't know what they are and the caller
duke@435 3096 // must do any gc of the args.
duke@435 3097 //
duke@435 3098 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 3099 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3100
duke@435 3101 // allocate space for the code
duke@435 3102 ResourceMark rm;
duke@435 3103
duke@435 3104 CodeBuffer buffer(name, 1000, 512);
duke@435 3105 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3106
duke@435 3107 int frame_size_in_words;
duke@435 3108
duke@435 3109 OopMapSet *oop_maps = new OopMapSet();
duke@435 3110 OopMap* map = NULL;
duke@435 3111
duke@435 3112 int start = __ offset();
duke@435 3113
duke@435 3114 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3115
duke@435 3116 int frame_complete = __ offset();
duke@435 3117
duke@435 3118 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3119
never@739 3120 __ mov(c_rarg0, r15_thread);
duke@435 3121
duke@435 3122 __ call(RuntimeAddress(destination));
duke@435 3123
duke@435 3124
duke@435 3125 // Set an oopmap for the call site.
duke@435 3126 // We need this not only for callee-saved registers, but also for volatile
duke@435 3127 // registers that the compiler might be keeping live across a safepoint.
duke@435 3128
duke@435 3129 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3130
duke@435 3131 // rax contains the address we are going to jump to assuming no exception got installed
duke@435 3132
duke@435 3133 // clear last_Java_sp
duke@435 3134 __ reset_last_Java_frame(false, false);
duke@435 3135 // check for pending exceptions
duke@435 3136 Label pending;
never@739 3137 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3138 __ jcc(Assembler::notEqual, pending);
duke@435 3139
duke@435 3140 // get the returned methodOop
never@739 3141 __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
never@739 3142 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
never@739 3143
never@739 3144 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3145
duke@435 3146 RegisterSaver::restore_live_registers(masm);
duke@435 3147
duke@435 3148 // We are back the the original state on entry and ready to go.
duke@435 3149
duke@435 3150 __ jmp(rax);
duke@435 3151
duke@435 3152 // Pending exception after the safepoint
duke@435 3153
duke@435 3154 __ bind(pending);
duke@435 3155
duke@435 3156 RegisterSaver::restore_live_registers(masm);
duke@435 3157
duke@435 3158 // exception pending => remove activation and forward to exception handler
duke@435 3159
duke@435 3160 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
duke@435 3161
never@739 3162 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
duke@435 3163 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3164
duke@435 3165 // -------------
duke@435 3166 // make sure all code is generated
duke@435 3167 masm->flush();
duke@435 3168
duke@435 3169 // return the blob
duke@435 3170 // frame_size_words or bytes??
duke@435 3171 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
duke@435 3172 }
duke@435 3173
duke@435 3174
duke@435 3175 void SharedRuntime::generate_stubs() {
duke@435 3176
duke@435 3177 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 3178 "wrong_method_stub");
duke@435 3179 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 3180 "ic_miss_stub");
duke@435 3181 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 3182 "resolve_opt_virtual_call");
duke@435 3183
duke@435 3184 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 3185 "resolve_virtual_call");
duke@435 3186
duke@435 3187 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 3188 "resolve_static_call");
duke@435 3189 _polling_page_safepoint_handler_blob =
duke@435 3190 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3191 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 3192
duke@435 3193 _polling_page_return_handler_blob =
duke@435 3194 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3195 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 3196
duke@435 3197 generate_deopt_blob();
duke@435 3198
duke@435 3199 #ifdef COMPILER2
duke@435 3200 generate_uncommon_trap_blob();
duke@435 3201 #endif // COMPILER2
duke@435 3202 }
duke@435 3203
duke@435 3204
duke@435 3205 #ifdef COMPILER2
duke@435 3206 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
duke@435 3207 //
duke@435 3208 //------------------------------generate_exception_blob---------------------------
duke@435 3209 // creates exception blob at the end
duke@435 3210 // Using exception blob, this code is jumped from a compiled method.
duke@435 3211 // (see emit_exception_handler in x86_64.ad file)
duke@435 3212 //
duke@435 3213 // Given an exception pc at a call we call into the runtime for the
duke@435 3214 // handler in this method. This handler might merely restore state
duke@435 3215 // (i.e. callee save registers) unwind the frame and jump to the
duke@435 3216 // exception handler for the nmethod if there is no Java level handler
duke@435 3217 // for the nmethod.
duke@435 3218 //
duke@435 3219 // This code is entered with a jmp.
duke@435 3220 //
duke@435 3221 // Arguments:
duke@435 3222 // rax: exception oop
duke@435 3223 // rdx: exception pc
duke@435 3224 //
duke@435 3225 // Results:
duke@435 3226 // rax: exception oop
duke@435 3227 // rdx: exception pc in caller or ???
duke@435 3228 // destination: exception handler of caller
duke@435 3229 //
duke@435 3230 // Note: the exception pc MUST be at a call (precise debug information)
duke@435 3231 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
duke@435 3232 //
duke@435 3233
duke@435 3234 void OptoRuntime::generate_exception_blob() {
duke@435 3235 assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
duke@435 3236 assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
duke@435 3237 assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
duke@435 3238
duke@435 3239 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3240
duke@435 3241 // Allocate space for the code
duke@435 3242 ResourceMark rm;
duke@435 3243 // Setup code generation tools
duke@435 3244 CodeBuffer buffer("exception_blob", 2048, 1024);
duke@435 3245 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3246
duke@435 3247
duke@435 3248 address start = __ pc();
duke@435 3249
duke@435 3250 // Exception pc is 'return address' for stack walker
never@739 3251 __ push(rdx);
never@739 3252 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
duke@435 3253
duke@435 3254 // Save callee-saved registers. See x86_64.ad.
duke@435 3255
duke@435 3256 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 3257 // convention will save restore it in prolog/epilog) Other than that
duke@435 3258 // there are no callee save registers now that adapter frames are gone.
duke@435 3259
never@739 3260 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3261
duke@435 3262 // Store exception in Thread object. We cannot pass any arguments to the
duke@435 3263 // handle_exception call, since we do not want to make any assumption
duke@435 3264 // about the size of the frame where the exception happened in.
duke@435 3265 // c_rarg0 is either rdi (Linux) or rcx (Windows).
never@739 3266 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
never@739 3267 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
duke@435 3268
duke@435 3269 // This call does all the hard work. It checks if an exception handler
duke@435 3270 // exists in the method.
duke@435 3271 // If so, it returns the handler address.
duke@435 3272 // If not, it prepares for stack-unwinding, restoring the callee-save
duke@435 3273 // registers of the frame being removed.
duke@435 3274 //
duke@435 3275 // address OptoRuntime::handle_exception_C(JavaThread* thread)
duke@435 3276
duke@435 3277 __ set_last_Java_frame(noreg, noreg, NULL);
never@739 3278 __ mov(c_rarg0, r15_thread);
duke@435 3279 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
duke@435 3280
duke@435 3281 // Set an oopmap for the call site. This oopmap will only be used if we
duke@435 3282 // are unwinding the stack. Hence, all locations will be dead.
duke@435 3283 // Callee-saved registers will be the same as the frame above (i.e.,
duke@435 3284 // handle_exception_stub), since they were restored when we got the
duke@435 3285 // exception.
duke@435 3286
duke@435 3287 OopMapSet* oop_maps = new OopMapSet();
duke@435 3288
duke@435 3289 oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
duke@435 3290
duke@435 3291 __ reset_last_Java_frame(false, false);
duke@435 3292
duke@435 3293 // Restore callee-saved registers
duke@435 3294
duke@435 3295 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 3296 // convention will save restore it in prolog/epilog) Other than that
duke@435 3297 // there are no callee save registers no that adapter frames are gone.
duke@435 3298
never@739 3299 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
never@739 3300
never@739 3301 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
never@739 3302 __ pop(rdx); // No need for exception pc anymore
duke@435 3303
duke@435 3304 // rax: exception handler
duke@435 3305
duke@435 3306 // We have a handler in rax (could be deopt blob).
never@739 3307 __ mov(r8, rax);
duke@435 3308
duke@435 3309 // Get the exception oop
never@739 3310 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
duke@435 3311 // Get the exception pc in case we are deoptimized
never@739 3312 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
duke@435 3313 #ifdef ASSERT
duke@435 3314 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
duke@435 3315 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
duke@435 3316 #endif
duke@435 3317 // Clear the exception oop so GC no longer processes it as a root.
duke@435 3318 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
duke@435 3319
duke@435 3320 // rax: exception oop
duke@435 3321 // r8: exception handler
duke@435 3322 // rdx: exception pc
duke@435 3323 // Jump to handler
duke@435 3324
duke@435 3325 __ jmp(r8);
duke@435 3326
duke@435 3327 // Make sure all code is generated
duke@435 3328 masm->flush();
duke@435 3329
duke@435 3330 // Set exception blob
duke@435 3331 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
duke@435 3332 }
duke@435 3333 #endif // COMPILER2

mercurial