src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 739
dc7f315e41f7
child 947
db4caa99ef11
child 1045
70998f2e05ef
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
duke@435 27
duke@435 28 #define __ masm->
duke@435 29 #ifdef COMPILER2
duke@435 30 UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
duke@435 31 #endif // COMPILER2
duke@435 32
duke@435 33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
duke@435 34 SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 35 SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
duke@435 36 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 37 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 38 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 39 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 40 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 41
duke@435 42 class RegisterSaver {
duke@435 43 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 44 // Capture info about frame layout
duke@435 45 enum layout {
duke@435 46 fpu_state_off = 0,
duke@435 47 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 48 st0_off, st0H_off,
duke@435 49 st1_off, st1H_off,
duke@435 50 st2_off, st2H_off,
duke@435 51 st3_off, st3H_off,
duke@435 52 st4_off, st4H_off,
duke@435 53 st5_off, st5H_off,
duke@435 54 st6_off, st6H_off,
duke@435 55 st7_off, st7H_off,
duke@435 56
duke@435 57 xmm0_off, xmm0H_off,
duke@435 58 xmm1_off, xmm1H_off,
duke@435 59 xmm2_off, xmm2H_off,
duke@435 60 xmm3_off, xmm3H_off,
duke@435 61 xmm4_off, xmm4H_off,
duke@435 62 xmm5_off, xmm5H_off,
duke@435 63 xmm6_off, xmm6H_off,
duke@435 64 xmm7_off, xmm7H_off,
duke@435 65 flags_off,
duke@435 66 rdi_off,
duke@435 67 rsi_off,
duke@435 68 ignore_off, // extra copy of rbp,
duke@435 69 rsp_off,
duke@435 70 rbx_off,
duke@435 71 rdx_off,
duke@435 72 rcx_off,
duke@435 73 rax_off,
duke@435 74 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 75 // will override any oopMap setting for it. We must therefore force the layout
duke@435 76 // so that it agrees with the frame sender code.
duke@435 77 rbp_off,
duke@435 78 return_off, // slot for return address
duke@435 79 reg_save_size };
duke@435 80
duke@435 81
duke@435 82 public:
duke@435 83
duke@435 84 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 85 int* total_frame_words, bool verify_fpu = true);
duke@435 86 static void restore_live_registers(MacroAssembler* masm);
duke@435 87
duke@435 88 static int rax_offset() { return rax_off; }
duke@435 89 static int rbx_offset() { return rbx_off; }
duke@435 90
duke@435 91 // Offsets into the register save area
duke@435 92 // Used by deoptimization when it is managing result register
duke@435 93 // values on its own
duke@435 94
duke@435 95 static int raxOffset(void) { return rax_off; }
duke@435 96 static int rdxOffset(void) { return rdx_off; }
duke@435 97 static int rbxOffset(void) { return rbx_off; }
duke@435 98 static int xmm0Offset(void) { return xmm0_off; }
duke@435 99 // This really returns a slot in the fp save area, which one is not important
duke@435 100 static int fpResultOffset(void) { return st0_off; }
duke@435 101
duke@435 102 // During deoptimization only the result register need to be restored
duke@435 103 // all the other values have already been extracted.
duke@435 104
duke@435 105 static void restore_result_registers(MacroAssembler* masm);
duke@435 106
duke@435 107 };
duke@435 108
duke@435 109 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 110 int* total_frame_words, bool verify_fpu) {
duke@435 111
duke@435 112 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 113 int frame_words = frame_size_in_bytes / wordSize;
duke@435 114 *total_frame_words = frame_words;
duke@435 115
duke@435 116 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 117
duke@435 118 // save registers, fpu state, and flags
duke@435 119 // We assume caller has already has return address slot on the stack
duke@435 120 // We push epb twice in this sequence because we want the real rbp,
never@739 121 // to be under the return like a normal enter and we want to use pusha
duke@435 122 // We push by hand instead of pusing push
duke@435 123 __ enter();
never@739 124 __ pusha();
never@739 125 __ pushf();
never@739 126 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 127 __ push_FPU_state(); // Save FPU state & init
duke@435 128
duke@435 129 if (verify_fpu) {
duke@435 130 // Some stubs may have non standard FPU control word settings so
duke@435 131 // only check and reset the value when it required to be the
duke@435 132 // standard value. The safepoint blob in particular can be used
duke@435 133 // in methods which are using the 24 bit control word for
duke@435 134 // optimized float math.
duke@435 135
duke@435 136 #ifdef ASSERT
duke@435 137 // Make sure the control word has the expected value
duke@435 138 Label ok;
duke@435 139 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 140 __ jccb(Assembler::equal, ok);
duke@435 141 __ stop("corrupted control word detected");
duke@435 142 __ bind(ok);
duke@435 143 #endif
duke@435 144
duke@435 145 // Reset the control word to guard against exceptions being unmasked
duke@435 146 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 147 // into the on stack copy and then reload that to make sure that the
duke@435 148 // current and future values are correct.
duke@435 149 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 150 }
duke@435 151
duke@435 152 __ frstor(Address(rsp, 0));
duke@435 153 if (!verify_fpu) {
duke@435 154 // Set the control word so that exceptions are masked for the
duke@435 155 // following code.
duke@435 156 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 157 }
duke@435 158
duke@435 159 // Save the FPU registers in de-opt-able form
duke@435 160
duke@435 161 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 162 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 163 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 164 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 165 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 166 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 167 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 168 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 169
duke@435 170 if( UseSSE == 1 ) { // Save the XMM state
duke@435 171 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 172 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 173 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 174 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 175 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 176 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 177 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 178 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 179 } else if( UseSSE >= 2 ) {
duke@435 180 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 181 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 182 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 183 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 184 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 185 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 186 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 187 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 188 }
duke@435 189
duke@435 190 // Set an oopmap for the call site. This oopmap will map all
duke@435 191 // oop-registers and debug-info registers as callee-saved. This
duke@435 192 // will allow deoptimization at this safepoint to find all possible
duke@435 193 // debug-info recordings, as well as let GC find all oops.
duke@435 194
duke@435 195 OopMapSet *oop_maps = new OopMapSet();
duke@435 196 OopMap* map = new OopMap( frame_words, 0 );
duke@435 197
duke@435 198 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 199
duke@435 200 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 201 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 202 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 203 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 204 // rbp, location is known implicitly, no oopMap
duke@435 205 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 206 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 207 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 210 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 211 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 223 // %%% This is really a waste but we'll keep things as they were for now
duke@435 224 if (true) {
duke@435 225 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 226 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 227 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 228 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 229 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 230 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 231 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 232 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 235 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 236 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 237 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 238 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 239 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 242 #undef NEXTREG
duke@435 243 #undef STACK_OFFSET
duke@435 244 }
duke@435 245
duke@435 246 return map;
duke@435 247
duke@435 248 }
duke@435 249
duke@435 250 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 251
duke@435 252 // Recover XMM & FPU state
duke@435 253 if( UseSSE == 1 ) {
duke@435 254 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 255 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 256 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 257 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 258 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 259 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 260 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 261 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 262 } else if( UseSSE >= 2 ) {
duke@435 263 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 264 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 265 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 266 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 267 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 268 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 269 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 270 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 271 }
duke@435 272 __ pop_FPU_state();
never@739 273 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 274
never@739 275 __ popf();
never@739 276 __ popa();
duke@435 277 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 278 __ pop(rbp);
duke@435 279
duke@435 280 }
duke@435 281
duke@435 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 283
duke@435 284 // Just restore result register. Only used by deoptimization. By
duke@435 285 // now any callee save register that needs to be restore to a c2
duke@435 286 // caller of the deoptee has been extracted into the vframeArray
duke@435 287 // and will be stuffed into the c2i adapter we create for later
duke@435 288 // restoration so only result registers need to be restored here.
duke@435 289 //
duke@435 290
duke@435 291 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 292
duke@435 293 // Recover XMM & FPU state
duke@435 294 if( UseSSE == 1 ) {
duke@435 295 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 296 } else if( UseSSE >= 2 ) {
duke@435 297 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 298 }
never@739 299 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 300 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 301 // Pop all of the register save are off the stack except the return address
never@739 302 __ addptr(rsp, return_off * wordSize);
duke@435 303 }
duke@435 304
duke@435 305 // The java_calling_convention describes stack locations as ideal slots on
duke@435 306 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 307 // (like the placement of the register window) the slots must be biased by
duke@435 308 // the following value.
duke@435 309 static int reg2offset_in(VMReg r) {
duke@435 310 // Account for saved rbp, and return address
duke@435 311 // This should really be in_preserve_stack_slots
duke@435 312 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 313 }
duke@435 314
duke@435 315 static int reg2offset_out(VMReg r) {
duke@435 316 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 317 }
duke@435 318
duke@435 319 // ---------------------------------------------------------------------------
duke@435 320 // Read the array of BasicTypes from a signature, and compute where the
duke@435 321 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 322 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 323 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 324 // as framesizes are fixed.
duke@435 325 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 326 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 327 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 328 // integer registers.
duke@435 329
duke@435 330 // Pass first two oop/int args in registers ECX and EDX.
duke@435 331 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 332 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 333 // the doubles will grab the registers before the floats will.
duke@435 334
duke@435 335 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 336 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 337 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 338
duke@435 339
duke@435 340 // ---------------------------------------------------------------------------
duke@435 341 // The compiled Java calling convention.
duke@435 342 // Pass first two oop/int args in registers ECX and EDX.
duke@435 343 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 344 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 345 // the doubles will grab the registers before the floats will.
duke@435 346 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 347 VMRegPair *regs,
duke@435 348 int total_args_passed,
duke@435 349 int is_outgoing) {
duke@435 350 uint stack = 0; // Starting stack position for args on stack
duke@435 351
duke@435 352
duke@435 353 // Pass first two oop/int args in registers ECX and EDX.
duke@435 354 uint reg_arg0 = 9999;
duke@435 355 uint reg_arg1 = 9999;
duke@435 356
duke@435 357 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 358 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 359 // the doubles will grab the registers before the floats will.
duke@435 360 // CNC - TURNED OFF FOR non-SSE.
duke@435 361 // On Intel we have to round all doubles (and most floats) at
duke@435 362 // call sites by storing to the stack in any case.
duke@435 363 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 364 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 365 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 366 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 367 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 368 uint freg_arg0 = 9999+fargs;
duke@435 369 uint freg_arg1 = 9999+fargs;
duke@435 370
duke@435 371 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 372 int i;
duke@435 373 for( i = 0; i < total_args_passed; i++) {
duke@435 374 if( sig_bt[i] == T_DOUBLE ) {
duke@435 375 // first 2 doubles go in registers
duke@435 376 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 377 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 378 else // Else double is passed low on the stack to be aligned.
duke@435 379 stack += 2;
duke@435 380 } else if( sig_bt[i] == T_LONG ) {
duke@435 381 stack += 2;
duke@435 382 }
duke@435 383 }
duke@435 384 int dstack = 0; // Separate counter for placing doubles
duke@435 385
duke@435 386 // Now pick where all else goes.
duke@435 387 for( i = 0; i < total_args_passed; i++) {
duke@435 388 // From the type and the argument number (count) compute the location
duke@435 389 switch( sig_bt[i] ) {
duke@435 390 case T_SHORT:
duke@435 391 case T_CHAR:
duke@435 392 case T_BYTE:
duke@435 393 case T_BOOLEAN:
duke@435 394 case T_INT:
duke@435 395 case T_ARRAY:
duke@435 396 case T_OBJECT:
duke@435 397 case T_ADDRESS:
duke@435 398 if( reg_arg0 == 9999 ) {
duke@435 399 reg_arg0 = i;
duke@435 400 regs[i].set1(rcx->as_VMReg());
duke@435 401 } else if( reg_arg1 == 9999 ) {
duke@435 402 reg_arg1 = i;
duke@435 403 regs[i].set1(rdx->as_VMReg());
duke@435 404 } else {
duke@435 405 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 406 }
duke@435 407 break;
duke@435 408 case T_FLOAT:
duke@435 409 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 410 freg_arg0 = i;
duke@435 411 regs[i].set1(xmm0->as_VMReg());
duke@435 412 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 413 freg_arg1 = i;
duke@435 414 regs[i].set1(xmm1->as_VMReg());
duke@435 415 } else {
duke@435 416 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 417 }
duke@435 418 break;
duke@435 419 case T_LONG:
duke@435 420 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 421 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 422 dstack += 2;
duke@435 423 break;
duke@435 424 case T_DOUBLE:
duke@435 425 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 426 if( freg_arg0 == (uint)i ) {
duke@435 427 regs[i].set2(xmm0->as_VMReg());
duke@435 428 } else if( freg_arg1 == (uint)i ) {
duke@435 429 regs[i].set2(xmm1->as_VMReg());
duke@435 430 } else {
duke@435 431 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 432 dstack += 2;
duke@435 433 }
duke@435 434 break;
duke@435 435 case T_VOID: regs[i].set_bad(); break;
duke@435 436 break;
duke@435 437 default:
duke@435 438 ShouldNotReachHere();
duke@435 439 break;
duke@435 440 }
duke@435 441 }
duke@435 442
duke@435 443 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 444 return round_to(stack, 2);
duke@435 445 }
duke@435 446
duke@435 447 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 448 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 449 Label L;
duke@435 450 __ verify_oop(rbx);
never@739 451 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 452 __ jcc(Assembler::equal, L);
duke@435 453 // Schedule the branch target address early.
duke@435 454 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 455 // rax, isn't live so capture return address while we easily can
never@739 456 __ movptr(rax, Address(rsp, 0));
never@739 457 __ pusha();
never@739 458 __ pushf();
duke@435 459
duke@435 460 if (UseSSE == 1) {
never@739 461 __ subptr(rsp, 2*wordSize);
duke@435 462 __ movflt(Address(rsp, 0), xmm0);
duke@435 463 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 464 }
duke@435 465 if (UseSSE >= 2) {
never@739 466 __ subptr(rsp, 4*wordSize);
duke@435 467 __ movdbl(Address(rsp, 0), xmm0);
duke@435 468 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 469 }
duke@435 470 #ifdef COMPILER2
duke@435 471 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 472 if (UseSSE >= 2) {
duke@435 473 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 474 } else {
duke@435 475 __ empty_FPU_stack();
duke@435 476 }
duke@435 477 #endif /* COMPILER2 */
duke@435 478
duke@435 479 // VM needs caller's callsite
never@739 480 __ push(rax);
duke@435 481 // VM needs target method
never@739 482 __ push(rbx);
duke@435 483 __ verify_oop(rbx);
duke@435 484 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 485 __ addptr(rsp, 2*wordSize);
duke@435 486
duke@435 487 if (UseSSE == 1) {
duke@435 488 __ movflt(xmm0, Address(rsp, 0));
duke@435 489 __ movflt(xmm1, Address(rsp, wordSize));
never@739 490 __ addptr(rsp, 2*wordSize);
duke@435 491 }
duke@435 492 if (UseSSE >= 2) {
duke@435 493 __ movdbl(xmm0, Address(rsp, 0));
duke@435 494 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 495 __ addptr(rsp, 4*wordSize);
duke@435 496 }
duke@435 497
never@739 498 __ popf();
never@739 499 __ popa();
duke@435 500 __ bind(L);
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504 // Helper function to put tags in interpreter stack.
duke@435 505 static void tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
duke@435 506 if (TaggedStackInterpreter) {
duke@435 507 int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
duke@435 508 if (sig == T_OBJECT || sig == T_ARRAY) {
never@739 509 __ movptr(Address(rsp, tag_offset), frame::TagReference);
duke@435 510 } else if (sig == T_LONG || sig == T_DOUBLE) {
duke@435 511 int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
never@739 512 __ movptr(Address(rsp, next_tag_offset), frame::TagValue);
never@739 513 __ movptr(Address(rsp, tag_offset), frame::TagValue);
duke@435 514 } else {
never@739 515 __ movptr(Address(rsp, tag_offset), frame::TagValue);
duke@435 516 }
duke@435 517 }
duke@435 518 }
duke@435 519
duke@435 520 // Double and long values with Tagged stacks are not contiguous.
duke@435 521 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
duke@435 522 int next_off = st_off - Interpreter::stackElementSize();
duke@435 523 if (TaggedStackInterpreter) {
duke@435 524 __ movdbl(Address(rsp, next_off), r);
duke@435 525 // Move top half up and put tag in the middle.
duke@435 526 __ movl(rdi, Address(rsp, next_off+wordSize));
duke@435 527 __ movl(Address(rsp, st_off), rdi);
duke@435 528 tag_stack(masm, T_DOUBLE, next_off);
duke@435 529 } else {
duke@435 530 __ movdbl(Address(rsp, next_off), r);
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 535 int total_args_passed,
duke@435 536 int comp_args_on_stack,
duke@435 537 const BasicType *sig_bt,
duke@435 538 const VMRegPair *regs,
duke@435 539 Label& skip_fixup) {
duke@435 540 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 541 // at all. We've come from compiled code and are attempting to jump to the
duke@435 542 // interpreter, which means the caller made a static call to get here
duke@435 543 // (vcalls always get a compiled target if there is one). Check for a
duke@435 544 // compiled target. If there is one, we need to patch the caller's call.
duke@435 545 patch_callers_callsite(masm);
duke@435 546
duke@435 547 __ bind(skip_fixup);
duke@435 548
duke@435 549 #ifdef COMPILER2
duke@435 550 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 551 if (UseSSE >= 2) {
duke@435 552 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 553 } else {
duke@435 554 __ empty_FPU_stack();
duke@435 555 }
duke@435 556 #endif /* COMPILER2 */
duke@435 557
duke@435 558 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 559 // stack_element_size is the
duke@435 560 // space we need.
duke@435 561 int extraspace = total_args_passed * Interpreter::stackElementSize();
duke@435 562
duke@435 563 // Get return address
never@739 564 __ pop(rax);
duke@435 565
duke@435 566 // set senderSP value
never@739 567 __ movptr(rsi, rsp);
never@739 568
never@739 569 __ subptr(rsp, extraspace);
duke@435 570
duke@435 571 // Now write the args into the outgoing interpreter space
duke@435 572 for (int i = 0; i < total_args_passed; i++) {
duke@435 573 if (sig_bt[i] == T_VOID) {
duke@435 574 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 575 continue;
duke@435 576 }
duke@435 577
duke@435 578 // st_off points to lowest address on stack.
duke@435 579 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
never@739 580 int next_off = st_off - Interpreter::stackElementSize();
never@739 581
duke@435 582 // Say 4 args:
duke@435 583 // i st_off
duke@435 584 // 0 12 T_LONG
duke@435 585 // 1 8 T_VOID
duke@435 586 // 2 4 T_OBJECT
duke@435 587 // 3 0 T_BOOL
duke@435 588 VMReg r_1 = regs[i].first();
duke@435 589 VMReg r_2 = regs[i].second();
duke@435 590 if (!r_1->is_valid()) {
duke@435 591 assert(!r_2->is_valid(), "");
duke@435 592 continue;
duke@435 593 }
duke@435 594
duke@435 595 if (r_1->is_stack()) {
duke@435 596 // memory to memory use fpu stack top
duke@435 597 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 598
duke@435 599 if (!r_2->is_valid()) {
duke@435 600 __ movl(rdi, Address(rsp, ld_off));
never@739 601 __ movptr(Address(rsp, st_off), rdi);
duke@435 602 tag_stack(masm, sig_bt[i], st_off);
duke@435 603 } else {
duke@435 604
duke@435 605 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 606 // st_off == MSW, st_off-wordSize == LSW
duke@435 607
never@739 608 __ movptr(rdi, Address(rsp, ld_off));
never@739 609 __ movptr(Address(rsp, next_off), rdi);
never@739 610 #ifndef _LP64
never@739 611 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 612 __ movptr(Address(rsp, st_off), rdi);
never@739 613 #else
never@739 614 #ifdef ASSERT
never@739 615 // Overwrite the unused slot with known junk
never@739 616 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 617 __ movptr(Address(rsp, st_off), rax);
never@739 618 #endif /* ASSERT */
never@739 619 #endif // _LP64
duke@435 620 tag_stack(masm, sig_bt[i], next_off);
duke@435 621 }
duke@435 622 } else if (r_1->is_Register()) {
duke@435 623 Register r = r_1->as_Register();
duke@435 624 if (!r_2->is_valid()) {
duke@435 625 __ movl(Address(rsp, st_off), r);
duke@435 626 tag_stack(masm, sig_bt[i], st_off);
duke@435 627 } else {
duke@435 628 // long/double in gpr
never@739 629 NOT_LP64(ShouldNotReachHere());
never@739 630 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 631 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 632 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 633 // long/double in gpr
never@739 634 #ifdef ASSERT
never@739 635 // Overwrite the unused slot with known junk
never@739 636 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 637 __ movptr(Address(rsp, st_off), rax);
never@739 638 #endif /* ASSERT */
never@739 639 __ movptr(Address(rsp, next_off), r);
never@739 640 tag_stack(masm, sig_bt[i], next_off);
never@739 641 } else {
never@739 642 __ movptr(Address(rsp, st_off), r);
never@739 643 tag_stack(masm, sig_bt[i], st_off);
never@739 644 }
duke@435 645 }
duke@435 646 } else {
duke@435 647 assert(r_1->is_XMMRegister(), "");
duke@435 648 if (!r_2->is_valid()) {
duke@435 649 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 650 tag_stack(masm, sig_bt[i], st_off);
duke@435 651 } else {
duke@435 652 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 653 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 654 }
duke@435 655 }
duke@435 656 }
duke@435 657
duke@435 658 // Schedule the branch target address early.
never@739 659 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 660 // And repush original return address
never@739 661 __ push(rax);
duke@435 662 __ jmp(rcx);
duke@435 663 }
duke@435 664
duke@435 665
duke@435 666 // For tagged stacks, double or long value aren't contiguous on the stack
duke@435 667 // so get them contiguous for the xmm load
duke@435 668 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
duke@435 669 int next_val_off = ld_off - Interpreter::stackElementSize();
duke@435 670 if (TaggedStackInterpreter) {
duke@435 671 // use tag slot temporarily for MSW
never@739 672 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 673 __ movptr(Address(saved_sp, next_val_off+wordSize), rsi);
duke@435 674 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 675 // restore tag
never@739 676 __ movptr(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
duke@435 677 } else {
duke@435 678 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 683 int total_args_passed,
duke@435 684 int comp_args_on_stack,
duke@435 685 const BasicType *sig_bt,
duke@435 686 const VMRegPair *regs) {
duke@435 687 // we're being called from the interpreter but need to find the
duke@435 688 // compiled return entry point. The return address on the stack
duke@435 689 // should point at it and we just need to pull the old value out.
duke@435 690 // load up the pointer to the compiled return entry point and
duke@435 691 // rewrite our return pc. The code is arranged like so:
duke@435 692 //
duke@435 693 // .word Interpreter::return_sentinel
duke@435 694 // .word address_of_compiled_return_point
duke@435 695 // return_entry_point: blah_blah_blah
duke@435 696 //
duke@435 697 // So we can find the appropriate return point by loading up the word
duke@435 698 // just prior to the current return address we have on the stack.
duke@435 699 //
duke@435 700 // We will only enter here from an interpreted frame and never from after
duke@435 701 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 702 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 703 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 704 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 705
duke@435 706
duke@435 707 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 708 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 709 // code goes non-entrant while we get args ready.
duke@435 710
duke@435 711 // Pick up the return address
never@739 712 __ movptr(rax, Address(rsp, 0));
duke@435 713
duke@435 714 // If UseSSE >= 2 then no cleanup is needed on the return to the
duke@435 715 // interpreter so skip fixing up the return entry point unless
duke@435 716 // VerifyFPU is enabled.
duke@435 717 if (UseSSE < 2 || VerifyFPU) {
duke@435 718 Label skip, chk_int;
duke@435 719 // If we were called from the call stub we need to do a little bit different
duke@435 720 // cleanup than if the interpreter returned to the call stub.
duke@435 721
duke@435 722 ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
never@739 723 __ cmpptr(rax, stub_return_address.addr());
duke@435 724 __ jcc(Assembler::notEqual, chk_int);
never@739 725 assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
never@739 726 __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
duke@435 727 __ jmp(skip);
duke@435 728
duke@435 729 // It must be the interpreter since we never get here via a c2i (unlike Azul)
duke@435 730
duke@435 731 __ bind(chk_int);
duke@435 732 #ifdef ASSERT
duke@435 733 {
duke@435 734 Label ok;
never@739 735 __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
duke@435 736 __ jcc(Assembler::equal, ok);
duke@435 737 __ int3();
duke@435 738 __ bind(ok);
duke@435 739 }
duke@435 740 #endif // ASSERT
never@739 741 __ movptr(rax, Address(rax, -wordSize));
duke@435 742 __ bind(skip);
duke@435 743 }
duke@435 744
duke@435 745 // rax, now contains the compiled return entry point which will do an
duke@435 746 // cleanup needed for the return from compiled to interpreted.
duke@435 747
duke@435 748 // Must preserve original SP for loading incoming arguments because
duke@435 749 // we need to align the outgoing SP for compiled code.
never@739 750 __ movptr(rdi, rsp);
duke@435 751
duke@435 752 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 753 // in registers, we will occasionally have no stack args.
duke@435 754 int comp_words_on_stack = 0;
duke@435 755 if (comp_args_on_stack) {
duke@435 756 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 757 // registers are below. By subtracting stack0, we either get a negative
duke@435 758 // number (all values in registers) or the maximum stack slot accessed.
duke@435 759 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 760 // Convert 4-byte stack slots to words.
duke@435 761 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 762 // Round up to miminum stack alignment, in wordSize
duke@435 763 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 764 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 765 }
duke@435 766
duke@435 767 // Align the outgoing SP
never@739 768 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 769
duke@435 770 // push the return address on the stack (note that pushing, rather
duke@435 771 // than storing it, yields the correct frame alignment for the callee)
never@739 772 __ push(rax);
duke@435 773
duke@435 774 // Put saved SP in another register
duke@435 775 const Register saved_sp = rax;
never@739 776 __ movptr(saved_sp, rdi);
duke@435 777
duke@435 778
duke@435 779 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 780 // Pre-load the register-jump target early, to schedule it better.
never@739 781 __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 782
duke@435 783 // Now generate the shuffle code. Pick up all register args and move the
duke@435 784 // rest through the floating point stack top.
duke@435 785 for (int i = 0; i < total_args_passed; i++) {
duke@435 786 if (sig_bt[i] == T_VOID) {
duke@435 787 // Longs and doubles are passed in native word order, but misaligned
duke@435 788 // in the 32-bit build.
duke@435 789 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 790 continue;
duke@435 791 }
duke@435 792
duke@435 793 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 794
duke@435 795 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 796 "scrambled load targets?");
duke@435 797 // Load in argument order going down.
duke@435 798 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 799 // Point to interpreter value (vs. tag)
duke@435 800 int next_off = ld_off - Interpreter::stackElementSize();
duke@435 801 //
duke@435 802 //
duke@435 803 //
duke@435 804 VMReg r_1 = regs[i].first();
duke@435 805 VMReg r_2 = regs[i].second();
duke@435 806 if (!r_1->is_valid()) {
duke@435 807 assert(!r_2->is_valid(), "");
duke@435 808 continue;
duke@435 809 }
duke@435 810 if (r_1->is_stack()) {
duke@435 811 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 812 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 813
duke@435 814 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 815 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 816 // we be generated.
duke@435 817 if (!r_2->is_valid()) {
duke@435 818 // __ fld_s(Address(saved_sp, ld_off));
duke@435 819 // __ fstp_s(Address(rsp, st_off));
duke@435 820 __ movl(rsi, Address(saved_sp, ld_off));
never@739 821 __ movptr(Address(rsp, st_off), rsi);
duke@435 822 } else {
duke@435 823 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 824 // are accessed as negative so LSW is at LOW address
duke@435 825
duke@435 826 // ld_off is MSW so get LSW
duke@435 827 // st_off is LSW (i.e. reg.first())
duke@435 828 // __ fld_d(Address(saved_sp, next_off));
duke@435 829 // __ fstp_d(Address(rsp, st_off));
never@739 830 //
never@739 831 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 832 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 833 // So we must adjust where to pick up the data to match the interpreter.
never@739 834 //
never@739 835 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 836 // are accessed as negative so LSW is at LOW address
never@739 837
never@739 838 // ld_off is MSW so get LSW
never@739 839 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 840 next_off : ld_off;
never@739 841 __ movptr(rsi, Address(saved_sp, offset));
never@739 842 __ movptr(Address(rsp, st_off), rsi);
never@739 843 #ifndef _LP64
never@739 844 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 845 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 846 #endif // _LP64
duke@435 847 }
duke@435 848 } else if (r_1->is_Register()) { // Register argument
duke@435 849 Register r = r_1->as_Register();
duke@435 850 assert(r != rax, "must be different");
duke@435 851 if (r_2->is_valid()) {
never@739 852 //
never@739 853 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 854 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 855 // So we must adjust where to pick up the data to match the interpreter.
never@739 856
never@739 857 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 858 next_off : ld_off;
never@739 859
never@739 860 // this can be a misaligned move
never@739 861 __ movptr(r, Address(saved_sp, offset));
never@739 862 #ifndef _LP64
duke@435 863 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 864 // Remember r_1 is low address (and LSB on x86)
duke@435 865 // So r_2 gets loaded from high address regardless of the platform
never@739 866 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 867 #endif // _LP64
duke@435 868 } else {
duke@435 869 __ movl(r, Address(saved_sp, ld_off));
duke@435 870 }
duke@435 871 } else {
duke@435 872 assert(r_1->is_XMMRegister(), "");
duke@435 873 if (!r_2->is_valid()) {
duke@435 874 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 875 } else {
duke@435 876 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 877 }
duke@435 878 }
duke@435 879 }
duke@435 880
duke@435 881 // 6243940 We might end up in handle_wrong_method if
duke@435 882 // the callee is deoptimized as we race thru here. If that
duke@435 883 // happens we don't want to take a safepoint because the
duke@435 884 // caller frame will look interpreted and arguments are now
duke@435 885 // "compiled" so it is much better to make this transition
duke@435 886 // invisible to the stack walking code. Unfortunately if
duke@435 887 // we try and find the callee by normal means a safepoint
duke@435 888 // is possible. So we stash the desired callee in the thread
duke@435 889 // and the vm will find there should this case occur.
duke@435 890
duke@435 891 __ get_thread(rax);
never@739 892 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 893
duke@435 894 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 895 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 896 // resolve stubs return the result (the method) in rax,.
duke@435 897 // I'd love to fix this.
never@739 898 __ mov(rax, rbx);
duke@435 899
duke@435 900 __ jmp(rdi);
duke@435 901 }
duke@435 902
duke@435 903 // ---------------------------------------------------------------
duke@435 904 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 905 int total_args_passed,
duke@435 906 int comp_args_on_stack,
duke@435 907 const BasicType *sig_bt,
duke@435 908 const VMRegPair *regs) {
duke@435 909 address i2c_entry = __ pc();
duke@435 910
duke@435 911 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 912
duke@435 913 // -------------------------------------------------------------------------
duke@435 914 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 915 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 916 // need to be unpacked into the interpreter layout. This will almost always
duke@435 917 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 918 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 919 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 920 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 921
duke@435 922 address c2i_unverified_entry = __ pc();
duke@435 923 Label skip_fixup;
duke@435 924
duke@435 925 Register holder = rax;
duke@435 926 Register receiver = rcx;
duke@435 927 Register temp = rbx;
duke@435 928
duke@435 929 {
duke@435 930
duke@435 931 Label missed;
duke@435 932
duke@435 933 __ verify_oop(holder);
never@739 934 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 935 __ verify_oop(temp);
duke@435 936
never@739 937 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 938 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 939 __ jcc(Assembler::notEqual, missed);
duke@435 940 // Method might have been compiled since the call site was patched to
duke@435 941 // interpreted if that is the case treat it as a miss so we can get
duke@435 942 // the call site corrected.
never@739 943 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 944 __ jcc(Assembler::equal, skip_fixup);
duke@435 945
duke@435 946 __ bind(missed);
duke@435 947 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 948 }
duke@435 949
duke@435 950 address c2i_entry = __ pc();
duke@435 951
duke@435 952 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 953
duke@435 954 __ flush();
duke@435 955 return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 956 }
duke@435 957
duke@435 958 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 959 VMRegPair *regs,
duke@435 960 int total_args_passed) {
duke@435 961 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 962 // the arguments NOT counting out_preserve_stack_slots.
duke@435 963
duke@435 964 uint stack = 0; // All arguments on stack
duke@435 965
duke@435 966 for( int i = 0; i < total_args_passed; i++) {
duke@435 967 // From the type and the argument number (count) compute the location
duke@435 968 switch( sig_bt[i] ) {
duke@435 969 case T_BOOLEAN:
duke@435 970 case T_CHAR:
duke@435 971 case T_FLOAT:
duke@435 972 case T_BYTE:
duke@435 973 case T_SHORT:
duke@435 974 case T_INT:
duke@435 975 case T_OBJECT:
duke@435 976 case T_ARRAY:
duke@435 977 case T_ADDRESS:
duke@435 978 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 979 break;
duke@435 980 case T_LONG:
duke@435 981 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 982 // Since C arguments do not get reversed, the ordering for
duke@435 983 // doubles on the stack must be opposite the Java convention
duke@435 984 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 985 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 986 stack += 2;
duke@435 987 break;
duke@435 988 case T_VOID: regs[i].set_bad(); break;
duke@435 989 default:
duke@435 990 ShouldNotReachHere();
duke@435 991 break;
duke@435 992 }
duke@435 993 }
duke@435 994 return stack;
duke@435 995 }
duke@435 996
duke@435 997 // A simple move of integer like type
duke@435 998 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 999 if (src.first()->is_stack()) {
duke@435 1000 if (dst.first()->is_stack()) {
duke@435 1001 // stack to stack
duke@435 1002 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1003 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 1004 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1005 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1006 } else {
duke@435 1007 // stack to reg
never@739 1008 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1009 }
duke@435 1010 } else if (dst.first()->is_stack()) {
duke@435 1011 // reg to stack
never@739 1012 // no need to sign extend on 64bit
never@739 1013 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1014 } else {
never@739 1015 if (dst.first() != src.first()) {
never@739 1016 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 1017 }
duke@435 1018 }
duke@435 1019 }
duke@435 1020
duke@435 1021 // An oop arg. Must pass a handle not the oop itself
duke@435 1022 static void object_move(MacroAssembler* masm,
duke@435 1023 OopMap* map,
duke@435 1024 int oop_handle_offset,
duke@435 1025 int framesize_in_slots,
duke@435 1026 VMRegPair src,
duke@435 1027 VMRegPair dst,
duke@435 1028 bool is_receiver,
duke@435 1029 int* receiver_offset) {
duke@435 1030
duke@435 1031 // Because of the calling conventions we know that src can be a
duke@435 1032 // register or a stack location. dst can only be a stack location.
duke@435 1033
duke@435 1034 assert(dst.first()->is_stack(), "must be stack");
duke@435 1035 // must pass a handle. First figure out the location we use as a handle
duke@435 1036
duke@435 1037 if (src.first()->is_stack()) {
duke@435 1038 // Oop is already on the stack as an argument
duke@435 1039 Register rHandle = rax;
duke@435 1040 Label nil;
never@739 1041 __ xorptr(rHandle, rHandle);
never@739 1042 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 1043 __ jcc(Assembler::equal, nil);
never@739 1044 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1045 __ bind(nil);
never@739 1046 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1047
duke@435 1048 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1049 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1050 if (is_receiver) {
duke@435 1051 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1052 }
duke@435 1053 } else {
duke@435 1054 // Oop is in an a register we must store it to the space we reserve
duke@435 1055 // on the stack for oop_handles
duke@435 1056 const Register rOop = src.first()->as_Register();
duke@435 1057 const Register rHandle = rax;
duke@435 1058 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1059 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1060 Label skip;
never@739 1061 __ movptr(Address(rsp, offset), rOop);
duke@435 1062 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 1063 __ xorptr(rHandle, rHandle);
never@739 1064 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 1065 __ jcc(Assembler::equal, skip);
never@739 1066 __ lea(rHandle, Address(rsp, offset));
duke@435 1067 __ bind(skip);
duke@435 1068 // Store the handle parameter
never@739 1069 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1070 if (is_receiver) {
duke@435 1071 *receiver_offset = offset;
duke@435 1072 }
duke@435 1073 }
duke@435 1074 }
duke@435 1075
duke@435 1076 // A float arg may have to do float reg int reg conversion
duke@435 1077 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1078 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1079
duke@435 1080 // Because of the calling convention we know that src is either a stack location
duke@435 1081 // or an xmm register. dst can only be a stack location.
duke@435 1082
duke@435 1083 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1084
duke@435 1085 if (src.first()->is_stack()) {
duke@435 1086 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1087 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1088 } else {
duke@435 1089 // reg to stack
duke@435 1090 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1091 }
duke@435 1092 }
duke@435 1093
duke@435 1094 // A long move
duke@435 1095 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1096
duke@435 1097 // The only legal possibility for a long_move VMRegPair is:
duke@435 1098 // 1: two stack slots (possibly unaligned)
duke@435 1099 // as neither the java or C calling convention will use registers
duke@435 1100 // for longs.
duke@435 1101
duke@435 1102 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1103 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1104 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1105 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1106 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1107 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1108 } else {
duke@435 1109 ShouldNotReachHere();
duke@435 1110 }
duke@435 1111 }
duke@435 1112
duke@435 1113 // A double move
duke@435 1114 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1115
duke@435 1116 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1117 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1118
duke@435 1119 // Because of the calling convention we know that src is either
duke@435 1120 // 1: a single physical register (xmm registers only)
duke@435 1121 // 2: two stack slots (possibly unaligned)
duke@435 1122 // dst can only be a pair of stack slots.
duke@435 1123
duke@435 1124 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1125
duke@435 1126 if (src.first()->is_stack()) {
duke@435 1127 // source is all stack
never@739 1128 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1129 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1130 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1131 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1132 } else {
duke@435 1133 // reg to stack
duke@435 1134 // No worries about stack alignment
duke@435 1135 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1136 }
duke@435 1137 }
duke@435 1138
duke@435 1139
duke@435 1140 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1141 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1142 // which by this time is free to use
duke@435 1143 switch (ret_type) {
duke@435 1144 case T_FLOAT:
duke@435 1145 __ fstp_s(Address(rbp, -wordSize));
duke@435 1146 break;
duke@435 1147 case T_DOUBLE:
duke@435 1148 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1149 break;
duke@435 1150 case T_VOID: break;
duke@435 1151 case T_LONG:
never@739 1152 __ movptr(Address(rbp, -wordSize), rax);
never@739 1153 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1154 break;
duke@435 1155 default: {
never@739 1156 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1157 }
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1162 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1163 // which by this time is free to use
duke@435 1164 switch (ret_type) {
duke@435 1165 case T_FLOAT:
duke@435 1166 __ fld_s(Address(rbp, -wordSize));
duke@435 1167 break;
duke@435 1168 case T_DOUBLE:
duke@435 1169 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1170 break;
duke@435 1171 case T_LONG:
never@739 1172 __ movptr(rax, Address(rbp, -wordSize));
never@739 1173 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1174 break;
duke@435 1175 case T_VOID: break;
duke@435 1176 default: {
never@739 1177 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1178 }
duke@435 1179 }
duke@435 1180 }
duke@435 1181
duke@435 1182 // ---------------------------------------------------------------------------
duke@435 1183 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1184 // in the Java compiled code convention, marshals them to the native
duke@435 1185 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1186 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1187 // returns.
duke@435 1188 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1189 methodHandle method,
duke@435 1190 int total_in_args,
duke@435 1191 int comp_args_on_stack,
duke@435 1192 BasicType *in_sig_bt,
duke@435 1193 VMRegPair *in_regs,
duke@435 1194 BasicType ret_type) {
duke@435 1195
duke@435 1196 // An OopMap for lock (and class if static)
duke@435 1197 OopMapSet *oop_maps = new OopMapSet();
duke@435 1198
duke@435 1199 // We have received a description of where all the java arg are located
duke@435 1200 // on entry to the wrapper. We need to convert these args to where
duke@435 1201 // the jni function will expect them. To figure out where they go
duke@435 1202 // we convert the java signature to a C signature by inserting
duke@435 1203 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1204
duke@435 1205 int total_c_args = total_in_args + 1;
duke@435 1206 if (method->is_static()) {
duke@435 1207 total_c_args++;
duke@435 1208 }
duke@435 1209
duke@435 1210 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1211 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1212
duke@435 1213 int argc = 0;
duke@435 1214 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1215 if (method->is_static()) {
duke@435 1216 out_sig_bt[argc++] = T_OBJECT;
duke@435 1217 }
duke@435 1218
duke@435 1219 int i;
duke@435 1220 for (i = 0; i < total_in_args ; i++ ) {
duke@435 1221 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1222 }
duke@435 1223
duke@435 1224
duke@435 1225 // Now figure out where the args must be stored and how much stack space
duke@435 1226 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1227 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1228 //
duke@435 1229 int out_arg_slots;
duke@435 1230 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1231
duke@435 1232 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1233 // registers a max of 2 on x86.
duke@435 1234
duke@435 1235 // Calculate the total number of stack slots we will need.
duke@435 1236
duke@435 1237 // First count the abi requirement plus all of the outgoing args
duke@435 1238 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1239
duke@435 1240 // Now the space for the inbound oop handle area
duke@435 1241
duke@435 1242 int oop_handle_offset = stack_slots;
duke@435 1243 stack_slots += 2*VMRegImpl::slots_per_word;
duke@435 1244
duke@435 1245 // Now any space we need for handlizing a klass if static method
duke@435 1246
duke@435 1247 int klass_slot_offset = 0;
duke@435 1248 int klass_offset = -1;
duke@435 1249 int lock_slot_offset = 0;
duke@435 1250 bool is_static = false;
duke@435 1251 int oop_temp_slot_offset = 0;
duke@435 1252
duke@435 1253 if (method->is_static()) {
duke@435 1254 klass_slot_offset = stack_slots;
duke@435 1255 stack_slots += VMRegImpl::slots_per_word;
duke@435 1256 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1257 is_static = true;
duke@435 1258 }
duke@435 1259
duke@435 1260 // Plus a lock if needed
duke@435 1261
duke@435 1262 if (method->is_synchronized()) {
duke@435 1263 lock_slot_offset = stack_slots;
duke@435 1264 stack_slots += VMRegImpl::slots_per_word;
duke@435 1265 }
duke@435 1266
duke@435 1267 // Now a place (+2) to save return values or temp during shuffling
duke@435 1268 // + 2 for return address (which we own) and saved rbp,
duke@435 1269 stack_slots += 4;
duke@435 1270
duke@435 1271 // Ok The space we have allocated will look like:
duke@435 1272 //
duke@435 1273 //
duke@435 1274 // FP-> | |
duke@435 1275 // |---------------------|
duke@435 1276 // | 2 slots for moves |
duke@435 1277 // |---------------------|
duke@435 1278 // | lock box (if sync) |
duke@435 1279 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1280 // | klass (if static) |
duke@435 1281 // |---------------------| <- klass_slot_offset
duke@435 1282 // | oopHandle area |
duke@435 1283 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1284 // | outbound memory |
duke@435 1285 // | based arguments |
duke@435 1286 // | |
duke@435 1287 // |---------------------|
duke@435 1288 // | |
duke@435 1289 // SP-> | out_preserved_slots |
duke@435 1290 //
duke@435 1291 //
duke@435 1292 // ****************************************************************************
duke@435 1293 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1294 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1295 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1296 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1297 // ****************************************************************************
duke@435 1298
duke@435 1299
duke@435 1300 // Now compute actual number of stack words we need rounding to make
duke@435 1301 // stack properly aligned.
duke@435 1302 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
duke@435 1303
duke@435 1304 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1305
duke@435 1306 intptr_t start = (intptr_t)__ pc();
duke@435 1307
duke@435 1308 // First thing make an ic check to see if we should even be here
duke@435 1309
duke@435 1310 // We are free to use all registers as temps without saving them and
duke@435 1311 // restoring them except rbp,. rbp, is the only callee save register
duke@435 1312 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1313
duke@435 1314
duke@435 1315 const Register ic_reg = rax;
duke@435 1316 const Register receiver = rcx;
duke@435 1317 Label hit;
duke@435 1318 Label exception_pending;
duke@435 1319
duke@435 1320
duke@435 1321 __ verify_oop(receiver);
never@739 1322 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1323 __ jcc(Assembler::equal, hit);
duke@435 1324
duke@435 1325 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1326
duke@435 1327 // verified entry must be aligned for code patching.
duke@435 1328 // and the first 5 bytes must be in the same cache line
duke@435 1329 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1330 __ align(8);
duke@435 1331
duke@435 1332 __ bind(hit);
duke@435 1333
duke@435 1334 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1335
duke@435 1336 #ifdef COMPILER1
duke@435 1337 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1338 // Object.hashCode can pull the hashCode from the header word
duke@435 1339 // instead of doing a full VM transition once it's been computed.
duke@435 1340 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1341 // this optimization at the call site without a lot of work.
duke@435 1342 Label slowCase;
duke@435 1343 Register receiver = rcx;
duke@435 1344 Register result = rax;
never@739 1345 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1346
duke@435 1347 // check if locked
never@739 1348 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1349 __ jcc (Assembler::zero, slowCase);
duke@435 1350
duke@435 1351 if (UseBiasedLocking) {
duke@435 1352 // Check if biased and fall through to runtime if so
never@739 1353 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1354 __ jcc (Assembler::notZero, slowCase);
duke@435 1355 }
duke@435 1356
duke@435 1357 // get hash
never@739 1358 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1359 // test if hashCode exists
duke@435 1360 __ jcc (Assembler::zero, slowCase);
never@739 1361 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1362 __ ret(0);
duke@435 1363 __ bind (slowCase);
duke@435 1364 }
duke@435 1365 #endif // COMPILER1
duke@435 1366
duke@435 1367 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1368 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1369 // instruction fits that requirement.
duke@435 1370
duke@435 1371 // Generate stack overflow check
duke@435 1372
duke@435 1373 if (UseStackBanging) {
duke@435 1374 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1375 } else {
duke@435 1376 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1377 __ fat_nop();
duke@435 1378 }
duke@435 1379
duke@435 1380 // Generate a new frame for the wrapper.
duke@435 1381 __ enter();
duke@435 1382 // -2 because return address is already present and so is saved rbp,
never@739 1383 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1384
duke@435 1385 // Frame is now completed as far a size and linkage.
duke@435 1386
duke@435 1387 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1388
duke@435 1389 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1390 // after the native call because on windows Java Natives will pop
duke@435 1391 // the arguments and it is painful to do rsp relative addressing
duke@435 1392 // in a platform independent way. So after the call we switch to
duke@435 1393 // rbp, relative addressing.
duke@435 1394
duke@435 1395 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1396
duke@435 1397 #ifdef COMPILER2
duke@435 1398 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1399 if (UseSSE >= 2) {
duke@435 1400 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1401 } else {
duke@435 1402 __ empty_FPU_stack();
duke@435 1403 }
duke@435 1404 #endif /* COMPILER2 */
duke@435 1405
duke@435 1406 // Compute the rbp, offset for any slots used after the jni call
duke@435 1407
duke@435 1408 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1409 int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1410
duke@435 1411 // We use rdi as a thread pointer because it is callee save and
duke@435 1412 // if we load it once it is usable thru the entire wrapper
duke@435 1413 const Register thread = rdi;
duke@435 1414
duke@435 1415 // We use rsi as the oop handle for the receiver/klass
duke@435 1416 // It is callee save so it survives the call to native
duke@435 1417
duke@435 1418 const Register oop_handle_reg = rsi;
duke@435 1419
duke@435 1420 __ get_thread(thread);
duke@435 1421
duke@435 1422
duke@435 1423 //
duke@435 1424 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1425 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1426 // captured the oops from our caller and have a valid oopMap for
duke@435 1427 // them.
duke@435 1428
duke@435 1429 // -----------------
duke@435 1430 // The Grand Shuffle
duke@435 1431 //
duke@435 1432 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1433 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1434 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1435 // parms though amd does). Since the native abi doesn't use register args
duke@435 1436 // and the java conventions does we don't have to worry about collisions.
duke@435 1437 // All of our moved are reg->stack or stack->stack.
duke@435 1438 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1439 // last moment. The shuffle is described by the two calling convention
duke@435 1440 // vectors we have in our possession. We simply walk the java vector to
duke@435 1441 // get the source locations and the c vector to get the destinations.
duke@435 1442
duke@435 1443 int c_arg = method->is_static() ? 2 : 1 ;
duke@435 1444
duke@435 1445 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1446 int receiver_offset = -1;
duke@435 1447
duke@435 1448 // This is a trick. We double the stack slots so we can claim
duke@435 1449 // the oops in the caller's frame. Since we are sure to have
duke@435 1450 // more args than the caller doubling is enough to make
duke@435 1451 // sure we can capture all the incoming oop args from the
duke@435 1452 // caller.
duke@435 1453 //
duke@435 1454 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1455
duke@435 1456 // Mark location of rbp,
duke@435 1457 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1458
duke@435 1459 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1460 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1461 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1462
duke@435 1463 for (i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1464 switch (in_sig_bt[i]) {
duke@435 1465 case T_ARRAY:
duke@435 1466 case T_OBJECT:
duke@435 1467 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1468 ((i == 0) && (!is_static)),
duke@435 1469 &receiver_offset);
duke@435 1470 break;
duke@435 1471 case T_VOID:
duke@435 1472 break;
duke@435 1473
duke@435 1474 case T_FLOAT:
duke@435 1475 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1476 break;
duke@435 1477
duke@435 1478 case T_DOUBLE:
duke@435 1479 assert( i + 1 < total_in_args &&
duke@435 1480 in_sig_bt[i + 1] == T_VOID &&
duke@435 1481 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1482 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1483 break;
duke@435 1484
duke@435 1485 case T_LONG :
duke@435 1486 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1487 break;
duke@435 1488
duke@435 1489 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1490
duke@435 1491 default:
duke@435 1492 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1493 }
duke@435 1494 }
duke@435 1495
duke@435 1496 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1497 // the normal JNI call code.
duke@435 1498 if (method->is_static()) {
duke@435 1499
duke@435 1500 // load opp into a register
duke@435 1501 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1502
duke@435 1503 // Now handlize the static class mirror it's known not-null.
never@739 1504 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1505 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1506
duke@435 1507 // Now get the handle
never@739 1508 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1509 // store the klass handle as second argument
never@739 1510 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1511 }
duke@435 1512
duke@435 1513 // Change state to native (we save the return address in the thread, since it might not
duke@435 1514 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1515 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1516 // We use the same pc/oopMap repeatedly when we call out
duke@435 1517
duke@435 1518 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1519 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1520
duke@435 1521 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1522
duke@435 1523
duke@435 1524 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1525 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1526
duke@435 1527 {
duke@435 1528 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1529 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1530 __ call_VM_leaf(
duke@435 1531 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1532 thread, rax);
duke@435 1533 }
duke@435 1534
duke@435 1535
duke@435 1536 // These are register definitions we need for locking/unlocking
duke@435 1537 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1538 const Register obj_reg = rcx; // Will contain the oop
duke@435 1539 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1540
duke@435 1541 Label slow_path_lock;
duke@435 1542 Label lock_done;
duke@435 1543
duke@435 1544 // Lock a synchronized method
duke@435 1545 if (method->is_synchronized()) {
duke@435 1546
duke@435 1547
duke@435 1548 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1549
duke@435 1550 // Get the handle (the 2nd argument)
never@739 1551 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1552
duke@435 1553 // Get address of the box
duke@435 1554
never@739 1555 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1556
duke@435 1557 // Load the oop from the handle
never@739 1558 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1559
duke@435 1560 if (UseBiasedLocking) {
duke@435 1561 // Note that oop_handle_reg is trashed during this call
duke@435 1562 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1563 }
duke@435 1564
duke@435 1565 // Load immediate 1 into swap_reg %rax,
never@739 1566 __ movptr(swap_reg, 1);
duke@435 1567
duke@435 1568 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1569 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1570
duke@435 1571 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1572 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1573
duke@435 1574 if (os::is_MP()) {
duke@435 1575 __ lock();
duke@435 1576 }
duke@435 1577
duke@435 1578 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1579 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1580 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1581 __ jcc(Assembler::equal, lock_done);
duke@435 1582
duke@435 1583 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1584 // 1) (mark & 3) == 0, and
duke@435 1585 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1586 // These 3 tests can be done by evaluating the following
duke@435 1587 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1588 // assuming both stack pointer and pagesize have their
duke@435 1589 // least significant 2 bits clear.
duke@435 1590 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1591
never@739 1592 __ subptr(swap_reg, rsp);
never@739 1593 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1594
duke@435 1595 // Save the test result, for recursive case, the result is zero
never@739 1596 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1597 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1598 // Slow path will re-enter here
duke@435 1599 __ bind(lock_done);
duke@435 1600
duke@435 1601 if (UseBiasedLocking) {
duke@435 1602 // Re-fetch oop_handle_reg as we trashed it above
never@739 1603 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1604 }
duke@435 1605 }
duke@435 1606
duke@435 1607
duke@435 1608 // Finally just about ready to make the JNI call
duke@435 1609
duke@435 1610
duke@435 1611 // get JNIEnv* which is first argument to native
duke@435 1612
never@739 1613 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@739 1614 __ movptr(Address(rsp, 0), rdx);
duke@435 1615
duke@435 1616 // Now set thread in native
duke@435 1617 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1618
duke@435 1619 __ call(RuntimeAddress(method->native_function()));
duke@435 1620
duke@435 1621 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1622 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1623 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1624 // relative addressing.
duke@435 1625
duke@435 1626 // Unpack native results.
duke@435 1627 switch (ret_type) {
duke@435 1628 case T_BOOLEAN: __ c2bool(rax); break;
never@739 1629 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 1630 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1631 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1632 case T_INT : /* nothing to do */ break;
duke@435 1633 case T_DOUBLE :
duke@435 1634 case T_FLOAT :
duke@435 1635 // Result is in st0 we'll save as needed
duke@435 1636 break;
duke@435 1637 case T_ARRAY: // Really a handle
duke@435 1638 case T_OBJECT: // Really a handle
duke@435 1639 break; // can't de-handlize until after safepoint check
duke@435 1640 case T_VOID: break;
duke@435 1641 case T_LONG: break;
duke@435 1642 default : ShouldNotReachHere();
duke@435 1643 }
duke@435 1644
duke@435 1645 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1646 // This additional state is necessary because reading and testing the synchronization
duke@435 1647 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1648 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1649 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1650 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1651 // didn't see any synchronization is progress, and escapes.
duke@435 1652 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1653
duke@435 1654 if(os::is_MP()) {
duke@435 1655 if (UseMembar) {
never@739 1656 // Force this write out before the read below
never@739 1657 __ membar(Assembler::Membar_mask_bits(
never@739 1658 Assembler::LoadLoad | Assembler::LoadStore |
never@739 1659 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1660 } else {
duke@435 1661 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1662 // We use the current thread pointer to calculate a thread specific
duke@435 1663 // offset to write to within the page. This minimizes bus traffic
duke@435 1664 // due to cache line collision.
duke@435 1665 __ serialize_memory(thread, rcx);
duke@435 1666 }
duke@435 1667 }
duke@435 1668
duke@435 1669 if (AlwaysRestoreFPU) {
duke@435 1670 // Make sure the control word is correct.
duke@435 1671 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1672 }
duke@435 1673
duke@435 1674 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1675 { Label Continue;
duke@435 1676
duke@435 1677 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1678 SafepointSynchronize::_not_synchronized);
duke@435 1679
duke@435 1680 Label L;
duke@435 1681 __ jcc(Assembler::notEqual, L);
duke@435 1682 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1683 __ jcc(Assembler::equal, Continue);
duke@435 1684 __ bind(L);
duke@435 1685
duke@435 1686 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1687 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1688 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1689 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1690 // by hand.
duke@435 1691 //
duke@435 1692 save_native_result(masm, ret_type, stack_slots);
never@739 1693 __ push(thread);
duke@435 1694 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
duke@435 1695 JavaThread::check_special_condition_for_native_trans)));
duke@435 1696 __ increment(rsp, wordSize);
duke@435 1697 // Restore any method result value
duke@435 1698 restore_native_result(masm, ret_type, stack_slots);
duke@435 1699
duke@435 1700 __ bind(Continue);
duke@435 1701 }
duke@435 1702
duke@435 1703 // change thread state
duke@435 1704 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1705
duke@435 1706 Label reguard;
duke@435 1707 Label reguard_done;
duke@435 1708 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1709 __ jcc(Assembler::equal, reguard);
duke@435 1710
duke@435 1711 // slow path reguard re-enters here
duke@435 1712 __ bind(reguard_done);
duke@435 1713
duke@435 1714 // Handle possible exception (will unlock if necessary)
duke@435 1715
duke@435 1716 // native result if any is live
duke@435 1717
duke@435 1718 // Unlock
duke@435 1719 Label slow_path_unlock;
duke@435 1720 Label unlock_done;
duke@435 1721 if (method->is_synchronized()) {
duke@435 1722
duke@435 1723 Label done;
duke@435 1724
duke@435 1725 // Get locked oop from the handle we passed to jni
never@739 1726 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1727
duke@435 1728 if (UseBiasedLocking) {
duke@435 1729 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1730 }
duke@435 1731
duke@435 1732 // Simple recursive lock?
duke@435 1733
never@739 1734 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 1735 __ jcc(Assembler::equal, done);
duke@435 1736
duke@435 1737 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1738 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1739 save_native_result(masm, ret_type, stack_slots);
duke@435 1740 }
duke@435 1741
duke@435 1742 // get old displaced header
never@739 1743 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1744
duke@435 1745 // get address of the stack lock
never@739 1746 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1747
duke@435 1748 // Atomic swap old header if oop still contains the stack lock
duke@435 1749 if (os::is_MP()) {
duke@435 1750 __ lock();
duke@435 1751 }
duke@435 1752
duke@435 1753 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1754 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1755 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 1756 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1757
duke@435 1758 // slow path re-enters here
duke@435 1759 __ bind(unlock_done);
duke@435 1760 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1761 restore_native_result(masm, ret_type, stack_slots);
duke@435 1762 }
duke@435 1763
duke@435 1764 __ bind(done);
duke@435 1765
duke@435 1766 }
duke@435 1767
duke@435 1768 {
duke@435 1769 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1770 // Tell dtrace about this method exit
duke@435 1771 save_native_result(masm, ret_type, stack_slots);
duke@435 1772 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1773 __ call_VM_leaf(
duke@435 1774 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1775 thread, rax);
duke@435 1776 restore_native_result(masm, ret_type, stack_slots);
duke@435 1777 }
duke@435 1778
duke@435 1779 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 1780
duke@435 1781 __ reset_last_Java_frame(thread, false, true);
duke@435 1782
duke@435 1783 // Unpack oop result
duke@435 1784 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1785 Label L;
never@739 1786 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 1787 __ jcc(Assembler::equal, L);
never@739 1788 __ movptr(rax, Address(rax, 0));
duke@435 1789 __ bind(L);
duke@435 1790 __ verify_oop(rax);
duke@435 1791 }
duke@435 1792
duke@435 1793 // reset handle block
never@739 1794 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@739 1795
never@739 1796 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
duke@435 1797
duke@435 1798 // Any exception pending?
never@739 1799 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1800 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1801
duke@435 1802
duke@435 1803 // no exception, we're almost done
duke@435 1804
duke@435 1805 // check that only result value is on FPU stack
duke@435 1806 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 1807
duke@435 1808 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 1809 if (ret_type == T_FLOAT) {
duke@435 1810 if (UseSSE >= 1) {
duke@435 1811 // Pop st0 and store as float and reload into xmm register
duke@435 1812 __ fstp_s(Address(rbp, -4));
duke@435 1813 __ movflt(xmm0, Address(rbp, -4));
duke@435 1814 }
duke@435 1815 } else if (ret_type == T_DOUBLE) {
duke@435 1816 if (UseSSE >= 2) {
duke@435 1817 // Pop st0 and store as double and reload into xmm register
duke@435 1818 __ fstp_d(Address(rbp, -8));
duke@435 1819 __ movdbl(xmm0, Address(rbp, -8));
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 // Return
duke@435 1824
duke@435 1825 __ leave();
duke@435 1826 __ ret(0);
duke@435 1827
duke@435 1828 // Unexpected paths are out of line and go here
duke@435 1829
duke@435 1830 // Slow path locking & unlocking
duke@435 1831 if (method->is_synchronized()) {
duke@435 1832
duke@435 1833 // BEGIN Slow path lock
duke@435 1834
duke@435 1835 __ bind(slow_path_lock);
duke@435 1836
duke@435 1837 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1838 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 1839 __ push(thread);
never@739 1840 __ push(lock_reg);
never@739 1841 __ push(obj_reg);
duke@435 1842 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 1843 __ addptr(rsp, 3*wordSize);
duke@435 1844
duke@435 1845 #ifdef ASSERT
duke@435 1846 { Label L;
never@739 1847 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1848 __ jcc(Assembler::equal, L);
duke@435 1849 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1850 __ bind(L);
duke@435 1851 }
duke@435 1852 #endif
duke@435 1853 __ jmp(lock_done);
duke@435 1854
duke@435 1855 // END Slow path lock
duke@435 1856
duke@435 1857 // BEGIN Slow path unlock
duke@435 1858 __ bind(slow_path_unlock);
duke@435 1859
duke@435 1860 // Slow path unlock
duke@435 1861
duke@435 1862 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1863 save_native_result(masm, ret_type, stack_slots);
duke@435 1864 }
duke@435 1865 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1866
never@739 1867 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
never@739 1868 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1869
duke@435 1870
duke@435 1871 // should be a peal
duke@435 1872 // +wordSize because of the push above
never@739 1873 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 1874 __ push(rax);
never@739 1875
never@739 1876 __ push(obj_reg);
duke@435 1877 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 1878 __ addptr(rsp, 2*wordSize);
duke@435 1879 #ifdef ASSERT
duke@435 1880 {
duke@435 1881 Label L;
never@739 1882 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1883 __ jcc(Assembler::equal, L);
duke@435 1884 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1885 __ bind(L);
duke@435 1886 }
duke@435 1887 #endif /* ASSERT */
duke@435 1888
never@739 1889 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1890
duke@435 1891 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1892 restore_native_result(masm, ret_type, stack_slots);
duke@435 1893 }
duke@435 1894 __ jmp(unlock_done);
duke@435 1895 // END Slow path unlock
duke@435 1896
duke@435 1897 }
duke@435 1898
duke@435 1899 // SLOW PATH Reguard the stack if needed
duke@435 1900
duke@435 1901 __ bind(reguard);
duke@435 1902 save_native_result(masm, ret_type, stack_slots);
duke@435 1903 {
duke@435 1904 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 1905 }
duke@435 1906 restore_native_result(masm, ret_type, stack_slots);
duke@435 1907 __ jmp(reguard_done);
duke@435 1908
duke@435 1909
duke@435 1910 // BEGIN EXCEPTION PROCESSING
duke@435 1911
duke@435 1912 // Forward the exception
duke@435 1913 __ bind(exception_pending);
duke@435 1914
duke@435 1915 // remove possible return value from FPU register stack
duke@435 1916 __ empty_FPU_stack();
duke@435 1917
duke@435 1918 // pop our frame
duke@435 1919 __ leave();
duke@435 1920 // and forward the exception
duke@435 1921 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1922
duke@435 1923 __ flush();
duke@435 1924
duke@435 1925 nmethod *nm = nmethod::new_native_nmethod(method,
duke@435 1926 masm->code(),
duke@435 1927 vep_offset,
duke@435 1928 frame_complete,
duke@435 1929 stack_slots / VMRegImpl::slots_per_word,
duke@435 1930 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1931 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1932 oop_maps);
duke@435 1933 return nm;
duke@435 1934
duke@435 1935 }
duke@435 1936
kamg@551 1937 #ifdef HAVE_DTRACE_H
kamg@551 1938 // ---------------------------------------------------------------------------
kamg@551 1939 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 1940 // in the Java compiled code convention, marshals them to the native
kamg@551 1941 // abi and then leaves nops at the position you would expect to call a native
kamg@551 1942 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 1943 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 1944 // to dtrace.
kamg@551 1945 //
kamg@551 1946 // The probes are only able to take primitive types and java/lang/String as
kamg@551 1947 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 1948 // strings so that from dtrace point of view java strings are converted to C
kamg@551 1949 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 1950 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 1951 // So any java string larger then this is truncated.
kamg@551 1952
kamg@551 1953 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 1954 MacroAssembler *masm, methodHandle method) {
kamg@551 1955
kamg@551 1956 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 1957 // be single threaded in this method.
kamg@551 1958 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 1959
kamg@551 1960 // Fill in the signature array, for the calling-convention call.
kamg@551 1961 int total_args_passed = method->size_of_parameters();
kamg@551 1962
kamg@551 1963 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 1964 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 1965
kamg@551 1966 // The signature we are going to use for the trap that dtrace will see
kamg@551 1967 // java/lang/String is converted. We drop "this" and any other object
kamg@551 1968 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 1969 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 1970 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 1971 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 1972
kamg@551 1973 int i=0;
kamg@551 1974 int total_strings = 0;
kamg@551 1975 int first_arg_to_pass = 0;
kamg@551 1976 int total_c_args = 0;
kamg@551 1977
kamg@551 1978 if( !method->is_static() ) { // Pass in receiver first
kamg@551 1979 in_sig_bt[i++] = T_OBJECT;
kamg@551 1980 first_arg_to_pass = 1;
kamg@551 1981 }
kamg@551 1982
kamg@551 1983 // We need to convert the java args to where a native (non-jni) function
kamg@551 1984 // would expect them. To figure out where they go we convert the java
kamg@551 1985 // signature to a C signature.
kamg@551 1986
kamg@551 1987 SignatureStream ss(method->signature());
kamg@551 1988 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 1989 BasicType bt = ss.type();
kamg@551 1990 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 1991 out_sig_bt[total_c_args++] = bt;
kamg@551 1992 if( bt == T_OBJECT) {
kamg@551 1993 symbolOop s = ss.as_symbol_or_null();
kamg@551 1994 if (s == vmSymbols::java_lang_String()) {
kamg@551 1995 total_strings++;
kamg@551 1996 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 1997 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 1998 s == vmSymbols::java_lang_Character() ||
kamg@551 1999 s == vmSymbols::java_lang_Byte() ||
kamg@551 2000 s == vmSymbols::java_lang_Short() ||
kamg@551 2001 s == vmSymbols::java_lang_Integer() ||
kamg@551 2002 s == vmSymbols::java_lang_Float()) {
kamg@551 2003 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2004 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2005 s == vmSymbols::java_lang_Double()) {
kamg@551 2006 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2007 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2008 }
kamg@551 2009 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2010 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2011 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2012 }
kamg@551 2013 }
kamg@551 2014
kamg@551 2015 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2016
kamg@551 2017 // Now get the compiled-Java layout as input arguments
kamg@551 2018 int comp_args_on_stack;
kamg@551 2019 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2020 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2021
kamg@551 2022 // Now figure out where the args must be stored and how much stack space
kamg@551 2023 // they require (neglecting out_preserve_stack_slots).
kamg@551 2024
kamg@551 2025 int out_arg_slots;
kamg@551 2026 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2027
kamg@551 2028 // Calculate the total number of stack slots we will need.
kamg@551 2029
kamg@551 2030 // First count the abi requirement plus all of the outgoing args
kamg@551 2031 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2032
kamg@551 2033 // Now space for the string(s) we must convert
kamg@551 2034
kamg@551 2035 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2036 for (i = 0; i < total_strings ; i++) {
kamg@551 2037 string_locs[i] = stack_slots;
kamg@551 2038 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2039 }
kamg@551 2040
kamg@551 2041 // + 2 for return address (which we own) and saved rbp,
kamg@551 2042
kamg@551 2043 stack_slots += 2;
kamg@551 2044
kamg@551 2045 // Ok The space we have allocated will look like:
kamg@551 2046 //
kamg@551 2047 //
kamg@551 2048 // FP-> | |
kamg@551 2049 // |---------------------|
kamg@551 2050 // | string[n] |
kamg@551 2051 // |---------------------| <- string_locs[n]
kamg@551 2052 // | string[n-1] |
kamg@551 2053 // |---------------------| <- string_locs[n-1]
kamg@551 2054 // | ... |
kamg@551 2055 // | ... |
kamg@551 2056 // |---------------------| <- string_locs[1]
kamg@551 2057 // | string[0] |
kamg@551 2058 // |---------------------| <- string_locs[0]
kamg@551 2059 // | outbound memory |
kamg@551 2060 // | based arguments |
kamg@551 2061 // | |
kamg@551 2062 // |---------------------|
kamg@551 2063 // | |
kamg@551 2064 // SP-> | out_preserved_slots |
kamg@551 2065 //
kamg@551 2066 //
kamg@551 2067
kamg@551 2068 // Now compute actual number of stack words we need rounding to make
kamg@551 2069 // stack properly aligned.
kamg@551 2070 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2071
kamg@551 2072 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2073
kamg@551 2074 intptr_t start = (intptr_t)__ pc();
kamg@551 2075
kamg@551 2076 // First thing make an ic check to see if we should even be here
kamg@551 2077
kamg@551 2078 // We are free to use all registers as temps without saving them and
kamg@551 2079 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2080 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2081
kamg@551 2082 const Register ic_reg = rax;
kamg@551 2083 const Register receiver = rcx;
kamg@551 2084 Label hit;
kamg@551 2085 Label exception_pending;
kamg@551 2086
kamg@551 2087
kamg@551 2088 __ verify_oop(receiver);
kamg@551 2089 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2090 __ jcc(Assembler::equal, hit);
kamg@551 2091
kamg@551 2092 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2093
kamg@551 2094 // verified entry must be aligned for code patching.
kamg@551 2095 // and the first 5 bytes must be in the same cache line
kamg@551 2096 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2097 __ align(8);
kamg@551 2098
kamg@551 2099 __ bind(hit);
kamg@551 2100
kamg@551 2101 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2102
kamg@551 2103
kamg@551 2104 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2105 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2106 // instruction fits that requirement.
kamg@551 2107
kamg@551 2108 // Generate stack overflow check
kamg@551 2109
kamg@551 2110
kamg@551 2111 if (UseStackBanging) {
kamg@551 2112 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2113 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2114 } else {
kamg@551 2115 __ movl(rax, stack_size);
kamg@551 2116 __ bang_stack_size(rax, rbx);
kamg@551 2117 }
kamg@551 2118 } else {
kamg@551 2119 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2120 __ fat_nop();
kamg@551 2121 }
kamg@551 2122
kamg@551 2123 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2124 "valid size for make_non_entrant");
kamg@551 2125
kamg@551 2126 // Generate a new frame for the wrapper.
kamg@551 2127 __ enter();
kamg@551 2128
kamg@551 2129 // -2 because return address is already present and so is saved rbp,
kamg@551 2130 if (stack_size - 2*wordSize != 0) {
kamg@551 2131 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2132 }
kamg@551 2133
kamg@551 2134 // Frame is now completed as far a size and linkage.
kamg@551 2135
kamg@551 2136 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2137
kamg@551 2138 // First thing we do store all the args as if we are doing the call.
kamg@551 2139 // Since the C calling convention is stack based that ensures that
kamg@551 2140 // all the Java register args are stored before we need to convert any
kamg@551 2141 // string we might have.
kamg@551 2142
kamg@551 2143 int sid = 0;
kamg@551 2144 int c_arg, j_arg;
kamg@551 2145 int string_reg = 0;
kamg@551 2146
kamg@551 2147 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2148 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2149
kamg@551 2150 VMRegPair src = in_regs[j_arg];
kamg@551 2151 VMRegPair dst = out_regs[c_arg];
kamg@551 2152 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2153 "stack based abi assumed");
kamg@551 2154
kamg@551 2155 switch (in_sig_bt[j_arg]) {
kamg@551 2156
kamg@551 2157 case T_ARRAY:
kamg@551 2158 case T_OBJECT:
kamg@551 2159 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2160 // Any register based arg for a java string after the first
kamg@551 2161 // will be destroyed by the call to get_utf so we store
kamg@551 2162 // the original value in the location the utf string address
kamg@551 2163 // will eventually be stored.
kamg@551 2164 if (src.first()->is_reg()) {
kamg@551 2165 if (string_reg++ != 0) {
kamg@551 2166 simple_move32(masm, src, dst);
kamg@551 2167 }
kamg@551 2168 }
kamg@551 2169 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2170 // need to unbox a one-word value
kamg@551 2171 Register in_reg = rax;
kamg@551 2172 if ( src.first()->is_reg() ) {
kamg@551 2173 in_reg = src.first()->as_Register();
kamg@551 2174 } else {
kamg@551 2175 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2176 }
kamg@551 2177 Label skipUnbox;
kamg@551 2178 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2179 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2180 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2181 }
kamg@551 2182 __ testl(in_reg, in_reg);
kamg@551 2183 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2184 assert(dst.first()->is_stack() &&
kamg@551 2185 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2186 "value(s) must go into stack slots");
kvn@600 2187
kvn@600 2188 BasicType bt = out_sig_bt[c_arg];
kvn@600 2189 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2190 if ( bt == T_LONG ) {
kamg@551 2191 __ movl(rbx, Address(in_reg,
kamg@551 2192 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2193 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2194 }
kamg@551 2195 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2196 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2197 __ bind(skipUnbox);
kamg@551 2198 } else {
kamg@551 2199 // Convert the arg to NULL
kamg@551 2200 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2201 }
kamg@551 2202 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2203 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2204 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2205 }
kamg@551 2206 break;
kamg@551 2207
kamg@551 2208 case T_VOID:
kamg@551 2209 break;
kamg@551 2210
kamg@551 2211 case T_FLOAT:
kamg@551 2212 float_move(masm, src, dst);
kamg@551 2213 break;
kamg@551 2214
kamg@551 2215 case T_DOUBLE:
kamg@551 2216 assert( j_arg + 1 < total_args_passed &&
kamg@551 2217 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2218 double_move(masm, src, dst);
kamg@551 2219 break;
kamg@551 2220
kamg@551 2221 case T_LONG :
kamg@551 2222 long_move(masm, src, dst);
kamg@551 2223 break;
kamg@551 2224
kamg@551 2225 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2226
kamg@551 2227 default:
kamg@551 2228 simple_move32(masm, src, dst);
kamg@551 2229 }
kamg@551 2230 }
kamg@551 2231
kamg@551 2232 // Now we must convert any string we have to utf8
kamg@551 2233 //
kamg@551 2234
kamg@551 2235 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2236 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2237
kamg@551 2238 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2239
kamg@551 2240 Address utf8_addr = Address(
kamg@551 2241 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2242 __ leal(rax, utf8_addr);
kamg@551 2243
kamg@551 2244 // The first string we find might still be in the original java arg
kamg@551 2245 // register
kamg@551 2246 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2247 Register string_oop;
kamg@551 2248
kamg@551 2249 // This is where the argument will eventually reside
kamg@551 2250 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2251
kamg@551 2252 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2253 string_oop = orig_loc->as_Register();
kamg@551 2254 assert(string_oop != rax, "smashed arg");
kamg@551 2255 } else {
kamg@551 2256
kamg@551 2257 if (orig_loc->is_reg()) {
kamg@551 2258 // Get the copy of the jls object
kamg@551 2259 __ movl(rcx, dest);
kamg@551 2260 } else {
kamg@551 2261 // arg is still in the original location
kamg@551 2262 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2263 }
kamg@551 2264 string_oop = rcx;
kamg@551 2265
kamg@551 2266 }
kamg@551 2267 Label nullString;
kamg@551 2268 __ movl(dest, NULL_WORD);
kamg@551 2269 __ testl(string_oop, string_oop);
kamg@551 2270 __ jcc(Assembler::zero, nullString);
kamg@551 2271
kamg@551 2272 // Now we can store the address of the utf string as the argument
kamg@551 2273 __ movl(dest, rax);
kamg@551 2274
kamg@551 2275 // And do the conversion
kamg@551 2276 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2277 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2278 __ bind(nullString);
kamg@551 2279 }
kamg@551 2280
kamg@551 2281 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2282 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2283 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2284 }
kamg@551 2285 }
kamg@551 2286
kamg@551 2287
kamg@551 2288 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2289 // patch in the trap
kamg@551 2290
kamg@551 2291 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2292
kamg@551 2293 __ nop();
kamg@551 2294
kamg@551 2295
kamg@551 2296 // Return
kamg@551 2297
kamg@551 2298 __ leave();
kamg@551 2299 __ ret(0);
kamg@551 2300
kamg@551 2301 __ flush();
kamg@551 2302
kamg@551 2303 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2304 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2305 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2306 return nm;
kamg@551 2307
kamg@551 2308 }
kamg@551 2309
kamg@551 2310 #endif // HAVE_DTRACE_H
kamg@551 2311
duke@435 2312 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2313 // activation for use during deoptimization
duke@435 2314 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
duke@435 2315 return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
duke@435 2316 }
duke@435 2317
duke@435 2318
duke@435 2319 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2320 return 0;
duke@435 2321 }
duke@435 2322
duke@435 2323
duke@435 2324 //------------------------------generate_deopt_blob----------------------------
duke@435 2325 void SharedRuntime::generate_deopt_blob() {
duke@435 2326 // allocate space for the code
duke@435 2327 ResourceMark rm;
duke@435 2328 // setup code generation tools
duke@435 2329 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2330 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2331 int frame_size_in_words;
duke@435 2332 OopMap* map = NULL;
duke@435 2333 // Account for the extra args we place on the stack
duke@435 2334 // by the time we call fetch_unroll_info
duke@435 2335 const int additional_words = 2; // deopt kind, thread
duke@435 2336
duke@435 2337 OopMapSet *oop_maps = new OopMapSet();
duke@435 2338
duke@435 2339 // -------------
duke@435 2340 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2341 // address has been pushed on the the stack, and return values are in
duke@435 2342 // registers.
duke@435 2343 // If we are doing a normal deopt then we were called from the patched
duke@435 2344 // nmethod from the point we returned to the nmethod. So the return
duke@435 2345 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2346 // We will adjust the value to it looks like we have the original return
duke@435 2347 // address on the stack (like when we eagerly deoptimized).
duke@435 2348 // In the case of an exception pending with deoptimized then we enter
duke@435 2349 // with a return address on the stack that points after the call we patched
duke@435 2350 // into the exception handler. We have the following register state:
duke@435 2351 // rax,: exception
duke@435 2352 // rbx,: exception handler
duke@435 2353 // rdx: throwing pc
duke@435 2354 // So in this case we simply jam rdx into the useless return address and
duke@435 2355 // the stack looks just like we want.
duke@435 2356 //
duke@435 2357 // At this point we need to de-opt. We save the argument return
duke@435 2358 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2359 // routine captures the return values and returns a structure which
duke@435 2360 // describes the current frame size and the sizes of all replacement frames.
duke@435 2361 // The current frame is compiled code and may contain many inlined
duke@435 2362 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2363 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2364 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2365 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2366 // already been captured in the vframeArray at the time the return PC was
duke@435 2367 // patched.
duke@435 2368 address start = __ pc();
duke@435 2369 Label cont;
duke@435 2370
duke@435 2371 // Prolog for non exception case!
duke@435 2372
duke@435 2373 // Save everything in sight.
duke@435 2374
duke@435 2375 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2376 // Normal deoptimization
never@739 2377 __ push(Deoptimization::Unpack_deopt);
duke@435 2378 __ jmp(cont);
duke@435 2379
duke@435 2380 int reexecute_offset = __ pc() - start;
duke@435 2381
duke@435 2382 // Reexecute case
duke@435 2383 // return address is the pc describes what bci to do re-execute at
duke@435 2384
duke@435 2385 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 2386 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2387
never@739 2388 __ push(Deoptimization::Unpack_reexecute);
duke@435 2389 __ jmp(cont);
duke@435 2390
duke@435 2391 int exception_offset = __ pc() - start;
duke@435 2392
duke@435 2393 // Prolog for exception case
duke@435 2394
duke@435 2395 // all registers are dead at this entry point, except for rax, and
duke@435 2396 // rdx which contain the exception oop and exception pc
duke@435 2397 // respectively. Set them in TLS and fall thru to the
duke@435 2398 // unpack_with_exception_in_tls entry point.
duke@435 2399
duke@435 2400 __ get_thread(rdi);
never@739 2401 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2402 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2403
duke@435 2404 int exception_in_tls_offset = __ pc() - start;
duke@435 2405
duke@435 2406 // new implementation because exception oop is now passed in JavaThread
duke@435 2407
duke@435 2408 // Prolog for exception case
duke@435 2409 // All registers must be preserved because they might be used by LinearScan
duke@435 2410 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2411 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2412 // args are on the stack, no return address)
duke@435 2413
duke@435 2414 // make room on stack for the return address
duke@435 2415 // It will be patched later with the throwing pc. The correct value is not
duke@435 2416 // available now because loading it from memory would destroy registers.
never@739 2417 __ push(0);
duke@435 2418
duke@435 2419 // Save everything in sight.
duke@435 2420
duke@435 2421 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 2422 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2423
duke@435 2424 // Now it is safe to overwrite any register
duke@435 2425
duke@435 2426 // store the correct deoptimization type
never@739 2427 __ push(Deoptimization::Unpack_exception);
duke@435 2428
duke@435 2429 // load throwing pc from JavaThread and patch it as the return address
duke@435 2430 // of the current frame. Then clear the field in JavaThread
duke@435 2431 __ get_thread(rdi);
never@739 2432 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2433 __ movptr(Address(rbp, wordSize), rdx);
never@739 2434 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
duke@435 2435
duke@435 2436 #ifdef ASSERT
duke@435 2437 // verify that there is really an exception oop in JavaThread
never@739 2438 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2439 __ verify_oop(rax);
duke@435 2440
duke@435 2441 // verify that there is no pending exception
duke@435 2442 Label no_pending_exception;
never@739 2443 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2444 __ testptr(rax, rax);
duke@435 2445 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2446 __ stop("must not have pending exception here");
duke@435 2447 __ bind(no_pending_exception);
duke@435 2448 #endif
duke@435 2449
duke@435 2450 __ bind(cont);
duke@435 2451
duke@435 2452 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2453 __ empty_FPU_stack();
duke@435 2454
duke@435 2455
duke@435 2456 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2457 // crud. We cannot block on this call, no GC can happen.
duke@435 2458 __ get_thread(rcx);
never@739 2459 __ push(rcx);
duke@435 2460 // fetch_unroll_info needs to call last_java_frame()
duke@435 2461 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2462
duke@435 2463 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2464
duke@435 2465 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2466 // find any register it might need.
duke@435 2467
duke@435 2468 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2469
duke@435 2470 // Discard arg to fetch_unroll_info
never@739 2471 __ pop(rcx);
duke@435 2472
duke@435 2473 __ get_thread(rcx);
duke@435 2474 __ reset_last_Java_frame(rcx, false, false);
duke@435 2475
duke@435 2476 // Load UnrollBlock into EDI
never@739 2477 __ mov(rdi, rax);
duke@435 2478
duke@435 2479 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2480 // we are very short of registers
duke@435 2481
duke@435 2482 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2483 // retrieve the deopt kind from where we left it.
never@739 2484 __ pop(rax);
duke@435 2485 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2486
duke@435 2487 Label noException;
duke@435 2488 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2489 __ jcc(Assembler::notEqual, noException);
never@739 2490 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2491 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
never@739 2492 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@739 2493 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
duke@435 2494
duke@435 2495 __ verify_oop(rax);
duke@435 2496
duke@435 2497 // Overwrite the result registers with the exception results.
never@739 2498 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2499 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2500
duke@435 2501 __ bind(noException);
duke@435 2502
duke@435 2503 // Stack is back to only having register save data on the stack.
duke@435 2504 // Now restore the result registers. Everything else is either dead or captured
duke@435 2505 // in the vframeArray.
duke@435 2506
duke@435 2507 RegisterSaver::restore_result_registers(masm);
duke@435 2508
duke@435 2509 // All of the register save area has been popped of the stack. Only the
duke@435 2510 // return address remains.
duke@435 2511
duke@435 2512 // Pop all the frames we must move/replace.
duke@435 2513 //
duke@435 2514 // Frame picture (youngest to oldest)
duke@435 2515 // 1: self-frame (no frame link)
duke@435 2516 // 2: deopting frame (no frame link)
duke@435 2517 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2518 //
duke@435 2519 // Note: by leaving the return address of self-frame on the stack
duke@435 2520 // and using the size of frame 2 to adjust the stack
duke@435 2521 // when we are done the return to frame 3 will still be on the stack.
duke@435 2522
duke@435 2523 // Pop deoptimized frame
never@739 2524 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2525
duke@435 2526 // sp should be pointing at the return address to the caller (3)
duke@435 2527
duke@435 2528 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2529 if (UseStackBanging) {
duke@435 2530 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2531 __ bang_stack_size(rbx, rcx);
duke@435 2532 }
duke@435 2533
duke@435 2534 // Load array of frame pcs into ECX
never@739 2535 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2536
never@739 2537 __ pop(rsi); // trash the old pc
duke@435 2538
duke@435 2539 // Load array of frame sizes into ESI
never@739 2540 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2541
duke@435 2542 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2543
duke@435 2544 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2545 __ movl(counter, rbx);
duke@435 2546
duke@435 2547 // Pick up the initial fp we should save
never@739 2548 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2549
duke@435 2550 // Now adjust the caller's stack to make up for the extra locals
duke@435 2551 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2552 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2553 // value and not the "real" sp value.
duke@435 2554
duke@435 2555 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2556 __ movptr(sp_temp, rsp);
never@739 2557 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2558 __ subptr(rsp, rbx);
duke@435 2559
duke@435 2560 // Push interpreter frames in a loop
duke@435 2561 Label loop;
duke@435 2562 __ bind(loop);
never@739 2563 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2564 #ifdef CC_INTERP
never@739 2565 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2566 #ifdef ASSERT
never@739 2567 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2568 __ push(0xDEADDEAD);
duke@435 2569 #else /* ASSERT */
never@739 2570 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2571 #endif /* ASSERT */
duke@435 2572 #else /* CC_INTERP */
never@739 2573 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2574 #endif /* CC_INTERP */
never@739 2575 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2576 __ enter(); // save old & set new rbp,
never@739 2577 __ subptr(rsp, rbx); // Prolog!
never@739 2578 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2579 #ifdef CC_INTERP
never@739 2580 __ movptr(Address(rbp,
duke@435 2581 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2582 rbx); // Make it walkable
duke@435 2583 #else /* CC_INTERP */
duke@435 2584 // This value is corrected by layout_activation_impl
never@739 2585 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 2586 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2587 #endif /* CC_INTERP */
never@739 2588 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2589 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2590 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2591 __ decrementl(counter); // decrement counter
duke@435 2592 __ jcc(Assembler::notZero, loop);
never@739 2593 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2594
duke@435 2595 // Re-push self-frame
duke@435 2596 __ enter(); // save old & set new rbp,
duke@435 2597
duke@435 2598 // Return address and rbp, are in place
duke@435 2599 // We'll push additional args later. Just allocate a full sized
duke@435 2600 // register save area
never@739 2601 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2602
duke@435 2603 // Restore frame locals after moving the frame
never@739 2604 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2605 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2606 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2607 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2608 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2609
duke@435 2610 // Set up the args to unpack_frame
duke@435 2611
duke@435 2612 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2613 __ get_thread(rcx);
never@739 2614 __ push(rcx);
duke@435 2615
duke@435 2616 // set last_Java_sp, last_Java_fp
duke@435 2617 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2618
duke@435 2619 // Call C code. Need thread but NOT official VM entry
duke@435 2620 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2621 // restore return values to their stack-slots with the new SP.
duke@435 2622 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2623 // Set an oopmap for the call site
duke@435 2624 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2625
duke@435 2626 // rax, contains the return result type
never@739 2627 __ push(rax);
duke@435 2628
duke@435 2629 __ get_thread(rcx);
duke@435 2630 __ reset_last_Java_frame(rcx, false, false);
duke@435 2631
duke@435 2632 // Collect return values
never@739 2633 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 2634 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2635
duke@435 2636 // Clear floating point stack before returning to interpreter
duke@435 2637 __ empty_FPU_stack();
duke@435 2638
duke@435 2639 // Check if we should push the float or double return value.
duke@435 2640 Label results_done, yes_double_value;
duke@435 2641 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2642 __ jcc (Assembler::zero, yes_double_value);
duke@435 2643 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2644 __ jcc (Assembler::notZero, results_done);
duke@435 2645
duke@435 2646 // return float value as expected by interpreter
duke@435 2647 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2648 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2649 __ jmp(results_done);
duke@435 2650
duke@435 2651 // return double value as expected by interpreter
duke@435 2652 __ bind(yes_double_value);
duke@435 2653 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2654 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2655
duke@435 2656 __ bind(results_done);
duke@435 2657
duke@435 2658 // Pop self-frame.
duke@435 2659 __ leave(); // Epilog!
duke@435 2660
duke@435 2661 // Jump to interpreter
duke@435 2662 __ ret(0);
duke@435 2663
duke@435 2664 // -------------
duke@435 2665 // make sure all code is generated
duke@435 2666 masm->flush();
duke@435 2667
duke@435 2668 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2669 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2670 }
duke@435 2671
duke@435 2672
duke@435 2673 #ifdef COMPILER2
duke@435 2674 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2675 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2676 // allocate space for the code
duke@435 2677 ResourceMark rm;
duke@435 2678 // setup code generation tools
duke@435 2679 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2680 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2681
duke@435 2682 enum frame_layout {
duke@435 2683 arg0_off, // thread sp + 0 // Arg location for
duke@435 2684 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2685 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2686 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2687 // so that it agrees with the frame sender code.
duke@435 2688 rbp_off, // callee saved register sp + 2
duke@435 2689 return_off, // slot for return address sp + 3
duke@435 2690 framesize
duke@435 2691 };
duke@435 2692
duke@435 2693 address start = __ pc();
duke@435 2694 // Push self-frame.
never@739 2695 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 2696
duke@435 2697 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2698 // convention will save restore it in prolog/epilog) Other than that
duke@435 2699 // there are no callee save registers no that adapter frames are gone.
never@739 2700 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 2701
duke@435 2702 // Clear the floating point exception stack
duke@435 2703 __ empty_FPU_stack();
duke@435 2704
duke@435 2705 // set last_Java_sp
duke@435 2706 __ get_thread(rdx);
duke@435 2707 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2708
duke@435 2709 // Call C code. Need thread but NOT official VM entry
duke@435 2710 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2711 // capture callee-saved registers as well as return values.
never@739 2712 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 2713 // argument already in ECX
duke@435 2714 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2715 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2716
duke@435 2717 // Set an oopmap for the call site
duke@435 2718 OopMapSet *oop_maps = new OopMapSet();
duke@435 2719 OopMap* map = new OopMap( framesize, 0 );
duke@435 2720 // No oopMap for rbp, it is known implicitly
duke@435 2721
duke@435 2722 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2723
duke@435 2724 __ get_thread(rcx);
duke@435 2725
duke@435 2726 __ reset_last_Java_frame(rcx, false, false);
duke@435 2727
duke@435 2728 // Load UnrollBlock into EDI
never@739 2729 __ movptr(rdi, rax);
duke@435 2730
duke@435 2731 // Pop all the frames we must move/replace.
duke@435 2732 //
duke@435 2733 // Frame picture (youngest to oldest)
duke@435 2734 // 1: self-frame (no frame link)
duke@435 2735 // 2: deopting frame (no frame link)
duke@435 2736 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2737
duke@435 2738 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 2739 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 2740
duke@435 2741 // Pop deoptimized frame
never@739 2742 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 2743 __ addptr(rsp, rcx);
duke@435 2744
duke@435 2745 // sp should be pointing at the return address to the caller (3)
duke@435 2746
duke@435 2747 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2748 if (UseStackBanging) {
duke@435 2749 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2750 __ bang_stack_size(rbx, rcx);
duke@435 2751 }
duke@435 2752
duke@435 2753
duke@435 2754 // Load array of frame pcs into ECX
duke@435 2755 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2756
never@739 2757 __ pop(rsi); // trash the pc
duke@435 2758
duke@435 2759 // Load array of frame sizes into ESI
never@739 2760 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2761
duke@435 2762 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2763
duke@435 2764 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2765 __ movl(counter, rbx);
duke@435 2766
duke@435 2767 // Pick up the initial fp we should save
never@739 2768 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2769
duke@435 2770 // Now adjust the caller's stack to make up for the extra locals
duke@435 2771 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2772 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2773 // value and not the "real" sp value.
duke@435 2774
duke@435 2775 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2776 __ movptr(sp_temp, rsp);
never@739 2777 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2778 __ subptr(rsp, rbx);
duke@435 2779
duke@435 2780 // Push interpreter frames in a loop
duke@435 2781 Label loop;
duke@435 2782 __ bind(loop);
never@739 2783 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2784 #ifdef CC_INTERP
never@739 2785 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2786 #ifdef ASSERT
never@739 2787 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2788 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 2789 #else /* ASSERT */
never@739 2790 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2791 #endif /* ASSERT */
duke@435 2792 #else /* CC_INTERP */
never@739 2793 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2794 #endif /* CC_INTERP */
never@739 2795 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2796 __ enter(); // save old & set new rbp,
never@739 2797 __ subptr(rsp, rbx); // Prolog!
never@739 2798 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2799 #ifdef CC_INTERP
never@739 2800 __ movptr(Address(rbp,
duke@435 2801 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2802 rbx); // Make it walkable
duke@435 2803 #else /* CC_INTERP */
duke@435 2804 // This value is corrected by layout_activation_impl
never@739 2805 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 2806 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2807 #endif /* CC_INTERP */
never@739 2808 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2809 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2810 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2811 __ decrementl(counter); // decrement counter
duke@435 2812 __ jcc(Assembler::notZero, loop);
never@739 2813 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2814
duke@435 2815 // Re-push self-frame
duke@435 2816 __ enter(); // save old & set new rbp,
never@739 2817 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 2818
duke@435 2819
duke@435 2820 // set last_Java_sp, last_Java_fp
duke@435 2821 __ get_thread(rdi);
duke@435 2822 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 2823
duke@435 2824 // Call C code. Need thread but NOT official VM entry
duke@435 2825 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2826 // restore return values to their stack-slots with the new SP.
never@739 2827 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 2828 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 2829 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2830 // Set an oopmap for the call site
duke@435 2831 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 2832
duke@435 2833 __ get_thread(rdi);
duke@435 2834 __ reset_last_Java_frame(rdi, true, false);
duke@435 2835
duke@435 2836 // Pop self-frame.
duke@435 2837 __ leave(); // Epilog!
duke@435 2838
duke@435 2839 // Jump to interpreter
duke@435 2840 __ ret(0);
duke@435 2841
duke@435 2842 // -------------
duke@435 2843 // make sure all code is generated
duke@435 2844 masm->flush();
duke@435 2845
duke@435 2846 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 2847 }
duke@435 2848 #endif // COMPILER2
duke@435 2849
duke@435 2850 //------------------------------generate_handler_blob------
duke@435 2851 //
duke@435 2852 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 2853 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 2854 // a safepoint.
duke@435 2855 //
duke@435 2856 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 2857
duke@435 2858 // Account for thread arg in our frame
duke@435 2859 const int additional_words = 1;
duke@435 2860 int frame_size_in_words;
duke@435 2861
duke@435 2862 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2863
duke@435 2864 ResourceMark rm;
duke@435 2865 OopMapSet *oop_maps = new OopMapSet();
duke@435 2866 OopMap* map;
duke@435 2867
duke@435 2868 // allocate space for the code
duke@435 2869 // setup code generation tools
duke@435 2870 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 2871 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2872
duke@435 2873 const Register java_thread = rdi; // callee-saved for VC++
duke@435 2874 address start = __ pc();
duke@435 2875 address call_pc = NULL;
duke@435 2876
duke@435 2877 // If cause_return is true we are at a poll_return and there is
duke@435 2878 // the return address on the stack to the caller on the nmethod
duke@435 2879 // that is safepoint. We can leave this return on the stack and
duke@435 2880 // effectively complete the return and safepoint in the caller.
duke@435 2881 // Otherwise we push space for a return address that the safepoint
duke@435 2882 // handler will install later to make the stack walking sensible.
duke@435 2883 if( !cause_return )
never@739 2884 __ push(rbx); // Make room for return address (or push it again)
duke@435 2885
duke@435 2886 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2887
duke@435 2888 // The following is basically a call_VM. However, we need the precise
duke@435 2889 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 2890 // work ourselves.
duke@435 2891
duke@435 2892 // Push thread argument and setup last_Java_sp
duke@435 2893 __ get_thread(java_thread);
never@739 2894 __ push(java_thread);
duke@435 2895 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 2896
duke@435 2897 // if this was not a poll_return then we need to correct the return address now.
duke@435 2898 if( !cause_return ) {
never@739 2899 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 2900 __ movptr(Address(rbp, wordSize), rax);
duke@435 2901 }
duke@435 2902
duke@435 2903 // do the call
duke@435 2904 __ call(RuntimeAddress(call_ptr));
duke@435 2905
duke@435 2906 // Set an oopmap for the call site. This oopmap will map all
duke@435 2907 // oop-registers and debug-info registers as callee-saved. This
duke@435 2908 // will allow deoptimization at this safepoint to find all possible
duke@435 2909 // debug-info recordings, as well as let GC find all oops.
duke@435 2910
duke@435 2911 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 2912
duke@435 2913 // Discard arg
never@739 2914 __ pop(rcx);
duke@435 2915
duke@435 2916 Label noException;
duke@435 2917
duke@435 2918 // Clear last_Java_sp again
duke@435 2919 __ get_thread(java_thread);
duke@435 2920 __ reset_last_Java_frame(java_thread, false, false);
duke@435 2921
never@739 2922 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2923 __ jcc(Assembler::equal, noException);
duke@435 2924
duke@435 2925 // Exception pending
duke@435 2926
duke@435 2927 RegisterSaver::restore_live_registers(masm);
duke@435 2928
duke@435 2929 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2930
duke@435 2931 __ bind(noException);
duke@435 2932
duke@435 2933 // Normal exit, register restoring and exit
duke@435 2934 RegisterSaver::restore_live_registers(masm);
duke@435 2935
duke@435 2936 __ ret(0);
duke@435 2937
duke@435 2938 // make sure all code is generated
duke@435 2939 masm->flush();
duke@435 2940
duke@435 2941 // Fill-out other meta info
duke@435 2942 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 2943 }
duke@435 2944
duke@435 2945 //
duke@435 2946 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 2947 //
duke@435 2948 // Generate a stub that calls into vm to find out the proper destination
duke@435 2949 // of a java call. All the argument registers are live at this point
duke@435 2950 // but since this is generic code we don't know what they are and the caller
duke@435 2951 // must do any gc of the args.
duke@435 2952 //
duke@435 2953 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 2954 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2955
duke@435 2956 // allocate space for the code
duke@435 2957 ResourceMark rm;
duke@435 2958
duke@435 2959 CodeBuffer buffer(name, 1000, 512);
duke@435 2960 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2961
duke@435 2962 int frame_size_words;
duke@435 2963 enum frame_layout {
duke@435 2964 thread_off,
duke@435 2965 extra_words };
duke@435 2966
duke@435 2967 OopMapSet *oop_maps = new OopMapSet();
duke@435 2968 OopMap* map = NULL;
duke@435 2969
duke@435 2970 int start = __ offset();
duke@435 2971
duke@435 2972 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 2973
duke@435 2974 int frame_complete = __ offset();
duke@435 2975
duke@435 2976 const Register thread = rdi;
duke@435 2977 __ get_thread(rdi);
duke@435 2978
never@739 2979 __ push(thread);
duke@435 2980 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 2981
duke@435 2982 __ call(RuntimeAddress(destination));
duke@435 2983
duke@435 2984
duke@435 2985 // Set an oopmap for the call site.
duke@435 2986 // We need this not only for callee-saved registers, but also for volatile
duke@435 2987 // registers that the compiler might be keeping live across a safepoint.
duke@435 2988
duke@435 2989 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 2990
duke@435 2991 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 2992
never@739 2993 __ addptr(rsp, wordSize);
duke@435 2994
duke@435 2995 // clear last_Java_sp
duke@435 2996 __ reset_last_Java_frame(thread, true, false);
duke@435 2997 // check for pending exceptions
duke@435 2998 Label pending;
never@739 2999 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3000 __ jcc(Assembler::notEqual, pending);
duke@435 3001
duke@435 3002 // get the returned methodOop
never@739 3003 __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
never@739 3004 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3005
never@739 3006 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3007
duke@435 3008 RegisterSaver::restore_live_registers(masm);
duke@435 3009
duke@435 3010 // We are back the the original state on entry and ready to go.
duke@435 3011
duke@435 3012 __ jmp(rax);
duke@435 3013
duke@435 3014 // Pending exception after the safepoint
duke@435 3015
duke@435 3016 __ bind(pending);
duke@435 3017
duke@435 3018 RegisterSaver::restore_live_registers(masm);
duke@435 3019
duke@435 3020 // exception pending => remove activation and forward to exception handler
duke@435 3021
duke@435 3022 __ get_thread(thread);
never@739 3023 __ movptr(Address(thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
never@739 3024 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3025 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3026
duke@435 3027 // -------------
duke@435 3028 // make sure all code is generated
duke@435 3029 masm->flush();
duke@435 3030
duke@435 3031 // return the blob
duke@435 3032 // frame_size_words or bytes??
duke@435 3033 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3034 }
duke@435 3035
duke@435 3036 void SharedRuntime::generate_stubs() {
duke@435 3037
duke@435 3038 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 3039 "wrong_method_stub");
duke@435 3040
duke@435 3041 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 3042 "ic_miss_stub");
duke@435 3043
duke@435 3044 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 3045 "resolve_opt_virtual_call");
duke@435 3046
duke@435 3047 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 3048 "resolve_virtual_call");
duke@435 3049
duke@435 3050 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 3051 "resolve_static_call");
duke@435 3052
duke@435 3053 _polling_page_safepoint_handler_blob =
duke@435 3054 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3055 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 3056
duke@435 3057 _polling_page_return_handler_blob =
duke@435 3058 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3059 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 3060
duke@435 3061 generate_deopt_blob();
duke@435 3062 #ifdef COMPILER2
duke@435 3063 generate_uncommon_trap_blob();
duke@435 3064 #endif // COMPILER2
duke@435 3065 }

mercurial