src/share/vm/opto/subnode.cpp

Fri, 11 Jul 2008 01:14:44 -0700

author
trims
date
Fri, 11 Jul 2008 01:14:44 -0700
changeset 670
9c2ecc2ffb12
parent 631
d1605aabd0a1
parent 656
1e026f8da827
child 728
c3e045194476
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_subnode.cpp.incl"
duke@435 31 #include "math.h"
duke@435 32
duke@435 33 //=============================================================================
duke@435 34 //------------------------------Identity---------------------------------------
duke@435 35 // If right input is a constant 0, return the left input.
duke@435 36 Node *SubNode::Identity( PhaseTransform *phase ) {
duke@435 37 assert(in(1) != this, "Must already have called Value");
duke@435 38 assert(in(2) != this, "Must already have called Value");
duke@435 39
duke@435 40 // Remove double negation
duke@435 41 const Type *zero = add_id();
duke@435 42 if( phase->type( in(1) )->higher_equal( zero ) &&
duke@435 43 in(2)->Opcode() == Opcode() &&
duke@435 44 phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
duke@435 45 return in(2)->in(2);
duke@435 46 }
duke@435 47
never@647 48 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
duke@435 49 if( in(1)->Opcode() == Op_AddI ) {
duke@435 50 if( phase->eqv(in(1)->in(2),in(2)) )
duke@435 51 return in(1)->in(1);
never@647 52 if (phase->eqv(in(1)->in(1),in(2)))
never@647 53 return in(1)->in(2);
never@647 54
duke@435 55 // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
duke@435 56 // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
duke@435 57 // are originally used, although the optimizer sometimes jiggers things).
duke@435 58 // This folding through an O2 removes a loop-exit use of a loop-varying
duke@435 59 // value and generally lowers register pressure in and around the loop.
duke@435 60 if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
duke@435 61 phase->eqv(in(1)->in(2)->in(1),in(2)) )
duke@435 62 return in(1)->in(1);
duke@435 63 }
duke@435 64
duke@435 65 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
duke@435 66 }
duke@435 67
duke@435 68 //------------------------------Value------------------------------------------
duke@435 69 // A subtract node differences it's two inputs.
duke@435 70 const Type *SubNode::Value( PhaseTransform *phase ) const {
duke@435 71 const Node* in1 = in(1);
duke@435 72 const Node* in2 = in(2);
duke@435 73 // Either input is TOP ==> the result is TOP
duke@435 74 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 75 if( t1 == Type::TOP ) return Type::TOP;
duke@435 76 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 77 if( t2 == Type::TOP ) return Type::TOP;
duke@435 78
duke@435 79 // Not correct for SubFnode and AddFNode (must check for infinity)
duke@435 80 // Equal? Subtract is zero
duke@435 81 if (phase->eqv_uncast(in1, in2)) return add_id();
duke@435 82
duke@435 83 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 84 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
duke@435 85 return bottom_type();
duke@435 86
duke@435 87 return sub(t1,t2); // Local flavor of type subtraction
duke@435 88
duke@435 89 }
duke@435 90
duke@435 91 //=============================================================================
duke@435 92
duke@435 93 //------------------------------Helper function--------------------------------
duke@435 94 static bool ok_to_convert(Node* inc, Node* iv) {
duke@435 95 // Do not collapse (x+c0)-y if "+" is a loop increment, because the
duke@435 96 // "-" is loop invariant and collapsing extends the live-range of "x"
duke@435 97 // to overlap with the "+", forcing another register to be used in
duke@435 98 // the loop.
duke@435 99 // This test will be clearer with '&&' (apply DeMorgan's rule)
duke@435 100 // but I like the early cutouts that happen here.
duke@435 101 const PhiNode *phi;
duke@435 102 if( ( !inc->in(1)->is_Phi() ||
duke@435 103 !(phi=inc->in(1)->as_Phi()) ||
duke@435 104 phi->is_copy() ||
duke@435 105 !phi->region()->is_CountedLoop() ||
duke@435 106 inc != phi->region()->as_CountedLoop()->incr() )
duke@435 107 &&
duke@435 108 // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
duke@435 109 // because "x" maybe invariant.
duke@435 110 ( !iv->is_loop_iv() )
duke@435 111 ) {
duke@435 112 return true;
duke@435 113 } else {
duke@435 114 return false;
duke@435 115 }
duke@435 116 }
duke@435 117 //------------------------------Ideal------------------------------------------
duke@435 118 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 119 Node *in1 = in(1);
duke@435 120 Node *in2 = in(2);
duke@435 121 uint op1 = in1->Opcode();
duke@435 122 uint op2 = in2->Opcode();
duke@435 123
duke@435 124 #ifdef ASSERT
duke@435 125 // Check for dead loop
duke@435 126 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 127 ( op1 == Op_AddI || op1 == Op_SubI ) &&
duke@435 128 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 129 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 130 assert(false, "dead loop in SubINode::Ideal");
duke@435 131 #endif
duke@435 132
duke@435 133 const Type *t2 = phase->type( in2 );
duke@435 134 if( t2 == Type::TOP ) return NULL;
duke@435 135 // Convert "x-c0" into "x+ -c0".
duke@435 136 if( t2->base() == Type::Int ){ // Might be bottom or top...
duke@435 137 const TypeInt *i = t2->is_int();
duke@435 138 if( i->is_con() )
duke@435 139 return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
duke@435 140 }
duke@435 141
duke@435 142 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 143 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 144 // if "y" is a loop induction variable.
duke@435 145 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
duke@435 146 const Type *tadd = phase->type( in1->in(2) );
duke@435 147 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 148 Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
duke@435 149 return new (phase->C, 3) AddINode( sub2, in1->in(2) );
duke@435 150 }
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 155 // Need the same check as in above optimization but reversed.
duke@435 156 if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
duke@435 157 Node* in21 = in2->in(1);
duke@435 158 Node* in22 = in2->in(2);
duke@435 159 const TypeInt* tcon = phase->type(in22)->isa_int();
duke@435 160 if (tcon != NULL && tcon->is_con()) {
duke@435 161 Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
duke@435 162 Node* neg_c0 = phase->intcon(- tcon->get_con());
duke@435 163 return new (phase->C, 3) AddINode(sub2, neg_c0);
duke@435 164 }
duke@435 165 }
duke@435 166
duke@435 167 const Type *t1 = phase->type( in1 );
duke@435 168 if( t1 == Type::TOP ) return NULL;
duke@435 169
duke@435 170 #ifdef ASSERT
duke@435 171 // Check for dead loop
duke@435 172 if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
duke@435 173 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 174 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 175 assert(false, "dead loop in SubINode::Ideal");
duke@435 176 #endif
duke@435 177
duke@435 178 // Convert "x - (x+y)" into "-y"
duke@435 179 if( op2 == Op_AddI &&
duke@435 180 phase->eqv( in1, in2->in(1) ) )
duke@435 181 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
duke@435 182 // Convert "(x-y) - x" into "-y"
duke@435 183 if( op1 == Op_SubI &&
duke@435 184 phase->eqv( in1->in(1), in2 ) )
duke@435 185 return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
duke@435 186 // Convert "x - (y+x)" into "-y"
duke@435 187 if( op2 == Op_AddI &&
duke@435 188 phase->eqv( in1, in2->in(2) ) )
duke@435 189 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
duke@435 190
duke@435 191 // Convert "0 - (x-y)" into "y-x"
duke@435 192 if( t1 == TypeInt::ZERO && op2 == Op_SubI )
duke@435 193 return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
duke@435 194
duke@435 195 // Convert "0 - (x+con)" into "-con-x"
duke@435 196 jint con;
duke@435 197 if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
duke@435 198 (con = in2->in(2)->find_int_con(0)) != 0 )
duke@435 199 return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
duke@435 200
duke@435 201 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 202 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
duke@435 203 return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
duke@435 204
duke@435 205 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 206 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
duke@435 207 return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
duke@435 208
duke@435 209 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
duke@435 210 // nicer to optimize than subtract.
duke@435 211 if( op2 == Op_SubI && in2->outcnt() == 1) {
duke@435 212 Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
duke@435 213 return new (phase->C, 3) SubINode( add1, in2->in(1) );
duke@435 214 }
duke@435 215
duke@435 216 return NULL;
duke@435 217 }
duke@435 218
duke@435 219 //------------------------------sub--------------------------------------------
duke@435 220 // A subtract node differences it's two inputs.
duke@435 221 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 222 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 223 const TypeInt *r1 = t2->is_int();
duke@435 224 int32 lo = r0->_lo - r1->_hi;
duke@435 225 int32 hi = r0->_hi - r1->_lo;
duke@435 226
duke@435 227 // We next check for 32-bit overflow.
duke@435 228 // If that happens, we just assume all integers are possible.
duke@435 229 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 230 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 231 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 232 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 233 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 234 else // Overflow; assume all integers
duke@435 235 return TypeInt::INT;
duke@435 236 }
duke@435 237
duke@435 238 //=============================================================================
duke@435 239 //------------------------------Ideal------------------------------------------
duke@435 240 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 241 Node *in1 = in(1);
duke@435 242 Node *in2 = in(2);
duke@435 243 uint op1 = in1->Opcode();
duke@435 244 uint op2 = in2->Opcode();
duke@435 245
duke@435 246 #ifdef ASSERT
duke@435 247 // Check for dead loop
duke@435 248 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 249 ( op1 == Op_AddL || op1 == Op_SubL ) &&
duke@435 250 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 251 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 252 assert(false, "dead loop in SubLNode::Ideal");
duke@435 253 #endif
duke@435 254
duke@435 255 if( phase->type( in2 ) == Type::TOP ) return NULL;
duke@435 256 const TypeLong *i = phase->type( in2 )->isa_long();
duke@435 257 // Convert "x-c0" into "x+ -c0".
duke@435 258 if( i && // Might be bottom or top...
duke@435 259 i->is_con() )
duke@435 260 return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
duke@435 261
duke@435 262 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 263 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 264 // if "y" is a loop induction variable.
duke@435 265 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
duke@435 266 Node *in11 = in1->in(1);
duke@435 267 const Type *tadd = phase->type( in1->in(2) );
duke@435 268 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 269 Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
duke@435 270 return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
duke@435 271 }
duke@435 272 }
duke@435 273
duke@435 274 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 275 // Need the same check as in above optimization but reversed.
duke@435 276 if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
duke@435 277 Node* in21 = in2->in(1);
duke@435 278 Node* in22 = in2->in(2);
duke@435 279 const TypeLong* tcon = phase->type(in22)->isa_long();
duke@435 280 if (tcon != NULL && tcon->is_con()) {
duke@435 281 Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
duke@435 282 Node* neg_c0 = phase->longcon(- tcon->get_con());
duke@435 283 return new (phase->C, 3) AddLNode(sub2, neg_c0);
duke@435 284 }
duke@435 285 }
duke@435 286
duke@435 287 const Type *t1 = phase->type( in1 );
duke@435 288 if( t1 == Type::TOP ) return NULL;
duke@435 289
duke@435 290 #ifdef ASSERT
duke@435 291 // Check for dead loop
duke@435 292 if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
duke@435 293 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 294 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 295 assert(false, "dead loop in SubLNode::Ideal");
duke@435 296 #endif
duke@435 297
duke@435 298 // Convert "x - (x+y)" into "-y"
duke@435 299 if( op2 == Op_AddL &&
duke@435 300 phase->eqv( in1, in2->in(1) ) )
duke@435 301 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
duke@435 302 // Convert "x - (y+x)" into "-y"
duke@435 303 if( op2 == Op_AddL &&
duke@435 304 phase->eqv( in1, in2->in(2) ) )
duke@435 305 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
duke@435 306
duke@435 307 // Convert "0 - (x-y)" into "y-x"
duke@435 308 if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
duke@435 309 return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
duke@435 310
duke@435 311 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 312 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
duke@435 313 return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
duke@435 314
duke@435 315 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 316 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
duke@435 317 return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
duke@435 318
duke@435 319 // Convert "A-(B-C)" into (A+C)-B"
duke@435 320 if( op2 == Op_SubL && in2->outcnt() == 1) {
duke@435 321 Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
duke@435 322 return new (phase->C, 3) SubLNode( add1, in2->in(1) );
duke@435 323 }
duke@435 324
duke@435 325 return NULL;
duke@435 326 }
duke@435 327
duke@435 328 //------------------------------sub--------------------------------------------
duke@435 329 // A subtract node differences it's two inputs.
duke@435 330 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 331 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 332 const TypeLong *r1 = t2->is_long();
duke@435 333 jlong lo = r0->_lo - r1->_hi;
duke@435 334 jlong hi = r0->_hi - r1->_lo;
duke@435 335
duke@435 336 // We next check for 32-bit overflow.
duke@435 337 // If that happens, we just assume all integers are possible.
duke@435 338 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 339 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 340 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 341 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 342 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 343 else // Overflow; assume all integers
duke@435 344 return TypeLong::LONG;
duke@435 345 }
duke@435 346
duke@435 347 //=============================================================================
duke@435 348 //------------------------------Value------------------------------------------
duke@435 349 // A subtract node differences its two inputs.
duke@435 350 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
duke@435 351 const Node* in1 = in(1);
duke@435 352 const Node* in2 = in(2);
duke@435 353 // Either input is TOP ==> the result is TOP
duke@435 354 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 355 if( t1 == Type::TOP ) return Type::TOP;
duke@435 356 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 357 if( t2 == Type::TOP ) return Type::TOP;
duke@435 358
duke@435 359 // if both operands are infinity of same sign, the result is NaN; do
duke@435 360 // not replace with zero
duke@435 361 if( (t1->is_finite() && t2->is_finite()) ) {
duke@435 362 if( phase->eqv(in1, in2) ) return add_id();
duke@435 363 }
duke@435 364
duke@435 365 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 366 const Type *bot = bottom_type();
duke@435 367 if( (t1 == bot) || (t2 == bot) ||
duke@435 368 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 369 return bot;
duke@435 370
duke@435 371 return sub(t1,t2); // Local flavor of type subtraction
duke@435 372 }
duke@435 373
duke@435 374
duke@435 375 //=============================================================================
duke@435 376 //------------------------------Ideal------------------------------------------
duke@435 377 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 378 const Type *t2 = phase->type( in(2) );
duke@435 379 // Convert "x-c0" into "x+ -c0".
duke@435 380 if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
duke@435 381 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
duke@435 382 }
duke@435 383
duke@435 384 // Not associative because of boundary conditions (infinity)
duke@435 385 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 386 // Convert "x - (x+y)" into "-y"
duke@435 387 if( in(2)->is_Add() &&
duke@435 388 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 389 return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
duke@435 390 }
duke@435 391
duke@435 392 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
duke@435 393 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
duke@435 394 //if( phase->type(in(1)) == TypeF::ZERO )
duke@435 395 //return new (phase->C, 2) NegFNode(in(2));
duke@435 396
duke@435 397 return NULL;
duke@435 398 }
duke@435 399
duke@435 400 //------------------------------sub--------------------------------------------
duke@435 401 // A subtract node differences its two inputs.
duke@435 402 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 403 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 404 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
duke@435 405 return TypeF::make( t1->getf() - t2->getf() );
duke@435 406 }
duke@435 407 else if( g_isnan(t1->getf()) ) {
duke@435 408 return t1;
duke@435 409 }
duke@435 410 else if( g_isnan(t2->getf()) ) {
duke@435 411 return t2;
duke@435 412 }
duke@435 413 else {
duke@435 414 return Type::FLOAT;
duke@435 415 }
duke@435 416 }
duke@435 417
duke@435 418 //=============================================================================
duke@435 419 //------------------------------Ideal------------------------------------------
duke@435 420 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 421 const Type *t2 = phase->type( in(2) );
duke@435 422 // Convert "x-c0" into "x+ -c0".
duke@435 423 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
duke@435 424 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
duke@435 425 }
duke@435 426
duke@435 427 // Not associative because of boundary conditions (infinity)
duke@435 428 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 429 // Convert "x - (x+y)" into "-y"
duke@435 430 if( in(2)->is_Add() &&
duke@435 431 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 432 return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
duke@435 433 }
duke@435 434
duke@435 435 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
duke@435 436 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
duke@435 437 //if( phase->type(in(1)) == TypeD::ZERO )
duke@435 438 //return new (phase->C, 2) NegDNode(in(2));
duke@435 439
duke@435 440 return NULL;
duke@435 441 }
duke@435 442
duke@435 443 //------------------------------sub--------------------------------------------
duke@435 444 // A subtract node differences its two inputs.
duke@435 445 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 446 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 447 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
duke@435 448 return TypeD::make( t1->getd() - t2->getd() );
duke@435 449 }
duke@435 450 else if( g_isnan(t1->getd()) ) {
duke@435 451 return t1;
duke@435 452 }
duke@435 453 else if( g_isnan(t2->getd()) ) {
duke@435 454 return t2;
duke@435 455 }
duke@435 456 else {
duke@435 457 return Type::DOUBLE;
duke@435 458 }
duke@435 459 }
duke@435 460
duke@435 461 //=============================================================================
duke@435 462 //------------------------------Idealize---------------------------------------
duke@435 463 // Unlike SubNodes, compare must still flatten return value to the
duke@435 464 // range -1, 0, 1.
duke@435 465 // And optimizations like those for (X + Y) - X fail if overflow happens.
duke@435 466 Node *CmpNode::Identity( PhaseTransform *phase ) {
duke@435 467 return this;
duke@435 468 }
duke@435 469
duke@435 470 //=============================================================================
duke@435 471 //------------------------------cmp--------------------------------------------
duke@435 472 // Simplify a CmpI (compare 2 integers) node, based on local information.
duke@435 473 // If both inputs are constants, compare them.
duke@435 474 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 475 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 476 const TypeInt *r1 = t2->is_int();
duke@435 477
duke@435 478 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 479 return TypeInt::CC_LT;
duke@435 480 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 481 return TypeInt::CC_GT;
duke@435 482
duke@435 483 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 484 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 485 return TypeInt::CC_EQ; // Equal results.
duke@435 486 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 487 return TypeInt::CC_LE;
duke@435 488 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 489 return TypeInt::CC_GE;
duke@435 490 return TypeInt::CC; // else use worst case results
duke@435 491 }
duke@435 492
duke@435 493 // Simplify a CmpU (compare 2 integers) node, based on local information.
duke@435 494 // If both inputs are constants, compare them.
duke@435 495 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 496 assert(!t1->isa_ptr(), "obsolete usage of CmpU");
duke@435 497
duke@435 498 // comparing two unsigned ints
duke@435 499 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 500 const TypeInt *r1 = t2->is_int();
duke@435 501
duke@435 502 // Current installed version
duke@435 503 // Compare ranges for non-overlap
duke@435 504 juint lo0 = r0->_lo;
duke@435 505 juint hi0 = r0->_hi;
duke@435 506 juint lo1 = r1->_lo;
duke@435 507 juint hi1 = r1->_hi;
duke@435 508
duke@435 509 // If either one has both negative and positive values,
duke@435 510 // it therefore contains both 0 and -1, and since [0..-1] is the
duke@435 511 // full unsigned range, the type must act as an unsigned bottom.
duke@435 512 bool bot0 = ((jint)(lo0 ^ hi0) < 0);
duke@435 513 bool bot1 = ((jint)(lo1 ^ hi1) < 0);
duke@435 514
duke@435 515 if (bot0 || bot1) {
duke@435 516 // All unsigned values are LE -1 and GE 0.
duke@435 517 if (lo0 == 0 && hi0 == 0) {
duke@435 518 return TypeInt::CC_LE; // 0 <= bot
duke@435 519 } else if (lo1 == 0 && hi1 == 0) {
duke@435 520 return TypeInt::CC_GE; // bot >= 0
duke@435 521 }
duke@435 522 } else {
duke@435 523 // We can use ranges of the form [lo..hi] if signs are the same.
duke@435 524 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
duke@435 525 // results are reversed, '-' > '+' for unsigned compare
duke@435 526 if (hi0 < lo1) {
duke@435 527 return TypeInt::CC_LT; // smaller
duke@435 528 } else if (lo0 > hi1) {
duke@435 529 return TypeInt::CC_GT; // greater
duke@435 530 } else if (hi0 == lo1 && lo0 == hi1) {
duke@435 531 return TypeInt::CC_EQ; // Equal results
duke@435 532 } else if (lo0 >= hi1) {
duke@435 533 return TypeInt::CC_GE;
duke@435 534 } else if (hi0 <= lo1) {
duke@435 535 // Check for special case in Hashtable::get. (See below.)
duke@435 536 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 537 in(1)->Opcode() == Op_ModI &&
duke@435 538 in(1)->in(2) == in(2) )
duke@435 539 return TypeInt::CC_LT;
duke@435 540 return TypeInt::CC_LE;
duke@435 541 }
duke@435 542 }
duke@435 543 // Check for special case in Hashtable::get - the hash index is
duke@435 544 // mod'ed to the table size so the following range check is useless.
duke@435 545 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
duke@435 546 // to be positive.
duke@435 547 // (This is a gross hack, since the sub method never
duke@435 548 // looks at the structure of the node in any other case.)
duke@435 549 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 550 in(1)->Opcode() == Op_ModI &&
duke@435 551 in(1)->in(2)->uncast() == in(2)->uncast())
duke@435 552 return TypeInt::CC_LT;
duke@435 553 return TypeInt::CC; // else use worst case results
duke@435 554 }
duke@435 555
duke@435 556 //------------------------------Idealize---------------------------------------
duke@435 557 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 558 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
duke@435 559 switch (in(1)->Opcode()) {
duke@435 560 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
duke@435 561 return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
duke@435 562 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
duke@435 563 return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
duke@435 564 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
duke@435 565 return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
duke@435 566 //case Op_SubI:
duke@435 567 // If (x - y) cannot overflow, then ((x - y) <?> 0)
duke@435 568 // can be turned into (x <?> y).
duke@435 569 // This is handled (with more general cases) by Ideal_sub_algebra.
duke@435 570 }
duke@435 571 }
duke@435 572 return NULL; // No change
duke@435 573 }
duke@435 574
duke@435 575
duke@435 576 //=============================================================================
duke@435 577 // Simplify a CmpL (compare 2 longs ) node, based on local information.
duke@435 578 // If both inputs are constants, compare them.
duke@435 579 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 580 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 581 const TypeLong *r1 = t2->is_long();
duke@435 582
duke@435 583 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 584 return TypeInt::CC_LT;
duke@435 585 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 586 return TypeInt::CC_GT;
duke@435 587
duke@435 588 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 589 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 590 return TypeInt::CC_EQ; // Equal results.
duke@435 591 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 592 return TypeInt::CC_LE;
duke@435 593 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 594 return TypeInt::CC_GE;
duke@435 595 return TypeInt::CC; // else use worst case results
duke@435 596 }
duke@435 597
duke@435 598 //=============================================================================
duke@435 599 //------------------------------sub--------------------------------------------
duke@435 600 // Simplify an CmpP (compare 2 pointers) node, based on local information.
duke@435 601 // If both inputs are constants, compare them.
duke@435 602 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 603 const TypePtr *r0 = t1->is_ptr(); // Handy access
duke@435 604 const TypePtr *r1 = t2->is_ptr();
duke@435 605
duke@435 606 // Undefined inputs makes for an undefined result
duke@435 607 if( TypePtr::above_centerline(r0->_ptr) ||
duke@435 608 TypePtr::above_centerline(r1->_ptr) )
duke@435 609 return Type::TOP;
duke@435 610
duke@435 611 if (r0 == r1 && r0->singleton()) {
duke@435 612 // Equal pointer constants (klasses, nulls, etc.)
duke@435 613 return TypeInt::CC_EQ;
duke@435 614 }
duke@435 615
duke@435 616 // See if it is 2 unrelated classes.
duke@435 617 const TypeOopPtr* p0 = r0->isa_oopptr();
duke@435 618 const TypeOopPtr* p1 = r1->isa_oopptr();
duke@435 619 if (p0 && p1) {
kvn@468 620 Node* in1 = in(1)->uncast();
kvn@468 621 Node* in2 = in(2)->uncast();
kvn@468 622 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
kvn@468 623 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
kvn@468 624 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
kvn@468 625 return TypeInt::CC_GT; // different pointers
kvn@468 626 }
duke@435 627 ciKlass* klass0 = p0->klass();
duke@435 628 bool xklass0 = p0->klass_is_exact();
duke@435 629 ciKlass* klass1 = p1->klass();
duke@435 630 bool xklass1 = p1->klass_is_exact();
duke@435 631 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
duke@435 632 if (klass0 && klass1 &&
duke@435 633 kps != 1 && // both or neither are klass pointers
duke@435 634 !klass0->is_interface() && // do not trust interfaces
duke@435 635 !klass1->is_interface()) {
duke@435 636 // See if neither subclasses the other, or if the class on top
duke@435 637 // is precise. In either of these cases, the compare must fail.
duke@435 638 if (klass0->equals(klass1) || // if types are unequal but klasses are
duke@435 639 !klass0->is_java_klass() || // types not part of Java language?
duke@435 640 !klass1->is_java_klass()) { // types not part of Java language?
duke@435 641 // Do nothing; we know nothing for imprecise types
duke@435 642 } else if (klass0->is_subtype_of(klass1)) {
duke@435 643 // If klass1's type is PRECISE, then we can fail.
duke@435 644 if (xklass1) return TypeInt::CC_GT;
duke@435 645 } else if (klass1->is_subtype_of(klass0)) {
duke@435 646 // If klass0's type is PRECISE, then we can fail.
duke@435 647 if (xklass0) return TypeInt::CC_GT;
duke@435 648 } else { // Neither subtypes the other
duke@435 649 return TypeInt::CC_GT; // ...so always fail
duke@435 650 }
duke@435 651 }
duke@435 652 }
duke@435 653
duke@435 654 // Known constants can be compared exactly
duke@435 655 // Null can be distinguished from any NotNull pointers
duke@435 656 // Unknown inputs makes an unknown result
duke@435 657 if( r0->singleton() ) {
duke@435 658 intptr_t bits0 = r0->get_con();
duke@435 659 if( r1->singleton() )
duke@435 660 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
duke@435 661 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 662 } else if( r1->singleton() ) {
duke@435 663 intptr_t bits1 = r1->get_con();
duke@435 664 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 665 } else
duke@435 666 return TypeInt::CC;
duke@435 667 }
duke@435 668
duke@435 669 //------------------------------Ideal------------------------------------------
duke@435 670 // Check for the case of comparing an unknown klass loaded from the primary
duke@435 671 // super-type array vs a known klass with no subtypes. This amounts to
duke@435 672 // checking to see an unknown klass subtypes a known klass with no subtypes;
duke@435 673 // this only happens on an exact match. We can shorten this test by 1 load.
duke@435 674 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 675 // Constant pointer on right?
duke@435 676 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
duke@435 677 if (t2 == NULL || !t2->klass_is_exact())
duke@435 678 return NULL;
duke@435 679 // Get the constant klass we are comparing to.
duke@435 680 ciKlass* superklass = t2->klass();
duke@435 681
duke@435 682 // Now check for LoadKlass on left.
duke@435 683 Node* ldk1 = in(1);
duke@435 684 if (ldk1->Opcode() != Op_LoadKlass)
duke@435 685 return NULL;
duke@435 686 // Take apart the address of the LoadKlass:
duke@435 687 Node* adr1 = ldk1->in(MemNode::Address);
duke@435 688 intptr_t con2 = 0;
duke@435 689 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
duke@435 690 if (ldk2 == NULL)
duke@435 691 return NULL;
duke@435 692 if (con2 == oopDesc::klass_offset_in_bytes()) {
duke@435 693 // We are inspecting an object's concrete class.
duke@435 694 // Short-circuit the check if the query is abstract.
duke@435 695 if (superklass->is_interface() ||
duke@435 696 superklass->is_abstract()) {
duke@435 697 // Make it come out always false:
duke@435 698 this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
duke@435 699 return this;
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 // Check for a LoadKlass from primary supertype array.
duke@435 704 // Any nested loadklass from loadklass+con must be from the p.s. array.
duke@435 705 if (ldk2->Opcode() != Op_LoadKlass)
duke@435 706 return NULL;
duke@435 707
duke@435 708 // Verify that we understand the situation
duke@435 709 if (con2 != (intptr_t) superklass->super_check_offset())
duke@435 710 return NULL; // Might be element-klass loading from array klass
duke@435 711
duke@435 712 // If 'superklass' has no subklasses and is not an interface, then we are
duke@435 713 // assured that the only input which will pass the type check is
duke@435 714 // 'superklass' itself.
duke@435 715 //
duke@435 716 // We could be more liberal here, and allow the optimization on interfaces
duke@435 717 // which have a single implementor. This would require us to increase the
duke@435 718 // expressiveness of the add_dependency() mechanism.
duke@435 719 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
duke@435 720
duke@435 721 // Object arrays must have their base element have no subtypes
duke@435 722 while (superklass->is_obj_array_klass()) {
duke@435 723 ciType* elem = superklass->as_obj_array_klass()->element_type();
duke@435 724 superklass = elem->as_klass();
duke@435 725 }
duke@435 726 if (superklass->is_instance_klass()) {
duke@435 727 ciInstanceKlass* ik = superklass->as_instance_klass();
duke@435 728 if (ik->has_subklass() || ik->is_interface()) return NULL;
duke@435 729 // Add a dependency if there is a chance that a subclass will be added later.
duke@435 730 if (!ik->is_final()) {
duke@435 731 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 732 }
duke@435 733 }
duke@435 734
duke@435 735 // Bypass the dependent load, and compare directly
duke@435 736 this->set_req(1,ldk2);
duke@435 737
duke@435 738 return this;
duke@435 739 }
duke@435 740
duke@435 741 //=============================================================================
coleenp@548 742 //------------------------------sub--------------------------------------------
coleenp@548 743 // Simplify an CmpN (compare 2 pointers) node, based on local information.
coleenp@548 744 // If both inputs are constants, compare them.
coleenp@548 745 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
kvn@656 746 const TypePtr *r0 = t1->make_ptr(); // Handy access
kvn@656 747 const TypePtr *r1 = t2->make_ptr();
coleenp@548 748
coleenp@548 749 // Undefined inputs makes for an undefined result
coleenp@548 750 if( TypePtr::above_centerline(r0->_ptr) ||
coleenp@548 751 TypePtr::above_centerline(r1->_ptr) )
coleenp@548 752 return Type::TOP;
coleenp@548 753
coleenp@548 754 if (r0 == r1 && r0->singleton()) {
coleenp@548 755 // Equal pointer constants (klasses, nulls, etc.)
coleenp@548 756 return TypeInt::CC_EQ;
coleenp@548 757 }
coleenp@548 758
coleenp@548 759 // See if it is 2 unrelated classes.
coleenp@548 760 const TypeOopPtr* p0 = r0->isa_oopptr();
coleenp@548 761 const TypeOopPtr* p1 = r1->isa_oopptr();
coleenp@548 762 if (p0 && p1) {
coleenp@548 763 ciKlass* klass0 = p0->klass();
coleenp@548 764 bool xklass0 = p0->klass_is_exact();
coleenp@548 765 ciKlass* klass1 = p1->klass();
coleenp@548 766 bool xklass1 = p1->klass_is_exact();
coleenp@548 767 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
coleenp@548 768 if (klass0 && klass1 &&
coleenp@548 769 kps != 1 && // both or neither are klass pointers
coleenp@548 770 !klass0->is_interface() && // do not trust interfaces
coleenp@548 771 !klass1->is_interface()) {
coleenp@548 772 // See if neither subclasses the other, or if the class on top
coleenp@548 773 // is precise. In either of these cases, the compare must fail.
coleenp@548 774 if (klass0->equals(klass1) || // if types are unequal but klasses are
coleenp@548 775 !klass0->is_java_klass() || // types not part of Java language?
coleenp@548 776 !klass1->is_java_klass()) { // types not part of Java language?
coleenp@548 777 // Do nothing; we know nothing for imprecise types
coleenp@548 778 } else if (klass0->is_subtype_of(klass1)) {
coleenp@548 779 // If klass1's type is PRECISE, then we can fail.
coleenp@548 780 if (xklass1) return TypeInt::CC_GT;
coleenp@548 781 } else if (klass1->is_subtype_of(klass0)) {
coleenp@548 782 // If klass0's type is PRECISE, then we can fail.
coleenp@548 783 if (xklass0) return TypeInt::CC_GT;
coleenp@548 784 } else { // Neither subtypes the other
coleenp@548 785 return TypeInt::CC_GT; // ...so always fail
coleenp@548 786 }
coleenp@548 787 }
coleenp@548 788 }
coleenp@548 789
coleenp@548 790 // Known constants can be compared exactly
coleenp@548 791 // Null can be distinguished from any NotNull pointers
coleenp@548 792 // Unknown inputs makes an unknown result
coleenp@548 793 if( r0->singleton() ) {
coleenp@548 794 intptr_t bits0 = r0->get_con();
coleenp@548 795 if( r1->singleton() )
coleenp@548 796 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
coleenp@548 797 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 798 } else if( r1->singleton() ) {
coleenp@548 799 intptr_t bits1 = r1->get_con();
coleenp@548 800 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 801 } else
coleenp@548 802 return TypeInt::CC;
coleenp@548 803 }
coleenp@548 804
coleenp@548 805 //------------------------------Ideal------------------------------------------
coleenp@548 806 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
coleenp@548 807 return NULL;
coleenp@548 808 }
coleenp@548 809
coleenp@548 810 //=============================================================================
duke@435 811 //------------------------------Value------------------------------------------
duke@435 812 // Simplify an CmpF (compare 2 floats ) node, based on local information.
duke@435 813 // If both inputs are constants, compare them.
duke@435 814 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
duke@435 815 const Node* in1 = in(1);
duke@435 816 const Node* in2 = in(2);
duke@435 817 // Either input is TOP ==> the result is TOP
duke@435 818 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 819 if( t1 == Type::TOP ) return Type::TOP;
duke@435 820 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 821 if( t2 == Type::TOP ) return Type::TOP;
duke@435 822
duke@435 823 // Not constants? Don't know squat - even if they are the same
duke@435 824 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 825 const TypeF *tf1 = t1->isa_float_constant();
duke@435 826 const TypeF *tf2 = t2->isa_float_constant();
duke@435 827 if( !tf1 || !tf2 ) return TypeInt::CC;
duke@435 828
duke@435 829 // This implements the Java bytecode fcmpl, so unordered returns -1.
duke@435 830 if( tf1->is_nan() || tf2->is_nan() )
duke@435 831 return TypeInt::CC_LT;
duke@435 832
duke@435 833 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
duke@435 834 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
duke@435 835 assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
duke@435 836 return TypeInt::CC_EQ;
duke@435 837 }
duke@435 838
duke@435 839
duke@435 840 //=============================================================================
duke@435 841 //------------------------------Value------------------------------------------
duke@435 842 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
duke@435 843 // If both inputs are constants, compare them.
duke@435 844 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
duke@435 845 const Node* in1 = in(1);
duke@435 846 const Node* in2 = in(2);
duke@435 847 // Either input is TOP ==> the result is TOP
duke@435 848 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 849 if( t1 == Type::TOP ) return Type::TOP;
duke@435 850 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 851 if( t2 == Type::TOP ) return Type::TOP;
duke@435 852
duke@435 853 // Not constants? Don't know squat - even if they are the same
duke@435 854 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 855 const TypeD *td1 = t1->isa_double_constant();
duke@435 856 const TypeD *td2 = t2->isa_double_constant();
duke@435 857 if( !td1 || !td2 ) return TypeInt::CC;
duke@435 858
duke@435 859 // This implements the Java bytecode dcmpl, so unordered returns -1.
duke@435 860 if( td1->is_nan() || td2->is_nan() )
duke@435 861 return TypeInt::CC_LT;
duke@435 862
duke@435 863 if( td1->_d < td2->_d ) return TypeInt::CC_LT;
duke@435 864 if( td1->_d > td2->_d ) return TypeInt::CC_GT;
duke@435 865 assert( td1->_d == td2->_d, "do not understand FP behavior" );
duke@435 866 return TypeInt::CC_EQ;
duke@435 867 }
duke@435 868
duke@435 869 //------------------------------Ideal------------------------------------------
duke@435 870 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 871 // Check if we can change this to a CmpF and remove a ConvD2F operation.
duke@435 872 // Change (CMPD (F2D (float)) (ConD value))
duke@435 873 // To (CMPF (float) (ConF value))
duke@435 874 // Valid when 'value' does not lose precision as a float.
duke@435 875 // Benefits: eliminates conversion, does not require 24-bit mode
duke@435 876
duke@435 877 // NaNs prevent commuting operands. This transform works regardless of the
duke@435 878 // order of ConD and ConvF2D inputs by preserving the original order.
duke@435 879 int idx_f2d = 1; // ConvF2D on left side?
duke@435 880 if( in(idx_f2d)->Opcode() != Op_ConvF2D )
duke@435 881 idx_f2d = 2; // No, swap to check for reversed args
duke@435 882 int idx_con = 3-idx_f2d; // Check for the constant on other input
duke@435 883
duke@435 884 if( ConvertCmpD2CmpF &&
duke@435 885 in(idx_f2d)->Opcode() == Op_ConvF2D &&
duke@435 886 in(idx_con)->Opcode() == Op_ConD ) {
duke@435 887 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
duke@435 888 double t2_value_as_double = t2->_d;
duke@435 889 float t2_value_as_float = (float)t2_value_as_double;
duke@435 890 if( t2_value_as_double == (double)t2_value_as_float ) {
duke@435 891 // Test value can be represented as a float
duke@435 892 // Eliminate the conversion to double and create new comparison
duke@435 893 Node *new_in1 = in(idx_f2d)->in(1);
duke@435 894 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
duke@435 895 if( idx_f2d != 1 ) { // Must flip args to match original order
duke@435 896 Node *tmp = new_in1;
duke@435 897 new_in1 = new_in2;
duke@435 898 new_in2 = tmp;
duke@435 899 }
duke@435 900 CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
duke@435 901 ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
duke@435 902 : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
duke@435 903 return new_cmp; // Changed to CmpFNode
duke@435 904 }
duke@435 905 // Testing value required the precision of a double
duke@435 906 }
duke@435 907 return NULL; // No change
duke@435 908 }
duke@435 909
duke@435 910
duke@435 911 //=============================================================================
duke@435 912 //------------------------------cc2logical-------------------------------------
duke@435 913 // Convert a condition code type to a logical type
duke@435 914 const Type *BoolTest::cc2logical( const Type *CC ) const {
duke@435 915 if( CC == Type::TOP ) return Type::TOP;
duke@435 916 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
duke@435 917 const TypeInt *ti = CC->is_int();
duke@435 918 if( ti->is_con() ) { // Only 1 kind of condition codes set?
duke@435 919 // Match low order 2 bits
duke@435 920 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
duke@435 921 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
duke@435 922 return TypeInt::make(tmp); // Boolean result
duke@435 923 }
duke@435 924
duke@435 925 if( CC == TypeInt::CC_GE ) {
duke@435 926 if( _test == ge ) return TypeInt::ONE;
duke@435 927 if( _test == lt ) return TypeInt::ZERO;
duke@435 928 }
duke@435 929 if( CC == TypeInt::CC_LE ) {
duke@435 930 if( _test == le ) return TypeInt::ONE;
duke@435 931 if( _test == gt ) return TypeInt::ZERO;
duke@435 932 }
duke@435 933
duke@435 934 return TypeInt::BOOL;
duke@435 935 }
duke@435 936
duke@435 937 //------------------------------dump_spec-------------------------------------
duke@435 938 // Print special per-node info
duke@435 939 #ifndef PRODUCT
duke@435 940 void BoolTest::dump_on(outputStream *st) const {
duke@435 941 const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
duke@435 942 st->print(msg[_test]);
duke@435 943 }
duke@435 944 #endif
duke@435 945
duke@435 946 //=============================================================================
duke@435 947 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
duke@435 948 uint BoolNode::size_of() const { return sizeof(BoolNode); }
duke@435 949
duke@435 950 //------------------------------operator==-------------------------------------
duke@435 951 uint BoolNode::cmp( const Node &n ) const {
duke@435 952 const BoolNode *b = (const BoolNode *)&n; // Cast up
duke@435 953 return (_test._test == b->_test._test);
duke@435 954 }
duke@435 955
duke@435 956 //------------------------------clone_cmp--------------------------------------
duke@435 957 // Clone a compare/bool tree
duke@435 958 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
duke@435 959 Node *ncmp = cmp->clone();
duke@435 960 ncmp->set_req(1,cmp1);
duke@435 961 ncmp->set_req(2,cmp2);
duke@435 962 ncmp = gvn->transform( ncmp );
duke@435 963 return new (gvn->C, 2) BoolNode( ncmp, test );
duke@435 964 }
duke@435 965
duke@435 966 //-------------------------------make_predicate--------------------------------
duke@435 967 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
duke@435 968 if (test_value->is_Con()) return test_value;
duke@435 969 if (test_value->is_Bool()) return test_value;
duke@435 970 Compile* C = phase->C;
duke@435 971 if (test_value->is_CMove() &&
duke@435 972 test_value->in(CMoveNode::Condition)->is_Bool()) {
duke@435 973 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
duke@435 974 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
duke@435 975 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
duke@435 976 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
duke@435 977 return bol;
duke@435 978 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
duke@435 979 return phase->transform( bol->negate(phase) );
duke@435 980 }
duke@435 981 // Else fall through. The CMove gets in the way of the test.
duke@435 982 // It should be the case that make_predicate(bol->as_int_value()) == bol.
duke@435 983 }
duke@435 984 Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
duke@435 985 cmp = phase->transform(cmp);
duke@435 986 Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
duke@435 987 return phase->transform(bol);
duke@435 988 }
duke@435 989
duke@435 990 //--------------------------------as_int_value---------------------------------
duke@435 991 Node* BoolNode::as_int_value(PhaseGVN* phase) {
duke@435 992 // Inverse to make_predicate. The CMove probably boils down to a Conv2B.
duke@435 993 Node* cmov = CMoveNode::make(phase->C, NULL, this,
duke@435 994 phase->intcon(0), phase->intcon(1),
duke@435 995 TypeInt::BOOL);
duke@435 996 return phase->transform(cmov);
duke@435 997 }
duke@435 998
duke@435 999 //----------------------------------negate-------------------------------------
duke@435 1000 BoolNode* BoolNode::negate(PhaseGVN* phase) {
duke@435 1001 Compile* C = phase->C;
duke@435 1002 return new (C, 2) BoolNode(in(1), _test.negate());
duke@435 1003 }
duke@435 1004
duke@435 1005
duke@435 1006 //------------------------------Ideal------------------------------------------
duke@435 1007 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1008 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
duke@435 1009 // This moves the constant to the right. Helps value-numbering.
duke@435 1010 Node *cmp = in(1);
duke@435 1011 if( !cmp->is_Sub() ) return NULL;
duke@435 1012 int cop = cmp->Opcode();
duke@435 1013 if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
duke@435 1014 Node *cmp1 = cmp->in(1);
duke@435 1015 Node *cmp2 = cmp->in(2);
duke@435 1016 if( !cmp1 ) return NULL;
duke@435 1017
duke@435 1018 // Constant on left?
duke@435 1019 Node *con = cmp1;
duke@435 1020 uint op2 = cmp2->Opcode();
duke@435 1021 // Move constants to the right of compare's to canonicalize.
duke@435 1022 // Do not muck with Opaque1 nodes, as this indicates a loop
duke@435 1023 // guard that cannot change shape.
duke@435 1024 if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
duke@435 1025 // Because of NaN's, CmpD and CmpF are not commutative
duke@435 1026 cop != Op_CmpD && cop != Op_CmpF &&
duke@435 1027 // Protect against swapping inputs to a compare when it is used by a
duke@435 1028 // counted loop exit, which requires maintaining the loop-limit as in(2)
duke@435 1029 !is_counted_loop_exit_test() ) {
duke@435 1030 // Ok, commute the constant to the right of the cmp node.
duke@435 1031 // Clone the Node, getting a new Node of the same class
duke@435 1032 cmp = cmp->clone();
duke@435 1033 // Swap inputs to the clone
duke@435 1034 cmp->swap_edges(1, 2);
duke@435 1035 cmp = phase->transform( cmp );
duke@435 1036 return new (phase->C, 2) BoolNode( cmp, _test.commute() );
duke@435 1037 }
duke@435 1038
duke@435 1039 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
duke@435 1040 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the
duke@435 1041 // test instead.
duke@435 1042 int cmp1_op = cmp1->Opcode();
duke@435 1043 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
duke@435 1044 if (cmp2_type == NULL) return NULL;
duke@435 1045 Node* j_xor = cmp1;
duke@435 1046 if( cmp2_type == TypeInt::ZERO &&
duke@435 1047 cmp1_op == Op_XorI &&
duke@435 1048 j_xor->in(1) != j_xor && // An xor of itself is dead
duke@435 1049 phase->type( j_xor->in(2) ) == TypeInt::ONE &&
duke@435 1050 (_test._test == BoolTest::eq ||
duke@435 1051 _test._test == BoolTest::ne) ) {
duke@435 1052 Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
duke@435 1053 return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
duke@435 1054 }
duke@435 1055
duke@435 1056 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
duke@435 1057 // This is a standard idiom for branching on a boolean value.
duke@435 1058 Node *c2b = cmp1;
duke@435 1059 if( cmp2_type == TypeInt::ZERO &&
duke@435 1060 cmp1_op == Op_Conv2B &&
duke@435 1061 (_test._test == BoolTest::eq ||
duke@435 1062 _test._test == BoolTest::ne) ) {
duke@435 1063 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
duke@435 1064 ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
duke@435 1065 : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
duke@435 1066 );
duke@435 1067 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1068 }
duke@435 1069
duke@435 1070 // Comparing a SubI against a zero is equal to comparing the SubI
duke@435 1071 // arguments directly. This only works for eq and ne comparisons
duke@435 1072 // due to possible integer overflow.
duke@435 1073 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
duke@435 1074 (cop == Op_CmpI) &&
duke@435 1075 (cmp1->Opcode() == Op_SubI) &&
duke@435 1076 ( cmp2_type == TypeInt::ZERO ) ) {
duke@435 1077 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
duke@435 1078 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1079 }
duke@435 1080
duke@435 1081 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
duke@435 1082 // most general case because negating 0x80000000 does nothing. Needed for
duke@435 1083 // the CmpF3/SubI/CmpI idiom.
duke@435 1084 if( cop == Op_CmpI &&
duke@435 1085 cmp1->Opcode() == Op_SubI &&
duke@435 1086 cmp2_type == TypeInt::ZERO &&
duke@435 1087 phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
duke@435 1088 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
duke@435 1089 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
duke@435 1090 return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
duke@435 1091 }
duke@435 1092
duke@435 1093 // The transformation below is not valid for either signed or unsigned
duke@435 1094 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
duke@435 1095 // This transformation can be resurrected when we are able to
duke@435 1096 // make inferences about the range of values being subtracted from
duke@435 1097 // (or added to) relative to the wraparound point.
duke@435 1098 //
duke@435 1099 // // Remove +/-1's if possible.
duke@435 1100 // // "X <= Y-1" becomes "X < Y"
duke@435 1101 // // "X+1 <= Y" becomes "X < Y"
duke@435 1102 // // "X < Y+1" becomes "X <= Y"
duke@435 1103 // // "X-1 < Y" becomes "X <= Y"
duke@435 1104 // // Do not this to compares off of the counted-loop-end. These guys are
duke@435 1105 // // checking the trip counter and they want to use the post-incremented
duke@435 1106 // // counter. If they use the PRE-incremented counter, then the counter has
duke@435 1107 // // to be incremented in a private block on a loop backedge.
duke@435 1108 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
duke@435 1109 // return NULL;
duke@435 1110 // #ifndef PRODUCT
duke@435 1111 // // Do not do this in a wash GVN pass during verification.
duke@435 1112 // // Gets triggered by too many simple optimizations to be bothered with
duke@435 1113 // // re-trying it again and again.
duke@435 1114 // if( !phase->allow_progress() ) return NULL;
duke@435 1115 // #endif
duke@435 1116 // // Not valid for unsigned compare because of corner cases in involving zero.
duke@435 1117 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
duke@435 1118 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
duke@435 1119 // // "0 <=u Y" is always true).
duke@435 1120 // if( cmp->Opcode() == Op_CmpU ) return NULL;
duke@435 1121 // int cmp2_op = cmp2->Opcode();
duke@435 1122 // if( _test._test == BoolTest::le ) {
duke@435 1123 // if( cmp1_op == Op_AddI &&
duke@435 1124 // phase->type( cmp1->in(2) ) == TypeInt::ONE )
duke@435 1125 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
duke@435 1126 // else if( cmp2_op == Op_AddI &&
duke@435 1127 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
duke@435 1128 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
duke@435 1129 // } else if( _test._test == BoolTest::lt ) {
duke@435 1130 // if( cmp1_op == Op_AddI &&
duke@435 1131 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
duke@435 1132 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
duke@435 1133 // else if( cmp2_op == Op_AddI &&
duke@435 1134 // phase->type( cmp2->in(2) ) == TypeInt::ONE )
duke@435 1135 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
duke@435 1136 // }
duke@435 1137
duke@435 1138 return NULL;
duke@435 1139 }
duke@435 1140
duke@435 1141 //------------------------------Value------------------------------------------
duke@435 1142 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
duke@435 1143 // based on local information. If the input is constant, do it.
duke@435 1144 const Type *BoolNode::Value( PhaseTransform *phase ) const {
duke@435 1145 return _test.cc2logical( phase->type( in(1) ) );
duke@435 1146 }
duke@435 1147
duke@435 1148 //------------------------------dump_spec--------------------------------------
duke@435 1149 // Dump special per-node info
duke@435 1150 #ifndef PRODUCT
duke@435 1151 void BoolNode::dump_spec(outputStream *st) const {
duke@435 1152 st->print("[");
duke@435 1153 _test.dump_on(st);
duke@435 1154 st->print("]");
duke@435 1155 }
duke@435 1156 #endif
duke@435 1157
duke@435 1158 //------------------------------is_counted_loop_exit_test--------------------------------------
duke@435 1159 // Returns true if node is used by a counted loop node.
duke@435 1160 bool BoolNode::is_counted_loop_exit_test() {
duke@435 1161 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
duke@435 1162 Node* use = fast_out(i);
duke@435 1163 if (use->is_CountedLoopEnd()) {
duke@435 1164 return true;
duke@435 1165 }
duke@435 1166 }
duke@435 1167 return false;
duke@435 1168 }
duke@435 1169
duke@435 1170 //=============================================================================
duke@435 1171 //------------------------------NegNode----------------------------------------
duke@435 1172 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1173 if( in(1)->Opcode() == Op_SubF )
duke@435 1174 return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
duke@435 1175 return NULL;
duke@435 1176 }
duke@435 1177
duke@435 1178 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1179 if( in(1)->Opcode() == Op_SubD )
duke@435 1180 return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
duke@435 1181 return NULL;
duke@435 1182 }
duke@435 1183
duke@435 1184
duke@435 1185 //=============================================================================
duke@435 1186 //------------------------------Value------------------------------------------
duke@435 1187 // Compute sqrt
duke@435 1188 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
duke@435 1189 const Type *t1 = phase->type( in(1) );
duke@435 1190 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1191 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1192 double d = t1->getd();
duke@435 1193 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1194 return TypeD::make( sqrt( d ) );
duke@435 1195 }
duke@435 1196
duke@435 1197 //=============================================================================
duke@435 1198 //------------------------------Value------------------------------------------
duke@435 1199 // Compute cos
duke@435 1200 const Type *CosDNode::Value( PhaseTransform *phase ) const {
duke@435 1201 const Type *t1 = phase->type( in(1) );
duke@435 1202 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1203 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1204 double d = t1->getd();
duke@435 1205 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1206 return TypeD::make( SharedRuntime::dcos( d ) );
duke@435 1207 }
duke@435 1208
duke@435 1209 //=============================================================================
duke@435 1210 //------------------------------Value------------------------------------------
duke@435 1211 // Compute sin
duke@435 1212 const Type *SinDNode::Value( PhaseTransform *phase ) const {
duke@435 1213 const Type *t1 = phase->type( in(1) );
duke@435 1214 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1215 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1216 double d = t1->getd();
duke@435 1217 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1218 return TypeD::make( SharedRuntime::dsin( d ) );
duke@435 1219 }
duke@435 1220
duke@435 1221 //=============================================================================
duke@435 1222 //------------------------------Value------------------------------------------
duke@435 1223 // Compute tan
duke@435 1224 const Type *TanDNode::Value( PhaseTransform *phase ) const {
duke@435 1225 const Type *t1 = phase->type( in(1) );
duke@435 1226 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1227 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1228 double d = t1->getd();
duke@435 1229 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1230 return TypeD::make( SharedRuntime::dtan( d ) );
duke@435 1231 }
duke@435 1232
duke@435 1233 //=============================================================================
duke@435 1234 //------------------------------Value------------------------------------------
duke@435 1235 // Compute log
duke@435 1236 const Type *LogDNode::Value( PhaseTransform *phase ) const {
duke@435 1237 const Type *t1 = phase->type( in(1) );
duke@435 1238 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1239 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1240 double d = t1->getd();
duke@435 1241 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1242 return TypeD::make( SharedRuntime::dlog( d ) );
duke@435 1243 }
duke@435 1244
duke@435 1245 //=============================================================================
duke@435 1246 //------------------------------Value------------------------------------------
duke@435 1247 // Compute log10
duke@435 1248 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
duke@435 1249 const Type *t1 = phase->type( in(1) );
duke@435 1250 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1251 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1252 double d = t1->getd();
duke@435 1253 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1254 return TypeD::make( SharedRuntime::dlog10( d ) );
duke@435 1255 }
duke@435 1256
duke@435 1257 //=============================================================================
duke@435 1258 //------------------------------Value------------------------------------------
duke@435 1259 // Compute exp
duke@435 1260 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
duke@435 1261 const Type *t1 = phase->type( in(1) );
duke@435 1262 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1263 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1264 double d = t1->getd();
duke@435 1265 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1266 return TypeD::make( SharedRuntime::dexp( d ) );
duke@435 1267 }
duke@435 1268
duke@435 1269
duke@435 1270 //=============================================================================
duke@435 1271 //------------------------------Value------------------------------------------
duke@435 1272 // Compute pow
duke@435 1273 const Type *PowDNode::Value( PhaseTransform *phase ) const {
duke@435 1274 const Type *t1 = phase->type( in(1) );
duke@435 1275 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1276 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1277 const Type *t2 = phase->type( in(2) );
duke@435 1278 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1279 if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1280 double d1 = t1->getd();
duke@435 1281 double d2 = t2->getd();
duke@435 1282 if( d1 < 0.0 ) return Type::DOUBLE;
duke@435 1283 if( d2 < 0.0 ) return Type::DOUBLE;
duke@435 1284 return TypeD::make( SharedRuntime::dpow( d1, d2 ) );
duke@435 1285 }

mercurial