src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Fri, 11 Jul 2008 01:14:44 -0700

author
trims
date
Fri, 11 Jul 2008 01:14:44 -0700
changeset 670
9c2ecc2ffb12
parent 631
d1605aabd0a1
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_templateInterpreter_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34
duke@435 35 // Generation of Interpreter
duke@435 36 //
duke@435 37 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
duke@435 38
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //----------------------------------------------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 void InterpreterGenerator::save_native_result(void) {
duke@435 47 // result potentially in O0/O1: save it across calls
duke@435 48 const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
duke@435 49
duke@435 50 // result potentially in F0/F1: save it across calls
duke@435 51 const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
duke@435 52
duke@435 53 // save and restore any potential method result value around the unlocking operation
duke@435 54 __ stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 55 #ifdef _LP64
duke@435 56 __ stx(O0, l_tmp);
duke@435 57 #else
duke@435 58 __ std(O0, l_tmp);
duke@435 59 #endif
duke@435 60 }
duke@435 61
duke@435 62 void InterpreterGenerator::restore_native_result(void) {
duke@435 63 const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
duke@435 64 const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
duke@435 65
duke@435 66 // Restore any method result value
duke@435 67 __ ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 68 #ifdef _LP64
duke@435 69 __ ldx(l_tmp, O0);
duke@435 70 #else
duke@435 71 __ ldd(l_tmp, O0);
duke@435 72 #endif
duke@435 73 }
duke@435 74
duke@435 75 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
duke@435 76 assert(!pass_oop || message == NULL, "either oop or message but not both");
duke@435 77 address entry = __ pc();
duke@435 78 // expression stack must be empty before entering the VM if an exception happened
duke@435 79 __ empty_expression_stack();
duke@435 80 // load exception object
duke@435 81 __ set((intptr_t)name, G3_scratch);
duke@435 82 if (pass_oop) {
duke@435 83 __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
duke@435 84 } else {
duke@435 85 __ set((intptr_t)message, G4_scratch);
duke@435 86 __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
duke@435 87 }
duke@435 88 // throw exception
duke@435 89 assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
duke@435 90 Address thrower(G3_scratch, Interpreter::throw_exception_entry());
duke@435 91 __ jump_to (thrower);
duke@435 92 __ delayed()->nop();
duke@435 93 return entry;
duke@435 94 }
duke@435 95
duke@435 96 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
duke@435 97 address entry = __ pc();
duke@435 98 // expression stack must be empty before entering the VM if an exception
duke@435 99 // happened
duke@435 100 __ empty_expression_stack();
duke@435 101 // load exception object
duke@435 102 __ call_VM(Oexception,
duke@435 103 CAST_FROM_FN_PTR(address,
duke@435 104 InterpreterRuntime::throw_ClassCastException),
duke@435 105 Otos_i);
duke@435 106 __ should_not_reach_here();
duke@435 107 return entry;
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
duke@435 112 address entry = __ pc();
duke@435 113 // expression stack must be empty before entering the VM if an exception happened
duke@435 114 __ empty_expression_stack();
duke@435 115 // convention: expect aberrant index in register G3_scratch, then shuffle the
duke@435 116 // index to G4_scratch for the VM call
duke@435 117 __ mov(G3_scratch, G4_scratch);
duke@435 118 __ set((intptr_t)name, G3_scratch);
duke@435 119 __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
duke@435 120 __ should_not_reach_here();
duke@435 121 return entry;
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
duke@435 126 address entry = __ pc();
duke@435 127 // expression stack must be empty before entering the VM if an exception happened
duke@435 128 __ empty_expression_stack();
duke@435 129 __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
duke@435 130 __ should_not_reach_here();
duke@435 131 return entry;
duke@435 132 }
duke@435 133
duke@435 134
duke@435 135 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
duke@435 136 address compiled_entry = __ pc();
duke@435 137 Label cont;
duke@435 138
duke@435 139 address entry = __ pc();
duke@435 140 #if !defined(_LP64) && defined(COMPILER2)
duke@435 141 // All return values are where we want them, except for Longs. C2 returns
duke@435 142 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 143 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 144 // build even if we are returning from interpreted we just do a little
duke@435 145 // stupid shuffing.
duke@435 146 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 147 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 148 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 149
duke@435 150 if( state == ltos ) {
duke@435 151 __ srl (G1, 0,O1);
duke@435 152 __ srlx(G1,32,O0);
duke@435 153 }
duke@435 154 #endif /* !_LP64 && COMPILER2 */
duke@435 155
duke@435 156
duke@435 157 __ bind(cont);
duke@435 158
duke@435 159 // The callee returns with the stack possibly adjusted by adapter transition
duke@435 160 // We remove that possible adjustment here.
duke@435 161 // All interpreter local registers are untouched. Any result is passed back
duke@435 162 // in the O0/O1 or float registers. Before continuing, the arguments must be
duke@435 163 // popped from the java expression stack; i.e., Lesp must be adjusted.
duke@435 164
duke@435 165 __ mov(Llast_SP, SP); // Remove any adapter added stack space.
duke@435 166
duke@435 167
duke@435 168 const Register cache = G3_scratch;
duke@435 169 const Register size = G1_scratch;
duke@435 170 __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
duke@435 171 __ ld_ptr(Address(cache, 0, in_bytes(constantPoolCacheOopDesc::base_offset()) +
duke@435 172 in_bytes(ConstantPoolCacheEntry::flags_offset())), size);
duke@435 173 __ and3(size, 0xFF, size); // argument size in words
duke@435 174 __ sll(size, Interpreter::logStackElementSize(), size); // each argument size in bytes
duke@435 175 __ add(Lesp, size, Lesp); // pop arguments
duke@435 176 __ dispatch_next(state, step);
duke@435 177
duke@435 178 return entry;
duke@435 179 }
duke@435 180
duke@435 181
duke@435 182 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
duke@435 183 address entry = __ pc();
duke@435 184 __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
duke@435 185 { Label L;
duke@435 186 Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 187
duke@435 188 __ ld_ptr(exception_addr, Gtemp);
duke@435 189 __ tst(Gtemp);
duke@435 190 __ brx(Assembler::equal, false, Assembler::pt, L);
duke@435 191 __ delayed()->nop();
duke@435 192 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
duke@435 193 __ should_not_reach_here();
duke@435 194 __ bind(L);
duke@435 195 }
duke@435 196 __ dispatch_next(state, step);
duke@435 197 return entry;
duke@435 198 }
duke@435 199
duke@435 200 // A result handler converts/unboxes a native call result into
duke@435 201 // a java interpreter/compiler result. The current frame is an
duke@435 202 // interpreter frame. The activation frame unwind code must be
duke@435 203 // consistent with that of TemplateTable::_return(...). In the
duke@435 204 // case of native methods, the caller's SP was not modified.
duke@435 205 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
duke@435 206 address entry = __ pc();
duke@435 207 Register Itos_i = Otos_i ->after_save();
duke@435 208 Register Itos_l = Otos_l ->after_save();
duke@435 209 Register Itos_l1 = Otos_l1->after_save();
duke@435 210 Register Itos_l2 = Otos_l2->after_save();
duke@435 211 switch (type) {
duke@435 212 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
duke@435 213 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value!
duke@435 214 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break;
duke@435 215 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break;
duke@435 216 case T_LONG :
duke@435 217 #ifndef _LP64
duke@435 218 __ mov(O1, Itos_l2); // move other half of long
duke@435 219 #endif // ifdef or no ifdef, fall through to the T_INT case
duke@435 220 case T_INT : __ mov(O0, Itos_i); break;
duke@435 221 case T_VOID : /* nothing to do */ break;
duke@435 222 case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break;
duke@435 223 case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break;
duke@435 224 case T_OBJECT :
duke@435 225 __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
duke@435 226 __ verify_oop(Itos_i);
duke@435 227 break;
duke@435 228 default : ShouldNotReachHere();
duke@435 229 }
duke@435 230 __ ret(); // return from interpreter activation
duke@435 231 __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
duke@435 232 NOT_PRODUCT(__ emit_long(0);) // marker for disassembly
duke@435 233 return entry;
duke@435 234 }
duke@435 235
duke@435 236 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
duke@435 237 address entry = __ pc();
duke@435 238 __ push(state);
duke@435 239 __ call_VM(noreg, runtime_entry);
duke@435 240 __ dispatch_via(vtos, Interpreter::normal_table(vtos));
duke@435 241 return entry;
duke@435 242 }
duke@435 243
duke@435 244
duke@435 245 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
duke@435 246 address entry = __ pc();
duke@435 247 __ dispatch_next(state);
duke@435 248 return entry;
duke@435 249 }
duke@435 250
duke@435 251 //
duke@435 252 // Helpers for commoning out cases in the various type of method entries.
duke@435 253 //
duke@435 254
duke@435 255 // increment invocation count & check for overflow
duke@435 256 //
duke@435 257 // Note: checking for negative value instead of overflow
duke@435 258 // so we have a 'sticky' overflow test
duke@435 259 //
duke@435 260 // Lmethod: method
duke@435 261 // ??: invocation counter
duke@435 262 //
duke@435 263 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
duke@435 264 // Update standard invocation counters
duke@435 265 __ increment_invocation_counter(O0, G3_scratch);
duke@435 266 if (ProfileInterpreter) { // %%% Merge this into methodDataOop
duke@435 267 Address interpreter_invocation_counter(Lmethod, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
duke@435 268 __ ld(interpreter_invocation_counter, G3_scratch);
duke@435 269 __ inc(G3_scratch);
duke@435 270 __ st(G3_scratch, interpreter_invocation_counter);
duke@435 271 }
duke@435 272
duke@435 273 if (ProfileInterpreter && profile_method != NULL) {
duke@435 274 // Test to see if we should create a method data oop
duke@435 275 Address profile_limit(G3_scratch, (address)&InvocationCounter::InterpreterProfileLimit);
duke@435 276 __ sethi(profile_limit);
duke@435 277 __ ld(profile_limit, G3_scratch);
duke@435 278 __ cmp(O0, G3_scratch);
duke@435 279 __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
duke@435 280 __ delayed()->nop();
duke@435 281
duke@435 282 // if no method data exists, go to profile_method
duke@435 283 __ test_method_data_pointer(*profile_method);
duke@435 284 }
duke@435 285
duke@435 286 Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
duke@435 287 __ sethi(invocation_limit);
duke@435 288 __ ld(invocation_limit, G3_scratch);
duke@435 289 __ cmp(O0, G3_scratch);
duke@435 290 __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
duke@435 291 __ delayed()->nop();
duke@435 292
duke@435 293 }
duke@435 294
duke@435 295 // Allocate monitor and lock method (asm interpreter)
duke@435 296 // ebx - methodOop
duke@435 297 //
duke@435 298 void InterpreterGenerator::lock_method(void) {
duke@435 299 const Address access_flags (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 300 __ ld(access_flags, O0);
duke@435 301
duke@435 302 #ifdef ASSERT
duke@435 303 { Label ok;
duke@435 304 __ btst(JVM_ACC_SYNCHRONIZED, O0);
duke@435 305 __ br( Assembler::notZero, false, Assembler::pt, ok);
duke@435 306 __ delayed()->nop();
duke@435 307 __ stop("method doesn't need synchronization");
duke@435 308 __ bind(ok);
duke@435 309 }
duke@435 310 #endif // ASSERT
duke@435 311
duke@435 312 // get synchronization object to O0
duke@435 313 { Label done;
duke@435 314 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 315 __ btst(JVM_ACC_STATIC, O0);
duke@435 316 __ br( Assembler::zero, true, Assembler::pt, done);
duke@435 317 __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
duke@435 318
duke@435 319 __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
duke@435 320 __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
duke@435 321
duke@435 322 // lock the mirror, not the klassOop
duke@435 323 __ ld_ptr( O0, mirror_offset, O0);
duke@435 324
duke@435 325 #ifdef ASSERT
duke@435 326 __ tst(O0);
duke@435 327 __ breakpoint_trap(Assembler::zero);
duke@435 328 #endif // ASSERT
duke@435 329
duke@435 330 __ bind(done);
duke@435 331 }
duke@435 332
duke@435 333 __ add_monitor_to_stack(true, noreg, noreg); // allocate monitor elem
duke@435 334 __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes()); // store object
duke@435 335 // __ untested("lock_object from method entry");
duke@435 336 __ lock_object(Lmonitors, O0);
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
duke@435 341 Register Rscratch,
duke@435 342 Register Rscratch2) {
duke@435 343 const int page_size = os::vm_page_size();
duke@435 344 Address saved_exception_pc(G2_thread, 0,
duke@435 345 in_bytes(JavaThread::saved_exception_pc_offset()));
duke@435 346 Label after_frame_check;
duke@435 347
duke@435 348 assert_different_registers(Rframe_size, Rscratch, Rscratch2);
duke@435 349
duke@435 350 __ set( page_size, Rscratch );
duke@435 351 __ cmp( Rframe_size, Rscratch );
duke@435 352
duke@435 353 __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
duke@435 354 __ delayed()->nop();
duke@435 355
duke@435 356 // get the stack base, and in debug, verify it is non-zero
duke@435 357 __ ld_ptr( G2_thread, in_bytes(Thread::stack_base_offset()), Rscratch );
duke@435 358 #ifdef ASSERT
duke@435 359 Label base_not_zero;
duke@435 360 __ cmp( Rscratch, G0 );
duke@435 361 __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
duke@435 362 __ delayed()->nop();
duke@435 363 __ stop("stack base is zero in generate_stack_overflow_check");
duke@435 364 __ bind(base_not_zero);
duke@435 365 #endif
duke@435 366
duke@435 367 // get the stack size, and in debug, verify it is non-zero
duke@435 368 assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
duke@435 369 __ ld_ptr( G2_thread, in_bytes(Thread::stack_size_offset()), Rscratch2 );
duke@435 370 #ifdef ASSERT
duke@435 371 Label size_not_zero;
duke@435 372 __ cmp( Rscratch2, G0 );
duke@435 373 __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
duke@435 374 __ delayed()->nop();
duke@435 375 __ stop("stack size is zero in generate_stack_overflow_check");
duke@435 376 __ bind(size_not_zero);
duke@435 377 #endif
duke@435 378
duke@435 379 // compute the beginning of the protected zone minus the requested frame size
duke@435 380 __ sub( Rscratch, Rscratch2, Rscratch );
duke@435 381 __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
duke@435 382 __ add( Rscratch, Rscratch2, Rscratch );
duke@435 383
duke@435 384 // Add in the size of the frame (which is the same as subtracting it from the
duke@435 385 // SP, which would take another register
duke@435 386 __ add( Rscratch, Rframe_size, Rscratch );
duke@435 387
duke@435 388 // the frame is greater than one page in size, so check against
duke@435 389 // the bottom of the stack
duke@435 390 __ cmp( SP, Rscratch );
duke@435 391 __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
duke@435 392 __ delayed()->nop();
duke@435 393
duke@435 394 // Save the return address as the exception pc
duke@435 395 __ st_ptr(O7, saved_exception_pc);
duke@435 396
duke@435 397 // the stack will overflow, throw an exception
duke@435 398 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
duke@435 399
duke@435 400 // if you get to here, then there is enough stack space
duke@435 401 __ bind( after_frame_check );
duke@435 402 }
duke@435 403
duke@435 404
duke@435 405 //
duke@435 406 // Generate a fixed interpreter frame. This is identical setup for interpreted
duke@435 407 // methods and for native methods hence the shared code.
duke@435 408
duke@435 409 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
duke@435 410 //
duke@435 411 //
duke@435 412 // The entry code sets up a new interpreter frame in 4 steps:
duke@435 413 //
duke@435 414 // 1) Increase caller's SP by for the extra local space needed:
duke@435 415 // (check for overflow)
duke@435 416 // Efficient implementation of xload/xstore bytecodes requires
duke@435 417 // that arguments and non-argument locals are in a contigously
duke@435 418 // addressable memory block => non-argument locals must be
duke@435 419 // allocated in the caller's frame.
duke@435 420 //
duke@435 421 // 2) Create a new stack frame and register window:
duke@435 422 // The new stack frame must provide space for the standard
duke@435 423 // register save area, the maximum java expression stack size,
duke@435 424 // the monitor slots (0 slots initially), and some frame local
duke@435 425 // scratch locations.
duke@435 426 //
duke@435 427 // 3) The following interpreter activation registers must be setup:
duke@435 428 // Lesp : expression stack pointer
duke@435 429 // Lbcp : bytecode pointer
duke@435 430 // Lmethod : method
duke@435 431 // Llocals : locals pointer
duke@435 432 // Lmonitors : monitor pointer
duke@435 433 // LcpoolCache: constant pool cache
duke@435 434 //
duke@435 435 // 4) Initialize the non-argument locals if necessary:
duke@435 436 // Non-argument locals may need to be initialized to NULL
duke@435 437 // for GC to work. If the oop-map information is accurate
duke@435 438 // (in the absence of the JSR problem), no initialization
duke@435 439 // is necessary.
duke@435 440 //
duke@435 441 // (gri - 2/25/2000)
duke@435 442
duke@435 443
duke@435 444 const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
duke@435 445 const Address size_of_locals (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
duke@435 446 const Address max_stack (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
duke@435 447 int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
duke@435 448
duke@435 449 const int extra_space =
duke@435 450 rounded_vm_local_words + // frame local scratch space
duke@435 451 frame::memory_parameter_word_sp_offset + // register save area
duke@435 452 (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
duke@435 453
duke@435 454 const Register Glocals_size = G3;
duke@435 455 const Register Otmp1 = O3;
duke@435 456 const Register Otmp2 = O4;
duke@435 457 // Lscratch can't be used as a temporary because the call_stub uses
duke@435 458 // it to assert that the stack frame was setup correctly.
duke@435 459
duke@435 460 __ lduh( size_of_parameters, Glocals_size);
duke@435 461
duke@435 462 // Gargs points to first local + BytesPerWord
duke@435 463 // Set the saved SP after the register window save
duke@435 464 //
duke@435 465 assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
duke@435 466 __ sll(Glocals_size, Interpreter::logStackElementSize(), Otmp1);
duke@435 467 __ add(Gargs, Otmp1, Gargs);
duke@435 468
duke@435 469 if (native_call) {
duke@435 470 __ calc_mem_param_words( Glocals_size, Gframe_size );
duke@435 471 __ add( Gframe_size, extra_space, Gframe_size);
duke@435 472 __ round_to( Gframe_size, WordsPerLong );
duke@435 473 __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 474 } else {
duke@435 475
duke@435 476 //
duke@435 477 // Compute number of locals in method apart from incoming parameters
duke@435 478 //
duke@435 479 __ lduh( size_of_locals, Otmp1 );
duke@435 480 __ sub( Otmp1, Glocals_size, Glocals_size );
duke@435 481 __ round_to( Glocals_size, WordsPerLong );
duke@435 482 __ sll( Glocals_size, Interpreter::logStackElementSize(), Glocals_size );
duke@435 483
duke@435 484 // see if the frame is greater than one page in size. If so,
duke@435 485 // then we need to verify there is enough stack space remaining
duke@435 486 // Frame_size = (max_stack + extra_space) * BytesPerWord;
duke@435 487 __ lduh( max_stack, Gframe_size );
duke@435 488 __ add( Gframe_size, extra_space, Gframe_size );
duke@435 489 __ round_to( Gframe_size, WordsPerLong );
duke@435 490 __ sll( Gframe_size, Interpreter::logStackElementSize(), Gframe_size);
duke@435 491
duke@435 492 // Add in java locals size for stack overflow check only
duke@435 493 __ add( Gframe_size, Glocals_size, Gframe_size );
duke@435 494
duke@435 495 const Register Otmp2 = O4;
duke@435 496 assert_different_registers(Otmp1, Otmp2, O5_savedSP);
duke@435 497 generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
duke@435 498
duke@435 499 __ sub( Gframe_size, Glocals_size, Gframe_size);
duke@435 500
duke@435 501 //
duke@435 502 // bump SP to accomodate the extra locals
duke@435 503 //
duke@435 504 __ sub( SP, Glocals_size, SP );
duke@435 505 }
duke@435 506
duke@435 507 //
duke@435 508 // now set up a stack frame with the size computed above
duke@435 509 //
duke@435 510 __ neg( Gframe_size );
duke@435 511 __ save( SP, Gframe_size, SP );
duke@435 512
duke@435 513 //
duke@435 514 // now set up all the local cache registers
duke@435 515 //
duke@435 516 // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
duke@435 517 // that all present references to Lbyte_code initialize the register
duke@435 518 // immediately before use
duke@435 519 if (native_call) {
duke@435 520 __ mov(G0, Lbcp);
duke@435 521 } else {
duke@435 522 __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), Lbcp );
duke@435 523 __ add(Address(Lbcp, 0, in_bytes(constMethodOopDesc::codes_offset())), Lbcp );
duke@435 524 }
duke@435 525 __ mov( G5_method, Lmethod); // set Lmethod
duke@435 526 __ get_constant_pool_cache( LcpoolCache ); // set LcpoolCache
duke@435 527 __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
duke@435 528 #ifdef _LP64
duke@435 529 __ add( Lmonitors, STACK_BIAS, Lmonitors ); // Account for 64 bit stack bias
duke@435 530 #endif
duke@435 531 __ sub(Lmonitors, BytesPerWord, Lesp); // set Lesp
duke@435 532
duke@435 533 // setup interpreter activation registers
duke@435 534 __ sub(Gargs, BytesPerWord, Llocals); // set Llocals
duke@435 535
duke@435 536 if (ProfileInterpreter) {
duke@435 537 #ifdef FAST_DISPATCH
duke@435 538 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 539 // they both use I2.
duke@435 540 assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 541 #endif // FAST_DISPATCH
duke@435 542 __ set_method_data_pointer();
duke@435 543 }
duke@435 544
duke@435 545 }
duke@435 546
duke@435 547 // Empty method, generate a very fast return.
duke@435 548
duke@435 549 address InterpreterGenerator::generate_empty_entry(void) {
duke@435 550
duke@435 551 // A method that does nother but return...
duke@435 552
duke@435 553 address entry = __ pc();
duke@435 554 Label slow_path;
duke@435 555
duke@435 556 __ verify_oop(G5_method);
duke@435 557
duke@435 558 // do nothing for empty methods (do not even increment invocation counter)
duke@435 559 if ( UseFastEmptyMethods) {
duke@435 560 // If we need a safepoint check, generate full interpreter entry.
duke@435 561 Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
duke@435 562 __ load_contents(sync_state, G3_scratch);
duke@435 563 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
duke@435 564 __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
duke@435 565 __ delayed()->nop();
duke@435 566
duke@435 567 // Code: _return
duke@435 568 __ retl();
duke@435 569 __ delayed()->mov(O5_savedSP, SP);
duke@435 570
duke@435 571 __ bind(slow_path);
duke@435 572 (void) generate_normal_entry(false);
duke@435 573
duke@435 574 return entry;
duke@435 575 }
duke@435 576 return NULL;
duke@435 577 }
duke@435 578
duke@435 579 // Call an accessor method (assuming it is resolved, otherwise drop into
duke@435 580 // vanilla (slow path) entry
duke@435 581
duke@435 582 // Generates code to elide accessor methods
duke@435 583 // Uses G3_scratch and G1_scratch as scratch
duke@435 584 address InterpreterGenerator::generate_accessor_entry(void) {
duke@435 585
duke@435 586 // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
duke@435 587 // parameter size = 1
duke@435 588 // Note: We can only use this code if the getfield has been resolved
duke@435 589 // and if we don't have a null-pointer exception => check for
duke@435 590 // these conditions first and use slow path if necessary.
duke@435 591 address entry = __ pc();
duke@435 592 Label slow_path;
duke@435 593
coleenp@548 594
coleenp@548 595 // XXX: for compressed oops pointer loading and decoding doesn't fit in
coleenp@548 596 // delay slot and damages G1
coleenp@548 597 if ( UseFastAccessorMethods && !UseCompressedOops ) {
duke@435 598 // Check if we need to reach a safepoint and generate full interpreter
duke@435 599 // frame if so.
duke@435 600 Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
duke@435 601 __ load_contents(sync_state, G3_scratch);
duke@435 602 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
duke@435 603 __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
duke@435 604 __ delayed()->nop();
duke@435 605
duke@435 606 // Check if local 0 != NULL
duke@435 607 __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
duke@435 608 __ tst(Otos_i); // check if local 0 == NULL and go the slow path
duke@435 609 __ brx(Assembler::zero, false, Assembler::pn, slow_path);
duke@435 610 __ delayed()->nop();
duke@435 611
duke@435 612
duke@435 613 // read first instruction word and extract bytecode @ 1 and index @ 2
duke@435 614 // get first 4 bytes of the bytecodes (big endian!)
duke@435 615 __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
duke@435 616 __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
duke@435 617
duke@435 618 // move index @ 2 far left then to the right most two bytes.
duke@435 619 __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
duke@435 620 __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
duke@435 621 ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
duke@435 622
duke@435 623 // get constant pool cache
duke@435 624 __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
duke@435 625 __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
duke@435 626
duke@435 627 // get specific constant pool cache entry
duke@435 628 __ add(G3_scratch, G1_scratch, G3_scratch);
duke@435 629
duke@435 630 // Check the constant Pool cache entry to see if it has been resolved.
duke@435 631 // If not, need the slow path.
duke@435 632 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
duke@435 633 __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
duke@435 634 __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
duke@435 635 __ and3(G1_scratch, 0xFF, G1_scratch);
duke@435 636 __ cmp(G1_scratch, Bytecodes::_getfield);
duke@435 637 __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
duke@435 638 __ delayed()->nop();
duke@435 639
duke@435 640 // Get the type and return field offset from the constant pool cache
duke@435 641 __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
duke@435 642 __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
duke@435 643
duke@435 644 Label xreturn_path;
duke@435 645 // Need to differentiate between igetfield, agetfield, bgetfield etc.
duke@435 646 // because they are different sizes.
duke@435 647 // Get the type from the constant pool cache
duke@435 648 __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
duke@435 649 // Make sure we don't need to mask G1_scratch for tosBits after the above shift
duke@435 650 ConstantPoolCacheEntry::verify_tosBits();
duke@435 651 __ cmp(G1_scratch, atos );
duke@435 652 __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
duke@435 653 __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
duke@435 654 __ cmp(G1_scratch, itos);
duke@435 655 __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
duke@435 656 __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
duke@435 657 __ cmp(G1_scratch, stos);
duke@435 658 __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
duke@435 659 __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
duke@435 660 __ cmp(G1_scratch, ctos);
duke@435 661 __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
duke@435 662 __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
duke@435 663 #ifdef ASSERT
duke@435 664 __ cmp(G1_scratch, btos);
duke@435 665 __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
duke@435 666 __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
duke@435 667 __ should_not_reach_here();
duke@435 668 #endif
duke@435 669 __ ldsb(Otos_i, G3_scratch, Otos_i);
duke@435 670 __ bind(xreturn_path);
duke@435 671
duke@435 672 // _ireturn/_areturn
duke@435 673 __ retl(); // return from leaf routine
duke@435 674 __ delayed()->mov(O5_savedSP, SP);
duke@435 675
duke@435 676 // Generate regular method entry
duke@435 677 __ bind(slow_path);
duke@435 678 (void) generate_normal_entry(false);
duke@435 679 return entry;
duke@435 680 }
duke@435 681 return NULL;
duke@435 682 }
duke@435 683
duke@435 684 //
duke@435 685 // Interpreter stub for calling a native method. (asm interpreter)
duke@435 686 // This sets up a somewhat different looking stack for calling the native method
duke@435 687 // than the typical interpreter frame setup.
duke@435 688 //
duke@435 689
duke@435 690 address InterpreterGenerator::generate_native_entry(bool synchronized) {
duke@435 691 address entry = __ pc();
duke@435 692
duke@435 693 // the following temporary registers are used during frame creation
duke@435 694 const Register Gtmp1 = G3_scratch ;
duke@435 695 const Register Gtmp2 = G1_scratch;
duke@435 696 bool inc_counter = UseCompiler || CountCompiledCalls;
duke@435 697
duke@435 698 // make sure registers are different!
duke@435 699 assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
duke@435 700
duke@435 701 const Address Laccess_flags (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 702
duke@435 703 __ verify_oop(G5_method);
duke@435 704
duke@435 705 const Register Glocals_size = G3;
duke@435 706 assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
duke@435 707
duke@435 708 // make sure method is native & not abstract
duke@435 709 // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
duke@435 710 #ifdef ASSERT
duke@435 711 __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
duke@435 712 {
duke@435 713 Label L;
duke@435 714 __ btst(JVM_ACC_NATIVE, Gtmp1);
duke@435 715 __ br(Assembler::notZero, false, Assembler::pt, L);
duke@435 716 __ delayed()->nop();
duke@435 717 __ stop("tried to execute non-native method as native");
duke@435 718 __ bind(L);
duke@435 719 }
duke@435 720 { Label L;
duke@435 721 __ btst(JVM_ACC_ABSTRACT, Gtmp1);
duke@435 722 __ br(Assembler::zero, false, Assembler::pt, L);
duke@435 723 __ delayed()->nop();
duke@435 724 __ stop("tried to execute abstract method as non-abstract");
duke@435 725 __ bind(L);
duke@435 726 }
duke@435 727 #endif // ASSERT
duke@435 728
duke@435 729 // generate the code to allocate the interpreter stack frame
duke@435 730 generate_fixed_frame(true);
duke@435 731
duke@435 732 //
duke@435 733 // No locals to initialize for native method
duke@435 734 //
duke@435 735
duke@435 736 // this slot will be set later, we initialize it to null here just in
duke@435 737 // case we get a GC before the actual value is stored later
duke@435 738 __ st_ptr(G0, Address(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS));
duke@435 739
duke@435 740 const Address do_not_unlock_if_synchronized(G2_thread, 0,
duke@435 741 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 742 // Since at this point in the method invocation the exception handler
duke@435 743 // would try to exit the monitor of synchronized methods which hasn't
duke@435 744 // been entered yet, we set the thread local variable
duke@435 745 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
duke@435 746 // runtime, exception handling i.e. unlock_if_synchronized_method will
duke@435 747 // check this thread local flag.
duke@435 748 // This flag has two effects, one is to force an unwind in the topmost
duke@435 749 // interpreter frame and not perform an unlock while doing so.
duke@435 750
duke@435 751 __ movbool(true, G3_scratch);
duke@435 752 __ stbool(G3_scratch, do_not_unlock_if_synchronized);
duke@435 753
duke@435 754 // increment invocation counter and check for overflow
duke@435 755 //
duke@435 756 // Note: checking for negative value instead of overflow
duke@435 757 // so we have a 'sticky' overflow test (may be of
duke@435 758 // importance as soon as we have true MT/MP)
duke@435 759 Label invocation_counter_overflow;
duke@435 760 Label Lcontinue;
duke@435 761 if (inc_counter) {
duke@435 762 generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
duke@435 763
duke@435 764 }
duke@435 765 __ bind(Lcontinue);
duke@435 766
duke@435 767 bang_stack_shadow_pages(true);
duke@435 768
duke@435 769 // reset the _do_not_unlock_if_synchronized flag
duke@435 770 __ stbool(G0, do_not_unlock_if_synchronized);
duke@435 771
duke@435 772 // check for synchronized methods
duke@435 773 // Must happen AFTER invocation_counter check and stack overflow check,
duke@435 774 // so method is not locked if overflows.
duke@435 775
duke@435 776 if (synchronized) {
duke@435 777 lock_method();
duke@435 778 } else {
duke@435 779 #ifdef ASSERT
duke@435 780 { Label ok;
duke@435 781 __ ld(Laccess_flags, O0);
duke@435 782 __ btst(JVM_ACC_SYNCHRONIZED, O0);
duke@435 783 __ br( Assembler::zero, false, Assembler::pt, ok);
duke@435 784 __ delayed()->nop();
duke@435 785 __ stop("method needs synchronization");
duke@435 786 __ bind(ok);
duke@435 787 }
duke@435 788 #endif // ASSERT
duke@435 789 }
duke@435 790
duke@435 791
duke@435 792 // start execution
duke@435 793 __ verify_thread();
duke@435 794
duke@435 795 // JVMTI support
duke@435 796 __ notify_method_entry();
duke@435 797
duke@435 798 // native call
duke@435 799
duke@435 800 // (note that O0 is never an oop--at most it is a handle)
duke@435 801 // It is important not to smash any handles created by this call,
duke@435 802 // until any oop handle in O0 is dereferenced.
duke@435 803
duke@435 804 // (note that the space for outgoing params is preallocated)
duke@435 805
duke@435 806 // get signature handler
duke@435 807 { Label L;
duke@435 808 __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
duke@435 809 __ tst(G3_scratch);
duke@435 810 __ brx(Assembler::notZero, false, Assembler::pt, L);
duke@435 811 __ delayed()->nop();
duke@435 812 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
duke@435 813 __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
duke@435 814 __ bind(L);
duke@435 815 }
duke@435 816
duke@435 817 // Push a new frame so that the args will really be stored in
duke@435 818 // Copy a few locals across so the new frame has the variables
duke@435 819 // we need but these values will be dead at the jni call and
duke@435 820 // therefore not gc volatile like the values in the current
duke@435 821 // frame (Lmethod in particular)
duke@435 822
duke@435 823 // Flush the method pointer to the register save area
duke@435 824 __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
duke@435 825 __ mov(Llocals, O1);
duke@435 826 // calculate where the mirror handle body is allocated in the interpreter frame:
duke@435 827
duke@435 828 Address mirror(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
duke@435 829 __ add(mirror, O2);
duke@435 830
duke@435 831 // Calculate current frame size
duke@435 832 __ sub(SP, FP, O3); // Calculate negative of current frame size
duke@435 833 __ save(SP, O3, SP); // Allocate an identical sized frame
duke@435 834
duke@435 835 // Note I7 has leftover trash. Slow signature handler will fill it in
duke@435 836 // should we get there. Normal jni call will set reasonable last_Java_pc
duke@435 837 // below (and fix I7 so the stack trace doesn't have a meaningless frame
duke@435 838 // in it).
duke@435 839
duke@435 840 // Load interpreter frame's Lmethod into same register here
duke@435 841
duke@435 842 __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
duke@435 843
duke@435 844 __ mov(I1, Llocals);
duke@435 845 __ mov(I2, Lscratch2); // save the address of the mirror
duke@435 846
duke@435 847
duke@435 848 // ONLY Lmethod and Llocals are valid here!
duke@435 849
duke@435 850 // call signature handler, It will move the arg properly since Llocals in current frame
duke@435 851 // matches that in outer frame
duke@435 852
duke@435 853 __ callr(G3_scratch, 0);
duke@435 854 __ delayed()->nop();
duke@435 855
duke@435 856 // Result handler is in Lscratch
duke@435 857
duke@435 858 // Reload interpreter frame's Lmethod since slow signature handler may block
duke@435 859 __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
duke@435 860
duke@435 861 { Label not_static;
duke@435 862
duke@435 863 __ ld(Laccess_flags, O0);
duke@435 864 __ btst(JVM_ACC_STATIC, O0);
duke@435 865 __ br( Assembler::zero, false, Assembler::pt, not_static);
duke@435 866 __ delayed()->
duke@435 867 // get native function entry point(O0 is a good temp until the very end)
duke@435 868 ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
duke@435 869 // for static methods insert the mirror argument
duke@435 870 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 871
duke@435 872 __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
duke@435 873 __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
duke@435 874 __ ld_ptr(O1, mirror_offset, O1);
duke@435 875 #ifdef ASSERT
duke@435 876 if (!PrintSignatureHandlers) // do not dirty the output with this
duke@435 877 { Label L;
duke@435 878 __ tst(O1);
duke@435 879 __ brx(Assembler::notZero, false, Assembler::pt, L);
duke@435 880 __ delayed()->nop();
duke@435 881 __ stop("mirror is missing");
duke@435 882 __ bind(L);
duke@435 883 }
duke@435 884 #endif // ASSERT
duke@435 885 __ st_ptr(O1, Lscratch2, 0);
duke@435 886 __ mov(Lscratch2, O1);
duke@435 887 __ bind(not_static);
duke@435 888 }
duke@435 889
duke@435 890 // At this point, arguments have been copied off of stack into
duke@435 891 // their JNI positions, which are O1..O5 and SP[68..].
duke@435 892 // Oops are boxed in-place on the stack, with handles copied to arguments.
duke@435 893 // The result handler is in Lscratch. O0 will shortly hold the JNIEnv*.
duke@435 894
duke@435 895 #ifdef ASSERT
duke@435 896 { Label L;
duke@435 897 __ tst(O0);
duke@435 898 __ brx(Assembler::notZero, false, Assembler::pt, L);
duke@435 899 __ delayed()->nop();
duke@435 900 __ stop("native entry point is missing");
duke@435 901 __ bind(L);
duke@435 902 }
duke@435 903 #endif // ASSERT
duke@435 904
duke@435 905 //
duke@435 906 // setup the frame anchor
duke@435 907 //
duke@435 908 // The scavenge function only needs to know that the PC of this frame is
duke@435 909 // in the interpreter method entry code, it doesn't need to know the exact
duke@435 910 // PC and hence we can use O7 which points to the return address from the
duke@435 911 // previous call in the code stream (signature handler function)
duke@435 912 //
duke@435 913 // The other trick is we set last_Java_sp to FP instead of the usual SP because
duke@435 914 // we have pushed the extra frame in order to protect the volatile register(s)
duke@435 915 // in that frame when we return from the jni call
duke@435 916 //
duke@435 917
duke@435 918 __ set_last_Java_frame(FP, O7);
duke@435 919 __ mov(O7, I7); // make dummy interpreter frame look like one above,
duke@435 920 // not meaningless information that'll confuse me.
duke@435 921
duke@435 922 // flush the windows now. We don't care about the current (protection) frame
duke@435 923 // only the outer frames
duke@435 924
duke@435 925 __ flush_windows();
duke@435 926
duke@435 927 // mark windows as flushed
duke@435 928 Address flags(G2_thread,
duke@435 929 0,
duke@435 930 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
duke@435 931 __ set(JavaFrameAnchor::flushed, G3_scratch);
duke@435 932 __ st(G3_scratch, flags);
duke@435 933
duke@435 934 // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
duke@435 935
duke@435 936 Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
duke@435 937 #ifdef ASSERT
duke@435 938 { Label L;
duke@435 939 __ ld(thread_state, G3_scratch);
duke@435 940 __ cmp(G3_scratch, _thread_in_Java);
duke@435 941 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 942 __ delayed()->nop();
duke@435 943 __ stop("Wrong thread state in native stub");
duke@435 944 __ bind(L);
duke@435 945 }
duke@435 946 #endif // ASSERT
duke@435 947 __ set(_thread_in_native, G3_scratch);
duke@435 948 __ st(G3_scratch, thread_state);
duke@435 949
duke@435 950 // Call the jni method, using the delay slot to set the JNIEnv* argument.
duke@435 951 __ save_thread(L7_thread_cache); // save Gthread
duke@435 952 __ callr(O0, 0);
duke@435 953 __ delayed()->
duke@435 954 add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
duke@435 955
duke@435 956 // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
duke@435 957
duke@435 958 __ restore_thread(L7_thread_cache); // restore G2_thread
coleenp@548 959 __ reinit_heapbase();
duke@435 960
duke@435 961 // must we block?
duke@435 962
duke@435 963 // Block, if necessary, before resuming in _thread_in_Java state.
duke@435 964 // In order for GC to work, don't clear the last_Java_sp until after blocking.
duke@435 965 { Label no_block;
duke@435 966 Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
duke@435 967
duke@435 968 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 969 // This additional state is necessary because reading and testing the synchronization
duke@435 970 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 971 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 972 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 973 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 974 // didn't see any synchronization is progress, and escapes.
duke@435 975 __ set(_thread_in_native_trans, G3_scratch);
duke@435 976 __ st(G3_scratch, thread_state);
duke@435 977 if(os::is_MP()) {
duke@435 978 if (UseMembar) {
duke@435 979 // Force this write out before the read below
duke@435 980 __ membar(Assembler::StoreLoad);
duke@435 981 } else {
duke@435 982 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 983 // We use the current thread pointer to calculate a thread specific
duke@435 984 // offset to write to within the page. This minimizes bus traffic
duke@435 985 // due to cache line collision.
duke@435 986 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
duke@435 987 }
duke@435 988 }
duke@435 989 __ load_contents(sync_state, G3_scratch);
duke@435 990 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
duke@435 991
duke@435 992 Label L;
duke@435 993 Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
duke@435 994 __ br(Assembler::notEqual, false, Assembler::pn, L);
duke@435 995 __ delayed()->
duke@435 996 ld(suspend_state, G3_scratch);
duke@435 997 __ cmp(G3_scratch, 0);
duke@435 998 __ br(Assembler::equal, false, Assembler::pt, no_block);
duke@435 999 __ delayed()->nop();
duke@435 1000 __ bind(L);
duke@435 1001
duke@435 1002 // Block. Save any potential method result value before the operation and
duke@435 1003 // use a leaf call to leave the last_Java_frame setup undisturbed.
duke@435 1004 save_native_result();
duke@435 1005 __ call_VM_leaf(L7_thread_cache,
duke@435 1006 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
duke@435 1007 G2_thread);
duke@435 1008
duke@435 1009 // Restore any method result value
duke@435 1010 restore_native_result();
duke@435 1011 __ bind(no_block);
duke@435 1012 }
duke@435 1013
duke@435 1014 // Clear the frame anchor now
duke@435 1015
duke@435 1016 __ reset_last_Java_frame();
duke@435 1017
duke@435 1018 // Move the result handler address
duke@435 1019 __ mov(Lscratch, G3_scratch);
duke@435 1020 // return possible result to the outer frame
duke@435 1021 #ifndef __LP64
duke@435 1022 __ mov(O0, I0);
duke@435 1023 __ restore(O1, G0, O1);
duke@435 1024 #else
duke@435 1025 __ restore(O0, G0, O0);
duke@435 1026 #endif /* __LP64 */
duke@435 1027
duke@435 1028 // Move result handler to expected register
duke@435 1029 __ mov(G3_scratch, Lscratch);
duke@435 1030
duke@435 1031 // Back in normal (native) interpreter frame. State is thread_in_native_trans
duke@435 1032 // switch to thread_in_Java.
duke@435 1033
duke@435 1034 __ set(_thread_in_Java, G3_scratch);
duke@435 1035 __ st(G3_scratch, thread_state);
duke@435 1036
duke@435 1037 // reset handle block
duke@435 1038 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
duke@435 1039 __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
duke@435 1040
duke@435 1041 // If we have an oop result store it where it will be safe for any further gc
duke@435 1042 // until we return now that we've released the handle it might be protected by
duke@435 1043
duke@435 1044 {
duke@435 1045 Label no_oop, store_result;
duke@435 1046
duke@435 1047 __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
duke@435 1048 __ cmp(G3_scratch, Lscratch);
duke@435 1049 __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
duke@435 1050 __ delayed()->nop();
duke@435 1051 __ addcc(G0, O0, O0);
duke@435 1052 __ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL:
duke@435 1053 __ delayed()->ld_ptr(O0, 0, O0); // unbox it
duke@435 1054 __ mov(G0, O0);
duke@435 1055
duke@435 1056 __ bind(store_result);
duke@435 1057 // Store it where gc will look for it and result handler expects it.
duke@435 1058 __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
duke@435 1059
duke@435 1060 __ bind(no_oop);
duke@435 1061
duke@435 1062 }
duke@435 1063
duke@435 1064
duke@435 1065 // handle exceptions (exception handling will handle unlocking!)
duke@435 1066 { Label L;
duke@435 1067 Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 1068
duke@435 1069 __ ld_ptr(exception_addr, Gtemp);
duke@435 1070 __ tst(Gtemp);
duke@435 1071 __ brx(Assembler::equal, false, Assembler::pt, L);
duke@435 1072 __ delayed()->nop();
duke@435 1073 // Note: This could be handled more efficiently since we know that the native
duke@435 1074 // method doesn't have an exception handler. We could directly return
duke@435 1075 // to the exception handler for the caller.
duke@435 1076 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
duke@435 1077 __ should_not_reach_here();
duke@435 1078 __ bind(L);
duke@435 1079 }
duke@435 1080
duke@435 1081 // JVMTI support (preserves thread register)
duke@435 1082 __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
duke@435 1083
duke@435 1084 if (synchronized) {
duke@435 1085 // save and restore any potential method result value around the unlocking operation
duke@435 1086 save_native_result();
duke@435 1087
duke@435 1088 __ add( __ top_most_monitor(), O1);
duke@435 1089 __ unlock_object(O1);
duke@435 1090
duke@435 1091 restore_native_result();
duke@435 1092 }
duke@435 1093
duke@435 1094 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1095
duke@435 1096 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1097 // or compiled so just be safe.
duke@435 1098
duke@435 1099 __ sllx(O0, 32, G1); // Shift bits into high G1
duke@435 1100 __ srl (O1, 0, O1); // Zero extend O1
duke@435 1101 __ or3 (O1, G1, G1); // OR 64 bits into G1
duke@435 1102
duke@435 1103 #endif /* COMPILER2 && !_LP64 */
duke@435 1104
duke@435 1105 // dispose of return address and remove activation
duke@435 1106 #ifdef ASSERT
duke@435 1107 {
duke@435 1108 Label ok;
duke@435 1109 __ cmp(I5_savedSP, FP);
duke@435 1110 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
duke@435 1111 __ delayed()->nop();
duke@435 1112 __ stop("bad I5_savedSP value");
duke@435 1113 __ should_not_reach_here();
duke@435 1114 __ bind(ok);
duke@435 1115 }
duke@435 1116 #endif
duke@435 1117 if (TraceJumps) {
duke@435 1118 // Move target to register that is recordable
duke@435 1119 __ mov(Lscratch, G3_scratch);
duke@435 1120 __ JMP(G3_scratch, 0);
duke@435 1121 } else {
duke@435 1122 __ jmp(Lscratch, 0);
duke@435 1123 }
duke@435 1124 __ delayed()->nop();
duke@435 1125
duke@435 1126
duke@435 1127 if (inc_counter) {
duke@435 1128 // handle invocation counter overflow
duke@435 1129 __ bind(invocation_counter_overflow);
duke@435 1130 generate_counter_overflow(Lcontinue);
duke@435 1131 }
duke@435 1132
duke@435 1133
duke@435 1134
duke@435 1135 return entry;
duke@435 1136 }
duke@435 1137
duke@435 1138
duke@435 1139 // Generic method entry to (asm) interpreter
duke@435 1140 //------------------------------------------------------------------------------------------------------------------------
duke@435 1141 //
duke@435 1142 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
duke@435 1143 address entry = __ pc();
duke@435 1144
duke@435 1145 bool inc_counter = UseCompiler || CountCompiledCalls;
duke@435 1146
duke@435 1147 // the following temporary registers are used during frame creation
duke@435 1148 const Register Gtmp1 = G3_scratch ;
duke@435 1149 const Register Gtmp2 = G1_scratch;
duke@435 1150
duke@435 1151 // make sure registers are different!
duke@435 1152 assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
duke@435 1153
duke@435 1154 const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
duke@435 1155 const Address size_of_locals (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
duke@435 1156 // Seems like G5_method is live at the point this is used. So we could make this look consistent
duke@435 1157 // and use in the asserts.
duke@435 1158 const Address access_flags (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 1159
duke@435 1160 __ verify_oop(G5_method);
duke@435 1161
duke@435 1162 const Register Glocals_size = G3;
duke@435 1163 assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
duke@435 1164
duke@435 1165 // make sure method is not native & not abstract
duke@435 1166 // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
duke@435 1167 #ifdef ASSERT
duke@435 1168 __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
duke@435 1169 {
duke@435 1170 Label L;
duke@435 1171 __ btst(JVM_ACC_NATIVE, Gtmp1);
duke@435 1172 __ br(Assembler::zero, false, Assembler::pt, L);
duke@435 1173 __ delayed()->nop();
duke@435 1174 __ stop("tried to execute native method as non-native");
duke@435 1175 __ bind(L);
duke@435 1176 }
duke@435 1177 { Label L;
duke@435 1178 __ btst(JVM_ACC_ABSTRACT, Gtmp1);
duke@435 1179 __ br(Assembler::zero, false, Assembler::pt, L);
duke@435 1180 __ delayed()->nop();
duke@435 1181 __ stop("tried to execute abstract method as non-abstract");
duke@435 1182 __ bind(L);
duke@435 1183 }
duke@435 1184 #endif // ASSERT
duke@435 1185
duke@435 1186 // generate the code to allocate the interpreter stack frame
duke@435 1187
duke@435 1188 generate_fixed_frame(false);
duke@435 1189
duke@435 1190 #ifdef FAST_DISPATCH
duke@435 1191 __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
duke@435 1192 // set bytecode dispatch table base
duke@435 1193 #endif
duke@435 1194
duke@435 1195 //
duke@435 1196 // Code to initialize the extra (i.e. non-parm) locals
duke@435 1197 //
duke@435 1198 Register init_value = noreg; // will be G0 if we must clear locals
duke@435 1199 // The way the code was setup before zerolocals was always true for vanilla java entries.
duke@435 1200 // It could only be false for the specialized entries like accessor or empty which have
duke@435 1201 // no extra locals so the testing was a waste of time and the extra locals were always
duke@435 1202 // initialized. We removed this extra complication to already over complicated code.
duke@435 1203
duke@435 1204 init_value = G0;
duke@435 1205 Label clear_loop;
duke@435 1206
duke@435 1207 // NOTE: If you change the frame layout, this code will need to
duke@435 1208 // be updated!
duke@435 1209 __ lduh( size_of_locals, O2 );
duke@435 1210 __ lduh( size_of_parameters, O1 );
duke@435 1211 __ sll( O2, Interpreter::logStackElementSize(), O2);
duke@435 1212 __ sll( O1, Interpreter::logStackElementSize(), O1 );
duke@435 1213 __ sub( Llocals, O2, O2 );
duke@435 1214 __ sub( Llocals, O1, O1 );
duke@435 1215
duke@435 1216 __ bind( clear_loop );
duke@435 1217 __ inc( O2, wordSize );
duke@435 1218
duke@435 1219 __ cmp( O2, O1 );
duke@435 1220 __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
duke@435 1221 __ delayed()->st_ptr( init_value, O2, 0 );
duke@435 1222
duke@435 1223 const Address do_not_unlock_if_synchronized(G2_thread, 0,
duke@435 1224 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 1225 // Since at this point in the method invocation the exception handler
duke@435 1226 // would try to exit the monitor of synchronized methods which hasn't
duke@435 1227 // been entered yet, we set the thread local variable
duke@435 1228 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
duke@435 1229 // runtime, exception handling i.e. unlock_if_synchronized_method will
duke@435 1230 // check this thread local flag.
duke@435 1231 __ movbool(true, G3_scratch);
duke@435 1232 __ stbool(G3_scratch, do_not_unlock_if_synchronized);
duke@435 1233
duke@435 1234 // increment invocation counter and check for overflow
duke@435 1235 //
duke@435 1236 // Note: checking for negative value instead of overflow
duke@435 1237 // so we have a 'sticky' overflow test (may be of
duke@435 1238 // importance as soon as we have true MT/MP)
duke@435 1239 Label invocation_counter_overflow;
duke@435 1240 Label profile_method;
duke@435 1241 Label profile_method_continue;
duke@435 1242 Label Lcontinue;
duke@435 1243 if (inc_counter) {
duke@435 1244 generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
duke@435 1245 if (ProfileInterpreter) {
duke@435 1246 __ bind(profile_method_continue);
duke@435 1247 }
duke@435 1248 }
duke@435 1249 __ bind(Lcontinue);
duke@435 1250
duke@435 1251 bang_stack_shadow_pages(false);
duke@435 1252
duke@435 1253 // reset the _do_not_unlock_if_synchronized flag
duke@435 1254 __ stbool(G0, do_not_unlock_if_synchronized);
duke@435 1255
duke@435 1256 // check for synchronized methods
duke@435 1257 // Must happen AFTER invocation_counter check and stack overflow check,
duke@435 1258 // so method is not locked if overflows.
duke@435 1259
duke@435 1260 if (synchronized) {
duke@435 1261 lock_method();
duke@435 1262 } else {
duke@435 1263 #ifdef ASSERT
duke@435 1264 { Label ok;
duke@435 1265 __ ld(access_flags, O0);
duke@435 1266 __ btst(JVM_ACC_SYNCHRONIZED, O0);
duke@435 1267 __ br( Assembler::zero, false, Assembler::pt, ok);
duke@435 1268 __ delayed()->nop();
duke@435 1269 __ stop("method needs synchronization");
duke@435 1270 __ bind(ok);
duke@435 1271 }
duke@435 1272 #endif // ASSERT
duke@435 1273 }
duke@435 1274
duke@435 1275 // start execution
duke@435 1276
duke@435 1277 __ verify_thread();
duke@435 1278
duke@435 1279 // jvmti support
duke@435 1280 __ notify_method_entry();
duke@435 1281
duke@435 1282 // start executing instructions
duke@435 1283 __ dispatch_next(vtos);
duke@435 1284
duke@435 1285
duke@435 1286 if (inc_counter) {
duke@435 1287 if (ProfileInterpreter) {
duke@435 1288 // We have decided to profile this method in the interpreter
duke@435 1289 __ bind(profile_method);
duke@435 1290
duke@435 1291 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
duke@435 1292
duke@435 1293 #ifdef ASSERT
duke@435 1294 __ tst(O0);
duke@435 1295 __ breakpoint_trap(Assembler::notEqual);
duke@435 1296 #endif
duke@435 1297
duke@435 1298 __ set_method_data_pointer();
duke@435 1299
duke@435 1300 __ ba(false, profile_method_continue);
duke@435 1301 __ delayed()->nop();
duke@435 1302 }
duke@435 1303
duke@435 1304 // handle invocation counter overflow
duke@435 1305 __ bind(invocation_counter_overflow);
duke@435 1306 generate_counter_overflow(Lcontinue);
duke@435 1307 }
duke@435 1308
duke@435 1309
duke@435 1310 return entry;
duke@435 1311 }
duke@435 1312
duke@435 1313
duke@435 1314 //----------------------------------------------------------------------------------------------------
duke@435 1315 // Entry points & stack frame layout
duke@435 1316 //
duke@435 1317 // Here we generate the various kind of entries into the interpreter.
duke@435 1318 // The two main entry type are generic bytecode methods and native call method.
duke@435 1319 // These both come in synchronized and non-synchronized versions but the
duke@435 1320 // frame layout they create is very similar. The other method entry
duke@435 1321 // types are really just special purpose entries that are really entry
duke@435 1322 // and interpretation all in one. These are for trivial methods like
duke@435 1323 // accessor, empty, or special math methods.
duke@435 1324 //
duke@435 1325 // When control flow reaches any of the entry types for the interpreter
duke@435 1326 // the following holds ->
duke@435 1327 //
duke@435 1328 // C2 Calling Conventions:
duke@435 1329 //
duke@435 1330 // The entry code below assumes that the following registers are set
duke@435 1331 // when coming in:
duke@435 1332 // G5_method: holds the methodOop of the method to call
duke@435 1333 // Lesp: points to the TOS of the callers expression stack
duke@435 1334 // after having pushed all the parameters
duke@435 1335 //
duke@435 1336 // The entry code does the following to setup an interpreter frame
duke@435 1337 // pop parameters from the callers stack by adjusting Lesp
duke@435 1338 // set O0 to Lesp
duke@435 1339 // compute X = (max_locals - num_parameters)
duke@435 1340 // bump SP up by X to accomadate the extra locals
duke@435 1341 // compute X = max_expression_stack
duke@435 1342 // + vm_local_words
duke@435 1343 // + 16 words of register save area
duke@435 1344 // save frame doing a save sp, -X, sp growing towards lower addresses
duke@435 1345 // set Lbcp, Lmethod, LcpoolCache
duke@435 1346 // set Llocals to i0
duke@435 1347 // set Lmonitors to FP - rounded_vm_local_words
duke@435 1348 // set Lesp to Lmonitors - 4
duke@435 1349 //
duke@435 1350 // The frame has now been setup to do the rest of the entry code
duke@435 1351
duke@435 1352 // Try this optimization: Most method entries could live in a
duke@435 1353 // "one size fits all" stack frame without all the dynamic size
duke@435 1354 // calculations. It might be profitable to do all this calculation
duke@435 1355 // statically and approximately for "small enough" methods.
duke@435 1356
duke@435 1357 //-----------------------------------------------------------------------------------------------
duke@435 1358
duke@435 1359 // C1 Calling conventions
duke@435 1360 //
duke@435 1361 // Upon method entry, the following registers are setup:
duke@435 1362 //
duke@435 1363 // g2 G2_thread: current thread
duke@435 1364 // g5 G5_method: method to activate
duke@435 1365 // g4 Gargs : pointer to last argument
duke@435 1366 //
duke@435 1367 //
duke@435 1368 // Stack:
duke@435 1369 //
duke@435 1370 // +---------------+ <--- sp
duke@435 1371 // | |
duke@435 1372 // : reg save area :
duke@435 1373 // | |
duke@435 1374 // +---------------+ <--- sp + 0x40
duke@435 1375 // | |
duke@435 1376 // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
duke@435 1377 // | |
duke@435 1378 // +---------------+ <--- sp + 0x5c
duke@435 1379 // | |
duke@435 1380 // : free :
duke@435 1381 // | |
duke@435 1382 // +---------------+ <--- Gargs
duke@435 1383 // | |
duke@435 1384 // : arguments :
duke@435 1385 // | |
duke@435 1386 // +---------------+
duke@435 1387 // | |
duke@435 1388 //
duke@435 1389 //
duke@435 1390 //
duke@435 1391 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
duke@435 1392 //
duke@435 1393 // +---------------+ <--- sp
duke@435 1394 // | |
duke@435 1395 // : reg save area :
duke@435 1396 // | |
duke@435 1397 // +---------------+ <--- sp + 0x40
duke@435 1398 // | |
duke@435 1399 // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
duke@435 1400 // | |
duke@435 1401 // +---------------+ <--- sp + 0x5c
duke@435 1402 // | |
duke@435 1403 // : :
duke@435 1404 // | | <--- Lesp
duke@435 1405 // +---------------+ <--- Lmonitors (fp - 0x18)
duke@435 1406 // | VM locals |
duke@435 1407 // +---------------+ <--- fp
duke@435 1408 // | |
duke@435 1409 // : reg save area :
duke@435 1410 // | |
duke@435 1411 // +---------------+ <--- fp + 0x40
duke@435 1412 // | |
duke@435 1413 // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
duke@435 1414 // | |
duke@435 1415 // +---------------+ <--- fp + 0x5c
duke@435 1416 // | |
duke@435 1417 // : free :
duke@435 1418 // | |
duke@435 1419 // +---------------+
duke@435 1420 // | |
duke@435 1421 // : nonarg locals :
duke@435 1422 // | |
duke@435 1423 // +---------------+
duke@435 1424 // | |
duke@435 1425 // : arguments :
duke@435 1426 // | | <--- Llocals
duke@435 1427 // +---------------+ <--- Gargs
duke@435 1428 // | |
duke@435 1429
duke@435 1430 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
duke@435 1431
duke@435 1432 // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
duke@435 1433 // expression stack, the callee will have callee_extra_locals (so we can account for
duke@435 1434 // frame extension) and monitor_size for monitors. Basically we need to calculate
duke@435 1435 // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
duke@435 1436 //
duke@435 1437 //
duke@435 1438 // The big complicating thing here is that we must ensure that the stack stays properly
duke@435 1439 // aligned. This would be even uglier if monitor size wasn't modulo what the stack
duke@435 1440 // needs to be aligned for). We are given that the sp (fp) is already aligned by
duke@435 1441 // the caller so we must ensure that it is properly aligned for our callee.
duke@435 1442 //
duke@435 1443 const int rounded_vm_local_words =
duke@435 1444 round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
duke@435 1445 // callee_locals and max_stack are counts, not the size in frame.
duke@435 1446 const int locals_size =
duke@435 1447 round_to(callee_extra_locals * Interpreter::stackElementWords(), WordsPerLong);
duke@435 1448 const int max_stack_words = max_stack * Interpreter::stackElementWords();
duke@435 1449 return (round_to((max_stack_words
duke@435 1450 + rounded_vm_local_words
duke@435 1451 + frame::memory_parameter_word_sp_offset), WordsPerLong)
duke@435 1452 // already rounded
duke@435 1453 + locals_size + monitor_size);
duke@435 1454 }
duke@435 1455
duke@435 1456 // How much stack a method top interpreter activation needs in words.
duke@435 1457 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
duke@435 1458
duke@435 1459 // See call_stub code
duke@435 1460 int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset,
duke@435 1461 WordsPerLong); // 7 + register save area
duke@435 1462
duke@435 1463 // Save space for one monitor to get into the interpreted method in case
duke@435 1464 // the method is synchronized
duke@435 1465 int monitor_size = method->is_synchronized() ?
duke@435 1466 1*frame::interpreter_frame_monitor_size() : 0;
duke@435 1467 return size_activation_helper(method->max_locals(), method->max_stack(),
duke@435 1468 monitor_size) + call_stub_size;
duke@435 1469 }
duke@435 1470
duke@435 1471 int AbstractInterpreter::layout_activation(methodOop method,
duke@435 1472 int tempcount,
duke@435 1473 int popframe_extra_args,
duke@435 1474 int moncount,
duke@435 1475 int callee_param_count,
duke@435 1476 int callee_local_count,
duke@435 1477 frame* caller,
duke@435 1478 frame* interpreter_frame,
duke@435 1479 bool is_top_frame) {
duke@435 1480 // Note: This calculation must exactly parallel the frame setup
duke@435 1481 // in InterpreterGenerator::generate_fixed_frame.
duke@435 1482 // If f!=NULL, set up the following variables:
duke@435 1483 // - Lmethod
duke@435 1484 // - Llocals
duke@435 1485 // - Lmonitors (to the indicated number of monitors)
duke@435 1486 // - Lesp (to the indicated number of temps)
duke@435 1487 // The frame f (if not NULL) on entry is a description of the caller of the frame
duke@435 1488 // we are about to layout. We are guaranteed that we will be able to fill in a
duke@435 1489 // new interpreter frame as its callee (i.e. the stack space is allocated and
duke@435 1490 // the amount was determined by an earlier call to this method with f == NULL).
duke@435 1491 // On return f (if not NULL) while describe the interpreter frame we just layed out.
duke@435 1492
duke@435 1493 int monitor_size = moncount * frame::interpreter_frame_monitor_size();
duke@435 1494 int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
duke@435 1495
duke@435 1496 assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
duke@435 1497 //
duke@435 1498 // Note: if you look closely this appears to be doing something much different
duke@435 1499 // than generate_fixed_frame. What is happening is this. On sparc we have to do
duke@435 1500 // this dance with interpreter_sp_adjustment because the window save area would
duke@435 1501 // appear just below the bottom (tos) of the caller's java expression stack. Because
duke@435 1502 // the interpreter want to have the locals completely contiguous generate_fixed_frame
duke@435 1503 // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
duke@435 1504 // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
duke@435 1505 // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
duke@435 1506 // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
duke@435 1507 // because the oldest frame would have adjust its callers frame and yet that frame
duke@435 1508 // already exists and isn't part of this array of frames we are unpacking. So at first
duke@435 1509 // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
duke@435 1510 // will after it calculates all of the frame's on_stack_size()'s will then figure out the
duke@435 1511 // amount to adjust the caller of the initial (oldest) frame and the calculation will all
duke@435 1512 // add up. It does seem like it simpler to account for the adjustment here (and remove the
duke@435 1513 // callee... parameters here). However this would mean that this routine would have to take
duke@435 1514 // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
duke@435 1515 // and run the calling loop in the reverse order. This would also would appear to mean making
duke@435 1516 // this code aware of what the interactions are when that initial caller fram was an osr or
duke@435 1517 // other adapter frame. deoptimization is complicated enough and hard enough to debug that
duke@435 1518 // there is no sense in messing working code.
duke@435 1519 //
duke@435 1520
duke@435 1521 int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
duke@435 1522 assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
duke@435 1523
duke@435 1524 int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
duke@435 1525 monitor_size);
duke@435 1526
duke@435 1527 if (interpreter_frame != NULL) {
duke@435 1528 // The skeleton frame must already look like an interpreter frame
duke@435 1529 // even if not fully filled out.
duke@435 1530 assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
duke@435 1531
duke@435 1532 intptr_t* fp = interpreter_frame->fp();
duke@435 1533
duke@435 1534 JavaThread* thread = JavaThread::current();
duke@435 1535 RegisterMap map(thread, false);
duke@435 1536 // More verification that skeleton frame is properly walkable
duke@435 1537 assert(fp == caller->sp(), "fp must match");
duke@435 1538
duke@435 1539 intptr_t* montop = fp - rounded_vm_local_words;
duke@435 1540
duke@435 1541 // preallocate monitors (cf. __ add_monitor_to_stack)
duke@435 1542 intptr_t* monitors = montop - monitor_size;
duke@435 1543
duke@435 1544 // preallocate stack space
duke@435 1545 intptr_t* esp = monitors - 1 -
duke@435 1546 (tempcount * Interpreter::stackElementWords()) -
duke@435 1547 popframe_extra_args;
duke@435 1548
duke@435 1549 int local_words = method->max_locals() * Interpreter::stackElementWords();
duke@435 1550 int parm_words = method->size_of_parameters() * Interpreter::stackElementWords();
duke@435 1551 NEEDS_CLEANUP;
duke@435 1552 intptr_t* locals;
duke@435 1553 if (caller->is_interpreted_frame()) {
duke@435 1554 // Can force the locals area to end up properly overlapping the top of the expression stack.
duke@435 1555 intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
duke@435 1556 // Note that this computation means we replace size_of_parameters() values from the caller
duke@435 1557 // interpreter frame's expression stack with our argument locals
duke@435 1558 locals = Lesp_ptr + parm_words;
duke@435 1559 int delta = local_words - parm_words;
duke@435 1560 int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
duke@435 1561 *interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
duke@435 1562 } else {
duke@435 1563 assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
duke@435 1564 // Don't have Lesp available; lay out locals block in the caller
duke@435 1565 // adjacent to the register window save area.
duke@435 1566 //
duke@435 1567 // Compiled frames do not allocate a varargs area which is why this if
duke@435 1568 // statement is needed.
duke@435 1569 //
duke@435 1570 if (caller->is_compiled_frame()) {
duke@435 1571 locals = fp + frame::register_save_words + local_words - 1;
duke@435 1572 } else {
duke@435 1573 locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
duke@435 1574 }
duke@435 1575 if (!caller->is_entry_frame()) {
duke@435 1576 // Caller wants his own SP back
duke@435 1577 int caller_frame_size = caller->cb()->frame_size();
duke@435 1578 *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
duke@435 1579 }
duke@435 1580 }
duke@435 1581 if (TraceDeoptimization) {
duke@435 1582 if (caller->is_entry_frame()) {
duke@435 1583 // make sure I5_savedSP and the entry frames notion of saved SP
duke@435 1584 // agree. This assertion duplicate a check in entry frame code
duke@435 1585 // but catches the failure earlier.
duke@435 1586 assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
duke@435 1587 "would change callers SP");
duke@435 1588 }
duke@435 1589 if (caller->is_entry_frame()) {
duke@435 1590 tty->print("entry ");
duke@435 1591 }
duke@435 1592 if (caller->is_compiled_frame()) {
duke@435 1593 tty->print("compiled ");
duke@435 1594 if (caller->is_deoptimized_frame()) {
duke@435 1595 tty->print("(deopt) ");
duke@435 1596 }
duke@435 1597 }
duke@435 1598 if (caller->is_interpreted_frame()) {
duke@435 1599 tty->print("interpreted ");
duke@435 1600 }
duke@435 1601 tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
duke@435 1602 tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
duke@435 1603 tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
duke@435 1604 tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
duke@435 1605 tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
duke@435 1606 tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
duke@435 1607 tty->print_cr("Llocals = 0x%x", locals);
duke@435 1608 tty->print_cr("Lesp = 0x%x", esp);
duke@435 1609 tty->print_cr("Lmonitors = 0x%x", monitors);
duke@435 1610 }
duke@435 1611
duke@435 1612 if (method->max_locals() > 0) {
duke@435 1613 assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
duke@435 1614 assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
duke@435 1615 assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
duke@435 1616 assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
duke@435 1617 }
duke@435 1618 #ifdef _LP64
duke@435 1619 assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
duke@435 1620 #endif
duke@435 1621
duke@435 1622 *interpreter_frame->register_addr(Lmethod) = (intptr_t) method;
duke@435 1623 *interpreter_frame->register_addr(Llocals) = (intptr_t) locals;
duke@435 1624 *interpreter_frame->register_addr(Lmonitors) = (intptr_t) monitors;
duke@435 1625 *interpreter_frame->register_addr(Lesp) = (intptr_t) esp;
duke@435 1626 // Llast_SP will be same as SP as there is no adapter space
duke@435 1627 *interpreter_frame->register_addr(Llast_SP) = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
duke@435 1628 *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
duke@435 1629 #ifdef FAST_DISPATCH
duke@435 1630 *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
duke@435 1631 #endif
duke@435 1632
duke@435 1633
duke@435 1634 #ifdef ASSERT
duke@435 1635 BasicObjectLock* mp = (BasicObjectLock*)monitors;
duke@435 1636
duke@435 1637 assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
duke@435 1638 assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize())+Interpreter::value_offset_in_bytes()), "locals match");
duke@435 1639 assert(interpreter_frame->interpreter_frame_monitor_end() == mp, "monitor_end matches");
duke@435 1640 assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
duke@435 1641 assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
duke@435 1642
duke@435 1643 // check bounds
duke@435 1644 intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
duke@435 1645 intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
duke@435 1646 assert(lo < monitors && montop <= hi, "monitors in bounds");
duke@435 1647 assert(lo <= esp && esp < monitors, "esp in bounds");
duke@435 1648 #endif // ASSERT
duke@435 1649 }
duke@435 1650
duke@435 1651 return raw_frame_size;
duke@435 1652 }
duke@435 1653
duke@435 1654 //----------------------------------------------------------------------------------------------------
duke@435 1655 // Exceptions
duke@435 1656 void TemplateInterpreterGenerator::generate_throw_exception() {
duke@435 1657
duke@435 1658 // Entry point in previous activation (i.e., if the caller was interpreted)
duke@435 1659 Interpreter::_rethrow_exception_entry = __ pc();
duke@435 1660 // O0: exception
duke@435 1661
duke@435 1662 // entry point for exceptions thrown within interpreter code
duke@435 1663 Interpreter::_throw_exception_entry = __ pc();
duke@435 1664 __ verify_thread();
duke@435 1665 // expression stack is undefined here
duke@435 1666 // O0: exception, i.e. Oexception
duke@435 1667 // Lbcp: exception bcx
duke@435 1668 __ verify_oop(Oexception);
duke@435 1669
duke@435 1670
duke@435 1671 // expression stack must be empty before entering the VM in case of an exception
duke@435 1672 __ empty_expression_stack();
duke@435 1673 // find exception handler address and preserve exception oop
duke@435 1674 // call C routine to find handler and jump to it
duke@435 1675 __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
duke@435 1676 __ push_ptr(O1); // push exception for exception handler bytecodes
duke@435 1677
duke@435 1678 __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
duke@435 1679 __ delayed()->nop();
duke@435 1680
duke@435 1681
duke@435 1682 // if the exception is not handled in the current frame
duke@435 1683 // the frame is removed and the exception is rethrown
duke@435 1684 // (i.e. exception continuation is _rethrow_exception)
duke@435 1685 //
duke@435 1686 // Note: At this point the bci is still the bxi for the instruction which caused
duke@435 1687 // the exception and the expression stack is empty. Thus, for any VM calls
duke@435 1688 // at this point, GC will find a legal oop map (with empty expression stack).
duke@435 1689
duke@435 1690 // in current activation
duke@435 1691 // tos: exception
duke@435 1692 // Lbcp: exception bcp
duke@435 1693
duke@435 1694 //
duke@435 1695 // JVMTI PopFrame support
duke@435 1696 //
duke@435 1697
duke@435 1698 Interpreter::_remove_activation_preserving_args_entry = __ pc();
duke@435 1699 Address popframe_condition_addr (G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
duke@435 1700 // Set the popframe_processing bit in popframe_condition indicating that we are
duke@435 1701 // currently handling popframe, so that call_VMs that may happen later do not trigger new
duke@435 1702 // popframe handling cycles.
duke@435 1703
duke@435 1704 __ ld(popframe_condition_addr, G3_scratch);
duke@435 1705 __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
duke@435 1706 __ stw(G3_scratch, popframe_condition_addr);
duke@435 1707
duke@435 1708 // Empty the expression stack, as in normal exception handling
duke@435 1709 __ empty_expression_stack();
duke@435 1710 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
duke@435 1711
duke@435 1712 {
duke@435 1713 // Check to see whether we are returning to a deoptimized frame.
duke@435 1714 // (The PopFrame call ensures that the caller of the popped frame is
duke@435 1715 // either interpreted or compiled and deoptimizes it if compiled.)
duke@435 1716 // In this case, we can't call dispatch_next() after the frame is
duke@435 1717 // popped, but instead must save the incoming arguments and restore
duke@435 1718 // them after deoptimization has occurred.
duke@435 1719 //
duke@435 1720 // Note that we don't compare the return PC against the
duke@435 1721 // deoptimization blob's unpack entry because of the presence of
duke@435 1722 // adapter frames in C2.
duke@435 1723 Label caller_not_deoptimized;
duke@435 1724 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
duke@435 1725 __ tst(O0);
duke@435 1726 __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
duke@435 1727 __ delayed()->nop();
duke@435 1728
duke@435 1729 const Register Gtmp1 = G3_scratch;
duke@435 1730 const Register Gtmp2 = G1_scratch;
duke@435 1731
duke@435 1732 // Compute size of arguments for saving when returning to deoptimized caller
duke@435 1733 __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
duke@435 1734 __ sll(Gtmp1, Interpreter::logStackElementSize(), Gtmp1);
duke@435 1735 __ sub(Llocals, Gtmp1, Gtmp2);
duke@435 1736 __ add(Gtmp2, wordSize, Gtmp2);
duke@435 1737 // Save these arguments
duke@435 1738 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
duke@435 1739 // Inform deoptimization that it is responsible for restoring these arguments
duke@435 1740 __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
duke@435 1741 Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
duke@435 1742 __ st(Gtmp1, popframe_condition_addr);
duke@435 1743
duke@435 1744 // Return from the current method
duke@435 1745 // The caller's SP was adjusted upon method entry to accomodate
duke@435 1746 // the callee's non-argument locals. Undo that adjustment.
duke@435 1747 __ ret();
duke@435 1748 __ delayed()->restore(I5_savedSP, G0, SP);
duke@435 1749
duke@435 1750 __ bind(caller_not_deoptimized);
duke@435 1751 }
duke@435 1752
duke@435 1753 // Clear the popframe condition flag
duke@435 1754 __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
duke@435 1755
duke@435 1756 // Get out of the current method (how this is done depends on the particular compiler calling
duke@435 1757 // convention that the interpreter currently follows)
duke@435 1758 // The caller's SP was adjusted upon method entry to accomodate
duke@435 1759 // the callee's non-argument locals. Undo that adjustment.
duke@435 1760 __ restore(I5_savedSP, G0, SP);
duke@435 1761 // The method data pointer was incremented already during
duke@435 1762 // call profiling. We have to restore the mdp for the current bcp.
duke@435 1763 if (ProfileInterpreter) {
duke@435 1764 __ set_method_data_pointer_for_bcp();
duke@435 1765 }
duke@435 1766 // Resume bytecode interpretation at the current bcp
duke@435 1767 __ dispatch_next(vtos);
duke@435 1768 // end of JVMTI PopFrame support
duke@435 1769
duke@435 1770 Interpreter::_remove_activation_entry = __ pc();
duke@435 1771
duke@435 1772 // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
duke@435 1773 __ pop_ptr(Oexception); // get exception
duke@435 1774
duke@435 1775 // Intel has the following comment:
duke@435 1776 //// remove the activation (without doing throws on illegalMonitorExceptions)
duke@435 1777 // They remove the activation without checking for bad monitor state.
duke@435 1778 // %%% We should make sure this is the right semantics before implementing.
duke@435 1779
duke@435 1780 // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
duke@435 1781 __ set_vm_result(Oexception);
duke@435 1782 __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
duke@435 1783
duke@435 1784 __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
duke@435 1785
duke@435 1786 __ get_vm_result(Oexception);
duke@435 1787 __ verify_oop(Oexception);
duke@435 1788
duke@435 1789 const int return_reg_adjustment = frame::pc_return_offset;
duke@435 1790 Address issuing_pc_addr(I7, 0, return_reg_adjustment);
duke@435 1791
duke@435 1792 // We are done with this activation frame; find out where to go next.
duke@435 1793 // The continuation point will be an exception handler, which expects
duke@435 1794 // the following registers set up:
duke@435 1795 //
duke@435 1796 // Oexception: exception
duke@435 1797 // Oissuing_pc: the local call that threw exception
duke@435 1798 // Other On: garbage
duke@435 1799 // In/Ln: the contents of the caller's register window
duke@435 1800 //
duke@435 1801 // We do the required restore at the last possible moment, because we
duke@435 1802 // need to preserve some state across a runtime call.
duke@435 1803 // (Remember that the caller activation is unknown--it might not be
duke@435 1804 // interpreted, so things like Lscratch are useless in the caller.)
duke@435 1805
duke@435 1806 // Although the Intel version uses call_C, we can use the more
duke@435 1807 // compact call_VM. (The only real difference on SPARC is a
duke@435 1808 // harmlessly ignored [re]set_last_Java_frame, compared with
duke@435 1809 // the Intel code which lacks this.)
duke@435 1810 __ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore
duke@435 1811 __ add(issuing_pc_addr, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller
duke@435 1812 __ super_call_VM_leaf(L7_thread_cache,
duke@435 1813 CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
duke@435 1814 Oissuing_pc->after_save());
duke@435 1815
duke@435 1816 // The caller's SP was adjusted upon method entry to accomodate
duke@435 1817 // the callee's non-argument locals. Undo that adjustment.
duke@435 1818 __ JMP(O0, 0); // return exception handler in caller
duke@435 1819 __ delayed()->restore(I5_savedSP, G0, SP);
duke@435 1820
duke@435 1821 // (same old exception object is already in Oexception; see above)
duke@435 1822 // Note that an "issuing PC" is actually the next PC after the call
duke@435 1823 }
duke@435 1824
duke@435 1825
duke@435 1826 //
duke@435 1827 // JVMTI ForceEarlyReturn support
duke@435 1828 //
duke@435 1829
duke@435 1830 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
duke@435 1831 address entry = __ pc();
duke@435 1832
duke@435 1833 __ empty_expression_stack();
duke@435 1834 __ load_earlyret_value(state);
duke@435 1835
duke@435 1836 __ ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())), G3_scratch);
duke@435 1837 Address cond_addr(G3_scratch, 0, in_bytes(JvmtiThreadState::earlyret_state_offset()));
duke@435 1838
duke@435 1839 // Clear the earlyret state
duke@435 1840 __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
duke@435 1841
duke@435 1842 __ remove_activation(state,
duke@435 1843 /* throw_monitor_exception */ false,
duke@435 1844 /* install_monitor_exception */ false);
duke@435 1845
duke@435 1846 // The caller's SP was adjusted upon method entry to accomodate
duke@435 1847 // the callee's non-argument locals. Undo that adjustment.
duke@435 1848 __ ret(); // return to caller
duke@435 1849 __ delayed()->restore(I5_savedSP, G0, SP);
duke@435 1850
duke@435 1851 return entry;
duke@435 1852 } // end of JVMTI ForceEarlyReturn support
duke@435 1853
duke@435 1854
duke@435 1855 //------------------------------------------------------------------------------------------------------------------------
duke@435 1856 // Helper for vtos entry point generation
duke@435 1857
duke@435 1858 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
duke@435 1859 assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
duke@435 1860 Label L;
duke@435 1861 aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
duke@435 1862 fep = __ pc(); __ push_f(); __ ba(false, L); __ delayed()->nop();
duke@435 1863 dep = __ pc(); __ push_d(); __ ba(false, L); __ delayed()->nop();
duke@435 1864 lep = __ pc(); __ push_l(); __ ba(false, L); __ delayed()->nop();
duke@435 1865 iep = __ pc(); __ push_i();
duke@435 1866 bep = cep = sep = iep; // there aren't any
duke@435 1867 vep = __ pc(); __ bind(L); // fall through
duke@435 1868 generate_and_dispatch(t);
duke@435 1869 }
duke@435 1870
duke@435 1871 // --------------------------------------------------------------------------------
duke@435 1872
duke@435 1873
duke@435 1874 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
duke@435 1875 : TemplateInterpreterGenerator(code) {
duke@435 1876 generate_all(); // down here so it can be "virtual"
duke@435 1877 }
duke@435 1878
duke@435 1879 // --------------------------------------------------------------------------------
duke@435 1880
duke@435 1881 // Non-product code
duke@435 1882 #ifndef PRODUCT
duke@435 1883 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
duke@435 1884 address entry = __ pc();
duke@435 1885
duke@435 1886 __ push(state);
duke@435 1887 __ mov(O7, Lscratch); // protect return address within interpreter
duke@435 1888
duke@435 1889 // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
duke@435 1890 __ mov( Otos_l2, G3_scratch );
duke@435 1891 __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
duke@435 1892 __ mov(Lscratch, O7); // restore return address
duke@435 1893 __ pop(state);
duke@435 1894 __ retl();
duke@435 1895 __ delayed()->nop();
duke@435 1896
duke@435 1897 return entry;
duke@435 1898 }
duke@435 1899
duke@435 1900
duke@435 1901 // helpers for generate_and_dispatch
duke@435 1902
duke@435 1903 void TemplateInterpreterGenerator::count_bytecode() {
duke@435 1904 Address c(G3_scratch, (address)&BytecodeCounter::_counter_value);
duke@435 1905 __ load_contents(c, G4_scratch);
duke@435 1906 __ inc(G4_scratch);
duke@435 1907 __ st(G4_scratch, c);
duke@435 1908 }
duke@435 1909
duke@435 1910
duke@435 1911 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
duke@435 1912 Address bucket( G3_scratch, (address) &BytecodeHistogram::_counters[t->bytecode()] );
duke@435 1913 __ load_contents(bucket, G4_scratch);
duke@435 1914 __ inc(G4_scratch);
duke@435 1915 __ st(G4_scratch, bucket);
duke@435 1916 }
duke@435 1917
duke@435 1918
duke@435 1919 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
duke@435 1920 address index_addr = (address)&BytecodePairHistogram::_index;
duke@435 1921 Address index(G3_scratch, index_addr);
duke@435 1922
duke@435 1923 address counters_addr = (address)&BytecodePairHistogram::_counters;
duke@435 1924 Address counters(G3_scratch, counters_addr);
duke@435 1925
duke@435 1926 // get index, shift out old bytecode, bring in new bytecode, and store it
duke@435 1927 // _index = (_index >> log2_number_of_codes) |
duke@435 1928 // (bytecode << log2_number_of_codes);
duke@435 1929
duke@435 1930
duke@435 1931 __ load_contents( index, G4_scratch );
duke@435 1932 __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
duke@435 1933 __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes, G3_scratch );
duke@435 1934 __ or3( G3_scratch, G4_scratch, G4_scratch );
duke@435 1935 __ store_contents( G4_scratch, index );
duke@435 1936
duke@435 1937 // bump bucket contents
duke@435 1938 // _counters[_index] ++;
duke@435 1939
duke@435 1940 __ load_address( counters ); // loads into G3_scratch
duke@435 1941 __ sll( G4_scratch, LogBytesPerWord, G4_scratch ); // Index is word address
duke@435 1942 __ add (G3_scratch, G4_scratch, G3_scratch); // Add in index
duke@435 1943 __ ld (G3_scratch, 0, G4_scratch);
duke@435 1944 __ inc (G4_scratch);
duke@435 1945 __ st (G4_scratch, 0, G3_scratch);
duke@435 1946 }
duke@435 1947
duke@435 1948
duke@435 1949 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
duke@435 1950 // Call a little run-time stub to avoid blow-up for each bytecode.
duke@435 1951 // The run-time runtime saves the right registers, depending on
duke@435 1952 // the tosca in-state for the given template.
duke@435 1953 address entry = Interpreter::trace_code(t->tos_in());
duke@435 1954 guarantee(entry != NULL, "entry must have been generated");
duke@435 1955 __ call(entry, relocInfo::none);
duke@435 1956 __ delayed()->nop();
duke@435 1957 }
duke@435 1958
duke@435 1959
duke@435 1960 void TemplateInterpreterGenerator::stop_interpreter_at() {
duke@435 1961 Address counter(G3_scratch , (address)&BytecodeCounter::_counter_value);
duke@435 1962 __ load_contents (counter, G3_scratch );
duke@435 1963 Address stop_at(G4_scratch, (address)&StopInterpreterAt);
duke@435 1964 __ load_ptr_contents(stop_at, G4_scratch);
duke@435 1965 __ cmp(G3_scratch, G4_scratch);
duke@435 1966 __ breakpoint_trap(Assembler::equal);
duke@435 1967 }
duke@435 1968 #endif // not PRODUCT
duke@435 1969 #endif // !CC_INTERP

mercurial