src/share/vm/opto/domgraph.cpp

Sat, 16 Mar 2013 07:39:14 -0700

author
morris
date
Sat, 16 Mar 2013 07:39:14 -0700
changeset 4760
96ef09c26978
parent 4153
b9a9ed0f8eeb
child 5509
d1034bd8cefc
permissions
-rw-r--r--

8009166: [parfait] Null pointer deference in hotspot/src/share/vm/opto/type.cpp
Summary: add guarantee() to as_instance_type()
Reviewed-by: kvn, twisti

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.hpp"
stefank@2314 28 #include "opto/block.hpp"
stefank@2314 29 #include "opto/machnode.hpp"
stefank@2314 30 #include "opto/phaseX.hpp"
stefank@2314 31 #include "opto/rootnode.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 // Optimization - Graph Style
duke@435 36
duke@435 37 //------------------------------Tarjan-----------------------------------------
duke@435 38 // A data structure that holds all the information needed to find dominators.
duke@435 39 struct Tarjan {
duke@435 40 Block *_block; // Basic block for this info
duke@435 41
duke@435 42 uint _semi; // Semi-dominators
duke@435 43 uint _size; // Used for faster LINK and EVAL
duke@435 44 Tarjan *_parent; // Parent in DFS
duke@435 45 Tarjan *_label; // Used for LINK and EVAL
duke@435 46 Tarjan *_ancestor; // Used for LINK and EVAL
duke@435 47 Tarjan *_child; // Used for faster LINK and EVAL
duke@435 48 Tarjan *_dom; // Parent in dominator tree (immediate dom)
duke@435 49 Tarjan *_bucket; // Set of vertices with given semidominator
duke@435 50
duke@435 51 Tarjan *_dom_child; // Child in dominator tree
duke@435 52 Tarjan *_dom_next; // Next in dominator tree
duke@435 53
duke@435 54 // Fast union-find work
duke@435 55 void COMPRESS();
duke@435 56 Tarjan *EVAL(void);
duke@435 57 void LINK( Tarjan *w, Tarjan *tarjan0 );
duke@435 58
duke@435 59 void setdepth( uint size );
duke@435 60
duke@435 61 };
duke@435 62
duke@435 63 //------------------------------Dominator--------------------------------------
duke@435 64 // Compute the dominator tree of the CFG. The CFG must already have been
duke@435 65 // constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
duke@435 66 void PhaseCFG::Dominators( ) {
duke@435 67 // Pre-grow the blocks array, prior to the ResourceMark kicking in
duke@435 68 _blocks.map(_num_blocks,0);
duke@435 69
duke@435 70 ResourceMark rm;
duke@435 71 // Setup mappings from my Graph to Tarjan's stuff and back
duke@435 72 // Note: Tarjan uses 1-based arrays
duke@435 73 Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
duke@435 74
duke@435 75 // Tarjan's algorithm, almost verbatim:
duke@435 76 // Step 1:
duke@435 77 _rpo_ctr = _num_blocks;
duke@435 78 uint dfsnum = DFS( tarjan );
duke@435 79 if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
duke@435 80 // If the returned dfsnum does not match the number of blocks, then we
duke@435 81 // must have some unreachable loops. These can be made at any time by
duke@435 82 // IterGVN. They are cleaned up by CCP or the loop opts, but the last
duke@435 83 // IterGVN can always make more that are not cleaned up. Highly unlikely
duke@435 84 // except in ZKM.jar, where endless irreducible loops cause the loop opts
duke@435 85 // to not get run.
duke@435 86 //
duke@435 87 // Having found unreachable loops, we have made a bad RPO _block layout.
duke@435 88 // We can re-run the above DFS pass with the correct number of blocks,
duke@435 89 // and hack the Tarjan algorithm below to be robust in the presence of
duke@435 90 // such dead loops (as was done for the NTarjan code farther below).
duke@435 91 // Since this situation is so unlikely, instead I've decided to bail out.
duke@435 92 // CNC 7/24/2001
duke@435 93 C->record_method_not_compilable("unreachable loop");
duke@435 94 return;
duke@435 95 }
duke@435 96 _blocks._cnt = _num_blocks;
duke@435 97
duke@435 98 // Tarjan is using 1-based arrays, so these are some initialize flags
duke@435 99 tarjan[0]._size = tarjan[0]._semi = 0;
duke@435 100 tarjan[0]._label = &tarjan[0];
duke@435 101
duke@435 102 uint i;
duke@435 103 for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
duke@435 104 Tarjan *w = &tarjan[i]; // Get vertex from DFS
duke@435 105
duke@435 106 // Step 2:
duke@435 107 Node *whead = w->_block->head();
duke@435 108 for( uint j=1; j < whead->req(); j++ ) {
duke@435 109 Block *b = _bbs[whead->in(j)->_idx];
duke@435 110 Tarjan *vx = &tarjan[b->_pre_order];
duke@435 111 Tarjan *u = vx->EVAL();
duke@435 112 if( u->_semi < w->_semi )
duke@435 113 w->_semi = u->_semi;
duke@435 114 }
duke@435 115
duke@435 116 // w is added to a bucket here, and only here.
duke@435 117 // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
duke@435 118 // Thus bucket can be a linked list.
duke@435 119 // Thus we do not need a small integer name for each Block.
duke@435 120 w->_bucket = tarjan[w->_semi]._bucket;
duke@435 121 tarjan[w->_semi]._bucket = w;
duke@435 122
duke@435 123 w->_parent->LINK( w, &tarjan[0] );
duke@435 124
duke@435 125 // Step 3:
duke@435 126 for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
duke@435 127 Tarjan *u = vx->EVAL();
duke@435 128 vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
duke@435 129 }
duke@435 130 }
duke@435 131
duke@435 132 // Step 4:
duke@435 133 for( i=2; i <= _num_blocks; i++ ) {
duke@435 134 Tarjan *w = &tarjan[i];
duke@435 135 if( w->_dom != &tarjan[w->_semi] )
duke@435 136 w->_dom = w->_dom->_dom;
duke@435 137 w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
duke@435 138 }
duke@435 139 // No immediate dominator for the root
duke@435 140 Tarjan *w = &tarjan[_broot->_pre_order];
duke@435 141 w->_dom = NULL;
duke@435 142 w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
duke@435 143
duke@435 144 // Convert the dominator tree array into my kind of graph
duke@435 145 for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
duke@435 146 Tarjan *t = &tarjan[i]; // Handy access
duke@435 147 Tarjan *tdom = t->_dom; // Handy access to immediate dominator
duke@435 148 if( tdom ) { // Root has no immediate dominator
duke@435 149 t->_block->_idom = tdom->_block; // Set immediate dominator
duke@435 150 t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
duke@435 151 tdom->_dom_child = t; // Make me a child of my parent
duke@435 152 } else
duke@435 153 t->_block->_idom = NULL; // Root
duke@435 154 }
duke@435 155 w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
duke@435 156
duke@435 157 }
duke@435 158
duke@435 159 //----------------------------Block_Stack--------------------------------------
duke@435 160 class Block_Stack {
duke@435 161 private:
duke@435 162 struct Block_Descr {
duke@435 163 Block *block; // Block
duke@435 164 int index; // Index of block's successor pushed on stack
duke@435 165 int freq_idx; // Index of block's most frequent successor
duke@435 166 };
duke@435 167 Block_Descr *_stack_top;
duke@435 168 Block_Descr *_stack_max;
duke@435 169 Block_Descr *_stack;
duke@435 170 Tarjan *_tarjan;
duke@435 171 uint most_frequent_successor( Block *b );
duke@435 172 public:
duke@435 173 Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
duke@435 174 _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
duke@435 175 _stack_max = _stack + size;
duke@435 176 _stack_top = _stack - 1; // stack is empty
duke@435 177 }
duke@435 178 void push(uint pre_order, Block *b) {
duke@435 179 Tarjan *t = &_tarjan[pre_order]; // Fast local access
duke@435 180 b->_pre_order = pre_order; // Flag as visited
duke@435 181 t->_block = b; // Save actual block
duke@435 182 t->_semi = pre_order; // Block to DFS map
duke@435 183 t->_label = t; // DFS to vertex map
duke@435 184 t->_ancestor = NULL; // Fast LINK & EVAL setup
duke@435 185 t->_child = &_tarjan[0]; // Sentenial
duke@435 186 t->_size = 1;
duke@435 187 t->_bucket = NULL;
duke@435 188 if (pre_order == 1)
duke@435 189 t->_parent = NULL; // first block doesn't have parent
duke@435 190 else {
twisti@1040 191 // Save parent (current top block on stack) in DFS
duke@435 192 t->_parent = &_tarjan[_stack_top->block->_pre_order];
duke@435 193 }
duke@435 194 // Now put this block on stack
duke@435 195 ++_stack_top;
duke@435 196 assert(_stack_top < _stack_max, ""); // assert if stack have to grow
duke@435 197 _stack_top->block = b;
duke@435 198 _stack_top->index = -1;
duke@435 199 // Find the index into b->succs[] array of the most frequent successor.
duke@435 200 _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
duke@435 201 }
duke@435 202 Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
duke@435 203 bool is_nonempty() { return (_stack_top >= _stack); }
duke@435 204 bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
duke@435 205 Block* next_successor() {
duke@435 206 int i = _stack_top->index;
duke@435 207 i++;
duke@435 208 if (i == _stack_top->freq_idx) i++;
duke@435 209 if (i >= (int)(_stack_top->block->_num_succs)) {
duke@435 210 i = _stack_top->freq_idx; // process most frequent successor last
duke@435 211 }
duke@435 212 _stack_top->index = i;
duke@435 213 return _stack_top->block->_succs[ i ];
duke@435 214 }
duke@435 215 };
duke@435 216
duke@435 217 //-------------------------most_frequent_successor-----------------------------
duke@435 218 // Find the index into the b->succs[] array of the most frequent successor.
duke@435 219 uint Block_Stack::most_frequent_successor( Block *b ) {
duke@435 220 uint freq_idx = 0;
duke@435 221 int eidx = b->end_idx();
duke@435 222 Node *n = b->_nodes[eidx];
duke@435 223 int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
duke@435 224 switch( op ) {
duke@435 225 case Op_CountedLoopEnd:
duke@435 226 case Op_If: { // Split frequency amongst children
duke@435 227 float prob = n->as_MachIf()->_prob;
duke@435 228 // Is succ[0] the TRUE branch or the FALSE branch?
duke@435 229 if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
duke@435 230 prob = 1.0f - prob;
duke@435 231 freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
duke@435 232 break;
duke@435 233 }
duke@435 234 case Op_Catch: // Split frequency amongst children
duke@435 235 for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
duke@435 236 if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
duke@435 237 break;
duke@435 238 // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
duke@435 239 if( freq_idx == b->_num_succs ) freq_idx = 0;
duke@435 240 break;
duke@435 241 // Currently there is no support for finding out the most
duke@435 242 // frequent successor for jumps, so lets just make it the first one
duke@435 243 case Op_Jump:
duke@435 244 case Op_Root:
duke@435 245 case Op_Goto:
duke@435 246 case Op_NeverBranch:
duke@435 247 freq_idx = 0; // fall thru
duke@435 248 break;
duke@435 249 case Op_TailCall:
duke@435 250 case Op_TailJump:
duke@435 251 case Op_Return:
duke@435 252 case Op_Halt:
duke@435 253 case Op_Rethrow:
duke@435 254 break;
duke@435 255 default:
duke@435 256 ShouldNotReachHere();
duke@435 257 }
duke@435 258 return freq_idx;
duke@435 259 }
duke@435 260
duke@435 261 //------------------------------DFS--------------------------------------------
duke@435 262 // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
duke@435 263 // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
duke@435 264 uint PhaseCFG::DFS( Tarjan *tarjan ) {
duke@435 265 Block *b = _broot;
duke@435 266 uint pre_order = 1;
duke@435 267 // Allocate stack of size _num_blocks+1 to avoid frequent realloc
duke@435 268 Block_Stack bstack(tarjan, _num_blocks+1);
duke@435 269
duke@435 270 // Push on stack the state for the first block
duke@435 271 bstack.push(pre_order, b);
duke@435 272 ++pre_order;
duke@435 273
duke@435 274 while (bstack.is_nonempty()) {
duke@435 275 if (!bstack.last_successor()) {
duke@435 276 // Walk over all successors in pre-order (DFS).
duke@435 277 Block *s = bstack.next_successor();
duke@435 278 if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
duke@435 279 // Push on stack the state of successor
duke@435 280 bstack.push(pre_order, s);
duke@435 281 ++pre_order;
duke@435 282 }
duke@435 283 }
duke@435 284 else {
duke@435 285 // Build a reverse post-order in the CFG _blocks array
duke@435 286 Block *stack_top = bstack.pop();
duke@435 287 stack_top->_rpo = --_rpo_ctr;
duke@435 288 _blocks.map(stack_top->_rpo, stack_top);
duke@435 289 }
duke@435 290 }
duke@435 291 return pre_order;
duke@435 292 }
duke@435 293
duke@435 294 //------------------------------COMPRESS---------------------------------------
duke@435 295 void Tarjan::COMPRESS()
duke@435 296 {
duke@435 297 assert( _ancestor != 0, "" );
duke@435 298 if( _ancestor->_ancestor != 0 ) {
duke@435 299 _ancestor->COMPRESS( );
duke@435 300 if( _ancestor->_label->_semi < _label->_semi )
duke@435 301 _label = _ancestor->_label;
duke@435 302 _ancestor = _ancestor->_ancestor;
duke@435 303 }
duke@435 304 }
duke@435 305
duke@435 306 //------------------------------EVAL-------------------------------------------
duke@435 307 Tarjan *Tarjan::EVAL() {
duke@435 308 if( !_ancestor ) return _label;
duke@435 309 COMPRESS();
duke@435 310 return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
duke@435 311 }
duke@435 312
duke@435 313 //------------------------------LINK-------------------------------------------
duke@435 314 void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
duke@435 315 Tarjan *s = w;
duke@435 316 while( w->_label->_semi < s->_child->_label->_semi ) {
duke@435 317 if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
duke@435 318 s->_child->_ancestor = s;
duke@435 319 s->_child = s->_child->_child;
duke@435 320 } else {
duke@435 321 s->_child->_size = s->_size;
duke@435 322 s = s->_ancestor = s->_child;
duke@435 323 }
duke@435 324 }
duke@435 325 s->_label = w->_label;
duke@435 326 _size += w->_size;
duke@435 327 if( _size < (w->_size << 1) ) {
duke@435 328 Tarjan *tmp = s; s = _child; _child = tmp;
duke@435 329 }
duke@435 330 while( s != tarjan0 ) {
duke@435 331 s->_ancestor = this;
duke@435 332 s = s->_child;
duke@435 333 }
duke@435 334 }
duke@435 335
duke@435 336 //------------------------------setdepth---------------------------------------
duke@435 337 void Tarjan::setdepth( uint stack_size ) {
duke@435 338 Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
duke@435 339 Tarjan **next = top;
duke@435 340 Tarjan **last;
duke@435 341 uint depth = 0;
duke@435 342 *top = this;
duke@435 343 ++top;
duke@435 344 do {
duke@435 345 // next level
duke@435 346 ++depth;
duke@435 347 last = top;
duke@435 348 do {
duke@435 349 // Set current depth for all tarjans on this level
duke@435 350 Tarjan *t = *next; // next tarjan from stack
duke@435 351 ++next;
duke@435 352 do {
duke@435 353 t->_block->_dom_depth = depth; // Set depth in dominator tree
duke@435 354 Tarjan *dom_child = t->_dom_child;
duke@435 355 t = t->_dom_next; // next tarjan
duke@435 356 if (dom_child != NULL) {
duke@435 357 *top = dom_child; // save child on stack
duke@435 358 ++top;
duke@435 359 }
duke@435 360 } while (t != NULL);
duke@435 361 } while (next < last);
duke@435 362 } while (last < top);
duke@435 363 }
duke@435 364
duke@435 365 //*********************** DOMINATORS ON THE SEA OF NODES***********************
duke@435 366 //------------------------------NTarjan----------------------------------------
duke@435 367 // A data structure that holds all the information needed to find dominators.
duke@435 368 struct NTarjan {
duke@435 369 Node *_control; // Control node associated with this info
duke@435 370
duke@435 371 uint _semi; // Semi-dominators
duke@435 372 uint _size; // Used for faster LINK and EVAL
duke@435 373 NTarjan *_parent; // Parent in DFS
duke@435 374 NTarjan *_label; // Used for LINK and EVAL
duke@435 375 NTarjan *_ancestor; // Used for LINK and EVAL
duke@435 376 NTarjan *_child; // Used for faster LINK and EVAL
duke@435 377 NTarjan *_dom; // Parent in dominator tree (immediate dom)
duke@435 378 NTarjan *_bucket; // Set of vertices with given semidominator
duke@435 379
duke@435 380 NTarjan *_dom_child; // Child in dominator tree
duke@435 381 NTarjan *_dom_next; // Next in dominator tree
duke@435 382
duke@435 383 // Perform DFS search.
duke@435 384 // Setup 'vertex' as DFS to vertex mapping.
duke@435 385 // Setup 'semi' as vertex to DFS mapping.
duke@435 386 // Set 'parent' to DFS parent.
duke@435 387 static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
duke@435 388 void setdepth( uint size, uint *dom_depth );
duke@435 389
duke@435 390 // Fast union-find work
duke@435 391 void COMPRESS();
duke@435 392 NTarjan *EVAL(void);
duke@435 393 void LINK( NTarjan *w, NTarjan *ntarjan0 );
duke@435 394 #ifndef PRODUCT
duke@435 395 void dump(int offset) const;
duke@435 396 #endif
duke@435 397 };
duke@435 398
duke@435 399 //------------------------------Dominator--------------------------------------
duke@435 400 // Compute the dominator tree of the sea of nodes. This version walks all CFG
duke@435 401 // nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
duke@435 402 // it needs a count of the CFG nodes for the mapping table. This is the
duke@435 403 // Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
never@1356 404 void PhaseIdealLoop::Dominators() {
duke@435 405 ResourceMark rm;
duke@435 406 // Setup mappings from my Graph to Tarjan's stuff and back
duke@435 407 // Note: Tarjan uses 1-based arrays
duke@435 408 NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
duke@435 409 // Initialize _control field for fast reference
duke@435 410 int i;
duke@435 411 for( i= C->unique()-1; i>=0; i-- )
duke@435 412 ntarjan[i]._control = NULL;
duke@435 413
duke@435 414 // Store the DFS order for the main loop
duke@435 415 uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
duke@435 416 memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
duke@435 417
duke@435 418 // Tarjan's algorithm, almost verbatim:
duke@435 419 // Step 1:
duke@435 420 VectorSet visited(Thread::current()->resource_area());
duke@435 421 int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
duke@435 422
duke@435 423 // Tarjan is using 1-based arrays, so these are some initialize flags
duke@435 424 ntarjan[0]._size = ntarjan[0]._semi = 0;
duke@435 425 ntarjan[0]._label = &ntarjan[0];
duke@435 426
duke@435 427 for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
duke@435 428 NTarjan *w = &ntarjan[i]; // Get Node from DFS
duke@435 429 assert(w->_control != NULL,"bad DFS walk");
duke@435 430
duke@435 431 // Step 2:
duke@435 432 Node *whead = w->_control;
duke@435 433 for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
duke@435 434 if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
duke@435 435 continue; // Only process control nodes
duke@435 436 uint b = dfsorder[whead->in(j)->_idx];
duke@435 437 if(b == max_uint) continue;
duke@435 438 NTarjan *vx = &ntarjan[b];
duke@435 439 NTarjan *u = vx->EVAL();
duke@435 440 if( u->_semi < w->_semi )
duke@435 441 w->_semi = u->_semi;
duke@435 442 }
duke@435 443
duke@435 444 // w is added to a bucket here, and only here.
duke@435 445 // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
duke@435 446 // Thus bucket can be a linked list.
duke@435 447 w->_bucket = ntarjan[w->_semi]._bucket;
duke@435 448 ntarjan[w->_semi]._bucket = w;
duke@435 449
duke@435 450 w->_parent->LINK( w, &ntarjan[0] );
duke@435 451
duke@435 452 // Step 3:
duke@435 453 for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
duke@435 454 NTarjan *u = vx->EVAL();
duke@435 455 vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
duke@435 456 }
duke@435 457
duke@435 458 // Cleanup any unreachable loops now. Unreachable loops are loops that
duke@435 459 // flow into the main graph (and hence into ROOT) but are not reachable
duke@435 460 // from above. Such code is dead, but requires a global pass to detect
duke@435 461 // it; this global pass was the 'build_loop_tree' pass run just prior.
never@1356 462 if( !_verify_only && whead->is_Region() ) {
duke@435 463 for( uint i = 1; i < whead->req(); i++ ) {
duke@435 464 if (!has_node(whead->in(i))) {
duke@435 465 // Kill dead input path
duke@435 466 assert( !visited.test(whead->in(i)->_idx),
duke@435 467 "input with no loop must be dead" );
kvn@3847 468 _igvn.delete_input_of(whead, i);
duke@435 469 for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
duke@435 470 Node* p = whead->fast_out(j);
duke@435 471 if( p->is_Phi() ) {
kvn@3847 472 _igvn.delete_input_of(p, i);
duke@435 473 }
duke@435 474 }
duke@435 475 i--; // Rerun same iteration
duke@435 476 } // End of if dead input path
duke@435 477 } // End of for all input paths
duke@435 478 } // End if if whead is a Region
duke@435 479 } // End of for all Nodes in reverse DFS order
duke@435 480
duke@435 481 // Step 4:
duke@435 482 for( i=2; i < dfsnum; i++ ) { // DFS order
duke@435 483 NTarjan *w = &ntarjan[i];
duke@435 484 assert(w->_control != NULL,"Bad DFS walk");
duke@435 485 if( w->_dom != &ntarjan[w->_semi] )
duke@435 486 w->_dom = w->_dom->_dom;
duke@435 487 w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
duke@435 488 }
duke@435 489 // No immediate dominator for the root
duke@435 490 NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
duke@435 491 w->_dom = NULL;
duke@435 492 w->_parent = NULL;
duke@435 493 w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
duke@435 494
duke@435 495 // Convert the dominator tree array into my kind of graph
duke@435 496 for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
duke@435 497 NTarjan *t = &ntarjan[i]; // Handy access
duke@435 498 assert(t->_control != NULL,"Bad DFS walk");
duke@435 499 NTarjan *tdom = t->_dom; // Handy access to immediate dominator
duke@435 500 if( tdom ) { // Root has no immediate dominator
duke@435 501 _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
duke@435 502 t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
duke@435 503 tdom->_dom_child = t; // Make me a child of my parent
duke@435 504 } else
duke@435 505 _idom[C->root()->_idx] = NULL; // Root
duke@435 506 }
duke@435 507 w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
duke@435 508 // Pick up the 'top' node as well
duke@435 509 _idom [C->top()->_idx] = C->root();
duke@435 510 _dom_depth[C->top()->_idx] = 1;
duke@435 511
duke@435 512 // Debug Print of Dominator tree
duke@435 513 if( PrintDominators ) {
duke@435 514 #ifndef PRODUCT
duke@435 515 w->dump(0);
duke@435 516 #endif
duke@435 517 }
duke@435 518 }
duke@435 519
duke@435 520 //------------------------------DFS--------------------------------------------
duke@435 521 // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
duke@435 522 // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
duke@435 523 int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
duke@435 524 // Allocate stack of size C->unique()/8 to avoid frequent realloc
duke@435 525 GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
duke@435 526 Node *b = pil->C->root();
duke@435 527 int dfsnum = 1;
duke@435 528 dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
duke@435 529 dfstack.push(b);
duke@435 530
duke@435 531 while (dfstack.is_nonempty()) {
duke@435 532 b = dfstack.pop();
duke@435 533 if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
duke@435 534 NTarjan *w = &ntarjan[dfsnum];
duke@435 535 // Only fully process control nodes
duke@435 536 w->_control = b; // Save actual node
duke@435 537 // Use parent's cached dfsnum to identify "Parent in DFS"
duke@435 538 w->_parent = &ntarjan[dfsorder[b->_idx]];
duke@435 539 dfsorder[b->_idx] = dfsnum; // Save DFS order info
duke@435 540 w->_semi = dfsnum; // Node to DFS map
duke@435 541 w->_label = w; // DFS to vertex map
duke@435 542 w->_ancestor = NULL; // Fast LINK & EVAL setup
duke@435 543 w->_child = &ntarjan[0]; // Sentinal
duke@435 544 w->_size = 1;
duke@435 545 w->_bucket = NULL;
duke@435 546
duke@435 547 // Need DEF-USE info for this pass
duke@435 548 for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
duke@435 549 Node* s = b->raw_out(i); // Get a use
duke@435 550 // CFG nodes only and not dead stuff
duke@435 551 if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
duke@435 552 dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
duke@435 553 dfstack.push(s);
duke@435 554 }
duke@435 555 }
duke@435 556 dfsnum++; // update after parent's dfsnum has been cached.
duke@435 557 }
duke@435 558 }
duke@435 559
duke@435 560 return dfsnum;
duke@435 561 }
duke@435 562
duke@435 563 //------------------------------COMPRESS---------------------------------------
duke@435 564 void NTarjan::COMPRESS()
duke@435 565 {
duke@435 566 assert( _ancestor != 0, "" );
duke@435 567 if( _ancestor->_ancestor != 0 ) {
duke@435 568 _ancestor->COMPRESS( );
duke@435 569 if( _ancestor->_label->_semi < _label->_semi )
duke@435 570 _label = _ancestor->_label;
duke@435 571 _ancestor = _ancestor->_ancestor;
duke@435 572 }
duke@435 573 }
duke@435 574
duke@435 575 //------------------------------EVAL-------------------------------------------
duke@435 576 NTarjan *NTarjan::EVAL() {
duke@435 577 if( !_ancestor ) return _label;
duke@435 578 COMPRESS();
duke@435 579 return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
duke@435 580 }
duke@435 581
duke@435 582 //------------------------------LINK-------------------------------------------
duke@435 583 void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
duke@435 584 NTarjan *s = w;
duke@435 585 while( w->_label->_semi < s->_child->_label->_semi ) {
duke@435 586 if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
duke@435 587 s->_child->_ancestor = s;
duke@435 588 s->_child = s->_child->_child;
duke@435 589 } else {
duke@435 590 s->_child->_size = s->_size;
duke@435 591 s = s->_ancestor = s->_child;
duke@435 592 }
duke@435 593 }
duke@435 594 s->_label = w->_label;
duke@435 595 _size += w->_size;
duke@435 596 if( _size < (w->_size << 1) ) {
duke@435 597 NTarjan *tmp = s; s = _child; _child = tmp;
duke@435 598 }
duke@435 599 while( s != ntarjan0 ) {
duke@435 600 s->_ancestor = this;
duke@435 601 s = s->_child;
duke@435 602 }
duke@435 603 }
duke@435 604
duke@435 605 //------------------------------setdepth---------------------------------------
duke@435 606 void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
duke@435 607 NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
duke@435 608 NTarjan **next = top;
duke@435 609 NTarjan **last;
duke@435 610 uint depth = 0;
duke@435 611 *top = this;
duke@435 612 ++top;
duke@435 613 do {
duke@435 614 // next level
duke@435 615 ++depth;
duke@435 616 last = top;
duke@435 617 do {
duke@435 618 // Set current depth for all tarjans on this level
duke@435 619 NTarjan *t = *next; // next tarjan from stack
duke@435 620 ++next;
duke@435 621 do {
duke@435 622 dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
duke@435 623 NTarjan *dom_child = t->_dom_child;
duke@435 624 t = t->_dom_next; // next tarjan
duke@435 625 if (dom_child != NULL) {
duke@435 626 *top = dom_child; // save child on stack
duke@435 627 ++top;
duke@435 628 }
duke@435 629 } while (t != NULL);
duke@435 630 } while (next < last);
duke@435 631 } while (last < top);
duke@435 632 }
duke@435 633
duke@435 634 //------------------------------dump-------------------------------------------
duke@435 635 #ifndef PRODUCT
duke@435 636 void NTarjan::dump(int offset) const {
duke@435 637 // Dump the data from this node
duke@435 638 int i;
duke@435 639 for(i = offset; i >0; i--) // Use indenting for tree structure
duke@435 640 tty->print(" ");
duke@435 641 tty->print("Dominator Node: ");
duke@435 642 _control->dump(); // Control node for this dom node
duke@435 643 tty->print("\n");
duke@435 644 for(i = offset; i >0; i--) // Use indenting for tree structure
duke@435 645 tty->print(" ");
duke@435 646 tty->print("semi:%d, size:%d\n",_semi, _size);
duke@435 647 for(i = offset; i >0; i--) // Use indenting for tree structure
duke@435 648 tty->print(" ");
duke@435 649 tty->print("DFS Parent: ");
duke@435 650 if(_parent != NULL)
duke@435 651 _parent->_control->dump(); // Parent in DFS
duke@435 652 tty->print("\n");
duke@435 653 for(i = offset; i >0; i--) // Use indenting for tree structure
duke@435 654 tty->print(" ");
duke@435 655 tty->print("Dom Parent: ");
duke@435 656 if(_dom != NULL)
duke@435 657 _dom->_control->dump(); // Parent in Dominator Tree
duke@435 658 tty->print("\n");
duke@435 659
duke@435 660 // Recurse over remaining tree
duke@435 661 if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree
duke@435 662 if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree
duke@435 663
duke@435 664 }
duke@435 665 #endif

mercurial