src/share/vm/opto/superword.hpp

Mon, 27 May 2013 12:56:34 +0200

author
stefank
date
Mon, 27 May 2013 12:56:34 +0200
changeset 5195
95c00927be11
parent 4620
ad736b4683b4
child 6198
55fb97c4c58d
permissions
-rw-r--r--

8015428: Remove unused CDS support from StringTable
Summary: The string in StringTable is not used by CDS anymore. Remove the unnecessary code in preparation for 8015422: Large performance hit when the StringTable is walked twice in Parallel Scavenge
Reviewed-by: pliden, tschatzl, coleenp

duke@435 1 /*
kvn@3882 2 * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #ifndef SHARE_VM_OPTO_SUPERWORD_HPP
stefank@2314 25 #define SHARE_VM_OPTO_SUPERWORD_HPP
stefank@2314 26
stefank@2314 27 #include "opto/connode.hpp"
stefank@2314 28 #include "opto/loopnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/phaseX.hpp"
stefank@2314 31 #include "opto/vectornode.hpp"
stefank@2314 32 #include "utilities/growableArray.hpp"
stefank@2314 33
duke@435 34 //
duke@435 35 // S U P E R W O R D T R A N S F O R M
duke@435 36 //
duke@435 37 // SuperWords are short, fixed length vectors.
duke@435 38 //
duke@435 39 // Algorithm from:
duke@435 40 //
duke@435 41 // Exploiting SuperWord Level Parallelism with
duke@435 42 // Multimedia Instruction Sets
duke@435 43 // by
duke@435 44 // Samuel Larsen and Saman Amarasighe
duke@435 45 // MIT Laboratory for Computer Science
duke@435 46 // date
duke@435 47 // May 2000
duke@435 48 // published in
duke@435 49 // ACM SIGPLAN Notices
duke@435 50 // Proceedings of ACM PLDI '00, Volume 35 Issue 5
duke@435 51 //
duke@435 52 // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
duke@435 53 // s1,...,sn are independent isomorphic statements in a basic
duke@435 54 // block.
duke@435 55 //
duke@435 56 // Definition 3.2 A PackSet is a set of Packs.
duke@435 57 //
duke@435 58 // Definition 3.3 A Pair is a Pack of size two, where the
duke@435 59 // first statement is considered the left element, and the
duke@435 60 // second statement is considered the right element.
duke@435 61
duke@435 62 class SWPointer;
duke@435 63 class OrderedPair;
duke@435 64
duke@435 65 // ========================= Dependence Graph =====================
duke@435 66
duke@435 67 class DepMem;
duke@435 68
duke@435 69 //------------------------------DepEdge---------------------------
duke@435 70 // An edge in the dependence graph. The edges incident to a dependence
duke@435 71 // node are threaded through _next_in for incoming edges and _next_out
duke@435 72 // for outgoing edges.
duke@435 73 class DepEdge : public ResourceObj {
duke@435 74 protected:
duke@435 75 DepMem* _pred;
duke@435 76 DepMem* _succ;
duke@435 77 DepEdge* _next_in; // list of in edges, null terminated
duke@435 78 DepEdge* _next_out; // list of out edges, null terminated
duke@435 79
duke@435 80 public:
duke@435 81 DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
duke@435 82 _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
duke@435 83
duke@435 84 DepEdge* next_in() { return _next_in; }
duke@435 85 DepEdge* next_out() { return _next_out; }
duke@435 86 DepMem* pred() { return _pred; }
duke@435 87 DepMem* succ() { return _succ; }
duke@435 88
duke@435 89 void print();
duke@435 90 };
duke@435 91
duke@435 92 //------------------------------DepMem---------------------------
duke@435 93 // A node in the dependence graph. _in_head starts the threaded list of
duke@435 94 // incoming edges, and _out_head starts the list of outgoing edges.
duke@435 95 class DepMem : public ResourceObj {
duke@435 96 protected:
duke@435 97 Node* _node; // Corresponding ideal node
duke@435 98 DepEdge* _in_head; // Head of list of in edges, null terminated
duke@435 99 DepEdge* _out_head; // Head of list of out edges, null terminated
duke@435 100
duke@435 101 public:
duke@435 102 DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
duke@435 103
duke@435 104 Node* node() { return _node; }
duke@435 105 DepEdge* in_head() { return _in_head; }
duke@435 106 DepEdge* out_head() { return _out_head; }
duke@435 107 void set_in_head(DepEdge* hd) { _in_head = hd; }
duke@435 108 void set_out_head(DepEdge* hd) { _out_head = hd; }
duke@435 109
duke@435 110 int in_cnt(); // Incoming edge count
duke@435 111 int out_cnt(); // Outgoing edge count
duke@435 112
duke@435 113 void print();
duke@435 114 };
duke@435 115
duke@435 116 //------------------------------DepGraph---------------------------
duke@435 117 class DepGraph VALUE_OBJ_CLASS_SPEC {
duke@435 118 protected:
duke@435 119 Arena* _arena;
duke@435 120 GrowableArray<DepMem*> _map;
duke@435 121 DepMem* _root;
duke@435 122 DepMem* _tail;
duke@435 123
duke@435 124 public:
duke@435 125 DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) {
duke@435 126 _root = new (_arena) DepMem(NULL);
duke@435 127 _tail = new (_arena) DepMem(NULL);
duke@435 128 }
duke@435 129
duke@435 130 DepMem* root() { return _root; }
duke@435 131 DepMem* tail() { return _tail; }
duke@435 132
duke@435 133 // Return dependence node corresponding to an ideal node
duke@435 134 DepMem* dep(Node* node) { return _map.at(node->_idx); }
duke@435 135
duke@435 136 // Make a new dependence graph node for an ideal node.
duke@435 137 DepMem* make_node(Node* node);
duke@435 138
duke@435 139 // Make a new dependence graph edge dprec->dsucc
duke@435 140 DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
duke@435 141
duke@435 142 DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); }
duke@435 143 DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); }
duke@435 144 DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); }
duke@435 145
duke@435 146 void init() { _map.clear(); } // initialize
duke@435 147
duke@435 148 void print(Node* n) { dep(n)->print(); }
duke@435 149 void print(DepMem* d) { d->print(); }
duke@435 150 };
duke@435 151
duke@435 152 //------------------------------DepPreds---------------------------
duke@435 153 // Iterator over predecessors in the dependence graph and
duke@435 154 // non-memory-graph inputs of ideal nodes.
duke@435 155 class DepPreds : public StackObj {
duke@435 156 private:
duke@435 157 Node* _n;
duke@435 158 int _next_idx, _end_idx;
duke@435 159 DepEdge* _dep_next;
duke@435 160 Node* _current;
duke@435 161 bool _done;
duke@435 162
duke@435 163 public:
duke@435 164 DepPreds(Node* n, DepGraph& dg);
duke@435 165 Node* current() { return _current; }
duke@435 166 bool done() { return _done; }
duke@435 167 void next();
duke@435 168 };
duke@435 169
duke@435 170 //------------------------------DepSuccs---------------------------
duke@435 171 // Iterator over successors in the dependence graph and
duke@435 172 // non-memory-graph outputs of ideal nodes.
duke@435 173 class DepSuccs : public StackObj {
duke@435 174 private:
duke@435 175 Node* _n;
duke@435 176 int _next_idx, _end_idx;
duke@435 177 DepEdge* _dep_next;
duke@435 178 Node* _current;
duke@435 179 bool _done;
duke@435 180
duke@435 181 public:
duke@435 182 DepSuccs(Node* n, DepGraph& dg);
duke@435 183 Node* current() { return _current; }
duke@435 184 bool done() { return _done; }
duke@435 185 void next();
duke@435 186 };
duke@435 187
duke@435 188
duke@435 189 // ========================= SuperWord =====================
duke@435 190
duke@435 191 // -----------------------------SWNodeInfo---------------------------------
duke@435 192 // Per node info needed by SuperWord
duke@435 193 class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
duke@435 194 public:
duke@435 195 int _alignment; // memory alignment for a node
duke@435 196 int _depth; // Max expression (DAG) depth from block start
duke@435 197 const Type* _velt_type; // vector element type
duke@435 198 Node_List* _my_pack; // pack containing this node
duke@435 199
duke@435 200 SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
duke@435 201 static const SWNodeInfo initial;
duke@435 202 };
duke@435 203
duke@435 204 // -----------------------------SuperWord---------------------------------
duke@435 205 // Transforms scalar operations into packed (superword) operations.
duke@435 206 class SuperWord : public ResourceObj {
duke@435 207 private:
duke@435 208 PhaseIdealLoop* _phase;
duke@435 209 Arena* _arena;
duke@435 210 PhaseIterGVN &_igvn;
duke@435 211
duke@435 212 enum consts { top_align = -1, bottom_align = -666 };
duke@435 213
duke@435 214 GrowableArray<Node_List*> _packset; // Packs for the current block
duke@435 215
duke@435 216 GrowableArray<int> _bb_idx; // Map from Node _idx to index within block
duke@435 217
duke@435 218 GrowableArray<Node*> _block; // Nodes in current block
duke@435 219 GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside
duke@435 220 GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes
duke@435 221 GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes
duke@435 222
duke@435 223 GrowableArray<SWNodeInfo> _node_info; // Info needed per node
duke@435 224
duke@435 225 MemNode* _align_to_ref; // Memory reference that pre-loop will align to
duke@435 226
duke@435 227 GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
duke@435 228
duke@435 229 DepGraph _dg; // Dependence graph
duke@435 230
duke@435 231 // Scratch pads
duke@435 232 VectorSet _visited; // Visited set
duke@435 233 VectorSet _post_visited; // Post-visited set
duke@435 234 Node_Stack _n_idx_list; // List of (node,index) pairs
duke@435 235 GrowableArray<Node*> _nlist; // List of nodes
duke@435 236 GrowableArray<Node*> _stk; // Stack of nodes
duke@435 237
duke@435 238 public:
duke@435 239 SuperWord(PhaseIdealLoop* phase);
duke@435 240
duke@435 241 void transform_loop(IdealLoopTree* lpt);
duke@435 242
duke@435 243 // Accessors for SWPointer
duke@435 244 PhaseIdealLoop* phase() { return _phase; }
duke@435 245 IdealLoopTree* lpt() { return _lpt; }
duke@435 246 PhiNode* iv() { return _iv; }
duke@435 247
duke@435 248 private:
duke@435 249 IdealLoopTree* _lpt; // Current loop tree node
duke@435 250 LoopNode* _lp; // Current LoopNode
duke@435 251 Node* _bb; // Current basic block
duke@435 252 PhiNode* _iv; // Induction var
duke@435 253
duke@435 254 // Accessors
duke@435 255 Arena* arena() { return _arena; }
duke@435 256
duke@435 257 Node* bb() { return _bb; }
duke@435 258 void set_bb(Node* bb) { _bb = bb; }
duke@435 259
duke@435 260 void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
duke@435 261
duke@435 262 LoopNode* lp() { return _lp; }
duke@435 263 void set_lp(LoopNode* lp) { _lp = lp;
duke@435 264 _iv = lp->as_CountedLoop()->phi()->as_Phi(); }
duke@435 265 int iv_stride() { return lp()->as_CountedLoop()->stride_con(); }
duke@435 266
kvn@3886 267 int vector_width(Node* n) {
kvn@3886 268 BasicType bt = velt_basic_type(n);
kvn@3886 269 return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
kvn@3882 270 }
kvn@3886 271 int vector_width_in_bytes(Node* n) {
kvn@3886 272 BasicType bt = velt_basic_type(n);
kvn@3886 273 return vector_width(n)*type2aelembytes(bt);
kvn@3886 274 }
duke@435 275 MemNode* align_to_ref() { return _align_to_ref; }
duke@435 276 void set_align_to_ref(MemNode* m) { _align_to_ref = m; }
duke@435 277
duke@435 278 Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
duke@435 279
duke@435 280 // block accessors
duke@435 281 bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
duke@435 282 int bb_idx(Node* n) { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
duke@435 283 void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
duke@435 284
duke@435 285 // visited set accessors
duke@435 286 void visited_clear() { _visited.Clear(); }
duke@435 287 void visited_set(Node* n) { return _visited.set(bb_idx(n)); }
duke@435 288 int visited_test(Node* n) { return _visited.test(bb_idx(n)); }
duke@435 289 int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); }
duke@435 290 void post_visited_clear() { _post_visited.Clear(); }
duke@435 291 void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
duke@435 292 int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
duke@435 293
duke@435 294 // Ensure node_info contains element "i"
duke@435 295 void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
duke@435 296
duke@435 297 // memory alignment for a node
duke@435 298 int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; }
duke@435 299 void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
duke@435 300
duke@435 301 // Max expression (DAG) depth from beginning of the block for each node
duke@435 302 int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; }
duke@435 303 void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
duke@435 304
duke@435 305 // vector element type
duke@435 306 const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; }
kvn@3882 307 BasicType velt_basic_type(Node* n) { return velt_type(n)->array_element_basic_type(); }
duke@435 308 void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
kvn@3882 309 bool same_velt_type(Node* n1, Node* n2);
duke@435 310
duke@435 311 // my_pack
duke@435 312 Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
duke@435 313 void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
duke@435 314
duke@435 315 // methods
duke@435 316
duke@435 317 // Extract the superword level parallelism
duke@435 318 void SLP_extract();
duke@435 319 // Find the adjacent memory references and create pack pairs for them.
duke@435 320 void find_adjacent_refs();
duke@435 321 // Find a memory reference to align the loop induction variable to.
kvn@3882 322 MemNode* find_align_to_ref(Node_List &memops);
kvn@3882 323 // Calculate loop's iv adjustment for this memory ops.
kvn@3882 324 int get_iv_adjustment(MemNode* mem);
duke@435 325 // Can the preloop align the reference to position zero in the vector?
duke@435 326 bool ref_is_alignable(SWPointer& p);
duke@435 327 // Construct dependency graph.
duke@435 328 void dependence_graph();
duke@435 329 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 330 void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
twisti@1040 331 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and s1 aligned at "align"
duke@435 332 bool stmts_can_pack(Node* s1, Node* s2, int align);
duke@435 333 // Does s exist in a pack at position pos?
duke@435 334 bool exists_at(Node* s, uint pos);
duke@435 335 // Is s1 immediately before s2 in memory?
duke@435 336 bool are_adjacent_refs(Node* s1, Node* s2);
duke@435 337 // Are s1 and s2 similar?
duke@435 338 bool isomorphic(Node* s1, Node* s2);
duke@435 339 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 340 bool independent(Node* s1, Node* s2);
duke@435 341 // Helper for independent
duke@435 342 bool independent_path(Node* shallow, Node* deep, uint dp=0);
duke@435 343 void set_alignment(Node* s1, Node* s2, int align);
duke@435 344 int data_size(Node* s);
duke@435 345 // Extend packset by following use->def and def->use links from pack members.
duke@435 346 void extend_packlist();
duke@435 347 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 348 bool follow_use_defs(Node_List* p);
duke@435 349 // Extend the packset by visiting uses of nodes in pack p
duke@435 350 bool follow_def_uses(Node_List* p);
duke@435 351 // Estimate the savings from executing s1 and s2 as a pack
duke@435 352 int est_savings(Node* s1, Node* s2);
duke@435 353 int adjacent_profit(Node* s1, Node* s2);
duke@435 354 int pack_cost(int ct);
duke@435 355 int unpack_cost(int ct);
duke@435 356 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 357 void combine_packs();
duke@435 358 // Construct the map from nodes to packs.
duke@435 359 void construct_my_pack_map();
duke@435 360 // Remove packs that are not implemented or not profitable.
duke@435 361 void filter_packs();
duke@435 362 // Adjust the memory graph for the packed operations
duke@435 363 void schedule();
cfang@1102 364 // Remove "current" from its current position in the memory graph and insert
cfang@1102 365 // it after the appropriate insert points (lip or uip);
cfang@1102 366 void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
cfang@1102 367 // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
cfang@1102 368 // to dependence info; and within a load pack, move loads down to the last executed load.
duke@435 369 void co_locate_pack(Node_List* p);
duke@435 370 // Convert packs into vector node operations
duke@435 371 void output();
duke@435 372 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
kvn@3040 373 Node* vector_opd(Node_List* p, int opd_idx);
duke@435 374 // Can code be generated for pack p?
duke@435 375 bool implemented(Node_List* p);
duke@435 376 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 377 bool profitable(Node_List* p);
duke@435 378 // If a use of pack p is not a vector use, then replace the use with an extract operation.
duke@435 379 void insert_extracts(Node_List* p);
duke@435 380 // Is use->in(u_idx) a vector use?
duke@435 381 bool is_vector_use(Node* use, int u_idx);
duke@435 382 // Construct reverse postorder list of block members
kvn@4620 383 bool construct_bb();
duke@435 384 // Initialize per node info
duke@435 385 void initialize_bb();
duke@435 386 // Insert n into block after pos
duke@435 387 void bb_insert_after(Node* n, int pos);
duke@435 388 // Compute max depth for expressions from beginning of block
duke@435 389 void compute_max_depth();
duke@435 390 // Compute necessary vector element type for expressions
duke@435 391 void compute_vector_element_type();
duke@435 392 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 393 bool in_packset(Node* s1, Node* s2);
duke@435 394 // Is s in pack p?
duke@435 395 Node_List* in_pack(Node* s, Node_List* p);
duke@435 396 // Remove the pack at position pos in the packset
duke@435 397 void remove_pack_at(int pos);
duke@435 398 // Return the node executed first in pack p.
duke@435 399 Node* executed_first(Node_List* p);
duke@435 400 // Return the node executed last in pack p.
duke@435 401 Node* executed_last(Node_List* p);
duke@435 402 // Alignment within a vector memory reference
kvn@4105 403 int memory_alignment(MemNode* s, int iv_adjust);
duke@435 404 // (Start, end] half-open range defining which operands are vector
duke@435 405 void vector_opd_range(Node* n, uint* start, uint* end);
duke@435 406 // Smallest type containing range of values
kvn@3882 407 const Type* container_type(Node* n);
duke@435 408 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 409 // to align_to_ref will be a position zero in the vector.
duke@435 410 void align_initial_loop_index(MemNode* align_to_ref);
duke@435 411 // Find pre loop end from main loop. Returns null if none.
duke@435 412 CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
duke@435 413 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 414 bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
duke@435 415 void init();
duke@435 416
duke@435 417 // print methods
duke@435 418 void print_packset();
duke@435 419 void print_pack(Node_List* p);
duke@435 420 void print_bb();
duke@435 421 void print_stmt(Node* s);
duke@435 422 char* blank(uint depth);
duke@435 423 };
duke@435 424
duke@435 425
duke@435 426 //------------------------------SWPointer---------------------------
duke@435 427 // Information about an address for dependence checking and vector alignment
duke@435 428 class SWPointer VALUE_OBJ_CLASS_SPEC {
duke@435 429 protected:
duke@435 430 MemNode* _mem; // My memory reference node
duke@435 431 SuperWord* _slp; // SuperWord class
duke@435 432
duke@435 433 Node* _base; // NULL if unsafe nonheap reference
duke@435 434 Node* _adr; // address pointer
duke@435 435 jint _scale; // multipler for iv (in bytes), 0 if no loop iv
duke@435 436 jint _offset; // constant offset (in bytes)
duke@435 437 Node* _invar; // invariant offset (in bytes), NULL if none
duke@435 438 bool _negate_invar; // if true then use: (0 - _invar)
duke@435 439
duke@435 440 PhaseIdealLoop* phase() { return _slp->phase(); }
duke@435 441 IdealLoopTree* lpt() { return _slp->lpt(); }
duke@435 442 PhiNode* iv() { return _slp->iv(); } // Induction var
duke@435 443
duke@435 444 bool invariant(Node* n) {
duke@435 445 Node *n_c = phase()->get_ctrl(n);
duke@435 446 return !lpt()->is_member(phase()->get_loop(n_c));
duke@435 447 }
duke@435 448
duke@435 449 // Match: k*iv + offset
duke@435 450 bool scaled_iv_plus_offset(Node* n);
duke@435 451 // Match: k*iv where k is a constant that's not zero
duke@435 452 bool scaled_iv(Node* n);
duke@435 453 // Match: offset is (k [+/- invariant])
duke@435 454 bool offset_plus_k(Node* n, bool negate = false);
duke@435 455
duke@435 456 public:
duke@435 457 enum CMP {
duke@435 458 Less = 1,
duke@435 459 Greater = 2,
duke@435 460 Equal = 4,
duke@435 461 NotEqual = (Less | Greater),
duke@435 462 NotComparable = (Less | Greater | Equal)
duke@435 463 };
duke@435 464
duke@435 465 SWPointer(MemNode* mem, SuperWord* slp);
duke@435 466 // Following is used to create a temporary object during
duke@435 467 // the pattern match of an address expression.
duke@435 468 SWPointer(SWPointer* p);
duke@435 469
duke@435 470 bool valid() { return _adr != NULL; }
duke@435 471 bool has_iv() { return _scale != 0; }
duke@435 472
duke@435 473 Node* base() { return _base; }
duke@435 474 Node* adr() { return _adr; }
kvn@3882 475 MemNode* mem() { return _mem; }
duke@435 476 int scale_in_bytes() { return _scale; }
duke@435 477 Node* invar() { return _invar; }
duke@435 478 bool negate_invar() { return _negate_invar; }
duke@435 479 int offset_in_bytes() { return _offset; }
duke@435 480 int memory_size() { return _mem->memory_size(); }
duke@435 481
duke@435 482 // Comparable?
duke@435 483 int cmp(SWPointer& q) {
duke@435 484 if (valid() && q.valid() &&
duke@435 485 (_adr == q._adr || _base == _adr && q._base == q._adr) &&
duke@435 486 _scale == q._scale &&
duke@435 487 _invar == q._invar &&
duke@435 488 _negate_invar == q._negate_invar) {
duke@435 489 bool overlap = q._offset < _offset + memory_size() &&
duke@435 490 _offset < q._offset + q.memory_size();
duke@435 491 return overlap ? Equal : (_offset < q._offset ? Less : Greater);
duke@435 492 } else {
duke@435 493 return NotComparable;
duke@435 494 }
duke@435 495 }
duke@435 496
duke@435 497 bool not_equal(SWPointer& q) { return not_equal(cmp(q)); }
duke@435 498 bool equal(SWPointer& q) { return equal(cmp(q)); }
duke@435 499 bool comparable(SWPointer& q) { return comparable(cmp(q)); }
duke@435 500 static bool not_equal(int cmp) { return cmp <= NotEqual; }
duke@435 501 static bool equal(int cmp) { return cmp == Equal; }
duke@435 502 static bool comparable(int cmp) { return cmp < NotComparable; }
duke@435 503
duke@435 504 void print();
duke@435 505 };
duke@435 506
duke@435 507
duke@435 508 //------------------------------OrderedPair---------------------------
duke@435 509 // Ordered pair of Node*.
duke@435 510 class OrderedPair VALUE_OBJ_CLASS_SPEC {
duke@435 511 protected:
duke@435 512 Node* _p1;
duke@435 513 Node* _p2;
duke@435 514 public:
duke@435 515 OrderedPair() : _p1(NULL), _p2(NULL) {}
duke@435 516 OrderedPair(Node* p1, Node* p2) {
duke@435 517 if (p1->_idx < p2->_idx) {
duke@435 518 _p1 = p1; _p2 = p2;
duke@435 519 } else {
duke@435 520 _p1 = p2; _p2 = p1;
duke@435 521 }
duke@435 522 }
duke@435 523
duke@435 524 bool operator==(const OrderedPair &rhs) {
duke@435 525 return _p1 == rhs._p1 && _p2 == rhs._p2;
duke@435 526 }
duke@435 527 void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); }
duke@435 528
duke@435 529 static const OrderedPair initial;
duke@435 530 };
stefank@2314 531
stefank@2314 532 #endif // SHARE_VM_OPTO_SUPERWORD_HPP

mercurial