src/cpu/sparc/vm/macroAssembler_sparc.cpp

Mon, 28 May 2018 10:33:52 +0800

author
aoqi
date
Mon, 28 May 2018 10:33:52 +0800
changeset 9041
95a08233f46c
parent 8997
f8a45a60bc6b
parent 8856
ac27a9c85bea
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
dbuck@8997 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "asm/assembler.inline.hpp"
aoqi@0 27 #include "compiler/disassembler.hpp"
aoqi@0 28 #include "gc_interface/collectedHeap.inline.hpp"
aoqi@0 29 #include "interpreter/interpreter.hpp"
aoqi@0 30 #include "memory/cardTableModRefBS.hpp"
aoqi@0 31 #include "memory/resourceArea.hpp"
aoqi@0 32 #include "memory/universe.hpp"
aoqi@0 33 #include "prims/methodHandles.hpp"
aoqi@0 34 #include "runtime/biasedLocking.hpp"
aoqi@0 35 #include "runtime/interfaceSupport.hpp"
aoqi@0 36 #include "runtime/objectMonitor.hpp"
aoqi@0 37 #include "runtime/os.hpp"
aoqi@0 38 #include "runtime/sharedRuntime.hpp"
aoqi@0 39 #include "runtime/stubRoutines.hpp"
aoqi@0 40 #include "utilities/macros.hpp"
aoqi@0 41 #if INCLUDE_ALL_GCS
aoqi@0 42 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
aoqi@0 43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
aoqi@0 44 #include "gc_implementation/g1/heapRegion.hpp"
aoqi@0 45 #endif // INCLUDE_ALL_GCS
aoqi@0 46
aoqi@0 47 #ifdef PRODUCT
aoqi@0 48 #define BLOCK_COMMENT(str) /* nothing */
aoqi@0 49 #define STOP(error) stop(error)
aoqi@0 50 #else
aoqi@0 51 #define BLOCK_COMMENT(str) block_comment(str)
aoqi@0 52 #define STOP(error) block_comment(error); stop(error)
aoqi@0 53 #endif
aoqi@0 54
aoqi@0 55 // Convert the raw encoding form into the form expected by the
aoqi@0 56 // constructor for Address.
aoqi@0 57 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
aoqi@0 58 assert(scale == 0, "not supported");
aoqi@0 59 RelocationHolder rspec;
aoqi@0 60 if (disp_reloc != relocInfo::none) {
aoqi@0 61 rspec = Relocation::spec_simple(disp_reloc);
aoqi@0 62 }
aoqi@0 63
aoqi@0 64 Register rindex = as_Register(index);
aoqi@0 65 if (rindex != G0) {
aoqi@0 66 Address madr(as_Register(base), rindex);
aoqi@0 67 madr._rspec = rspec;
aoqi@0 68 return madr;
aoqi@0 69 } else {
aoqi@0 70 Address madr(as_Register(base), disp);
aoqi@0 71 madr._rspec = rspec;
aoqi@0 72 return madr;
aoqi@0 73 }
aoqi@0 74 }
aoqi@0 75
aoqi@0 76 Address Argument::address_in_frame() const {
aoqi@0 77 // Warning: In LP64 mode disp will occupy more than 10 bits, but
aoqi@0 78 // op codes such as ld or ldx, only access disp() to get
aoqi@0 79 // their simm13 argument.
aoqi@0 80 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
aoqi@0 81 if (is_in())
aoqi@0 82 return Address(FP, disp); // In argument.
aoqi@0 83 else
aoqi@0 84 return Address(SP, disp); // Out argument.
aoqi@0 85 }
aoqi@0 86
aoqi@0 87 static const char* argumentNames[][2] = {
aoqi@0 88 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
aoqi@0 89 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
aoqi@0 90 {"A(n>9)","P(n>9)"}
aoqi@0 91 };
aoqi@0 92
aoqi@0 93 const char* Argument::name() const {
aoqi@0 94 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
aoqi@0 95 int num = number();
aoqi@0 96 if (num >= nofArgs) num = nofArgs - 1;
aoqi@0 97 return argumentNames[num][is_in() ? 1 : 0];
aoqi@0 98 }
aoqi@0 99
aoqi@0 100 #ifdef ASSERT
aoqi@0 101 // On RISC, there's no benefit to verifying instruction boundaries.
aoqi@0 102 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
aoqi@0 103 #endif
aoqi@0 104
aoqi@0 105 // Patch instruction inst at offset inst_pos to refer to dest_pos
aoqi@0 106 // and return the resulting instruction.
aoqi@0 107 // We should have pcs, not offsets, but since all is relative, it will work out
aoqi@0 108 // OK.
aoqi@0 109 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
aoqi@0 110 int m; // mask for displacement field
aoqi@0 111 int v; // new value for displacement field
aoqi@0 112 const int word_aligned_ones = -4;
aoqi@0 113 switch (inv_op(inst)) {
aoqi@0 114 default: ShouldNotReachHere();
aoqi@0 115 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
aoqi@0 116 case branch_op:
aoqi@0 117 switch (inv_op2(inst)) {
aoqi@0 118 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
aoqi@0 119 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
aoqi@0 120 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
aoqi@0 121 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
aoqi@0 122 case bpr_op2: {
aoqi@0 123 if (is_cbcond(inst)) {
aoqi@0 124 m = wdisp10(word_aligned_ones, 0);
aoqi@0 125 v = wdisp10(dest_pos, inst_pos);
aoqi@0 126 } else {
aoqi@0 127 m = wdisp16(word_aligned_ones, 0);
aoqi@0 128 v = wdisp16(dest_pos, inst_pos);
aoqi@0 129 }
aoqi@0 130 break;
aoqi@0 131 }
aoqi@0 132 default: ShouldNotReachHere();
aoqi@0 133 }
aoqi@0 134 }
aoqi@0 135 return inst & ~m | v;
aoqi@0 136 }
aoqi@0 137
aoqi@0 138 // Return the offset of the branch destionation of instruction inst
aoqi@0 139 // at offset pos.
aoqi@0 140 // Should have pcs, but since all is relative, it works out.
aoqi@0 141 int MacroAssembler::branch_destination(int inst, int pos) {
aoqi@0 142 int r;
aoqi@0 143 switch (inv_op(inst)) {
aoqi@0 144 default: ShouldNotReachHere();
aoqi@0 145 case call_op: r = inv_wdisp(inst, pos, 30); break;
aoqi@0 146 case branch_op:
aoqi@0 147 switch (inv_op2(inst)) {
aoqi@0 148 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
aoqi@0 149 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
aoqi@0 150 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
aoqi@0 151 case br_op2: r = inv_wdisp( inst, pos, 22); break;
aoqi@0 152 case bpr_op2: {
aoqi@0 153 if (is_cbcond(inst)) {
aoqi@0 154 r = inv_wdisp10(inst, pos);
aoqi@0 155 } else {
aoqi@0 156 r = inv_wdisp16(inst, pos);
aoqi@0 157 }
aoqi@0 158 break;
aoqi@0 159 }
aoqi@0 160 default: ShouldNotReachHere();
aoqi@0 161 }
aoqi@0 162 }
aoqi@0 163 return r;
aoqi@0 164 }
aoqi@0 165
aoqi@0 166 void MacroAssembler::null_check(Register reg, int offset) {
aoqi@0 167 if (needs_explicit_null_check((intptr_t)offset)) {
aoqi@0 168 // provoke OS NULL exception if reg = NULL by
aoqi@0 169 // accessing M[reg] w/o changing any registers
aoqi@0 170 ld_ptr(reg, 0, G0);
aoqi@0 171 }
aoqi@0 172 else {
aoqi@0 173 // nothing to do, (later) access of M[reg + offset]
aoqi@0 174 // will provoke OS NULL exception if reg = NULL
aoqi@0 175 }
aoqi@0 176 }
aoqi@0 177
aoqi@0 178 // Ring buffer jumps
aoqi@0 179
aoqi@0 180 #ifndef PRODUCT
aoqi@0 181 void MacroAssembler::ret( bool trace ) { if (trace) {
aoqi@0 182 mov(I7, O7); // traceable register
aoqi@0 183 JMP(O7, 2 * BytesPerInstWord);
aoqi@0 184 } else {
aoqi@0 185 jmpl( I7, 2 * BytesPerInstWord, G0 );
aoqi@0 186 }
aoqi@0 187 }
aoqi@0 188
aoqi@0 189 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
aoqi@0 190 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
aoqi@0 191 #endif /* PRODUCT */
aoqi@0 192
aoqi@0 193
aoqi@0 194 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
aoqi@0 195 assert_not_delayed();
aoqi@0 196 // This can only be traceable if r1 & r2 are visible after a window save
aoqi@0 197 if (TraceJumps) {
aoqi@0 198 #ifndef PRODUCT
aoqi@0 199 save_frame(0);
aoqi@0 200 verify_thread();
aoqi@0 201 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
aoqi@0 202 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
aoqi@0 203 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
aoqi@0 204 add(O2, O1, O1);
aoqi@0 205
aoqi@0 206 add(r1->after_save(), r2->after_save(), O2);
aoqi@0 207 set((intptr_t)file, O3);
aoqi@0 208 set(line, O4);
aoqi@0 209 Label L;
aoqi@0 210 // get nearby pc, store jmp target
aoqi@0 211 call(L, relocInfo::none); // No relocation for call to pc+0x8
aoqi@0 212 delayed()->st(O2, O1, 0);
aoqi@0 213 bind(L);
aoqi@0 214
aoqi@0 215 // store nearby pc
aoqi@0 216 st(O7, O1, sizeof(intptr_t));
aoqi@0 217 // store file
aoqi@0 218 st(O3, O1, 2*sizeof(intptr_t));
aoqi@0 219 // store line
aoqi@0 220 st(O4, O1, 3*sizeof(intptr_t));
aoqi@0 221 add(O0, 1, O0);
aoqi@0 222 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
aoqi@0 223 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
aoqi@0 224 restore();
aoqi@0 225 #endif /* PRODUCT */
aoqi@0 226 }
aoqi@0 227 jmpl(r1, r2, G0);
aoqi@0 228 }
aoqi@0 229 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
aoqi@0 230 assert_not_delayed();
aoqi@0 231 // This can only be traceable if r1 is visible after a window save
aoqi@0 232 if (TraceJumps) {
aoqi@0 233 #ifndef PRODUCT
aoqi@0 234 save_frame(0);
aoqi@0 235 verify_thread();
aoqi@0 236 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
aoqi@0 237 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
aoqi@0 238 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
aoqi@0 239 add(O2, O1, O1);
aoqi@0 240
aoqi@0 241 add(r1->after_save(), offset, O2);
aoqi@0 242 set((intptr_t)file, O3);
aoqi@0 243 set(line, O4);
aoqi@0 244 Label L;
aoqi@0 245 // get nearby pc, store jmp target
aoqi@0 246 call(L, relocInfo::none); // No relocation for call to pc+0x8
aoqi@0 247 delayed()->st(O2, O1, 0);
aoqi@0 248 bind(L);
aoqi@0 249
aoqi@0 250 // store nearby pc
aoqi@0 251 st(O7, O1, sizeof(intptr_t));
aoqi@0 252 // store file
aoqi@0 253 st(O3, O1, 2*sizeof(intptr_t));
aoqi@0 254 // store line
aoqi@0 255 st(O4, O1, 3*sizeof(intptr_t));
aoqi@0 256 add(O0, 1, O0);
aoqi@0 257 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
aoqi@0 258 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
aoqi@0 259 restore();
aoqi@0 260 #endif /* PRODUCT */
aoqi@0 261 }
aoqi@0 262 jmp(r1, offset);
aoqi@0 263 }
aoqi@0 264
aoqi@0 265 // This code sequence is relocatable to any address, even on LP64.
aoqi@0 266 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
aoqi@0 267 assert_not_delayed();
aoqi@0 268 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
aoqi@0 269 // variable length instruction streams.
aoqi@0 270 patchable_sethi(addrlit, temp);
aoqi@0 271 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
aoqi@0 272 if (TraceJumps) {
aoqi@0 273 #ifndef PRODUCT
aoqi@0 274 // Must do the add here so relocation can find the remainder of the
aoqi@0 275 // value to be relocated.
aoqi@0 276 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
aoqi@0 277 save_frame(0);
aoqi@0 278 verify_thread();
aoqi@0 279 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
aoqi@0 280 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
aoqi@0 281 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
aoqi@0 282 add(O2, O1, O1);
aoqi@0 283
aoqi@0 284 set((intptr_t)file, O3);
aoqi@0 285 set(line, O4);
aoqi@0 286 Label L;
aoqi@0 287
aoqi@0 288 // get nearby pc, store jmp target
aoqi@0 289 call(L, relocInfo::none); // No relocation for call to pc+0x8
aoqi@0 290 delayed()->st(a.base()->after_save(), O1, 0);
aoqi@0 291 bind(L);
aoqi@0 292
aoqi@0 293 // store nearby pc
aoqi@0 294 st(O7, O1, sizeof(intptr_t));
aoqi@0 295 // store file
aoqi@0 296 st(O3, O1, 2*sizeof(intptr_t));
aoqi@0 297 // store line
aoqi@0 298 st(O4, O1, 3*sizeof(intptr_t));
aoqi@0 299 add(O0, 1, O0);
aoqi@0 300 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
aoqi@0 301 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
aoqi@0 302 restore();
aoqi@0 303 jmpl(a.base(), G0, d);
aoqi@0 304 #else
aoqi@0 305 jmpl(a.base(), a.disp(), d);
aoqi@0 306 #endif /* PRODUCT */
aoqi@0 307 } else {
aoqi@0 308 jmpl(a.base(), a.disp(), d);
aoqi@0 309 }
aoqi@0 310 }
aoqi@0 311
aoqi@0 312 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
aoqi@0 313 jumpl(addrlit, temp, G0, offset, file, line);
aoqi@0 314 }
aoqi@0 315
aoqi@0 316
aoqi@0 317 // Conditional breakpoint (for assertion checks in assembly code)
aoqi@0 318 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
aoqi@0 319 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
aoqi@0 320 }
aoqi@0 321
aoqi@0 322 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
aoqi@0 323 void MacroAssembler::breakpoint_trap() {
aoqi@0 324 trap(ST_RESERVED_FOR_USER_0);
aoqi@0 325 }
aoqi@0 326
aoqi@0 327 // Write serialization page so VM thread can do a pseudo remote membar
aoqi@0 328 // We use the current thread pointer to calculate a thread specific
aoqi@0 329 // offset to write to within the page. This minimizes bus traffic
aoqi@0 330 // due to cache line collision.
aoqi@0 331 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
aoqi@0 332 srl(thread, os::get_serialize_page_shift_count(), tmp2);
aoqi@0 333 if (Assembler::is_simm13(os::vm_page_size())) {
aoqi@0 334 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
aoqi@0 335 }
aoqi@0 336 else {
aoqi@0 337 set((os::vm_page_size() - sizeof(int)), tmp1);
aoqi@0 338 and3(tmp2, tmp1, tmp2);
aoqi@0 339 }
aoqi@0 340 set(os::get_memory_serialize_page(), tmp1);
aoqi@0 341 st(G0, tmp1, tmp2);
aoqi@0 342 }
aoqi@0 343
aoqi@0 344
aoqi@0 345
aoqi@0 346 void MacroAssembler::enter() {
aoqi@0 347 Unimplemented();
aoqi@0 348 }
aoqi@0 349
aoqi@0 350 void MacroAssembler::leave() {
aoqi@0 351 Unimplemented();
aoqi@0 352 }
aoqi@0 353
aoqi@0 354 // Calls to C land
aoqi@0 355
aoqi@0 356 #ifdef ASSERT
aoqi@0 357 // a hook for debugging
aoqi@0 358 static Thread* reinitialize_thread() {
aoqi@0 359 return ThreadLocalStorage::thread();
aoqi@0 360 }
aoqi@0 361 #else
aoqi@0 362 #define reinitialize_thread ThreadLocalStorage::thread
aoqi@0 363 #endif
aoqi@0 364
aoqi@0 365 #ifdef ASSERT
aoqi@0 366 address last_get_thread = NULL;
aoqi@0 367 #endif
aoqi@0 368
aoqi@0 369 // call this when G2_thread is not known to be valid
aoqi@0 370 void MacroAssembler::get_thread() {
aoqi@0 371 save_frame(0); // to avoid clobbering O0
aoqi@0 372 mov(G1, L0); // avoid clobbering G1
aoqi@0 373 mov(G5_method, L1); // avoid clobbering G5
aoqi@0 374 mov(G3, L2); // avoid clobbering G3 also
aoqi@0 375 mov(G4, L5); // avoid clobbering G4
aoqi@0 376 #ifdef ASSERT
aoqi@0 377 AddressLiteral last_get_thread_addrlit(&last_get_thread);
aoqi@0 378 set(last_get_thread_addrlit, L3);
aoqi@0 379 rdpc(L4);
aoqi@0 380 inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call st_ptr(L4, L3, 0);
aoqi@0 381 #endif
aoqi@0 382 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
aoqi@0 383 delayed()->nop();
aoqi@0 384 mov(L0, G1);
aoqi@0 385 mov(L1, G5_method);
aoqi@0 386 mov(L2, G3);
aoqi@0 387 mov(L5, G4);
aoqi@0 388 restore(O0, 0, G2_thread);
aoqi@0 389 }
aoqi@0 390
aoqi@0 391 static Thread* verify_thread_subroutine(Thread* gthread_value) {
aoqi@0 392 Thread* correct_value = ThreadLocalStorage::thread();
aoqi@0 393 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
aoqi@0 394 return correct_value;
aoqi@0 395 }
aoqi@0 396
aoqi@0 397 void MacroAssembler::verify_thread() {
aoqi@0 398 if (VerifyThread) {
aoqi@0 399 // NOTE: this chops off the heads of the 64-bit O registers.
aoqi@0 400 #ifdef CC_INTERP
aoqi@0 401 save_frame(0);
aoqi@0 402 #else
aoqi@0 403 // make sure G2_thread contains the right value
aoqi@0 404 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
aoqi@0 405 mov(G1, L1); // avoid clobbering G1
aoqi@0 406 // G2 saved below
aoqi@0 407 mov(G3, L3); // avoid clobbering G3
aoqi@0 408 mov(G4, L4); // avoid clobbering G4
aoqi@0 409 mov(G5_method, L5); // avoid clobbering G5_method
aoqi@0 410 #endif /* CC_INTERP */
aoqi@0 411 #if defined(COMPILER2) && !defined(_LP64)
aoqi@0 412 // Save & restore possible 64-bit Long arguments in G-regs
aoqi@0 413 srlx(G1,32,L0);
aoqi@0 414 srlx(G4,32,L6);
aoqi@0 415 #endif
aoqi@0 416 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
aoqi@0 417 delayed()->mov(G2_thread, O0);
aoqi@0 418
aoqi@0 419 mov(L1, G1); // Restore G1
aoqi@0 420 // G2 restored below
aoqi@0 421 mov(L3, G3); // restore G3
aoqi@0 422 mov(L4, G4); // restore G4
aoqi@0 423 mov(L5, G5_method); // restore G5_method
aoqi@0 424 #if defined(COMPILER2) && !defined(_LP64)
aoqi@0 425 // Save & restore possible 64-bit Long arguments in G-regs
aoqi@0 426 sllx(L0,32,G2); // Move old high G1 bits high in G2
aoqi@0 427 srl(G1, 0,G1); // Clear current high G1 bits
aoqi@0 428 or3 (G1,G2,G1); // Recover 64-bit G1
aoqi@0 429 sllx(L6,32,G2); // Move old high G4 bits high in G2
aoqi@0 430 srl(G4, 0,G4); // Clear current high G4 bits
aoqi@0 431 or3 (G4,G2,G4); // Recover 64-bit G4
aoqi@0 432 #endif
aoqi@0 433 restore(O0, 0, G2_thread);
aoqi@0 434 }
aoqi@0 435 }
aoqi@0 436
aoqi@0 437
aoqi@0 438 void MacroAssembler::save_thread(const Register thread_cache) {
aoqi@0 439 verify_thread();
aoqi@0 440 if (thread_cache->is_valid()) {
aoqi@0 441 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
aoqi@0 442 mov(G2_thread, thread_cache);
aoqi@0 443 }
aoqi@0 444 if (VerifyThread) {
aoqi@0 445 // smash G2_thread, as if the VM were about to anyway
aoqi@0 446 set(0x67676767, G2_thread);
aoqi@0 447 }
aoqi@0 448 }
aoqi@0 449
aoqi@0 450
aoqi@0 451 void MacroAssembler::restore_thread(const Register thread_cache) {
aoqi@0 452 if (thread_cache->is_valid()) {
aoqi@0 453 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
aoqi@0 454 mov(thread_cache, G2_thread);
aoqi@0 455 verify_thread();
aoqi@0 456 } else {
aoqi@0 457 // do it the slow way
aoqi@0 458 get_thread();
aoqi@0 459 }
aoqi@0 460 }
aoqi@0 461
aoqi@0 462
aoqi@0 463 // %%% maybe get rid of [re]set_last_Java_frame
aoqi@0 464 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
aoqi@0 465 assert_not_delayed();
aoqi@0 466 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
aoqi@0 467 JavaFrameAnchor::flags_offset());
aoqi@0 468 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
aoqi@0 469
aoqi@0 470 // Always set last_Java_pc and flags first because once last_Java_sp is visible
aoqi@0 471 // has_last_Java_frame is true and users will look at the rest of the fields.
aoqi@0 472 // (Note: flags should always be zero before we get here so doesn't need to be set.)
aoqi@0 473
aoqi@0 474 #ifdef ASSERT
aoqi@0 475 // Verify that flags was zeroed on return to Java
aoqi@0 476 Label PcOk;
aoqi@0 477 save_frame(0); // to avoid clobbering O0
aoqi@0 478 ld_ptr(pc_addr, L0);
aoqi@0 479 br_null_short(L0, Assembler::pt, PcOk);
aoqi@0 480 STOP("last_Java_pc not zeroed before leaving Java");
aoqi@0 481 bind(PcOk);
aoqi@0 482
aoqi@0 483 // Verify that flags was zeroed on return to Java
aoqi@0 484 Label FlagsOk;
aoqi@0 485 ld(flags, L0);
aoqi@0 486 tst(L0);
aoqi@0 487 br(Assembler::zero, false, Assembler::pt, FlagsOk);
aoqi@0 488 delayed() -> restore();
aoqi@0 489 STOP("flags not zeroed before leaving Java");
aoqi@0 490 bind(FlagsOk);
aoqi@0 491 #endif /* ASSERT */
aoqi@0 492 //
aoqi@0 493 // When returning from calling out from Java mode the frame anchor's last_Java_pc
aoqi@0 494 // will always be set to NULL. It is set here so that if we are doing a call to
aoqi@0 495 // native (not VM) that we capture the known pc and don't have to rely on the
aoqi@0 496 // native call having a standard frame linkage where we can find the pc.
aoqi@0 497
aoqi@0 498 if (last_Java_pc->is_valid()) {
aoqi@0 499 st_ptr(last_Java_pc, pc_addr);
aoqi@0 500 }
aoqi@0 501
aoqi@0 502 #ifdef _LP64
aoqi@0 503 #ifdef ASSERT
aoqi@0 504 // Make sure that we have an odd stack
aoqi@0 505 Label StackOk;
aoqi@0 506 andcc(last_java_sp, 0x01, G0);
aoqi@0 507 br(Assembler::notZero, false, Assembler::pt, StackOk);
aoqi@0 508 delayed()->nop();
aoqi@0 509 STOP("Stack Not Biased in set_last_Java_frame");
aoqi@0 510 bind(StackOk);
aoqi@0 511 #endif // ASSERT
aoqi@0 512 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
aoqi@0 513 add( last_java_sp, STACK_BIAS, G4_scratch );
aoqi@0 514 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
aoqi@0 515 #else
aoqi@0 516 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
aoqi@0 517 #endif // _LP64
aoqi@0 518 }
aoqi@0 519
aoqi@0 520 void MacroAssembler::reset_last_Java_frame(void) {
aoqi@0 521 assert_not_delayed();
aoqi@0 522
aoqi@0 523 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
aoqi@0 524 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
aoqi@0 525 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
aoqi@0 526
aoqi@0 527 #ifdef ASSERT
aoqi@0 528 // check that it WAS previously set
aoqi@0 529 #ifdef CC_INTERP
aoqi@0 530 save_frame(0);
aoqi@0 531 #else
aoqi@0 532 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
aoqi@0 533 #endif /* CC_INTERP */
aoqi@0 534 ld_ptr(sp_addr, L0);
aoqi@0 535 tst(L0);
aoqi@0 536 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
aoqi@0 537 restore();
aoqi@0 538 #endif // ASSERT
aoqi@0 539
aoqi@0 540 st_ptr(G0, sp_addr);
aoqi@0 541 // Always return last_Java_pc to zero
aoqi@0 542 st_ptr(G0, pc_addr);
aoqi@0 543 // Always null flags after return to Java
aoqi@0 544 st(G0, flags);
aoqi@0 545 }
aoqi@0 546
aoqi@0 547
aoqi@0 548 void MacroAssembler::call_VM_base(
aoqi@0 549 Register oop_result,
aoqi@0 550 Register thread_cache,
aoqi@0 551 Register last_java_sp,
aoqi@0 552 address entry_point,
aoqi@0 553 int number_of_arguments,
aoqi@0 554 bool check_exceptions)
aoqi@0 555 {
aoqi@0 556 assert_not_delayed();
aoqi@0 557
aoqi@0 558 // determine last_java_sp register
aoqi@0 559 if (!last_java_sp->is_valid()) {
aoqi@0 560 last_java_sp = SP;
aoqi@0 561 }
aoqi@0 562 // debugging support
aoqi@0 563 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
aoqi@0 564
aoqi@0 565 // 64-bit last_java_sp is biased!
aoqi@0 566 set_last_Java_frame(last_java_sp, noreg);
aoqi@0 567 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
aoqi@0 568 save_thread(thread_cache);
aoqi@0 569 // do the call
aoqi@0 570 call(entry_point, relocInfo::runtime_call_type);
aoqi@0 571 if (!VerifyThread)
aoqi@0 572 delayed()->mov(G2_thread, O0); // pass thread as first argument
aoqi@0 573 else
aoqi@0 574 delayed()->nop(); // (thread already passed)
aoqi@0 575 restore_thread(thread_cache);
aoqi@0 576 reset_last_Java_frame();
aoqi@0 577
aoqi@0 578 // check for pending exceptions. use Gtemp as scratch register.
aoqi@0 579 if (check_exceptions) {
aoqi@0 580 check_and_forward_exception(Gtemp);
aoqi@0 581 }
aoqi@0 582
aoqi@0 583 #ifdef ASSERT
aoqi@0 584 set(badHeapWordVal, G3);
aoqi@0 585 set(badHeapWordVal, G4);
aoqi@0 586 set(badHeapWordVal, G5);
aoqi@0 587 #endif
aoqi@0 588
aoqi@0 589 // get oop result if there is one and reset the value in the thread
aoqi@0 590 if (oop_result->is_valid()) {
aoqi@0 591 get_vm_result(oop_result);
aoqi@0 592 }
aoqi@0 593 }
aoqi@0 594
aoqi@0 595 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
aoqi@0 596 {
aoqi@0 597 Label L;
aoqi@0 598
aoqi@0 599 check_and_handle_popframe(scratch_reg);
aoqi@0 600 check_and_handle_earlyret(scratch_reg);
aoqi@0 601
aoqi@0 602 Address exception_addr(G2_thread, Thread::pending_exception_offset());
aoqi@0 603 ld_ptr(exception_addr, scratch_reg);
aoqi@0 604 br_null_short(scratch_reg, pt, L);
aoqi@0 605 // we use O7 linkage so that forward_exception_entry has the issuing PC
aoqi@0 606 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
aoqi@0 607 delayed()->nop();
aoqi@0 608 bind(L);
aoqi@0 609 }
aoqi@0 610
aoqi@0 611
aoqi@0 612 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
aoqi@0 613 }
aoqi@0 614
aoqi@0 615
aoqi@0 616 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
aoqi@0 617 }
aoqi@0 618
aoqi@0 619
aoqi@0 620 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
aoqi@0 621 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
aoqi@0 622 }
aoqi@0 623
aoqi@0 624
aoqi@0 625 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
aoqi@0 626 // O0 is reserved for the thread
aoqi@0 627 mov(arg_1, O1);
aoqi@0 628 call_VM(oop_result, entry_point, 1, check_exceptions);
aoqi@0 629 }
aoqi@0 630
aoqi@0 631
aoqi@0 632 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
aoqi@0 633 // O0 is reserved for the thread
aoqi@0 634 mov(arg_1, O1);
aoqi@0 635 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
aoqi@0 636 call_VM(oop_result, entry_point, 2, check_exceptions);
aoqi@0 637 }
aoqi@0 638
aoqi@0 639
aoqi@0 640 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
aoqi@0 641 // O0 is reserved for the thread
aoqi@0 642 mov(arg_1, O1);
aoqi@0 643 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
aoqi@0 644 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
aoqi@0 645 call_VM(oop_result, entry_point, 3, check_exceptions);
aoqi@0 646 }
aoqi@0 647
aoqi@0 648
aoqi@0 649
aoqi@0 650 // Note: The following call_VM overloadings are useful when a "save"
aoqi@0 651 // has already been performed by a stub, and the last Java frame is
aoqi@0 652 // the previous one. In that case, last_java_sp must be passed as FP
aoqi@0 653 // instead of SP.
aoqi@0 654
aoqi@0 655
aoqi@0 656 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
aoqi@0 657 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
aoqi@0 658 }
aoqi@0 659
aoqi@0 660
aoqi@0 661 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
aoqi@0 662 // O0 is reserved for the thread
aoqi@0 663 mov(arg_1, O1);
aoqi@0 664 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
aoqi@0 665 }
aoqi@0 666
aoqi@0 667
aoqi@0 668 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
aoqi@0 669 // O0 is reserved for the thread
aoqi@0 670 mov(arg_1, O1);
aoqi@0 671 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
aoqi@0 672 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
aoqi@0 673 }
aoqi@0 674
aoqi@0 675
aoqi@0 676 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
aoqi@0 677 // O0 is reserved for the thread
aoqi@0 678 mov(arg_1, O1);
aoqi@0 679 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
aoqi@0 680 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
aoqi@0 681 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
aoqi@0 682 }
aoqi@0 683
aoqi@0 684
aoqi@0 685
aoqi@0 686 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
aoqi@0 687 assert_not_delayed();
aoqi@0 688 save_thread(thread_cache);
aoqi@0 689 // do the call
aoqi@0 690 call(entry_point, relocInfo::runtime_call_type);
aoqi@0 691 delayed()->nop();
aoqi@0 692 restore_thread(thread_cache);
aoqi@0 693 #ifdef ASSERT
aoqi@0 694 set(badHeapWordVal, G3);
aoqi@0 695 set(badHeapWordVal, G4);
aoqi@0 696 set(badHeapWordVal, G5);
aoqi@0 697 #endif
aoqi@0 698 }
aoqi@0 699
aoqi@0 700
aoqi@0 701 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
aoqi@0 702 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
aoqi@0 703 }
aoqi@0 704
aoqi@0 705
aoqi@0 706 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
aoqi@0 707 mov(arg_1, O0);
aoqi@0 708 call_VM_leaf(thread_cache, entry_point, 1);
aoqi@0 709 }
aoqi@0 710
aoqi@0 711
aoqi@0 712 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
aoqi@0 713 mov(arg_1, O0);
aoqi@0 714 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
aoqi@0 715 call_VM_leaf(thread_cache, entry_point, 2);
aoqi@0 716 }
aoqi@0 717
aoqi@0 718
aoqi@0 719 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
aoqi@0 720 mov(arg_1, O0);
aoqi@0 721 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
aoqi@0 722 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
aoqi@0 723 call_VM_leaf(thread_cache, entry_point, 3);
aoqi@0 724 }
aoqi@0 725
aoqi@0 726
aoqi@0 727 void MacroAssembler::get_vm_result(Register oop_result) {
aoqi@0 728 verify_thread();
aoqi@0 729 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
aoqi@0 730 ld_ptr( vm_result_addr, oop_result);
aoqi@0 731 st_ptr(G0, vm_result_addr);
aoqi@0 732 verify_oop(oop_result);
aoqi@0 733 }
aoqi@0 734
aoqi@0 735
aoqi@0 736 void MacroAssembler::get_vm_result_2(Register metadata_result) {
aoqi@0 737 verify_thread();
aoqi@0 738 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
aoqi@0 739 ld_ptr(vm_result_addr_2, metadata_result);
aoqi@0 740 st_ptr(G0, vm_result_addr_2);
aoqi@0 741 }
aoqi@0 742
aoqi@0 743
aoqi@0 744 // We require that C code which does not return a value in vm_result will
aoqi@0 745 // leave it undisturbed.
aoqi@0 746 void MacroAssembler::set_vm_result(Register oop_result) {
aoqi@0 747 verify_thread();
aoqi@0 748 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
aoqi@0 749 verify_oop(oop_result);
aoqi@0 750
aoqi@0 751 # ifdef ASSERT
aoqi@0 752 // Check that we are not overwriting any other oop.
aoqi@0 753 #ifdef CC_INTERP
aoqi@0 754 save_frame(0);
aoqi@0 755 #else
aoqi@0 756 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
aoqi@0 757 #endif /* CC_INTERP */
aoqi@0 758 ld_ptr(vm_result_addr, L0);
aoqi@0 759 tst(L0);
aoqi@0 760 restore();
aoqi@0 761 breakpoint_trap(notZero, Assembler::ptr_cc);
aoqi@0 762 // }
aoqi@0 763 # endif
aoqi@0 764
aoqi@0 765 st_ptr(oop_result, vm_result_addr);
aoqi@0 766 }
aoqi@0 767
aoqi@0 768
aoqi@0 769 void MacroAssembler::ic_call(address entry, bool emit_delay) {
aoqi@0 770 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
aoqi@0 771 patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
aoqi@0 772 relocate(rspec);
aoqi@0 773 call(entry, relocInfo::none);
aoqi@0 774 if (emit_delay) {
aoqi@0 775 delayed()->nop();
aoqi@0 776 }
aoqi@0 777 }
aoqi@0 778
aoqi@0 779
aoqi@0 780 void MacroAssembler::card_table_write(jbyte* byte_map_base,
aoqi@0 781 Register tmp, Register obj) {
aoqi@0 782 #ifdef _LP64
aoqi@0 783 srlx(obj, CardTableModRefBS::card_shift, obj);
aoqi@0 784 #else
aoqi@0 785 srl(obj, CardTableModRefBS::card_shift, obj);
aoqi@0 786 #endif
aoqi@0 787 assert(tmp != obj, "need separate temp reg");
aoqi@0 788 set((address) byte_map_base, tmp);
aoqi@0 789 stb(G0, tmp, obj);
aoqi@0 790 }
aoqi@0 791
aoqi@0 792
aoqi@0 793 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
aoqi@0 794 address save_pc;
aoqi@0 795 int shiftcnt;
aoqi@0 796 #ifdef _LP64
aoqi@0 797 # ifdef CHECK_DELAY
aoqi@0 798 assert_not_delayed((char*) "cannot put two instructions in delay slot");
aoqi@0 799 # endif
aoqi@0 800 v9_dep();
aoqi@0 801 save_pc = pc();
aoqi@0 802
aoqi@0 803 int msb32 = (int) (addrlit.value() >> 32);
aoqi@0 804 int lsb32 = (int) (addrlit.value());
aoqi@0 805
aoqi@0 806 if (msb32 == 0 && lsb32 >= 0) {
aoqi@0 807 Assembler::sethi(lsb32, d, addrlit.rspec());
aoqi@0 808 }
aoqi@0 809 else if (msb32 == -1) {
aoqi@0 810 Assembler::sethi(~lsb32, d, addrlit.rspec());
aoqi@0 811 xor3(d, ~low10(~0), d);
aoqi@0 812 }
aoqi@0 813 else {
aoqi@0 814 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
aoqi@0 815 if (msb32 & 0x3ff) // Any bits?
aoqi@0 816 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
aoqi@0 817 if (lsb32 & 0xFFFFFC00) { // done?
aoqi@0 818 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
aoqi@0 819 sllx(d, 12, d); // Make room for next 12 bits
aoqi@0 820 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
aoqi@0 821 shiftcnt = 0; // We already shifted
aoqi@0 822 }
aoqi@0 823 else
aoqi@0 824 shiftcnt = 12;
aoqi@0 825 if ((lsb32 >> 10) & 0x3ff) {
aoqi@0 826 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
aoqi@0 827 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
aoqi@0 828 shiftcnt = 0;
aoqi@0 829 }
aoqi@0 830 else
aoqi@0 831 shiftcnt = 10;
aoqi@0 832 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
aoqi@0 833 }
aoqi@0 834 else
aoqi@0 835 sllx(d, 32, d);
aoqi@0 836 }
aoqi@0 837 // Pad out the instruction sequence so it can be patched later.
aoqi@0 838 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
aoqi@0 839 addrlit.rtype() != relocInfo::runtime_call_type)) {
aoqi@0 840 while (pc() < (save_pc + (7 * BytesPerInstWord)))
aoqi@0 841 nop();
aoqi@0 842 }
aoqi@0 843 #else
aoqi@0 844 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
aoqi@0 845 #endif
aoqi@0 846 }
aoqi@0 847
aoqi@0 848
aoqi@0 849 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
aoqi@0 850 internal_sethi(addrlit, d, false);
aoqi@0 851 }
aoqi@0 852
aoqi@0 853
aoqi@0 854 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
aoqi@0 855 internal_sethi(addrlit, d, true);
aoqi@0 856 }
aoqi@0 857
aoqi@0 858
aoqi@0 859 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
aoqi@0 860 #ifdef _LP64
aoqi@0 861 if (worst_case) return 7;
aoqi@0 862 intptr_t iaddr = (intptr_t) a;
aoqi@0 863 int msb32 = (int) (iaddr >> 32);
aoqi@0 864 int lsb32 = (int) (iaddr);
aoqi@0 865 int count;
aoqi@0 866 if (msb32 == 0 && lsb32 >= 0)
aoqi@0 867 count = 1;
aoqi@0 868 else if (msb32 == -1)
aoqi@0 869 count = 2;
aoqi@0 870 else {
aoqi@0 871 count = 2;
aoqi@0 872 if (msb32 & 0x3ff)
aoqi@0 873 count++;
aoqi@0 874 if (lsb32 & 0xFFFFFC00 ) {
aoqi@0 875 if ((lsb32 >> 20) & 0xfff) count += 2;
aoqi@0 876 if ((lsb32 >> 10) & 0x3ff) count += 2;
aoqi@0 877 }
aoqi@0 878 }
aoqi@0 879 return count;
aoqi@0 880 #else
aoqi@0 881 return 1;
aoqi@0 882 #endif
aoqi@0 883 }
aoqi@0 884
aoqi@0 885 int MacroAssembler::worst_case_insts_for_set() {
aoqi@0 886 return insts_for_sethi(NULL, true) + 1;
aoqi@0 887 }
aoqi@0 888
aoqi@0 889
aoqi@0 890 // Keep in sync with MacroAssembler::insts_for_internal_set
aoqi@0 891 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
aoqi@0 892 intptr_t value = addrlit.value();
aoqi@0 893
aoqi@0 894 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
aoqi@0 895 // can optimize
aoqi@0 896 if (-4096 <= value && value <= 4095) {
aoqi@0 897 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
aoqi@0 898 return;
aoqi@0 899 }
aoqi@0 900 if (inv_hi22(hi22(value)) == value) {
aoqi@0 901 sethi(addrlit, d);
aoqi@0 902 return;
aoqi@0 903 }
aoqi@0 904 }
aoqi@0 905 assert_not_delayed((char*) "cannot put two instructions in delay slot");
aoqi@0 906 internal_sethi(addrlit, d, ForceRelocatable);
aoqi@0 907 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
aoqi@0 908 add(d, addrlit.low10(), d, addrlit.rspec());
aoqi@0 909 }
aoqi@0 910 }
aoqi@0 911
aoqi@0 912 // Keep in sync with MacroAssembler::internal_set
aoqi@0 913 int MacroAssembler::insts_for_internal_set(intptr_t value) {
aoqi@0 914 // can optimize
aoqi@0 915 if (-4096 <= value && value <= 4095) {
aoqi@0 916 return 1;
aoqi@0 917 }
aoqi@0 918 if (inv_hi22(hi22(value)) == value) {
aoqi@0 919 return insts_for_sethi((address) value);
aoqi@0 920 }
aoqi@0 921 int count = insts_for_sethi((address) value);
aoqi@0 922 AddressLiteral al(value);
aoqi@0 923 if (al.low10() != 0) {
aoqi@0 924 count++;
aoqi@0 925 }
aoqi@0 926 return count;
aoqi@0 927 }
aoqi@0 928
aoqi@0 929 void MacroAssembler::set(const AddressLiteral& al, Register d) {
aoqi@0 930 internal_set(al, d, false);
aoqi@0 931 }
aoqi@0 932
aoqi@0 933 void MacroAssembler::set(intptr_t value, Register d) {
aoqi@0 934 AddressLiteral al(value);
aoqi@0 935 internal_set(al, d, false);
aoqi@0 936 }
aoqi@0 937
aoqi@0 938 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
aoqi@0 939 AddressLiteral al(addr, rspec);
aoqi@0 940 internal_set(al, d, false);
aoqi@0 941 }
aoqi@0 942
aoqi@0 943 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
aoqi@0 944 internal_set(al, d, true);
aoqi@0 945 }
aoqi@0 946
aoqi@0 947 void MacroAssembler::patchable_set(intptr_t value, Register d) {
aoqi@0 948 AddressLiteral al(value);
aoqi@0 949 internal_set(al, d, true);
aoqi@0 950 }
aoqi@0 951
aoqi@0 952
aoqi@0 953 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
aoqi@0 954 assert_not_delayed();
aoqi@0 955 v9_dep();
aoqi@0 956
aoqi@0 957 int hi = (int)(value >> 32);
aoqi@0 958 int lo = (int)(value & ~0);
aoqi@0 959 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
aoqi@0 960 if (Assembler::is_simm13(lo) && value == lo) {
aoqi@0 961 or3(G0, lo, d);
aoqi@0 962 } else if (hi == 0) {
aoqi@0 963 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
aoqi@0 964 if (low10(lo) != 0)
aoqi@0 965 or3(d, low10(lo), d);
aoqi@0 966 }
aoqi@0 967 else if (hi == -1) {
aoqi@0 968 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
aoqi@0 969 xor3(d, low10(lo) ^ ~low10(~0), d);
aoqi@0 970 }
aoqi@0 971 else if (lo == 0) {
aoqi@0 972 if (Assembler::is_simm13(hi)) {
aoqi@0 973 or3(G0, hi, d);
aoqi@0 974 } else {
aoqi@0 975 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
aoqi@0 976 if (low10(hi) != 0)
aoqi@0 977 or3(d, low10(hi), d);
aoqi@0 978 }
aoqi@0 979 sllx(d, 32, d);
aoqi@0 980 }
aoqi@0 981 else {
aoqi@0 982 Assembler::sethi(hi, tmp);
aoqi@0 983 Assembler::sethi(lo, d); // macro assembler version sign-extends
aoqi@0 984 if (low10(hi) != 0)
aoqi@0 985 or3 (tmp, low10(hi), tmp);
aoqi@0 986 if (low10(lo) != 0)
aoqi@0 987 or3 ( d, low10(lo), d);
aoqi@0 988 sllx(tmp, 32, tmp);
aoqi@0 989 or3 (d, tmp, d);
aoqi@0 990 }
aoqi@0 991 }
aoqi@0 992
aoqi@0 993 int MacroAssembler::insts_for_set64(jlong value) {
aoqi@0 994 v9_dep();
aoqi@0 995
aoqi@0 996 int hi = (int) (value >> 32);
aoqi@0 997 int lo = (int) (value & ~0);
aoqi@0 998 int count = 0;
aoqi@0 999
aoqi@0 1000 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
aoqi@0 1001 if (Assembler::is_simm13(lo) && value == lo) {
aoqi@0 1002 count++;
aoqi@0 1003 } else if (hi == 0) {
aoqi@0 1004 count++;
aoqi@0 1005 if (low10(lo) != 0)
aoqi@0 1006 count++;
aoqi@0 1007 }
aoqi@0 1008 else if (hi == -1) {
aoqi@0 1009 count += 2;
aoqi@0 1010 }
aoqi@0 1011 else if (lo == 0) {
aoqi@0 1012 if (Assembler::is_simm13(hi)) {
aoqi@0 1013 count++;
aoqi@0 1014 } else {
aoqi@0 1015 count++;
aoqi@0 1016 if (low10(hi) != 0)
aoqi@0 1017 count++;
aoqi@0 1018 }
aoqi@0 1019 count++;
aoqi@0 1020 }
aoqi@0 1021 else {
aoqi@0 1022 count += 2;
aoqi@0 1023 if (low10(hi) != 0)
aoqi@0 1024 count++;
aoqi@0 1025 if (low10(lo) != 0)
aoqi@0 1026 count++;
aoqi@0 1027 count += 2;
aoqi@0 1028 }
aoqi@0 1029 return count;
aoqi@0 1030 }
aoqi@0 1031
aoqi@0 1032 // compute size in bytes of sparc frame, given
aoqi@0 1033 // number of extraWords
aoqi@0 1034 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
aoqi@0 1035
aoqi@0 1036 int nWords = frame::memory_parameter_word_sp_offset;
aoqi@0 1037
aoqi@0 1038 nWords += extraWords;
aoqi@0 1039
aoqi@0 1040 if (nWords & 1) ++nWords; // round up to double-word
aoqi@0 1041
aoqi@0 1042 return nWords * BytesPerWord;
aoqi@0 1043 }
aoqi@0 1044
aoqi@0 1045
aoqi@0 1046 // save_frame: given number of "extra" words in frame,
aoqi@0 1047 // issue approp. save instruction (p 200, v8 manual)
aoqi@0 1048
aoqi@0 1049 void MacroAssembler::save_frame(int extraWords) {
aoqi@0 1050 int delta = -total_frame_size_in_bytes(extraWords);
aoqi@0 1051 if (is_simm13(delta)) {
aoqi@0 1052 save(SP, delta, SP);
aoqi@0 1053 } else {
aoqi@0 1054 set(delta, G3_scratch);
aoqi@0 1055 save(SP, G3_scratch, SP);
aoqi@0 1056 }
aoqi@0 1057 }
aoqi@0 1058
aoqi@0 1059
aoqi@0 1060 void MacroAssembler::save_frame_c1(int size_in_bytes) {
aoqi@0 1061 if (is_simm13(-size_in_bytes)) {
aoqi@0 1062 save(SP, -size_in_bytes, SP);
aoqi@0 1063 } else {
aoqi@0 1064 set(-size_in_bytes, G3_scratch);
aoqi@0 1065 save(SP, G3_scratch, SP);
aoqi@0 1066 }
aoqi@0 1067 }
aoqi@0 1068
aoqi@0 1069
aoqi@0 1070 void MacroAssembler::save_frame_and_mov(int extraWords,
aoqi@0 1071 Register s1, Register d1,
aoqi@0 1072 Register s2, Register d2) {
aoqi@0 1073 assert_not_delayed();
aoqi@0 1074
aoqi@0 1075 // The trick here is to use precisely the same memory word
aoqi@0 1076 // that trap handlers also use to save the register.
aoqi@0 1077 // This word cannot be used for any other purpose, but
aoqi@0 1078 // it works fine to save the register's value, whether or not
aoqi@0 1079 // an interrupt flushes register windows at any given moment!
aoqi@0 1080 Address s1_addr;
aoqi@0 1081 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
aoqi@0 1082 s1_addr = s1->address_in_saved_window();
aoqi@0 1083 st_ptr(s1, s1_addr);
aoqi@0 1084 }
aoqi@0 1085
aoqi@0 1086 Address s2_addr;
aoqi@0 1087 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
aoqi@0 1088 s2_addr = s2->address_in_saved_window();
aoqi@0 1089 st_ptr(s2, s2_addr);
aoqi@0 1090 }
aoqi@0 1091
aoqi@0 1092 save_frame(extraWords);
aoqi@0 1093
aoqi@0 1094 if (s1_addr.base() == SP) {
aoqi@0 1095 ld_ptr(s1_addr.after_save(), d1);
aoqi@0 1096 } else if (s1->is_valid()) {
aoqi@0 1097 mov(s1->after_save(), d1);
aoqi@0 1098 }
aoqi@0 1099
aoqi@0 1100 if (s2_addr.base() == SP) {
aoqi@0 1101 ld_ptr(s2_addr.after_save(), d2);
aoqi@0 1102 } else if (s2->is_valid()) {
aoqi@0 1103 mov(s2->after_save(), d2);
aoqi@0 1104 }
aoqi@0 1105 }
aoqi@0 1106
aoqi@0 1107
aoqi@0 1108 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
aoqi@0 1109 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
aoqi@0 1110 int index = oop_recorder()->allocate_metadata_index(obj);
aoqi@0 1111 RelocationHolder rspec = metadata_Relocation::spec(index);
aoqi@0 1112 return AddressLiteral((address)obj, rspec);
aoqi@0 1113 }
aoqi@0 1114
aoqi@0 1115 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
aoqi@0 1116 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
aoqi@0 1117 int index = oop_recorder()->find_index(obj);
aoqi@0 1118 RelocationHolder rspec = metadata_Relocation::spec(index);
aoqi@0 1119 return AddressLiteral((address)obj, rspec);
aoqi@0 1120 }
aoqi@0 1121
aoqi@0 1122
aoqi@0 1123 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
aoqi@0 1124 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
aoqi@0 1125 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
aoqi@0 1126 int oop_index = oop_recorder()->find_index(obj);
aoqi@0 1127 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
aoqi@0 1128 }
aoqi@0 1129
aoqi@0 1130 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
aoqi@0 1131 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
aoqi@0 1132 int oop_index = oop_recorder()->find_index(obj);
aoqi@0 1133 RelocationHolder rspec = oop_Relocation::spec(oop_index);
aoqi@0 1134
aoqi@0 1135 assert_not_delayed();
aoqi@0 1136 // Relocation with special format (see relocInfo_sparc.hpp).
aoqi@0 1137 relocate(rspec, 1);
aoqi@0 1138 // Assembler::sethi(0x3fffff, d);
aoqi@0 1139 emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
aoqi@0 1140 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
aoqi@0 1141 add(d, 0x3ff, d);
aoqi@0 1142
aoqi@0 1143 }
aoqi@0 1144
aoqi@0 1145 void MacroAssembler::set_narrow_klass(Klass* k, Register d) {
aoqi@0 1146 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
aoqi@0 1147 int klass_index = oop_recorder()->find_index(k);
aoqi@0 1148 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
aoqi@0 1149 narrowOop encoded_k = Klass::encode_klass(k);
aoqi@0 1150
aoqi@0 1151 assert_not_delayed();
aoqi@0 1152 // Relocation with special format (see relocInfo_sparc.hpp).
aoqi@0 1153 relocate(rspec, 1);
aoqi@0 1154 // Assembler::sethi(encoded_k, d);
aoqi@0 1155 emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
aoqi@0 1156 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
aoqi@0 1157 add(d, low10(encoded_k), d);
aoqi@0 1158
aoqi@0 1159 }
aoqi@0 1160
aoqi@0 1161 void MacroAssembler::align(int modulus) {
aoqi@0 1162 while (offset() % modulus != 0) nop();
aoqi@0 1163 }
aoqi@0 1164
aoqi@0 1165 void RegistersForDebugging::print(outputStream* s) {
aoqi@0 1166 FlagSetting fs(Debugging, true);
aoqi@0 1167 int j;
aoqi@0 1168 for (j = 0; j < 8; ++j) {
aoqi@0 1169 if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
aoqi@0 1170 else { s->print( "fp = " ); os::print_location(s, i[j]); }
aoqi@0 1171 }
aoqi@0 1172 s->cr();
aoqi@0 1173
aoqi@0 1174 for (j = 0; j < 8; ++j) {
aoqi@0 1175 s->print("l%d = ", j); os::print_location(s, l[j]);
aoqi@0 1176 }
aoqi@0 1177 s->cr();
aoqi@0 1178
aoqi@0 1179 for (j = 0; j < 8; ++j) {
aoqi@0 1180 if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
aoqi@0 1181 else { s->print( "sp = " ); os::print_location(s, o[j]); }
aoqi@0 1182 }
aoqi@0 1183 s->cr();
aoqi@0 1184
aoqi@0 1185 for (j = 0; j < 8; ++j) {
aoqi@0 1186 s->print("g%d = ", j); os::print_location(s, g[j]);
aoqi@0 1187 }
aoqi@0 1188 s->cr();
aoqi@0 1189
aoqi@0 1190 // print out floats with compression
aoqi@0 1191 for (j = 0; j < 32; ) {
aoqi@0 1192 jfloat val = f[j];
aoqi@0 1193 int last = j;
aoqi@0 1194 for ( ; last+1 < 32; ++last ) {
aoqi@0 1195 char b1[1024], b2[1024];
aoqi@0 1196 sprintf(b1, "%f", val);
aoqi@0 1197 sprintf(b2, "%f", f[last+1]);
aoqi@0 1198 if (strcmp(b1, b2))
aoqi@0 1199 break;
aoqi@0 1200 }
aoqi@0 1201 s->print("f%d", j);
aoqi@0 1202 if ( j != last ) s->print(" - f%d", last);
aoqi@0 1203 s->print(" = %f", val);
aoqi@0 1204 s->fill_to(25);
aoqi@0 1205 s->print_cr(" (0x%x)", val);
aoqi@0 1206 j = last + 1;
aoqi@0 1207 }
aoqi@0 1208 s->cr();
aoqi@0 1209
aoqi@0 1210 // and doubles (evens only)
aoqi@0 1211 for (j = 0; j < 32; ) {
aoqi@0 1212 jdouble val = d[j];
aoqi@0 1213 int last = j;
aoqi@0 1214 for ( ; last+1 < 32; ++last ) {
aoqi@0 1215 char b1[1024], b2[1024];
aoqi@0 1216 sprintf(b1, "%f", val);
aoqi@0 1217 sprintf(b2, "%f", d[last+1]);
aoqi@0 1218 if (strcmp(b1, b2))
aoqi@0 1219 break;
aoqi@0 1220 }
aoqi@0 1221 s->print("d%d", 2 * j);
aoqi@0 1222 if ( j != last ) s->print(" - d%d", last);
aoqi@0 1223 s->print(" = %f", val);
aoqi@0 1224 s->fill_to(30);
aoqi@0 1225 s->print("(0x%x)", *(int*)&val);
aoqi@0 1226 s->fill_to(42);
aoqi@0 1227 s->print_cr("(0x%x)", *(1 + (int*)&val));
aoqi@0 1228 j = last + 1;
aoqi@0 1229 }
aoqi@0 1230 s->cr();
aoqi@0 1231 }
aoqi@0 1232
aoqi@0 1233 void RegistersForDebugging::save_registers(MacroAssembler* a) {
aoqi@0 1234 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
aoqi@0 1235 a->flushw();
aoqi@0 1236 int i;
aoqi@0 1237 for (i = 0; i < 8; ++i) {
aoqi@0 1238 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
aoqi@0 1239 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
aoqi@0 1240 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
aoqi@0 1241 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
aoqi@0 1242 }
aoqi@0 1243 for (i = 0; i < 32; ++i) {
aoqi@0 1244 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
aoqi@0 1245 }
aoqi@0 1246 for (i = 0; i < 64; i += 2) {
aoqi@0 1247 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
aoqi@0 1248 }
aoqi@0 1249 }
aoqi@0 1250
aoqi@0 1251 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
aoqi@0 1252 for (int i = 1; i < 8; ++i) {
aoqi@0 1253 a->ld_ptr(r, g_offset(i), as_gRegister(i));
aoqi@0 1254 }
aoqi@0 1255 for (int j = 0; j < 32; ++j) {
aoqi@0 1256 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
aoqi@0 1257 }
aoqi@0 1258 for (int k = 0; k < 64; k += 2) {
aoqi@0 1259 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
aoqi@0 1260 }
aoqi@0 1261 }
aoqi@0 1262
aoqi@0 1263
aoqi@0 1264 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
aoqi@0 1265 void MacroAssembler::push_fTOS() {
aoqi@0 1266 // %%%%%% need to implement this
aoqi@0 1267 }
aoqi@0 1268
aoqi@0 1269 // pops double TOS element from CPU stack and pushes on FPU stack
aoqi@0 1270 void MacroAssembler::pop_fTOS() {
aoqi@0 1271 // %%%%%% need to implement this
aoqi@0 1272 }
aoqi@0 1273
aoqi@0 1274 void MacroAssembler::empty_FPU_stack() {
aoqi@0 1275 // %%%%%% need to implement this
aoqi@0 1276 }
aoqi@0 1277
aoqi@0 1278 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
aoqi@0 1279 // plausibility check for oops
aoqi@0 1280 if (!VerifyOops) return;
aoqi@0 1281
aoqi@0 1282 if (reg == G0) return; // always NULL, which is always an oop
aoqi@0 1283
aoqi@0 1284 BLOCK_COMMENT("verify_oop {");
aoqi@0 1285 char buffer[64];
aoqi@0 1286 #ifdef COMPILER1
aoqi@0 1287 if (CommentedAssembly) {
aoqi@0 1288 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
aoqi@0 1289 block_comment(buffer);
aoqi@0 1290 }
aoqi@0 1291 #endif
aoqi@0 1292
aoqi@0 1293 const char* real_msg = NULL;
aoqi@0 1294 {
aoqi@0 1295 ResourceMark rm;
aoqi@0 1296 stringStream ss;
aoqi@0 1297 ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
aoqi@0 1298 real_msg = code_string(ss.as_string());
aoqi@0 1299 }
aoqi@0 1300
aoqi@0 1301 // Call indirectly to solve generation ordering problem
aoqi@0 1302 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
aoqi@0 1303
aoqi@0 1304 // Make some space on stack above the current register window.
aoqi@0 1305 // Enough to hold 8 64-bit registers.
aoqi@0 1306 add(SP,-8*8,SP);
aoqi@0 1307
aoqi@0 1308 // Save some 64-bit registers; a normal 'save' chops the heads off
aoqi@0 1309 // of 64-bit longs in the 32-bit build.
aoqi@0 1310 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
aoqi@0 1311 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
aoqi@0 1312 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
aoqi@0 1313 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
aoqi@0 1314
aoqi@0 1315 // Size of set() should stay the same
aoqi@0 1316 patchable_set((intptr_t)real_msg, O1);
aoqi@0 1317 // Load address to call to into O7
aoqi@0 1318 load_ptr_contents(a, O7);
aoqi@0 1319 // Register call to verify_oop_subroutine
aoqi@0 1320 callr(O7, G0);
aoqi@0 1321 delayed()->nop();
aoqi@0 1322 // recover frame size
aoqi@0 1323 add(SP, 8*8,SP);
aoqi@0 1324 BLOCK_COMMENT("} verify_oop");
aoqi@0 1325 }
aoqi@0 1326
aoqi@0 1327 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
aoqi@0 1328 // plausibility check for oops
aoqi@0 1329 if (!VerifyOops) return;
aoqi@0 1330
aoqi@0 1331 const char* real_msg = NULL;
aoqi@0 1332 {
aoqi@0 1333 ResourceMark rm;
aoqi@0 1334 stringStream ss;
aoqi@0 1335 ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
aoqi@0 1336 real_msg = code_string(ss.as_string());
aoqi@0 1337 }
aoqi@0 1338
aoqi@0 1339 // Call indirectly to solve generation ordering problem
aoqi@0 1340 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
aoqi@0 1341
aoqi@0 1342 // Make some space on stack above the current register window.
aoqi@0 1343 // Enough to hold 8 64-bit registers.
aoqi@0 1344 add(SP,-8*8,SP);
aoqi@0 1345
aoqi@0 1346 // Save some 64-bit registers; a normal 'save' chops the heads off
aoqi@0 1347 // of 64-bit longs in the 32-bit build.
aoqi@0 1348 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
aoqi@0 1349 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
aoqi@0 1350 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
aoqi@0 1351 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
aoqi@0 1352
aoqi@0 1353 // Size of set() should stay the same
aoqi@0 1354 patchable_set((intptr_t)real_msg, O1);
aoqi@0 1355 // Load address to call to into O7
aoqi@0 1356 load_ptr_contents(a, O7);
aoqi@0 1357 // Register call to verify_oop_subroutine
aoqi@0 1358 callr(O7, G0);
aoqi@0 1359 delayed()->nop();
aoqi@0 1360 // recover frame size
aoqi@0 1361 add(SP, 8*8,SP);
aoqi@0 1362 }
aoqi@0 1363
aoqi@0 1364 // side-door communication with signalHandler in os_solaris.cpp
aoqi@0 1365 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
aoqi@0 1366
aoqi@0 1367 // This macro is expanded just once; it creates shared code. Contract:
aoqi@0 1368 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
aoqi@0 1369 // registers, including flags. May not use a register 'save', as this blows
aoqi@0 1370 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
aoqi@0 1371 // call.
aoqi@0 1372 void MacroAssembler::verify_oop_subroutine() {
aoqi@0 1373 // Leaf call; no frame.
aoqi@0 1374 Label succeed, fail, null_or_fail;
aoqi@0 1375
aoqi@0 1376 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
aoqi@0 1377 // O0 is now the oop to be checked. O7 is the return address.
aoqi@0 1378 Register O0_obj = O0;
aoqi@0 1379
aoqi@0 1380 // Save some more registers for temps.
aoqi@0 1381 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
aoqi@0 1382 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
aoqi@0 1383 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
aoqi@0 1384 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
aoqi@0 1385
aoqi@0 1386 // Save flags
aoqi@0 1387 Register O5_save_flags = O5;
aoqi@0 1388 rdccr( O5_save_flags );
aoqi@0 1389
aoqi@0 1390 { // count number of verifies
aoqi@0 1391 Register O2_adr = O2;
aoqi@0 1392 Register O3_accum = O3;
aoqi@0 1393 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
aoqi@0 1394 }
aoqi@0 1395
aoqi@0 1396 Register O2_mask = O2;
aoqi@0 1397 Register O3_bits = O3;
aoqi@0 1398 Register O4_temp = O4;
aoqi@0 1399
aoqi@0 1400 // mark lower end of faulting range
aoqi@0 1401 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
aoqi@0 1402 _verify_oop_implicit_branch[0] = pc();
aoqi@0 1403
aoqi@0 1404 // We can't check the mark oop because it could be in the process of
aoqi@0 1405 // locking or unlocking while this is running.
aoqi@0 1406 set(Universe::verify_oop_mask (), O2_mask);
aoqi@0 1407 set(Universe::verify_oop_bits (), O3_bits);
aoqi@0 1408
aoqi@0 1409 // assert((obj & oop_mask) == oop_bits);
aoqi@0 1410 and3(O0_obj, O2_mask, O4_temp);
aoqi@0 1411 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
aoqi@0 1412
aoqi@0 1413 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
aoqi@0 1414 // the null_or_fail case is useless; must test for null separately
aoqi@0 1415 br_null_short(O0_obj, pn, succeed);
aoqi@0 1416 }
aoqi@0 1417
aoqi@0 1418 // Check the Klass* of this object for being in the right area of memory.
aoqi@0 1419 // Cannot do the load in the delay above slot in case O0 is null
aoqi@0 1420 load_klass(O0_obj, O0_obj);
aoqi@0 1421 // assert((klass != NULL)
aoqi@0 1422 br_null_short(O0_obj, pn, fail);
aoqi@0 1423
aoqi@0 1424 wrccr( O5_save_flags ); // Restore CCR's
aoqi@0 1425
aoqi@0 1426 // mark upper end of faulting range
aoqi@0 1427 _verify_oop_implicit_branch[1] = pc();
aoqi@0 1428
aoqi@0 1429 //-----------------------
aoqi@0 1430 // all tests pass
aoqi@0 1431 bind(succeed);
aoqi@0 1432
aoqi@0 1433 // Restore prior 64-bit registers
aoqi@0 1434 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
aoqi@0 1435 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
aoqi@0 1436 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
aoqi@0 1437 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
aoqi@0 1438 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
aoqi@0 1439 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
aoqi@0 1440
aoqi@0 1441 retl(); // Leaf return; restore prior O7 in delay slot
aoqi@0 1442 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
aoqi@0 1443
aoqi@0 1444 //-----------------------
aoqi@0 1445 bind(null_or_fail); // nulls are less common but OK
aoqi@0 1446 br_null(O0_obj, false, pt, succeed);
aoqi@0 1447 delayed()->wrccr( O5_save_flags ); // Restore CCR's
aoqi@0 1448
aoqi@0 1449 //-----------------------
aoqi@0 1450 // report failure:
aoqi@0 1451 bind(fail);
aoqi@0 1452 _verify_oop_implicit_branch[2] = pc();
aoqi@0 1453
aoqi@0 1454 wrccr( O5_save_flags ); // Restore CCR's
aoqi@0 1455
aoqi@0 1456 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
aoqi@0 1457
aoqi@0 1458 // stop_subroutine expects message pointer in I1.
aoqi@0 1459 mov(I1, O1);
aoqi@0 1460
aoqi@0 1461 // Restore prior 64-bit registers
aoqi@0 1462 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
aoqi@0 1463 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
aoqi@0 1464 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
aoqi@0 1465 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
aoqi@0 1466 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
aoqi@0 1467 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
aoqi@0 1468
aoqi@0 1469 // factor long stop-sequence into subroutine to save space
aoqi@0 1470 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
aoqi@0 1471
aoqi@0 1472 // call indirectly to solve generation ordering problem
aoqi@0 1473 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
aoqi@0 1474 load_ptr_contents(al, O5);
aoqi@0 1475 jmpl(O5, 0, O7);
aoqi@0 1476 delayed()->nop();
aoqi@0 1477 }
aoqi@0 1478
aoqi@0 1479
aoqi@0 1480 void MacroAssembler::stop(const char* msg) {
aoqi@0 1481 // save frame first to get O7 for return address
aoqi@0 1482 // add one word to size in case struct is odd number of words long
aoqi@0 1483 // It must be doubleword-aligned for storing doubles into it.
aoqi@0 1484
aoqi@0 1485 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
aoqi@0 1486
aoqi@0 1487 // stop_subroutine expects message pointer in I1.
aoqi@0 1488 // Size of set() should stay the same
aoqi@0 1489 patchable_set((intptr_t)msg, O1);
aoqi@0 1490
aoqi@0 1491 // factor long stop-sequence into subroutine to save space
aoqi@0 1492 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
aoqi@0 1493
aoqi@0 1494 // call indirectly to solve generation ordering problem
aoqi@0 1495 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
aoqi@0 1496 load_ptr_contents(a, O5);
aoqi@0 1497 jmpl(O5, 0, O7);
aoqi@0 1498 delayed()->nop();
aoqi@0 1499
aoqi@0 1500 breakpoint_trap(); // make stop actually stop rather than writing
aoqi@0 1501 // unnoticeable results in the output files.
aoqi@0 1502
aoqi@0 1503 // restore(); done in callee to save space!
aoqi@0 1504 }
aoqi@0 1505
aoqi@0 1506
aoqi@0 1507 void MacroAssembler::warn(const char* msg) {
aoqi@0 1508 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
aoqi@0 1509 RegistersForDebugging::save_registers(this);
aoqi@0 1510 mov(O0, L0);
aoqi@0 1511 // Size of set() should stay the same
aoqi@0 1512 patchable_set((intptr_t)msg, O0);
aoqi@0 1513 call( CAST_FROM_FN_PTR(address, warning) );
aoqi@0 1514 delayed()->nop();
aoqi@0 1515 // ret();
aoqi@0 1516 // delayed()->restore();
aoqi@0 1517 RegistersForDebugging::restore_registers(this, L0);
aoqi@0 1518 restore();
aoqi@0 1519 }
aoqi@0 1520
aoqi@0 1521
aoqi@0 1522 void MacroAssembler::untested(const char* what) {
aoqi@0 1523 // We must be able to turn interactive prompting off
aoqi@0 1524 // in order to run automated test scripts on the VM
aoqi@0 1525 // Use the flag ShowMessageBoxOnError
aoqi@0 1526
aoqi@0 1527 const char* b = NULL;
aoqi@0 1528 {
aoqi@0 1529 ResourceMark rm;
aoqi@0 1530 stringStream ss;
aoqi@0 1531 ss.print("untested: %s", what);
aoqi@0 1532 b = code_string(ss.as_string());
aoqi@0 1533 }
aoqi@0 1534 if (ShowMessageBoxOnError) { STOP(b); }
aoqi@0 1535 else { warn(b); }
aoqi@0 1536 }
aoqi@0 1537
aoqi@0 1538
aoqi@0 1539 void MacroAssembler::stop_subroutine() {
aoqi@0 1540 RegistersForDebugging::save_registers(this);
aoqi@0 1541
aoqi@0 1542 // for the sake of the debugger, stick a PC on the current frame
aoqi@0 1543 // (this assumes that the caller has performed an extra "save")
aoqi@0 1544 mov(I7, L7);
aoqi@0 1545 add(O7, -7 * BytesPerInt, I7);
aoqi@0 1546
aoqi@0 1547 save_frame(); // one more save to free up another O7 register
aoqi@0 1548 mov(I0, O1); // addr of reg save area
aoqi@0 1549
aoqi@0 1550 // We expect pointer to message in I1. Caller must set it up in O1
aoqi@0 1551 mov(I1, O0); // get msg
aoqi@0 1552 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
aoqi@0 1553 delayed()->nop();
aoqi@0 1554
aoqi@0 1555 restore();
aoqi@0 1556
aoqi@0 1557 RegistersForDebugging::restore_registers(this, O0);
aoqi@0 1558
aoqi@0 1559 save_frame(0);
aoqi@0 1560 call(CAST_FROM_FN_PTR(address,breakpoint));
aoqi@0 1561 delayed()->nop();
aoqi@0 1562 restore();
aoqi@0 1563
aoqi@0 1564 mov(L7, I7);
aoqi@0 1565 retl();
aoqi@0 1566 delayed()->restore(); // see stop above
aoqi@0 1567 }
aoqi@0 1568
aoqi@0 1569
aoqi@0 1570 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
aoqi@0 1571 if ( ShowMessageBoxOnError ) {
aoqi@0 1572 JavaThread* thread = JavaThread::current();
aoqi@0 1573 JavaThreadState saved_state = thread->thread_state();
aoqi@0 1574 thread->set_thread_state(_thread_in_vm);
aoqi@0 1575 {
aoqi@0 1576 // In order to get locks work, we need to fake a in_VM state
aoqi@0 1577 ttyLocker ttyl;
aoqi@0 1578 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
aoqi@0 1579 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
aoqi@0 1580 BytecodeCounter::print();
aoqi@0 1581 }
aoqi@0 1582 if (os::message_box(msg, "Execution stopped, print registers?"))
aoqi@0 1583 regs->print(::tty);
aoqi@0 1584 }
aoqi@0 1585 BREAKPOINT;
aoqi@0 1586 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
aoqi@0 1587 }
aoqi@0 1588 else {
aoqi@0 1589 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
aoqi@0 1590 }
aoqi@0 1591 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
aoqi@0 1592 }
aoqi@0 1593
aoqi@0 1594
aoqi@0 1595 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
aoqi@0 1596 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
aoqi@0 1597 Label no_extras;
aoqi@0 1598 br( negative, true, pt, no_extras ); // if neg, clear reg
aoqi@0 1599 delayed()->set(0, Rresult); // annuled, so only if taken
aoqi@0 1600 bind( no_extras );
aoqi@0 1601 }
aoqi@0 1602
aoqi@0 1603
aoqi@0 1604 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
aoqi@0 1605 #ifdef _LP64
aoqi@0 1606 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
aoqi@0 1607 #else
aoqi@0 1608 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
aoqi@0 1609 #endif
aoqi@0 1610 bclr(1, Rresult);
aoqi@0 1611 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
aoqi@0 1612 }
aoqi@0 1613
aoqi@0 1614
aoqi@0 1615 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
aoqi@0 1616 calc_frame_size(Rextra_words, Rresult);
aoqi@0 1617 neg(Rresult);
aoqi@0 1618 save(SP, Rresult, SP);
aoqi@0 1619 }
aoqi@0 1620
aoqi@0 1621
aoqi@0 1622 // ---------------------------------------------------------
aoqi@0 1623 Assembler::RCondition cond2rcond(Assembler::Condition c) {
aoqi@0 1624 switch (c) {
aoqi@0 1625 /*case zero: */
aoqi@0 1626 case Assembler::equal: return Assembler::rc_z;
aoqi@0 1627 case Assembler::lessEqual: return Assembler::rc_lez;
aoqi@0 1628 case Assembler::less: return Assembler::rc_lz;
aoqi@0 1629 /*case notZero:*/
aoqi@0 1630 case Assembler::notEqual: return Assembler::rc_nz;
aoqi@0 1631 case Assembler::greater: return Assembler::rc_gz;
aoqi@0 1632 case Assembler::greaterEqual: return Assembler::rc_gez;
aoqi@0 1633 }
aoqi@0 1634 ShouldNotReachHere();
aoqi@0 1635 return Assembler::rc_z;
aoqi@0 1636 }
aoqi@0 1637
aoqi@0 1638 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
aoqi@0 1639 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
aoqi@0 1640 tst(s1);
aoqi@0 1641 br (c, a, p, L);
aoqi@0 1642 }
aoqi@0 1643
aoqi@0 1644 // Compares a pointer register with zero and branches on null.
aoqi@0 1645 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
aoqi@0 1646 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
aoqi@0 1647 assert_not_delayed();
aoqi@0 1648 #ifdef _LP64
aoqi@0 1649 bpr( rc_z, a, p, s1, L );
aoqi@0 1650 #else
aoqi@0 1651 tst(s1);
aoqi@0 1652 br ( zero, a, p, L );
aoqi@0 1653 #endif
aoqi@0 1654 }
aoqi@0 1655
aoqi@0 1656 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
aoqi@0 1657 assert_not_delayed();
aoqi@0 1658 #ifdef _LP64
aoqi@0 1659 bpr( rc_nz, a, p, s1, L );
aoqi@0 1660 #else
aoqi@0 1661 tst(s1);
aoqi@0 1662 br ( notZero, a, p, L );
aoqi@0 1663 #endif
aoqi@0 1664 }
aoqi@0 1665
aoqi@0 1666 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
aoqi@0 1667
aoqi@0 1668 // Compare integer (32 bit) values (icc only).
aoqi@0 1669 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
aoqi@0 1670 Predict p, Label& L) {
aoqi@0 1671 assert_not_delayed();
aoqi@0 1672 if (use_cbcond(L)) {
aoqi@0 1673 Assembler::cbcond(c, icc, s1, s2, L);
aoqi@0 1674 } else {
aoqi@0 1675 cmp(s1, s2);
aoqi@0 1676 br(c, false, p, L);
aoqi@0 1677 delayed()->nop();
aoqi@0 1678 }
aoqi@0 1679 }
aoqi@0 1680
aoqi@0 1681 // Compare integer (32 bit) values (icc only).
aoqi@0 1682 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
aoqi@0 1683 Predict p, Label& L) {
aoqi@0 1684 assert_not_delayed();
aoqi@0 1685 if (is_simm(simm13a,5) && use_cbcond(L)) {
aoqi@0 1686 Assembler::cbcond(c, icc, s1, simm13a, L);
aoqi@0 1687 } else {
aoqi@0 1688 cmp(s1, simm13a);
aoqi@0 1689 br(c, false, p, L);
aoqi@0 1690 delayed()->nop();
aoqi@0 1691 }
aoqi@0 1692 }
aoqi@0 1693
aoqi@0 1694 // Branch that tests xcc in LP64 and icc in !LP64
aoqi@0 1695 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
aoqi@0 1696 Predict p, Label& L) {
aoqi@0 1697 assert_not_delayed();
aoqi@0 1698 if (use_cbcond(L)) {
aoqi@0 1699 Assembler::cbcond(c, ptr_cc, s1, s2, L);
aoqi@0 1700 } else {
aoqi@0 1701 cmp(s1, s2);
aoqi@0 1702 brx(c, false, p, L);
aoqi@0 1703 delayed()->nop();
aoqi@0 1704 }
aoqi@0 1705 }
aoqi@0 1706
aoqi@0 1707 // Branch that tests xcc in LP64 and icc in !LP64
aoqi@0 1708 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
aoqi@0 1709 Predict p, Label& L) {
aoqi@0 1710 assert_not_delayed();
aoqi@0 1711 if (is_simm(simm13a,5) && use_cbcond(L)) {
aoqi@0 1712 Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
aoqi@0 1713 } else {
aoqi@0 1714 cmp(s1, simm13a);
aoqi@0 1715 brx(c, false, p, L);
aoqi@0 1716 delayed()->nop();
aoqi@0 1717 }
aoqi@0 1718 }
aoqi@0 1719
aoqi@0 1720 // Short branch version for compares a pointer with zero.
aoqi@0 1721
aoqi@0 1722 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
aoqi@0 1723 assert_not_delayed();
aoqi@0 1724 if (use_cbcond(L)) {
aoqi@0 1725 Assembler::cbcond(zero, ptr_cc, s1, 0, L);
aoqi@0 1726 return;
aoqi@0 1727 }
aoqi@0 1728 br_null(s1, false, p, L);
aoqi@0 1729 delayed()->nop();
aoqi@0 1730 }
aoqi@0 1731
aoqi@0 1732 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
aoqi@0 1733 assert_not_delayed();
aoqi@0 1734 if (use_cbcond(L)) {
aoqi@0 1735 Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
aoqi@0 1736 return;
aoqi@0 1737 }
aoqi@0 1738 br_notnull(s1, false, p, L);
aoqi@0 1739 delayed()->nop();
aoqi@0 1740 }
aoqi@0 1741
aoqi@0 1742 // Unconditional short branch
aoqi@0 1743 void MacroAssembler::ba_short(Label& L) {
aoqi@0 1744 if (use_cbcond(L)) {
aoqi@0 1745 Assembler::cbcond(equal, icc, G0, G0, L);
aoqi@0 1746 return;
aoqi@0 1747 }
aoqi@0 1748 br(always, false, pt, L);
aoqi@0 1749 delayed()->nop();
aoqi@0 1750 }
aoqi@0 1751
aoqi@0 1752 // instruction sequences factored across compiler & interpreter
aoqi@0 1753
aoqi@0 1754
aoqi@0 1755 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
aoqi@0 1756 Register Rb_hi, Register Rb_low,
aoqi@0 1757 Register Rresult) {
aoqi@0 1758
aoqi@0 1759 Label check_low_parts, done;
aoqi@0 1760
aoqi@0 1761 cmp(Ra_hi, Rb_hi ); // compare hi parts
aoqi@0 1762 br(equal, true, pt, check_low_parts);
aoqi@0 1763 delayed()->cmp(Ra_low, Rb_low); // test low parts
aoqi@0 1764
aoqi@0 1765 // And, with an unsigned comparison, it does not matter if the numbers
aoqi@0 1766 // are negative or not.
aoqi@0 1767 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
aoqi@0 1768 // The second one is bigger (unsignedly).
aoqi@0 1769
aoqi@0 1770 // Other notes: The first move in each triplet can be unconditional
aoqi@0 1771 // (and therefore probably prefetchable).
aoqi@0 1772 // And the equals case for the high part does not need testing,
aoqi@0 1773 // since that triplet is reached only after finding the high halves differ.
aoqi@0 1774
aoqi@0 1775 mov(-1, Rresult);
aoqi@0 1776 ba(done);
aoqi@0 1777 delayed()->movcc(greater, false, icc, 1, Rresult);
aoqi@0 1778
aoqi@0 1779 bind(check_low_parts);
aoqi@0 1780
aoqi@0 1781 mov( -1, Rresult);
aoqi@0 1782 movcc(equal, false, icc, 0, Rresult);
aoqi@0 1783 movcc(greaterUnsigned, false, icc, 1, Rresult);
aoqi@0 1784
aoqi@0 1785 bind(done);
aoqi@0 1786 }
aoqi@0 1787
aoqi@0 1788 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
aoqi@0 1789 subcc( G0, Rlow, Rlow );
aoqi@0 1790 subc( G0, Rhi, Rhi );
aoqi@0 1791 }
aoqi@0 1792
aoqi@0 1793 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
aoqi@0 1794 Register Rcount,
aoqi@0 1795 Register Rout_high, Register Rout_low,
aoqi@0 1796 Register Rtemp ) {
aoqi@0 1797
aoqi@0 1798
aoqi@0 1799 Register Ralt_count = Rtemp;
aoqi@0 1800 Register Rxfer_bits = Rtemp;
aoqi@0 1801
aoqi@0 1802 assert( Ralt_count != Rin_high
aoqi@0 1803 && Ralt_count != Rin_low
aoqi@0 1804 && Ralt_count != Rcount
aoqi@0 1805 && Rxfer_bits != Rin_low
aoqi@0 1806 && Rxfer_bits != Rin_high
aoqi@0 1807 && Rxfer_bits != Rcount
aoqi@0 1808 && Rxfer_bits != Rout_low
aoqi@0 1809 && Rout_low != Rin_high,
aoqi@0 1810 "register alias checks");
aoqi@0 1811
aoqi@0 1812 Label big_shift, done;
aoqi@0 1813
aoqi@0 1814 // This code can be optimized to use the 64 bit shifts in V9.
aoqi@0 1815 // Here we use the 32 bit shifts.
aoqi@0 1816
aoqi@0 1817 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
aoqi@0 1818 subcc(Rcount, 31, Ralt_count);
aoqi@0 1819 br(greater, true, pn, big_shift);
aoqi@0 1820 delayed()->dec(Ralt_count);
aoqi@0 1821
aoqi@0 1822 // shift < 32 bits, Ralt_count = Rcount-31
aoqi@0 1823
aoqi@0 1824 // We get the transfer bits by shifting right by 32-count the low
aoqi@0 1825 // register. This is done by shifting right by 31-count and then by one
aoqi@0 1826 // more to take care of the special (rare) case where count is zero
aoqi@0 1827 // (shifting by 32 would not work).
aoqi@0 1828
aoqi@0 1829 neg(Ralt_count);
aoqi@0 1830
aoqi@0 1831 // The order of the next two instructions is critical in the case where
aoqi@0 1832 // Rin and Rout are the same and should not be reversed.
aoqi@0 1833
aoqi@0 1834 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
aoqi@0 1835 if (Rcount != Rout_low) {
aoqi@0 1836 sll(Rin_low, Rcount, Rout_low); // low half
aoqi@0 1837 }
aoqi@0 1838 sll(Rin_high, Rcount, Rout_high);
aoqi@0 1839 if (Rcount == Rout_low) {
aoqi@0 1840 sll(Rin_low, Rcount, Rout_low); // low half
aoqi@0 1841 }
aoqi@0 1842 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
aoqi@0 1843 ba(done);
aoqi@0 1844 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
aoqi@0 1845
aoqi@0 1846 // shift >= 32 bits, Ralt_count = Rcount-32
aoqi@0 1847 bind(big_shift);
aoqi@0 1848 sll(Rin_low, Ralt_count, Rout_high );
aoqi@0 1849 clr(Rout_low);
aoqi@0 1850
aoqi@0 1851 bind(done);
aoqi@0 1852 }
aoqi@0 1853
aoqi@0 1854
aoqi@0 1855 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
aoqi@0 1856 Register Rcount,
aoqi@0 1857 Register Rout_high, Register Rout_low,
aoqi@0 1858 Register Rtemp ) {
aoqi@0 1859
aoqi@0 1860 Register Ralt_count = Rtemp;
aoqi@0 1861 Register Rxfer_bits = Rtemp;
aoqi@0 1862
aoqi@0 1863 assert( Ralt_count != Rin_high
aoqi@0 1864 && Ralt_count != Rin_low
aoqi@0 1865 && Ralt_count != Rcount
aoqi@0 1866 && Rxfer_bits != Rin_low
aoqi@0 1867 && Rxfer_bits != Rin_high
aoqi@0 1868 && Rxfer_bits != Rcount
aoqi@0 1869 && Rxfer_bits != Rout_high
aoqi@0 1870 && Rout_high != Rin_low,
aoqi@0 1871 "register alias checks");
aoqi@0 1872
aoqi@0 1873 Label big_shift, done;
aoqi@0 1874
aoqi@0 1875 // This code can be optimized to use the 64 bit shifts in V9.
aoqi@0 1876 // Here we use the 32 bit shifts.
aoqi@0 1877
aoqi@0 1878 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
aoqi@0 1879 subcc(Rcount, 31, Ralt_count);
aoqi@0 1880 br(greater, true, pn, big_shift);
aoqi@0 1881 delayed()->dec(Ralt_count);
aoqi@0 1882
aoqi@0 1883 // shift < 32 bits, Ralt_count = Rcount-31
aoqi@0 1884
aoqi@0 1885 // We get the transfer bits by shifting left by 32-count the high
aoqi@0 1886 // register. This is done by shifting left by 31-count and then by one
aoqi@0 1887 // more to take care of the special (rare) case where count is zero
aoqi@0 1888 // (shifting by 32 would not work).
aoqi@0 1889
aoqi@0 1890 neg(Ralt_count);
aoqi@0 1891 if (Rcount != Rout_low) {
aoqi@0 1892 srl(Rin_low, Rcount, Rout_low);
aoqi@0 1893 }
aoqi@0 1894
aoqi@0 1895 // The order of the next two instructions is critical in the case where
aoqi@0 1896 // Rin and Rout are the same and should not be reversed.
aoqi@0 1897
aoqi@0 1898 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
aoqi@0 1899 sra(Rin_high, Rcount, Rout_high ); // high half
aoqi@0 1900 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
aoqi@0 1901 if (Rcount == Rout_low) {
aoqi@0 1902 srl(Rin_low, Rcount, Rout_low);
aoqi@0 1903 }
aoqi@0 1904 ba(done);
aoqi@0 1905 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
aoqi@0 1906
aoqi@0 1907 // shift >= 32 bits, Ralt_count = Rcount-32
aoqi@0 1908 bind(big_shift);
aoqi@0 1909
aoqi@0 1910 sra(Rin_high, Ralt_count, Rout_low);
aoqi@0 1911 sra(Rin_high, 31, Rout_high); // sign into hi
aoqi@0 1912
aoqi@0 1913 bind( done );
aoqi@0 1914 }
aoqi@0 1915
aoqi@0 1916
aoqi@0 1917
aoqi@0 1918 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
aoqi@0 1919 Register Rcount,
aoqi@0 1920 Register Rout_high, Register Rout_low,
aoqi@0 1921 Register Rtemp ) {
aoqi@0 1922
aoqi@0 1923 Register Ralt_count = Rtemp;
aoqi@0 1924 Register Rxfer_bits = Rtemp;
aoqi@0 1925
aoqi@0 1926 assert( Ralt_count != Rin_high
aoqi@0 1927 && Ralt_count != Rin_low
aoqi@0 1928 && Ralt_count != Rcount
aoqi@0 1929 && Rxfer_bits != Rin_low
aoqi@0 1930 && Rxfer_bits != Rin_high
aoqi@0 1931 && Rxfer_bits != Rcount
aoqi@0 1932 && Rxfer_bits != Rout_high
aoqi@0 1933 && Rout_high != Rin_low,
aoqi@0 1934 "register alias checks");
aoqi@0 1935
aoqi@0 1936 Label big_shift, done;
aoqi@0 1937
aoqi@0 1938 // This code can be optimized to use the 64 bit shifts in V9.
aoqi@0 1939 // Here we use the 32 bit shifts.
aoqi@0 1940
aoqi@0 1941 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
aoqi@0 1942 subcc(Rcount, 31, Ralt_count);
aoqi@0 1943 br(greater, true, pn, big_shift);
aoqi@0 1944 delayed()->dec(Ralt_count);
aoqi@0 1945
aoqi@0 1946 // shift < 32 bits, Ralt_count = Rcount-31
aoqi@0 1947
aoqi@0 1948 // We get the transfer bits by shifting left by 32-count the high
aoqi@0 1949 // register. This is done by shifting left by 31-count and then by one
aoqi@0 1950 // more to take care of the special (rare) case where count is zero
aoqi@0 1951 // (shifting by 32 would not work).
aoqi@0 1952
aoqi@0 1953 neg(Ralt_count);
aoqi@0 1954 if (Rcount != Rout_low) {
aoqi@0 1955 srl(Rin_low, Rcount, Rout_low);
aoqi@0 1956 }
aoqi@0 1957
aoqi@0 1958 // The order of the next two instructions is critical in the case where
aoqi@0 1959 // Rin and Rout are the same and should not be reversed.
aoqi@0 1960
aoqi@0 1961 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
aoqi@0 1962 srl(Rin_high, Rcount, Rout_high ); // high half
aoqi@0 1963 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
aoqi@0 1964 if (Rcount == Rout_low) {
aoqi@0 1965 srl(Rin_low, Rcount, Rout_low);
aoqi@0 1966 }
aoqi@0 1967 ba(done);
aoqi@0 1968 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
aoqi@0 1969
aoqi@0 1970 // shift >= 32 bits, Ralt_count = Rcount-32
aoqi@0 1971 bind(big_shift);
aoqi@0 1972
aoqi@0 1973 srl(Rin_high, Ralt_count, Rout_low);
aoqi@0 1974 clr(Rout_high);
aoqi@0 1975
aoqi@0 1976 bind( done );
aoqi@0 1977 }
aoqi@0 1978
aoqi@0 1979 #ifdef _LP64
aoqi@0 1980 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
aoqi@0 1981 cmp(Ra, Rb);
aoqi@0 1982 mov(-1, Rresult);
aoqi@0 1983 movcc(equal, false, xcc, 0, Rresult);
aoqi@0 1984 movcc(greater, false, xcc, 1, Rresult);
aoqi@0 1985 }
aoqi@0 1986 #endif
aoqi@0 1987
aoqi@0 1988
aoqi@0 1989 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
aoqi@0 1990 switch (size_in_bytes) {
aoqi@0 1991 case 8: ld_long(src, dst); break;
aoqi@0 1992 case 4: ld( src, dst); break;
aoqi@0 1993 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
aoqi@0 1994 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
aoqi@0 1995 default: ShouldNotReachHere();
aoqi@0 1996 }
aoqi@0 1997 }
aoqi@0 1998
aoqi@0 1999 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
aoqi@0 2000 switch (size_in_bytes) {
aoqi@0 2001 case 8: st_long(src, dst); break;
aoqi@0 2002 case 4: st( src, dst); break;
aoqi@0 2003 case 2: sth( src, dst); break;
aoqi@0 2004 case 1: stb( src, dst); break;
aoqi@0 2005 default: ShouldNotReachHere();
aoqi@0 2006 }
aoqi@0 2007 }
aoqi@0 2008
aoqi@0 2009
aoqi@0 2010 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
aoqi@0 2011 FloatRegister Fa, FloatRegister Fb,
aoqi@0 2012 Register Rresult) {
aoqi@0 2013 if (is_float) {
aoqi@0 2014 fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
aoqi@0 2015 } else {
aoqi@0 2016 fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
aoqi@0 2017 }
aoqi@0 2018
aoqi@0 2019 if (unordered_result == 1) {
aoqi@0 2020 mov( -1, Rresult);
aoqi@0 2021 movcc(f_equal, true, fcc0, 0, Rresult);
aoqi@0 2022 movcc(f_unorderedOrGreater, true, fcc0, 1, Rresult);
aoqi@0 2023 } else {
aoqi@0 2024 mov( -1, Rresult);
aoqi@0 2025 movcc(f_equal, true, fcc0, 0, Rresult);
aoqi@0 2026 movcc(f_greater, true, fcc0, 1, Rresult);
aoqi@0 2027 }
aoqi@0 2028 }
aoqi@0 2029
aoqi@0 2030
aoqi@0 2031 void MacroAssembler::save_all_globals_into_locals() {
aoqi@0 2032 mov(G1,L1);
aoqi@0 2033 mov(G2,L2);
aoqi@0 2034 mov(G3,L3);
aoqi@0 2035 mov(G4,L4);
aoqi@0 2036 mov(G5,L5);
aoqi@0 2037 mov(G6,L6);
aoqi@0 2038 mov(G7,L7);
aoqi@0 2039 }
aoqi@0 2040
aoqi@0 2041 void MacroAssembler::restore_globals_from_locals() {
aoqi@0 2042 mov(L1,G1);
aoqi@0 2043 mov(L2,G2);
aoqi@0 2044 mov(L3,G3);
aoqi@0 2045 mov(L4,G4);
aoqi@0 2046 mov(L5,G5);
aoqi@0 2047 mov(L6,G6);
aoqi@0 2048 mov(L7,G7);
aoqi@0 2049 }
aoqi@0 2050
aoqi@0 2051 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
aoqi@0 2052 Register tmp,
aoqi@0 2053 int offset) {
aoqi@0 2054 intptr_t value = *delayed_value_addr;
aoqi@0 2055 if (value != 0)
aoqi@0 2056 return RegisterOrConstant(value + offset);
aoqi@0 2057
aoqi@0 2058 // load indirectly to solve generation ordering problem
aoqi@0 2059 AddressLiteral a(delayed_value_addr);
aoqi@0 2060 load_ptr_contents(a, tmp);
aoqi@0 2061
aoqi@0 2062 #ifdef ASSERT
aoqi@0 2063 tst(tmp);
aoqi@0 2064 breakpoint_trap(zero, xcc);
aoqi@0 2065 #endif
aoqi@0 2066
aoqi@0 2067 if (offset != 0)
aoqi@0 2068 add(tmp, offset, tmp);
aoqi@0 2069
aoqi@0 2070 return RegisterOrConstant(tmp);
aoqi@0 2071 }
aoqi@0 2072
aoqi@0 2073
aoqi@0 2074 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
aoqi@0 2075 assert(d.register_or_noreg() != G0, "lost side effect");
aoqi@0 2076 if ((s2.is_constant() && s2.as_constant() == 0) ||
aoqi@0 2077 (s2.is_register() && s2.as_register() == G0)) {
aoqi@0 2078 // Do nothing, just move value.
aoqi@0 2079 if (s1.is_register()) {
aoqi@0 2080 if (d.is_constant()) d = temp;
aoqi@0 2081 mov(s1.as_register(), d.as_register());
aoqi@0 2082 return d;
aoqi@0 2083 } else {
aoqi@0 2084 return s1;
aoqi@0 2085 }
aoqi@0 2086 }
aoqi@0 2087
aoqi@0 2088 if (s1.is_register()) {
aoqi@0 2089 assert_different_registers(s1.as_register(), temp);
aoqi@0 2090 if (d.is_constant()) d = temp;
aoqi@0 2091 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
aoqi@0 2092 return d;
aoqi@0 2093 } else {
aoqi@0 2094 if (s2.is_register()) {
aoqi@0 2095 assert_different_registers(s2.as_register(), temp);
aoqi@0 2096 if (d.is_constant()) d = temp;
aoqi@0 2097 set(s1.as_constant(), temp);
aoqi@0 2098 andn(temp, s2.as_register(), d.as_register());
aoqi@0 2099 return d;
aoqi@0 2100 } else {
aoqi@0 2101 intptr_t res = s1.as_constant() & ~s2.as_constant();
aoqi@0 2102 return res;
aoqi@0 2103 }
aoqi@0 2104 }
aoqi@0 2105 }
aoqi@0 2106
aoqi@0 2107 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
aoqi@0 2108 assert(d.register_or_noreg() != G0, "lost side effect");
aoqi@0 2109 if ((s2.is_constant() && s2.as_constant() == 0) ||
aoqi@0 2110 (s2.is_register() && s2.as_register() == G0)) {
aoqi@0 2111 // Do nothing, just move value.
aoqi@0 2112 if (s1.is_register()) {
aoqi@0 2113 if (d.is_constant()) d = temp;
aoqi@0 2114 mov(s1.as_register(), d.as_register());
aoqi@0 2115 return d;
aoqi@0 2116 } else {
aoqi@0 2117 return s1;
aoqi@0 2118 }
aoqi@0 2119 }
aoqi@0 2120
aoqi@0 2121 if (s1.is_register()) {
aoqi@0 2122 assert_different_registers(s1.as_register(), temp);
aoqi@0 2123 if (d.is_constant()) d = temp;
aoqi@0 2124 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
aoqi@0 2125 return d;
aoqi@0 2126 } else {
aoqi@0 2127 if (s2.is_register()) {
aoqi@0 2128 assert_different_registers(s2.as_register(), temp);
aoqi@0 2129 if (d.is_constant()) d = temp;
aoqi@0 2130 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
aoqi@0 2131 return d;
aoqi@0 2132 } else {
aoqi@0 2133 intptr_t res = s1.as_constant() + s2.as_constant();
aoqi@0 2134 return res;
aoqi@0 2135 }
aoqi@0 2136 }
aoqi@0 2137 }
aoqi@0 2138
aoqi@0 2139 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
aoqi@0 2140 assert(d.register_or_noreg() != G0, "lost side effect");
aoqi@0 2141 if (!is_simm13(s2.constant_or_zero()))
aoqi@0 2142 s2 = (s2.as_constant() & 0xFF);
aoqi@0 2143 if ((s2.is_constant() && s2.as_constant() == 0) ||
aoqi@0 2144 (s2.is_register() && s2.as_register() == G0)) {
aoqi@0 2145 // Do nothing, just move value.
aoqi@0 2146 if (s1.is_register()) {
aoqi@0 2147 if (d.is_constant()) d = temp;
aoqi@0 2148 mov(s1.as_register(), d.as_register());
aoqi@0 2149 return d;
aoqi@0 2150 } else {
aoqi@0 2151 return s1;
aoqi@0 2152 }
aoqi@0 2153 }
aoqi@0 2154
aoqi@0 2155 if (s1.is_register()) {
aoqi@0 2156 assert_different_registers(s1.as_register(), temp);
aoqi@0 2157 if (d.is_constant()) d = temp;
aoqi@0 2158 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
aoqi@0 2159 return d;
aoqi@0 2160 } else {
aoqi@0 2161 if (s2.is_register()) {
aoqi@0 2162 assert_different_registers(s2.as_register(), temp);
aoqi@0 2163 if (d.is_constant()) d = temp;
aoqi@0 2164 set(s1.as_constant(), temp);
aoqi@0 2165 sll_ptr(temp, s2.as_register(), d.as_register());
aoqi@0 2166 return d;
aoqi@0 2167 } else {
aoqi@0 2168 intptr_t res = s1.as_constant() << s2.as_constant();
aoqi@0 2169 return res;
aoqi@0 2170 }
aoqi@0 2171 }
aoqi@0 2172 }
aoqi@0 2173
aoqi@0 2174
aoqi@0 2175 // Look up the method for a megamorphic invokeinterface call.
aoqi@0 2176 // The target method is determined by <intf_klass, itable_index>.
aoqi@0 2177 // The receiver klass is in recv_klass.
aoqi@0 2178 // On success, the result will be in method_result, and execution falls through.
aoqi@0 2179 // On failure, execution transfers to the given label.
aoqi@0 2180 void MacroAssembler::lookup_interface_method(Register recv_klass,
aoqi@0 2181 Register intf_klass,
aoqi@0 2182 RegisterOrConstant itable_index,
aoqi@0 2183 Register method_result,
aoqi@0 2184 Register scan_temp,
aoqi@0 2185 Register sethi_temp,
dbuck@8997 2186 Label& L_no_such_interface,
dbuck@8997 2187 bool return_method) {
aoqi@0 2188 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
dbuck@8997 2189 assert(!return_method || itable_index.is_constant() || itable_index.as_register() == method_result,
aoqi@0 2190 "caller must use same register for non-constant itable index as for method");
aoqi@0 2191
aoqi@0 2192 Label L_no_such_interface_restore;
aoqi@0 2193 bool did_save = false;
aoqi@0 2194 if (scan_temp == noreg || sethi_temp == noreg) {
aoqi@0 2195 Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
aoqi@0 2196 Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
aoqi@0 2197 assert(method_result->is_global(), "must be able to return value");
aoqi@0 2198 scan_temp = L2;
aoqi@0 2199 sethi_temp = L3;
aoqi@0 2200 save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
aoqi@0 2201 recv_klass = recv_2;
aoqi@0 2202 intf_klass = intf_2;
aoqi@0 2203 did_save = true;
aoqi@0 2204 }
aoqi@0 2205
aoqi@0 2206 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
aoqi@0 2207 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
aoqi@0 2208 int scan_step = itableOffsetEntry::size() * wordSize;
aoqi@0 2209 int vte_size = vtableEntry::size() * wordSize;
aoqi@0 2210
aoqi@0 2211 lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
aoqi@0 2212 // %%% We should store the aligned, prescaled offset in the klassoop.
aoqi@0 2213 // Then the next several instructions would fold away.
aoqi@0 2214
aoqi@0 2215 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
aoqi@0 2216 int itb_offset = vtable_base;
aoqi@0 2217 if (round_to_unit != 0) {
aoqi@0 2218 // hoist first instruction of round_to(scan_temp, BytesPerLong):
aoqi@0 2219 itb_offset += round_to_unit - wordSize;
aoqi@0 2220 }
aoqi@0 2221 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
aoqi@0 2222 sll(scan_temp, itb_scale, scan_temp);
aoqi@0 2223 add(scan_temp, itb_offset, scan_temp);
aoqi@0 2224 if (round_to_unit != 0) {
aoqi@0 2225 // Round up to align_object_offset boundary
aoqi@0 2226 // see code for InstanceKlass::start_of_itable!
aoqi@0 2227 // Was: round_to(scan_temp, BytesPerLong);
aoqi@0 2228 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
aoqi@0 2229 and3(scan_temp, -round_to_unit, scan_temp);
aoqi@0 2230 }
aoqi@0 2231 add(recv_klass, scan_temp, scan_temp);
aoqi@0 2232
dbuck@8997 2233 if (return_method) {
dbuck@8997 2234 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
dbuck@8997 2235 RegisterOrConstant itable_offset = itable_index;
dbuck@8997 2236 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
dbuck@8997 2237 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
dbuck@8997 2238 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
dbuck@8997 2239 }
aoqi@0 2240
aoqi@0 2241 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
aoqi@0 2242 // if (scan->interface() == intf) {
aoqi@0 2243 // result = (klass + scan->offset() + itable_index);
aoqi@0 2244 // }
aoqi@0 2245 // }
aoqi@0 2246 Label L_search, L_found_method;
aoqi@0 2247
aoqi@0 2248 for (int peel = 1; peel >= 0; peel--) {
aoqi@0 2249 // %%%% Could load both offset and interface in one ldx, if they were
aoqi@0 2250 // in the opposite order. This would save a load.
aoqi@0 2251 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
aoqi@0 2252
aoqi@0 2253 // Check that this entry is non-null. A null entry means that
aoqi@0 2254 // the receiver class doesn't implement the interface, and wasn't the
aoqi@0 2255 // same as when the caller was compiled.
aoqi@0 2256 bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
aoqi@0 2257 delayed()->cmp(method_result, intf_klass);
aoqi@0 2258
aoqi@0 2259 if (peel) {
aoqi@0 2260 brx(Assembler::equal, false, Assembler::pt, L_found_method);
aoqi@0 2261 } else {
aoqi@0 2262 brx(Assembler::notEqual, false, Assembler::pn, L_search);
aoqi@0 2263 // (invert the test to fall through to found_method...)
aoqi@0 2264 }
aoqi@0 2265 delayed()->add(scan_temp, scan_step, scan_temp);
aoqi@0 2266
aoqi@0 2267 if (!peel) break;
aoqi@0 2268
aoqi@0 2269 bind(L_search);
aoqi@0 2270 }
aoqi@0 2271
aoqi@0 2272 bind(L_found_method);
aoqi@0 2273
dbuck@8997 2274 if (return_method) {
dbuck@8997 2275 // Got a hit.
dbuck@8997 2276 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
dbuck@8997 2277 // scan_temp[-scan_step] points to the vtable offset we need
dbuck@8997 2278 ito_offset -= scan_step;
dbuck@8997 2279 lduw(scan_temp, ito_offset, scan_temp);
dbuck@8997 2280 ld_ptr(recv_klass, scan_temp, method_result);
dbuck@8997 2281 }
aoqi@0 2282
aoqi@0 2283 if (did_save) {
aoqi@0 2284 Label L_done;
aoqi@0 2285 ba(L_done);
aoqi@0 2286 delayed()->restore();
aoqi@0 2287
aoqi@0 2288 bind(L_no_such_interface_restore);
aoqi@0 2289 ba(L_no_such_interface);
aoqi@0 2290 delayed()->restore();
aoqi@0 2291
aoqi@0 2292 bind(L_done);
aoqi@0 2293 }
aoqi@0 2294 }
aoqi@0 2295
aoqi@0 2296
aoqi@0 2297 // virtual method calling
aoqi@0 2298 void MacroAssembler::lookup_virtual_method(Register recv_klass,
aoqi@0 2299 RegisterOrConstant vtable_index,
aoqi@0 2300 Register method_result) {
aoqi@0 2301 assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
aoqi@0 2302 Register sethi_temp = method_result;
aoqi@0 2303 const int base = (InstanceKlass::vtable_start_offset() * wordSize +
aoqi@0 2304 // method pointer offset within the vtable entry:
aoqi@0 2305 vtableEntry::method_offset_in_bytes());
aoqi@0 2306 RegisterOrConstant vtable_offset = vtable_index;
aoqi@0 2307 // Each of the following three lines potentially generates an instruction.
aoqi@0 2308 // But the total number of address formation instructions will always be
aoqi@0 2309 // at most two, and will often be zero. In any case, it will be optimal.
aoqi@0 2310 // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
aoqi@0 2311 // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
aoqi@0 2312 vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
aoqi@0 2313 vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
aoqi@0 2314 Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
aoqi@0 2315 ld_ptr(vtable_entry_addr, method_result);
aoqi@0 2316 }
aoqi@0 2317
aoqi@0 2318
aoqi@0 2319 void MacroAssembler::check_klass_subtype(Register sub_klass,
aoqi@0 2320 Register super_klass,
aoqi@0 2321 Register temp_reg,
aoqi@0 2322 Register temp2_reg,
aoqi@0 2323 Label& L_success) {
aoqi@0 2324 Register sub_2 = sub_klass;
aoqi@0 2325 Register sup_2 = super_klass;
aoqi@0 2326 if (!sub_2->is_global()) sub_2 = L0;
aoqi@0 2327 if (!sup_2->is_global()) sup_2 = L1;
aoqi@0 2328 bool did_save = false;
aoqi@0 2329 if (temp_reg == noreg || temp2_reg == noreg) {
aoqi@0 2330 temp_reg = L2;
aoqi@0 2331 temp2_reg = L3;
aoqi@0 2332 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
aoqi@0 2333 sub_klass = sub_2;
aoqi@0 2334 super_klass = sup_2;
aoqi@0 2335 did_save = true;
aoqi@0 2336 }
aoqi@0 2337 Label L_failure, L_pop_to_failure, L_pop_to_success;
aoqi@0 2338 check_klass_subtype_fast_path(sub_klass, super_klass,
aoqi@0 2339 temp_reg, temp2_reg,
aoqi@0 2340 (did_save ? &L_pop_to_success : &L_success),
aoqi@0 2341 (did_save ? &L_pop_to_failure : &L_failure), NULL);
aoqi@0 2342
aoqi@0 2343 if (!did_save)
aoqi@0 2344 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
aoqi@0 2345 check_klass_subtype_slow_path(sub_2, sup_2,
aoqi@0 2346 L2, L3, L4, L5,
aoqi@0 2347 NULL, &L_pop_to_failure);
aoqi@0 2348
aoqi@0 2349 // on success:
aoqi@0 2350 bind(L_pop_to_success);
aoqi@0 2351 restore();
aoqi@0 2352 ba_short(L_success);
aoqi@0 2353
aoqi@0 2354 // on failure:
aoqi@0 2355 bind(L_pop_to_failure);
aoqi@0 2356 restore();
aoqi@0 2357 bind(L_failure);
aoqi@0 2358 }
aoqi@0 2359
aoqi@0 2360
aoqi@0 2361 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
aoqi@0 2362 Register super_klass,
aoqi@0 2363 Register temp_reg,
aoqi@0 2364 Register temp2_reg,
aoqi@0 2365 Label* L_success,
aoqi@0 2366 Label* L_failure,
aoqi@0 2367 Label* L_slow_path,
aoqi@0 2368 RegisterOrConstant super_check_offset) {
aoqi@0 2369 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
aoqi@0 2370 int sco_offset = in_bytes(Klass::super_check_offset_offset());
aoqi@0 2371
aoqi@0 2372 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
aoqi@0 2373 bool need_slow_path = (must_load_sco ||
aoqi@0 2374 super_check_offset.constant_or_zero() == sco_offset);
aoqi@0 2375
aoqi@0 2376 assert_different_registers(sub_klass, super_klass, temp_reg);
aoqi@0 2377 if (super_check_offset.is_register()) {
aoqi@0 2378 assert_different_registers(sub_klass, super_klass, temp_reg,
aoqi@0 2379 super_check_offset.as_register());
aoqi@0 2380 } else if (must_load_sco) {
aoqi@0 2381 assert(temp2_reg != noreg, "supply either a temp or a register offset");
aoqi@0 2382 }
aoqi@0 2383
aoqi@0 2384 Label L_fallthrough;
aoqi@0 2385 int label_nulls = 0;
aoqi@0 2386 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
aoqi@0 2387 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
aoqi@0 2388 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
aoqi@0 2389 assert(label_nulls <= 1 ||
aoqi@0 2390 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
aoqi@0 2391 "at most one NULL in the batch, usually");
aoqi@0 2392
aoqi@0 2393 // If the pointers are equal, we are done (e.g., String[] elements).
aoqi@0 2394 // This self-check enables sharing of secondary supertype arrays among
aoqi@0 2395 // non-primary types such as array-of-interface. Otherwise, each such
aoqi@0 2396 // type would need its own customized SSA.
aoqi@0 2397 // We move this check to the front of the fast path because many
aoqi@0 2398 // type checks are in fact trivially successful in this manner,
aoqi@0 2399 // so we get a nicely predicted branch right at the start of the check.
aoqi@0 2400 cmp(super_klass, sub_klass);
aoqi@0 2401 brx(Assembler::equal, false, Assembler::pn, *L_success);
aoqi@0 2402 delayed()->nop();
aoqi@0 2403
aoqi@0 2404 // Check the supertype display:
aoqi@0 2405 if (must_load_sco) {
aoqi@0 2406 // The super check offset is always positive...
aoqi@0 2407 lduw(super_klass, sco_offset, temp2_reg);
aoqi@0 2408 super_check_offset = RegisterOrConstant(temp2_reg);
aoqi@0 2409 // super_check_offset is register.
aoqi@0 2410 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
aoqi@0 2411 }
aoqi@0 2412 ld_ptr(sub_klass, super_check_offset, temp_reg);
aoqi@0 2413 cmp(super_klass, temp_reg);
aoqi@0 2414
aoqi@0 2415 // This check has worked decisively for primary supers.
aoqi@0 2416 // Secondary supers are sought in the super_cache ('super_cache_addr').
aoqi@0 2417 // (Secondary supers are interfaces and very deeply nested subtypes.)
aoqi@0 2418 // This works in the same check above because of a tricky aliasing
aoqi@0 2419 // between the super_cache and the primary super display elements.
aoqi@0 2420 // (The 'super_check_addr' can address either, as the case requires.)
aoqi@0 2421 // Note that the cache is updated below if it does not help us find
aoqi@0 2422 // what we need immediately.
aoqi@0 2423 // So if it was a primary super, we can just fail immediately.
aoqi@0 2424 // Otherwise, it's the slow path for us (no success at this point).
aoqi@0 2425
aoqi@0 2426 // Hacked ba(), which may only be used just before L_fallthrough.
aoqi@0 2427 #define FINAL_JUMP(label) \
aoqi@0 2428 if (&(label) != &L_fallthrough) { \
aoqi@0 2429 ba(label); delayed()->nop(); \
aoqi@0 2430 }
aoqi@0 2431
aoqi@0 2432 if (super_check_offset.is_register()) {
aoqi@0 2433 brx(Assembler::equal, false, Assembler::pn, *L_success);
aoqi@0 2434 delayed()->cmp(super_check_offset.as_register(), sc_offset);
aoqi@0 2435
aoqi@0 2436 if (L_failure == &L_fallthrough) {
aoqi@0 2437 brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
aoqi@0 2438 delayed()->nop();
aoqi@0 2439 } else {
aoqi@0 2440 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
aoqi@0 2441 delayed()->nop();
aoqi@0 2442 FINAL_JUMP(*L_slow_path);
aoqi@0 2443 }
aoqi@0 2444 } else if (super_check_offset.as_constant() == sc_offset) {
aoqi@0 2445 // Need a slow path; fast failure is impossible.
aoqi@0 2446 if (L_slow_path == &L_fallthrough) {
aoqi@0 2447 brx(Assembler::equal, false, Assembler::pt, *L_success);
aoqi@0 2448 delayed()->nop();
aoqi@0 2449 } else {
aoqi@0 2450 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
aoqi@0 2451 delayed()->nop();
aoqi@0 2452 FINAL_JUMP(*L_success);
aoqi@0 2453 }
aoqi@0 2454 } else {
aoqi@0 2455 // No slow path; it's a fast decision.
aoqi@0 2456 if (L_failure == &L_fallthrough) {
aoqi@0 2457 brx(Assembler::equal, false, Assembler::pt, *L_success);
aoqi@0 2458 delayed()->nop();
aoqi@0 2459 } else {
aoqi@0 2460 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
aoqi@0 2461 delayed()->nop();
aoqi@0 2462 FINAL_JUMP(*L_success);
aoqi@0 2463 }
aoqi@0 2464 }
aoqi@0 2465
aoqi@0 2466 bind(L_fallthrough);
aoqi@0 2467
aoqi@0 2468 #undef FINAL_JUMP
aoqi@0 2469 }
aoqi@0 2470
aoqi@0 2471
aoqi@0 2472 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
aoqi@0 2473 Register super_klass,
aoqi@0 2474 Register count_temp,
aoqi@0 2475 Register scan_temp,
aoqi@0 2476 Register scratch_reg,
aoqi@0 2477 Register coop_reg,
aoqi@0 2478 Label* L_success,
aoqi@0 2479 Label* L_failure) {
aoqi@0 2480 assert_different_registers(sub_klass, super_klass,
aoqi@0 2481 count_temp, scan_temp, scratch_reg, coop_reg);
aoqi@0 2482
aoqi@0 2483 Label L_fallthrough, L_loop;
aoqi@0 2484 int label_nulls = 0;
aoqi@0 2485 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
aoqi@0 2486 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
aoqi@0 2487 assert(label_nulls <= 1, "at most one NULL in the batch");
aoqi@0 2488
aoqi@0 2489 // a couple of useful fields in sub_klass:
aoqi@0 2490 int ss_offset = in_bytes(Klass::secondary_supers_offset());
aoqi@0 2491 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
aoqi@0 2492
aoqi@0 2493 // Do a linear scan of the secondary super-klass chain.
aoqi@0 2494 // This code is rarely used, so simplicity is a virtue here.
aoqi@0 2495
aoqi@0 2496 #ifndef PRODUCT
aoqi@0 2497 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
aoqi@0 2498 inc_counter((address) pst_counter, count_temp, scan_temp);
aoqi@0 2499 #endif
aoqi@0 2500
aoqi@0 2501 // We will consult the secondary-super array.
aoqi@0 2502 ld_ptr(sub_klass, ss_offset, scan_temp);
aoqi@0 2503
aoqi@0 2504 Register search_key = super_klass;
aoqi@0 2505
aoqi@0 2506 // Load the array length. (Positive movl does right thing on LP64.)
aoqi@0 2507 lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
aoqi@0 2508
aoqi@0 2509 // Check for empty secondary super list
aoqi@0 2510 tst(count_temp);
aoqi@0 2511
aoqi@0 2512 // In the array of super classes elements are pointer sized.
aoqi@0 2513 int element_size = wordSize;
aoqi@0 2514
aoqi@0 2515 // Top of search loop
aoqi@0 2516 bind(L_loop);
aoqi@0 2517 br(Assembler::equal, false, Assembler::pn, *L_failure);
aoqi@0 2518 delayed()->add(scan_temp, element_size, scan_temp);
aoqi@0 2519
aoqi@0 2520 // Skip the array header in all array accesses.
aoqi@0 2521 int elem_offset = Array<Klass*>::base_offset_in_bytes();
aoqi@0 2522 elem_offset -= element_size; // the scan pointer was pre-incremented also
aoqi@0 2523
aoqi@0 2524 // Load next super to check
aoqi@0 2525 ld_ptr( scan_temp, elem_offset, scratch_reg );
aoqi@0 2526
aoqi@0 2527 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
aoqi@0 2528 cmp(scratch_reg, search_key);
aoqi@0 2529
aoqi@0 2530 // A miss means we are NOT a subtype and need to keep looping
aoqi@0 2531 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
aoqi@0 2532 delayed()->deccc(count_temp); // decrement trip counter in delay slot
aoqi@0 2533
aoqi@0 2534 // Success. Cache the super we found and proceed in triumph.
aoqi@0 2535 st_ptr(super_klass, sub_klass, sc_offset);
aoqi@0 2536
aoqi@0 2537 if (L_success != &L_fallthrough) {
aoqi@0 2538 ba(*L_success);
aoqi@0 2539 delayed()->nop();
aoqi@0 2540 }
aoqi@0 2541
aoqi@0 2542 bind(L_fallthrough);
aoqi@0 2543 }
aoqi@0 2544
aoqi@0 2545
aoqi@0 2546 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
aoqi@0 2547 Register temp_reg,
aoqi@0 2548 int extra_slot_offset) {
aoqi@0 2549 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
aoqi@0 2550 int stackElementSize = Interpreter::stackElementSize;
aoqi@0 2551 int offset = extra_slot_offset * stackElementSize;
aoqi@0 2552 if (arg_slot.is_constant()) {
aoqi@0 2553 offset += arg_slot.as_constant() * stackElementSize;
aoqi@0 2554 return offset;
aoqi@0 2555 } else {
aoqi@0 2556 assert(temp_reg != noreg, "must specify");
aoqi@0 2557 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
aoqi@0 2558 if (offset != 0)
aoqi@0 2559 add(temp_reg, offset, temp_reg);
aoqi@0 2560 return temp_reg;
aoqi@0 2561 }
aoqi@0 2562 }
aoqi@0 2563
aoqi@0 2564
aoqi@0 2565 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
aoqi@0 2566 Register temp_reg,
aoqi@0 2567 int extra_slot_offset) {
aoqi@0 2568 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
aoqi@0 2569 }
aoqi@0 2570
aoqi@0 2571
aoqi@0 2572 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
aoqi@0 2573 Register temp_reg,
aoqi@0 2574 Label& done, Label* slow_case,
aoqi@0 2575 BiasedLockingCounters* counters) {
aoqi@0 2576 assert(UseBiasedLocking, "why call this otherwise?");
aoqi@0 2577
aoqi@0 2578 if (PrintBiasedLockingStatistics) {
aoqi@0 2579 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
aoqi@0 2580 if (counters == NULL)
aoqi@0 2581 counters = BiasedLocking::counters();
aoqi@0 2582 }
aoqi@0 2583
aoqi@0 2584 Label cas_label;
aoqi@0 2585
aoqi@0 2586 // Biased locking
aoqi@0 2587 // See whether the lock is currently biased toward our thread and
aoqi@0 2588 // whether the epoch is still valid
aoqi@0 2589 // Note that the runtime guarantees sufficient alignment of JavaThread
aoqi@0 2590 // pointers to allow age to be placed into low bits
aoqi@0 2591 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
aoqi@0 2592 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
aoqi@0 2593 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
aoqi@0 2594
aoqi@0 2595 load_klass(obj_reg, temp_reg);
aoqi@0 2596 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
aoqi@0 2597 or3(G2_thread, temp_reg, temp_reg);
aoqi@0 2598 xor3(mark_reg, temp_reg, temp_reg);
aoqi@0 2599 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
aoqi@0 2600 if (counters != NULL) {
aoqi@0 2601 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
aoqi@0 2602 // Reload mark_reg as we may need it later
aoqi@0 2603 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
aoqi@0 2604 }
aoqi@0 2605 brx(Assembler::equal, true, Assembler::pt, done);
aoqi@0 2606 delayed()->nop();
aoqi@0 2607
aoqi@0 2608 Label try_revoke_bias;
aoqi@0 2609 Label try_rebias;
aoqi@0 2610 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
aoqi@0 2611 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
aoqi@0 2612
aoqi@0 2613 // At this point we know that the header has the bias pattern and
aoqi@0 2614 // that we are not the bias owner in the current epoch. We need to
aoqi@0 2615 // figure out more details about the state of the header in order to
aoqi@0 2616 // know what operations can be legally performed on the object's
aoqi@0 2617 // header.
aoqi@0 2618
aoqi@0 2619 // If the low three bits in the xor result aren't clear, that means
aoqi@0 2620 // the prototype header is no longer biased and we have to revoke
aoqi@0 2621 // the bias on this object.
aoqi@0 2622 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
aoqi@0 2623 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
aoqi@0 2624
aoqi@0 2625 // Biasing is still enabled for this data type. See whether the
aoqi@0 2626 // epoch of the current bias is still valid, meaning that the epoch
aoqi@0 2627 // bits of the mark word are equal to the epoch bits of the
aoqi@0 2628 // prototype header. (Note that the prototype header's epoch bits
aoqi@0 2629 // only change at a safepoint.) If not, attempt to rebias the object
aoqi@0 2630 // toward the current thread. Note that we must be absolutely sure
aoqi@0 2631 // that the current epoch is invalid in order to do this because
aoqi@0 2632 // otherwise the manipulations it performs on the mark word are
aoqi@0 2633 // illegal.
aoqi@0 2634 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
aoqi@0 2635 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
aoqi@0 2636
aoqi@0 2637 // The epoch of the current bias is still valid but we know nothing
aoqi@0 2638 // about the owner; it might be set or it might be clear. Try to
aoqi@0 2639 // acquire the bias of the object using an atomic operation. If this
aoqi@0 2640 // fails we will go in to the runtime to revoke the object's bias.
aoqi@0 2641 // Note that we first construct the presumed unbiased header so we
aoqi@0 2642 // don't accidentally blow away another thread's valid bias.
aoqi@0 2643 delayed()->and3(mark_reg,
aoqi@0 2644 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
aoqi@0 2645 mark_reg);
aoqi@0 2646 or3(G2_thread, mark_reg, temp_reg);
aoqi@0 2647 cas_ptr(mark_addr.base(), mark_reg, temp_reg);
aoqi@0 2648 // If the biasing toward our thread failed, this means that
aoqi@0 2649 // another thread succeeded in biasing it toward itself and we
aoqi@0 2650 // need to revoke that bias. The revocation will occur in the
aoqi@0 2651 // interpreter runtime in the slow case.
aoqi@0 2652 cmp(mark_reg, temp_reg);
aoqi@0 2653 if (counters != NULL) {
aoqi@0 2654 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
aoqi@0 2655 }
aoqi@0 2656 if (slow_case != NULL) {
aoqi@0 2657 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
aoqi@0 2658 delayed()->nop();
aoqi@0 2659 }
aoqi@0 2660 ba_short(done);
aoqi@0 2661
aoqi@0 2662 bind(try_rebias);
aoqi@0 2663 // At this point we know the epoch has expired, meaning that the
aoqi@0 2664 // current "bias owner", if any, is actually invalid. Under these
aoqi@0 2665 // circumstances _only_, we are allowed to use the current header's
aoqi@0 2666 // value as the comparison value when doing the cas to acquire the
aoqi@0 2667 // bias in the current epoch. In other words, we allow transfer of
aoqi@0 2668 // the bias from one thread to another directly in this situation.
aoqi@0 2669 //
aoqi@0 2670 // FIXME: due to a lack of registers we currently blow away the age
aoqi@0 2671 // bits in this situation. Should attempt to preserve them.
aoqi@0 2672 load_klass(obj_reg, temp_reg);
aoqi@0 2673 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
aoqi@0 2674 or3(G2_thread, temp_reg, temp_reg);
aoqi@0 2675 cas_ptr(mark_addr.base(), mark_reg, temp_reg);
aoqi@0 2676 // If the biasing toward our thread failed, this means that
aoqi@0 2677 // another thread succeeded in biasing it toward itself and we
aoqi@0 2678 // need to revoke that bias. The revocation will occur in the
aoqi@0 2679 // interpreter runtime in the slow case.
aoqi@0 2680 cmp(mark_reg, temp_reg);
aoqi@0 2681 if (counters != NULL) {
aoqi@0 2682 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
aoqi@0 2683 }
aoqi@0 2684 if (slow_case != NULL) {
aoqi@0 2685 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
aoqi@0 2686 delayed()->nop();
aoqi@0 2687 }
aoqi@0 2688 ba_short(done);
aoqi@0 2689
aoqi@0 2690 bind(try_revoke_bias);
aoqi@0 2691 // The prototype mark in the klass doesn't have the bias bit set any
aoqi@0 2692 // more, indicating that objects of this data type are not supposed
aoqi@0 2693 // to be biased any more. We are going to try to reset the mark of
aoqi@0 2694 // this object to the prototype value and fall through to the
aoqi@0 2695 // CAS-based locking scheme. Note that if our CAS fails, it means
aoqi@0 2696 // that another thread raced us for the privilege of revoking the
aoqi@0 2697 // bias of this particular object, so it's okay to continue in the
aoqi@0 2698 // normal locking code.
aoqi@0 2699 //
aoqi@0 2700 // FIXME: due to a lack of registers we currently blow away the age
aoqi@0 2701 // bits in this situation. Should attempt to preserve them.
aoqi@0 2702 load_klass(obj_reg, temp_reg);
aoqi@0 2703 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
aoqi@0 2704 cas_ptr(mark_addr.base(), mark_reg, temp_reg);
aoqi@0 2705 // Fall through to the normal CAS-based lock, because no matter what
aoqi@0 2706 // the result of the above CAS, some thread must have succeeded in
aoqi@0 2707 // removing the bias bit from the object's header.
aoqi@0 2708 if (counters != NULL) {
aoqi@0 2709 cmp(mark_reg, temp_reg);
aoqi@0 2710 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
aoqi@0 2711 }
aoqi@0 2712
aoqi@0 2713 bind(cas_label);
aoqi@0 2714 }
aoqi@0 2715
aoqi@0 2716 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
aoqi@0 2717 bool allow_delay_slot_filling) {
aoqi@0 2718 // Check for biased locking unlock case, which is a no-op
aoqi@0 2719 // Note: we do not have to check the thread ID for two reasons.
aoqi@0 2720 // First, the interpreter checks for IllegalMonitorStateException at
aoqi@0 2721 // a higher level. Second, if the bias was revoked while we held the
aoqi@0 2722 // lock, the object could not be rebiased toward another thread, so
aoqi@0 2723 // the bias bit would be clear.
aoqi@0 2724 ld_ptr(mark_addr, temp_reg);
aoqi@0 2725 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
aoqi@0 2726 cmp(temp_reg, markOopDesc::biased_lock_pattern);
aoqi@0 2727 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
aoqi@0 2728 delayed();
aoqi@0 2729 if (!allow_delay_slot_filling) {
aoqi@0 2730 nop();
aoqi@0 2731 }
aoqi@0 2732 }
aoqi@0 2733
aoqi@0 2734
aoqi@0 2735 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
aoqi@0 2736 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
aoqi@0 2737 // The code could be tightened up considerably.
aoqi@0 2738 //
aoqi@0 2739 // box->dhw disposition - post-conditions at DONE_LABEL.
aoqi@0 2740 // - Successful inflated lock: box->dhw != 0.
aoqi@0 2741 // Any non-zero value suffices.
aoqi@0 2742 // Consider G2_thread, rsp, boxReg, or unused_mark()
aoqi@0 2743 // - Successful Stack-lock: box->dhw == mark.
aoqi@0 2744 // box->dhw must contain the displaced mark word value
aoqi@0 2745 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
aoqi@0 2746 // The slow-path fast_enter() and slow_enter() operators
aoqi@0 2747 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
aoqi@0 2748 // - Biased: box->dhw is undefined
aoqi@0 2749 //
aoqi@0 2750 // SPARC refworkload performance - specifically jetstream and scimark - are
aoqi@0 2751 // extremely sensitive to the size of the code emitted by compiler_lock_object
aoqi@0 2752 // and compiler_unlock_object. Critically, the key factor is code size, not path
aoqi@0 2753 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
aoqi@0 2754 // effect).
aoqi@0 2755
aoqi@0 2756
aoqi@0 2757 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
aoqi@0 2758 Register Rbox, Register Rscratch,
aoqi@0 2759 BiasedLockingCounters* counters,
aoqi@0 2760 bool try_bias) {
aoqi@0 2761 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
aoqi@0 2762
aoqi@0 2763 verify_oop(Roop);
aoqi@0 2764 Label done ;
aoqi@0 2765
aoqi@0 2766 if (counters != NULL) {
aoqi@0 2767 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
aoqi@0 2768 }
aoqi@0 2769
aoqi@0 2770 if (EmitSync & 1) {
aoqi@0 2771 mov(3, Rscratch);
aoqi@0 2772 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2773 cmp(SP, G0);
aoqi@0 2774 return ;
aoqi@0 2775 }
aoqi@0 2776
aoqi@0 2777 if (EmitSync & 2) {
aoqi@0 2778
aoqi@0 2779 // Fetch object's markword
aoqi@0 2780 ld_ptr(mark_addr, Rmark);
aoqi@0 2781
aoqi@0 2782 if (try_bias) {
aoqi@0 2783 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
aoqi@0 2784 }
aoqi@0 2785
aoqi@0 2786 // Save Rbox in Rscratch to be used for the cas operation
aoqi@0 2787 mov(Rbox, Rscratch);
aoqi@0 2788
aoqi@0 2789 // set Rmark to markOop | markOopDesc::unlocked_value
aoqi@0 2790 or3(Rmark, markOopDesc::unlocked_value, Rmark);
aoqi@0 2791
aoqi@0 2792 // Initialize the box. (Must happen before we update the object mark!)
aoqi@0 2793 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2794
aoqi@0 2795 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
aoqi@0 2796 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
aoqi@0 2797 cas_ptr(mark_addr.base(), Rmark, Rscratch);
aoqi@0 2798
aoqi@0 2799 // if compare/exchange succeeded we found an unlocked object and we now have locked it
aoqi@0 2800 // hence we are done
aoqi@0 2801 cmp(Rmark, Rscratch);
aoqi@0 2802 #ifdef _LP64
aoqi@0 2803 sub(Rscratch, STACK_BIAS, Rscratch);
aoqi@0 2804 #endif
aoqi@0 2805 brx(Assembler::equal, false, Assembler::pt, done);
aoqi@0 2806 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
aoqi@0 2807
aoqi@0 2808 // we did not find an unlocked object so see if this is a recursive case
aoqi@0 2809 // sub(Rscratch, SP, Rscratch);
aoqi@0 2810 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
aoqi@0 2811 andcc(Rscratch, 0xfffff003, Rscratch);
aoqi@0 2812 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2813 bind (done);
aoqi@0 2814 return ;
aoqi@0 2815 }
aoqi@0 2816
aoqi@0 2817 Label Egress ;
aoqi@0 2818
aoqi@0 2819 if (EmitSync & 256) {
aoqi@0 2820 Label IsInflated ;
aoqi@0 2821
aoqi@0 2822 ld_ptr(mark_addr, Rmark); // fetch obj->mark
aoqi@0 2823 // Triage: biased, stack-locked, neutral, inflated
aoqi@0 2824 if (try_bias) {
aoqi@0 2825 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
aoqi@0 2826 // Invariant: if control reaches this point in the emitted stream
aoqi@0 2827 // then Rmark has not been modified.
aoqi@0 2828 }
aoqi@0 2829
aoqi@0 2830 // Store mark into displaced mark field in the on-stack basic-lock "box"
aoqi@0 2831 // Critically, this must happen before the CAS
aoqi@0 2832 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
aoqi@0 2833 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2834 andcc(Rmark, 2, G0);
aoqi@0 2835 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
aoqi@0 2836 delayed()->
aoqi@0 2837
aoqi@0 2838 // Try stack-lock acquisition.
aoqi@0 2839 // Beware: the 1st instruction is in a delay slot
aoqi@0 2840 mov(Rbox, Rscratch);
aoqi@0 2841 or3(Rmark, markOopDesc::unlocked_value, Rmark);
aoqi@0 2842 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
aoqi@0 2843 cas_ptr(mark_addr.base(), Rmark, Rscratch);
aoqi@0 2844 cmp(Rmark, Rscratch);
aoqi@0 2845 brx(Assembler::equal, false, Assembler::pt, done);
aoqi@0 2846 delayed()->sub(Rscratch, SP, Rscratch);
aoqi@0 2847
aoqi@0 2848 // Stack-lock attempt failed - check for recursive stack-lock.
aoqi@0 2849 // See the comments below about how we might remove this case.
aoqi@0 2850 #ifdef _LP64
aoqi@0 2851 sub(Rscratch, STACK_BIAS, Rscratch);
aoqi@0 2852 #endif
aoqi@0 2853 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
aoqi@0 2854 andcc(Rscratch, 0xfffff003, Rscratch);
aoqi@0 2855 br(Assembler::always, false, Assembler::pt, done);
aoqi@0 2856 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2857
aoqi@0 2858 bind(IsInflated);
aoqi@0 2859 if (EmitSync & 64) {
aoqi@0 2860 // If m->owner != null goto IsLocked
aoqi@0 2861 // Pessimistic form: Test-and-CAS vs CAS
aoqi@0 2862 // The optimistic form avoids RTS->RTO cache line upgrades.
aoqi@0 2863 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
aoqi@0 2864 andcc(Rscratch, Rscratch, G0);
aoqi@0 2865 brx(Assembler::notZero, false, Assembler::pn, done);
aoqi@0 2866 delayed()->nop();
aoqi@0 2867 // m->owner == null : it's unlocked.
aoqi@0 2868 }
aoqi@0 2869
aoqi@0 2870 // Try to CAS m->owner from null to Self
aoqi@0 2871 // Invariant: if we acquire the lock then _recursions should be 0.
aoqi@0 2872 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
aoqi@0 2873 mov(G2_thread, Rscratch);
aoqi@0 2874 cas_ptr(Rmark, G0, Rscratch);
aoqi@0 2875 cmp(Rscratch, G0);
aoqi@0 2876 // Intentional fall-through into done
aoqi@0 2877 } else {
aoqi@0 2878 // Aggressively avoid the Store-before-CAS penalty
aoqi@0 2879 // Defer the store into box->dhw until after the CAS
aoqi@0 2880 Label IsInflated, Recursive ;
aoqi@0 2881
aoqi@0 2882 // Anticipate CAS -- Avoid RTS->RTO upgrade
aoqi@0 2883 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
aoqi@0 2884
aoqi@0 2885 ld_ptr(mark_addr, Rmark); // fetch obj->mark
aoqi@0 2886 // Triage: biased, stack-locked, neutral, inflated
aoqi@0 2887
aoqi@0 2888 if (try_bias) {
aoqi@0 2889 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
aoqi@0 2890 // Invariant: if control reaches this point in the emitted stream
aoqi@0 2891 // then Rmark has not been modified.
aoqi@0 2892 }
aoqi@0 2893 andcc(Rmark, 2, G0);
aoqi@0 2894 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
aoqi@0 2895 delayed()-> // Beware - dangling delay-slot
aoqi@0 2896
aoqi@0 2897 // Try stack-lock acquisition.
aoqi@0 2898 // Transiently install BUSY (0) encoding in the mark word.
aoqi@0 2899 // if the CAS of 0 into the mark was successful then we execute:
aoqi@0 2900 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
aoqi@0 2901 // ST obj->mark = box -- overwrite transient 0 value
aoqi@0 2902 // This presumes TSO, of course.
aoqi@0 2903
aoqi@0 2904 mov(0, Rscratch);
aoqi@0 2905 or3(Rmark, markOopDesc::unlocked_value, Rmark);
aoqi@0 2906 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
aoqi@0 2907 cas_ptr(mark_addr.base(), Rmark, Rscratch);
aoqi@0 2908 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
aoqi@0 2909 cmp(Rscratch, Rmark);
aoqi@0 2910 brx(Assembler::notZero, false, Assembler::pn, Recursive);
aoqi@0 2911 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2912 if (counters != NULL) {
aoqi@0 2913 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
aoqi@0 2914 }
aoqi@0 2915 ba(done);
aoqi@0 2916 delayed()->st_ptr(Rbox, mark_addr);
aoqi@0 2917
aoqi@0 2918 bind(Recursive);
aoqi@0 2919 // Stack-lock attempt failed - check for recursive stack-lock.
aoqi@0 2920 // Tests show that we can remove the recursive case with no impact
aoqi@0 2921 // on refworkload 0.83. If we need to reduce the size of the code
aoqi@0 2922 // emitted by compiler_lock_object() the recursive case is perfect
aoqi@0 2923 // candidate.
aoqi@0 2924 //
aoqi@0 2925 // A more extreme idea is to always inflate on stack-lock recursion.
aoqi@0 2926 // This lets us eliminate the recursive checks in compiler_lock_object
aoqi@0 2927 // and compiler_unlock_object and the (box->dhw == 0) encoding.
aoqi@0 2928 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
aoqi@0 2929 // and showed a performance *increase*. In the same experiment I eliminated
aoqi@0 2930 // the fast-path stack-lock code from the interpreter and always passed
aoqi@0 2931 // control to the "slow" operators in synchronizer.cpp.
aoqi@0 2932
aoqi@0 2933 // RScratch contains the fetched obj->mark value from the failed CAS.
aoqi@0 2934 #ifdef _LP64
aoqi@0 2935 sub(Rscratch, STACK_BIAS, Rscratch);
aoqi@0 2936 #endif
aoqi@0 2937 sub(Rscratch, SP, Rscratch);
aoqi@0 2938 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
aoqi@0 2939 andcc(Rscratch, 0xfffff003, Rscratch);
aoqi@0 2940 if (counters != NULL) {
aoqi@0 2941 // Accounting needs the Rscratch register
aoqi@0 2942 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2943 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
aoqi@0 2944 ba_short(done);
aoqi@0 2945 } else {
aoqi@0 2946 ba(done);
aoqi@0 2947 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2948 }
aoqi@0 2949
aoqi@0 2950 bind (IsInflated);
aoqi@0 2951 if (EmitSync & 64) {
aoqi@0 2952 // If m->owner != null goto IsLocked
aoqi@0 2953 // Test-and-CAS vs CAS
aoqi@0 2954 // Pessimistic form avoids futile (doomed) CAS attempts
aoqi@0 2955 // The optimistic form avoids RTS->RTO cache line upgrades.
aoqi@0 2956 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
aoqi@0 2957 andcc(Rscratch, Rscratch, G0);
aoqi@0 2958 brx(Assembler::notZero, false, Assembler::pn, done);
aoqi@0 2959 delayed()->nop();
aoqi@0 2960 // m->owner == null : it's unlocked.
aoqi@0 2961 }
aoqi@0 2962
aoqi@0 2963 // Try to CAS m->owner from null to Self
aoqi@0 2964 // Invariant: if we acquire the lock then _recursions should be 0.
aoqi@0 2965 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
aoqi@0 2966 mov(G2_thread, Rscratch);
aoqi@0 2967 cas_ptr(Rmark, G0, Rscratch);
aoqi@0 2968 cmp(Rscratch, G0);
aoqi@0 2969 // ST box->displaced_header = NonZero.
aoqi@0 2970 // Any non-zero value suffices:
aoqi@0 2971 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
aoqi@0 2972 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
aoqi@0 2973 // Intentional fall-through into done
aoqi@0 2974 }
aoqi@0 2975
aoqi@0 2976 bind (done);
aoqi@0 2977 }
aoqi@0 2978
aoqi@0 2979 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
aoqi@0 2980 Register Rbox, Register Rscratch,
aoqi@0 2981 bool try_bias) {
aoqi@0 2982 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
aoqi@0 2983
aoqi@0 2984 Label done ;
aoqi@0 2985
aoqi@0 2986 if (EmitSync & 4) {
aoqi@0 2987 cmp(SP, G0);
aoqi@0 2988 return ;
aoqi@0 2989 }
aoqi@0 2990
aoqi@0 2991 if (EmitSync & 8) {
aoqi@0 2992 if (try_bias) {
aoqi@0 2993 biased_locking_exit(mark_addr, Rscratch, done);
aoqi@0 2994 }
aoqi@0 2995
aoqi@0 2996 // Test first if it is a fast recursive unlock
aoqi@0 2997 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
aoqi@0 2998 br_null_short(Rmark, Assembler::pt, done);
aoqi@0 2999
aoqi@0 3000 // Check if it is still a light weight lock, this is is true if we see
aoqi@0 3001 // the stack address of the basicLock in the markOop of the object
aoqi@0 3002 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
aoqi@0 3003 cas_ptr(mark_addr.base(), Rbox, Rmark);
aoqi@0 3004 ba(done);
aoqi@0 3005 delayed()->cmp(Rbox, Rmark);
aoqi@0 3006 bind(done);
aoqi@0 3007 return ;
aoqi@0 3008 }
aoqi@0 3009
aoqi@0 3010 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
aoqi@0 3011 // is too large performance rolls abruptly off a cliff.
aoqi@0 3012 // This could be related to inlining policies, code cache management, or
aoqi@0 3013 // I$ effects.
aoqi@0 3014 Label LStacked ;
aoqi@0 3015
aoqi@0 3016 if (try_bias) {
aoqi@0 3017 // TODO: eliminate redundant LDs of obj->mark
aoqi@0 3018 biased_locking_exit(mark_addr, Rscratch, done);
aoqi@0 3019 }
aoqi@0 3020
aoqi@0 3021 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
aoqi@0 3022 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
aoqi@0 3023 andcc(Rscratch, Rscratch, G0);
aoqi@0 3024 brx(Assembler::zero, false, Assembler::pn, done);
aoqi@0 3025 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
aoqi@0 3026 andcc(Rmark, 2, G0);
aoqi@0 3027 brx(Assembler::zero, false, Assembler::pt, LStacked);
aoqi@0 3028 delayed()->nop();
aoqi@0 3029
aoqi@0 3030 // It's inflated
aoqi@0 3031 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
aoqi@0 3032 // the ST of 0 into _owner which releases the lock. This prevents loads
aoqi@0 3033 // and stores within the critical section from reordering (floating)
aoqi@0 3034 // past the store that releases the lock. But TSO is a strong memory model
aoqi@0 3035 // and that particular flavor of barrier is a noop, so we can safely elide it.
aoqi@0 3036 // Note that we use 1-0 locking by default for the inflated case. We
aoqi@0 3037 // close the resultant (and rare) race by having contented threads in
aoqi@0 3038 // monitorenter periodically poll _owner.
aoqi@0 3039 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
aoqi@0 3040 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
aoqi@0 3041 xor3(Rscratch, G2_thread, Rscratch);
aoqi@0 3042 orcc(Rbox, Rscratch, Rbox);
aoqi@0 3043 brx(Assembler::notZero, false, Assembler::pn, done);
aoqi@0 3044 delayed()->
aoqi@0 3045 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
aoqi@0 3046 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
aoqi@0 3047 orcc(Rbox, Rscratch, G0);
aoqi@0 3048 if (EmitSync & 65536) {
aoqi@0 3049 Label LSucc ;
aoqi@0 3050 brx(Assembler::notZero, false, Assembler::pn, LSucc);
aoqi@0 3051 delayed()->nop();
aoqi@0 3052 ba(done);
aoqi@0 3053 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
aoqi@0 3054
aoqi@0 3055 bind(LSucc);
aoqi@0 3056 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
aoqi@0 3057 if (os::is_MP()) { membar (StoreLoad); }
aoqi@0 3058 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
aoqi@0 3059 andcc(Rscratch, Rscratch, G0);
aoqi@0 3060 brx(Assembler::notZero, false, Assembler::pt, done);
aoqi@0 3061 delayed()->andcc(G0, G0, G0);
aoqi@0 3062 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
aoqi@0 3063 mov(G2_thread, Rscratch);
aoqi@0 3064 cas_ptr(Rmark, G0, Rscratch);
aoqi@0 3065 // invert icc.zf and goto done
aoqi@0 3066 br_notnull(Rscratch, false, Assembler::pt, done);
aoqi@0 3067 delayed()->cmp(G0, G0);
aoqi@0 3068 ba(done);
aoqi@0 3069 delayed()->cmp(G0, 1);
aoqi@0 3070 } else {
aoqi@0 3071 brx(Assembler::notZero, false, Assembler::pn, done);
aoqi@0 3072 delayed()->nop();
aoqi@0 3073 ba(done);
aoqi@0 3074 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
aoqi@0 3075 }
aoqi@0 3076
aoqi@0 3077 bind (LStacked);
aoqi@0 3078 // Consider: we could replace the expensive CAS in the exit
aoqi@0 3079 // path with a simple ST of the displaced mark value fetched from
aoqi@0 3080 // the on-stack basiclock box. That admits a race where a thread T2
aoqi@0 3081 // in the slow lock path -- inflating with monitor M -- could race a
aoqi@0 3082 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
aoqi@0 3083 // More precisely T1 in the stack-lock unlock path could "stomp" the
aoqi@0 3084 // inflated mark value M installed by T2, resulting in an orphan
aoqi@0 3085 // object monitor M and T2 becoming stranded. We can remedy that situation
aoqi@0 3086 // by having T2 periodically poll the object's mark word using timed wait
aoqi@0 3087 // operations. If T2 discovers that a stomp has occurred it vacates
aoqi@0 3088 // the monitor M and wakes any other threads stranded on the now-orphan M.
aoqi@0 3089 // In addition the monitor scavenger, which performs deflation,
aoqi@0 3090 // would also need to check for orpan monitors and stranded threads.
aoqi@0 3091 //
aoqi@0 3092 // Finally, inflation is also used when T2 needs to assign a hashCode
aoqi@0 3093 // to O and O is stack-locked by T1. The "stomp" race could cause
aoqi@0 3094 // an assigned hashCode value to be lost. We can avoid that condition
aoqi@0 3095 // and provide the necessary hashCode stability invariants by ensuring
aoqi@0 3096 // that hashCode generation is idempotent between copying GCs.
aoqi@0 3097 // For example we could compute the hashCode of an object O as
aoqi@0 3098 // O's heap address XOR some high quality RNG value that is refreshed
aoqi@0 3099 // at GC-time. The monitor scavenger would install the hashCode
aoqi@0 3100 // found in any orphan monitors. Again, the mechanism admits a
aoqi@0 3101 // lost-update "stomp" WAW race but detects and recovers as needed.
aoqi@0 3102 //
aoqi@0 3103 // A prototype implementation showed excellent results, although
aoqi@0 3104 // the scavenger and timeout code was rather involved.
aoqi@0 3105
aoqi@0 3106 cas_ptr(mark_addr.base(), Rbox, Rscratch);
aoqi@0 3107 cmp(Rbox, Rscratch);
aoqi@0 3108 // Intentional fall through into done ...
aoqi@0 3109
aoqi@0 3110 bind(done);
aoqi@0 3111 }
aoqi@0 3112
aoqi@0 3113
aoqi@0 3114
aoqi@0 3115 void MacroAssembler::print_CPU_state() {
aoqi@0 3116 // %%%%% need to implement this
aoqi@0 3117 }
aoqi@0 3118
aoqi@0 3119 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
aoqi@0 3120 // %%%%% need to implement this
aoqi@0 3121 }
aoqi@0 3122
aoqi@0 3123 void MacroAssembler::push_IU_state() {
aoqi@0 3124 // %%%%% need to implement this
aoqi@0 3125 }
aoqi@0 3126
aoqi@0 3127
aoqi@0 3128 void MacroAssembler::pop_IU_state() {
aoqi@0 3129 // %%%%% need to implement this
aoqi@0 3130 }
aoqi@0 3131
aoqi@0 3132
aoqi@0 3133 void MacroAssembler::push_FPU_state() {
aoqi@0 3134 // %%%%% need to implement this
aoqi@0 3135 }
aoqi@0 3136
aoqi@0 3137
aoqi@0 3138 void MacroAssembler::pop_FPU_state() {
aoqi@0 3139 // %%%%% need to implement this
aoqi@0 3140 }
aoqi@0 3141
aoqi@0 3142
aoqi@0 3143 void MacroAssembler::push_CPU_state() {
aoqi@0 3144 // %%%%% need to implement this
aoqi@0 3145 }
aoqi@0 3146
aoqi@0 3147
aoqi@0 3148 void MacroAssembler::pop_CPU_state() {
aoqi@0 3149 // %%%%% need to implement this
aoqi@0 3150 }
aoqi@0 3151
aoqi@0 3152
aoqi@0 3153
aoqi@0 3154 void MacroAssembler::verify_tlab() {
aoqi@0 3155 #ifdef ASSERT
aoqi@0 3156 if (UseTLAB && VerifyOops) {
aoqi@0 3157 Label next, next2, ok;
aoqi@0 3158 Register t1 = L0;
aoqi@0 3159 Register t2 = L1;
aoqi@0 3160 Register t3 = L2;
aoqi@0 3161
aoqi@0 3162 save_frame(0);
aoqi@0 3163 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
aoqi@0 3164 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
aoqi@0 3165 or3(t1, t2, t3);
aoqi@0 3166 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
aoqi@0 3167 STOP("assert(top >= start)");
aoqi@0 3168 should_not_reach_here();
aoqi@0 3169
aoqi@0 3170 bind(next);
aoqi@0 3171 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
aoqi@0 3172 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
aoqi@0 3173 or3(t3, t2, t3);
aoqi@0 3174 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
aoqi@0 3175 STOP("assert(top <= end)");
aoqi@0 3176 should_not_reach_here();
aoqi@0 3177
aoqi@0 3178 bind(next2);
aoqi@0 3179 and3(t3, MinObjAlignmentInBytesMask, t3);
aoqi@0 3180 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
aoqi@0 3181 STOP("assert(aligned)");
aoqi@0 3182 should_not_reach_here();
aoqi@0 3183
aoqi@0 3184 bind(ok);
aoqi@0 3185 restore();
aoqi@0 3186 }
aoqi@0 3187 #endif
aoqi@0 3188 }
aoqi@0 3189
aoqi@0 3190
aoqi@0 3191 void MacroAssembler::eden_allocate(
aoqi@0 3192 Register obj, // result: pointer to object after successful allocation
aoqi@0 3193 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
aoqi@0 3194 int con_size_in_bytes, // object size in bytes if known at compile time
aoqi@0 3195 Register t1, // temp register
aoqi@0 3196 Register t2, // temp register
aoqi@0 3197 Label& slow_case // continuation point if fast allocation fails
aoqi@0 3198 ){
aoqi@0 3199 // make sure arguments make sense
aoqi@0 3200 assert_different_registers(obj, var_size_in_bytes, t1, t2);
aoqi@0 3201 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
aoqi@0 3202 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
aoqi@0 3203
aoqi@0 3204 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
aoqi@0 3205 // No allocation in the shared eden.
aoqi@0 3206 ba(slow_case);
aoqi@0 3207 delayed()->nop();
aoqi@0 3208 } else {
aoqi@0 3209 // get eden boundaries
aoqi@0 3210 // note: we need both top & top_addr!
aoqi@0 3211 const Register top_addr = t1;
aoqi@0 3212 const Register end = t2;
aoqi@0 3213
aoqi@0 3214 CollectedHeap* ch = Universe::heap();
aoqi@0 3215 set((intx)ch->top_addr(), top_addr);
aoqi@0 3216 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
aoqi@0 3217 ld_ptr(top_addr, delta, end);
aoqi@0 3218 ld_ptr(top_addr, 0, obj);
aoqi@0 3219
aoqi@0 3220 // try to allocate
aoqi@0 3221 Label retry;
aoqi@0 3222 bind(retry);
aoqi@0 3223 #ifdef ASSERT
aoqi@0 3224 // make sure eden top is properly aligned
aoqi@0 3225 {
aoqi@0 3226 Label L;
aoqi@0 3227 btst(MinObjAlignmentInBytesMask, obj);
aoqi@0 3228 br(Assembler::zero, false, Assembler::pt, L);
aoqi@0 3229 delayed()->nop();
aoqi@0 3230 STOP("eden top is not properly aligned");
aoqi@0 3231 bind(L);
aoqi@0 3232 }
aoqi@0 3233 #endif // ASSERT
aoqi@0 3234 const Register free = end;
aoqi@0 3235 sub(end, obj, free); // compute amount of free space
aoqi@0 3236 if (var_size_in_bytes->is_valid()) {
aoqi@0 3237 // size is unknown at compile time
aoqi@0 3238 cmp(free, var_size_in_bytes);
aoqi@0 3239 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
aoqi@0 3240 delayed()->add(obj, var_size_in_bytes, end);
aoqi@0 3241 } else {
aoqi@0 3242 // size is known at compile time
aoqi@0 3243 cmp(free, con_size_in_bytes);
aoqi@0 3244 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
aoqi@0 3245 delayed()->add(obj, con_size_in_bytes, end);
aoqi@0 3246 }
aoqi@0 3247 // Compare obj with the value at top_addr; if still equal, swap the value of
aoqi@0 3248 // end with the value at top_addr. If not equal, read the value at top_addr
aoqi@0 3249 // into end.
aoqi@0 3250 cas_ptr(top_addr, obj, end);
aoqi@0 3251 // if someone beat us on the allocation, try again, otherwise continue
aoqi@0 3252 cmp(obj, end);
aoqi@0 3253 brx(Assembler::notEqual, false, Assembler::pn, retry);
aoqi@0 3254 delayed()->mov(end, obj); // nop if successfull since obj == end
aoqi@0 3255
aoqi@0 3256 #ifdef ASSERT
aoqi@0 3257 // make sure eden top is properly aligned
aoqi@0 3258 {
aoqi@0 3259 Label L;
aoqi@0 3260 const Register top_addr = t1;
aoqi@0 3261
aoqi@0 3262 set((intx)ch->top_addr(), top_addr);
aoqi@0 3263 ld_ptr(top_addr, 0, top_addr);
aoqi@0 3264 btst(MinObjAlignmentInBytesMask, top_addr);
aoqi@0 3265 br(Assembler::zero, false, Assembler::pt, L);
aoqi@0 3266 delayed()->nop();
aoqi@0 3267 STOP("eden top is not properly aligned");
aoqi@0 3268 bind(L);
aoqi@0 3269 }
aoqi@0 3270 #endif // ASSERT
aoqi@0 3271 }
aoqi@0 3272 }
aoqi@0 3273
aoqi@0 3274
aoqi@0 3275 void MacroAssembler::tlab_allocate(
aoqi@0 3276 Register obj, // result: pointer to object after successful allocation
aoqi@0 3277 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
aoqi@0 3278 int con_size_in_bytes, // object size in bytes if known at compile time
aoqi@0 3279 Register t1, // temp register
aoqi@0 3280 Label& slow_case // continuation point if fast allocation fails
aoqi@0 3281 ){
aoqi@0 3282 // make sure arguments make sense
aoqi@0 3283 assert_different_registers(obj, var_size_in_bytes, t1);
aoqi@0 3284 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
aoqi@0 3285 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
aoqi@0 3286
aoqi@0 3287 const Register free = t1;
aoqi@0 3288
aoqi@0 3289 verify_tlab();
aoqi@0 3290
aoqi@0 3291 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
aoqi@0 3292
aoqi@0 3293 // calculate amount of free space
aoqi@0 3294 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
aoqi@0 3295 sub(free, obj, free);
aoqi@0 3296
aoqi@0 3297 Label done;
aoqi@0 3298 if (var_size_in_bytes == noreg) {
aoqi@0 3299 cmp(free, con_size_in_bytes);
aoqi@0 3300 } else {
aoqi@0 3301 cmp(free, var_size_in_bytes);
aoqi@0 3302 }
aoqi@0 3303 br(Assembler::less, false, Assembler::pn, slow_case);
aoqi@0 3304 // calculate the new top pointer
aoqi@0 3305 if (var_size_in_bytes == noreg) {
aoqi@0 3306 delayed()->add(obj, con_size_in_bytes, free);
aoqi@0 3307 } else {
aoqi@0 3308 delayed()->add(obj, var_size_in_bytes, free);
aoqi@0 3309 }
aoqi@0 3310
aoqi@0 3311 bind(done);
aoqi@0 3312
aoqi@0 3313 #ifdef ASSERT
aoqi@0 3314 // make sure new free pointer is properly aligned
aoqi@0 3315 {
aoqi@0 3316 Label L;
aoqi@0 3317 btst(MinObjAlignmentInBytesMask, free);
aoqi@0 3318 br(Assembler::zero, false, Assembler::pt, L);
aoqi@0 3319 delayed()->nop();
aoqi@0 3320 STOP("updated TLAB free is not properly aligned");
aoqi@0 3321 bind(L);
aoqi@0 3322 }
aoqi@0 3323 #endif // ASSERT
aoqi@0 3324
aoqi@0 3325 // update the tlab top pointer
aoqi@0 3326 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
aoqi@0 3327 verify_tlab();
aoqi@0 3328 }
aoqi@0 3329
aoqi@0 3330
aoqi@0 3331 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
aoqi@0 3332 Register top = O0;
aoqi@0 3333 Register t1 = G1;
aoqi@0 3334 Register t2 = G3;
aoqi@0 3335 Register t3 = O1;
aoqi@0 3336 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
aoqi@0 3337 Label do_refill, discard_tlab;
aoqi@0 3338
aoqi@0 3339 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
aoqi@0 3340 // No allocation in the shared eden.
aoqi@0 3341 ba(slow_case);
aoqi@0 3342 delayed()->nop();
aoqi@0 3343 }
aoqi@0 3344
aoqi@0 3345 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
aoqi@0 3346 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
aoqi@0 3347 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
aoqi@0 3348
aoqi@0 3349 // calculate amount of free space
aoqi@0 3350 sub(t1, top, t1);
aoqi@0 3351 srl_ptr(t1, LogHeapWordSize, t1);
aoqi@0 3352
aoqi@0 3353 // Retain tlab and allocate object in shared space if
aoqi@0 3354 // the amount free in the tlab is too large to discard.
aoqi@0 3355 cmp(t1, t2);
aoqi@0 3356 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
aoqi@0 3357
aoqi@0 3358 // increment waste limit to prevent getting stuck on this slow path
aoqi@0 3359 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
aoqi@0 3360 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
aoqi@0 3361 if (TLABStats) {
aoqi@0 3362 // increment number of slow_allocations
aoqi@0 3363 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
aoqi@0 3364 add(t2, 1, t2);
aoqi@0 3365 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
aoqi@0 3366 }
aoqi@0 3367 ba(try_eden);
aoqi@0 3368 delayed()->nop();
aoqi@0 3369
aoqi@0 3370 bind(discard_tlab);
aoqi@0 3371 if (TLABStats) {
aoqi@0 3372 // increment number of refills
aoqi@0 3373 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
aoqi@0 3374 add(t2, 1, t2);
aoqi@0 3375 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
aoqi@0 3376 // accumulate wastage
aoqi@0 3377 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
aoqi@0 3378 add(t2, t1, t2);
aoqi@0 3379 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
aoqi@0 3380 }
aoqi@0 3381
aoqi@0 3382 // if tlab is currently allocated (top or end != null) then
aoqi@0 3383 // fill [top, end + alignment_reserve) with array object
aoqi@0 3384 br_null_short(top, Assembler::pn, do_refill);
aoqi@0 3385
aoqi@0 3386 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
aoqi@0 3387 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
aoqi@0 3388 // set klass to intArrayKlass
aoqi@0 3389 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
aoqi@0 3390 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
aoqi@0 3391 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
aoqi@0 3392 st(t1, top, arrayOopDesc::length_offset_in_bytes());
aoqi@0 3393 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
aoqi@0 3394 ld_ptr(t2, 0, t2);
aoqi@0 3395 // store klass last. concurrent gcs assumes klass length is valid if
aoqi@0 3396 // klass field is not null.
aoqi@0 3397 store_klass(t2, top);
aoqi@0 3398 verify_oop(top);
aoqi@0 3399
aoqi@0 3400 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
aoqi@0 3401 sub(top, t1, t1); // size of tlab's allocated portion
aoqi@0 3402 incr_allocated_bytes(t1, t2, t3);
aoqi@0 3403
aoqi@0 3404 // refill the tlab with an eden allocation
aoqi@0 3405 bind(do_refill);
aoqi@0 3406 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
aoqi@0 3407 sll_ptr(t1, LogHeapWordSize, t1);
aoqi@0 3408 // allocate new tlab, address returned in top
aoqi@0 3409 eden_allocate(top, t1, 0, t2, t3, slow_case);
aoqi@0 3410
aoqi@0 3411 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
aoqi@0 3412 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
aoqi@0 3413 #ifdef ASSERT
aoqi@0 3414 // check that tlab_size (t1) is still valid
aoqi@0 3415 {
aoqi@0 3416 Label ok;
aoqi@0 3417 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
aoqi@0 3418 sll_ptr(t2, LogHeapWordSize, t2);
aoqi@0 3419 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
aoqi@0 3420 STOP("assert(t1 == tlab_size)");
aoqi@0 3421 should_not_reach_here();
aoqi@0 3422
aoqi@0 3423 bind(ok);
aoqi@0 3424 }
aoqi@0 3425 #endif // ASSERT
aoqi@0 3426 add(top, t1, top); // t1 is tlab_size
aoqi@0 3427 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
aoqi@0 3428 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
aoqi@0 3429 verify_tlab();
aoqi@0 3430 ba(retry);
aoqi@0 3431 delayed()->nop();
aoqi@0 3432 }
aoqi@0 3433
aoqi@0 3434 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
aoqi@0 3435 Register t1, Register t2) {
aoqi@0 3436 // Bump total bytes allocated by this thread
aoqi@0 3437 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
aoqi@0 3438 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
aoqi@0 3439 // v8 support has gone the way of the dodo
aoqi@0 3440 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
aoqi@0 3441 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
aoqi@0 3442 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
aoqi@0 3443 }
aoqi@0 3444
aoqi@0 3445 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
aoqi@0 3446 switch (cond) {
aoqi@0 3447 // Note some conditions are synonyms for others
aoqi@0 3448 case Assembler::never: return Assembler::always;
aoqi@0 3449 case Assembler::zero: return Assembler::notZero;
aoqi@0 3450 case Assembler::lessEqual: return Assembler::greater;
aoqi@0 3451 case Assembler::less: return Assembler::greaterEqual;
aoqi@0 3452 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
aoqi@0 3453 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
aoqi@0 3454 case Assembler::negative: return Assembler::positive;
aoqi@0 3455 case Assembler::overflowSet: return Assembler::overflowClear;
aoqi@0 3456 case Assembler::always: return Assembler::never;
aoqi@0 3457 case Assembler::notZero: return Assembler::zero;
aoqi@0 3458 case Assembler::greater: return Assembler::lessEqual;
aoqi@0 3459 case Assembler::greaterEqual: return Assembler::less;
aoqi@0 3460 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
aoqi@0 3461 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
aoqi@0 3462 case Assembler::positive: return Assembler::negative;
aoqi@0 3463 case Assembler::overflowClear: return Assembler::overflowSet;
aoqi@0 3464 }
aoqi@0 3465
aoqi@0 3466 ShouldNotReachHere(); return Assembler::overflowClear;
aoqi@0 3467 }
aoqi@0 3468
aoqi@0 3469 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
aoqi@0 3470 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
aoqi@0 3471 Condition negated_cond = negate_condition(cond);
aoqi@0 3472 Label L;
aoqi@0 3473 brx(negated_cond, false, Assembler::pt, L);
aoqi@0 3474 delayed()->nop();
aoqi@0 3475 inc_counter(counter_ptr, Rtmp1, Rtmp2);
aoqi@0 3476 bind(L);
aoqi@0 3477 }
aoqi@0 3478
aoqi@0 3479 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
aoqi@0 3480 AddressLiteral addrlit(counter_addr);
aoqi@0 3481 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
aoqi@0 3482 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
aoqi@0 3483 ld(addr, Rtmp2);
aoqi@0 3484 inc(Rtmp2);
aoqi@0 3485 st(Rtmp2, addr);
aoqi@0 3486 }
aoqi@0 3487
aoqi@0 3488 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
aoqi@0 3489 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
aoqi@0 3490 }
aoqi@0 3491
aoqi@0 3492 SkipIfEqual::SkipIfEqual(
aoqi@0 3493 MacroAssembler* masm, Register temp, const bool* flag_addr,
aoqi@0 3494 Assembler::Condition condition) {
aoqi@0 3495 _masm = masm;
aoqi@0 3496 AddressLiteral flag(flag_addr);
aoqi@0 3497 _masm->sethi(flag, temp);
aoqi@0 3498 _masm->ldub(temp, flag.low10(), temp);
aoqi@0 3499 _masm->tst(temp);
aoqi@0 3500 _masm->br(condition, false, Assembler::pt, _label);
aoqi@0 3501 _masm->delayed()->nop();
aoqi@0 3502 }
aoqi@0 3503
aoqi@0 3504 SkipIfEqual::~SkipIfEqual() {
aoqi@0 3505 _masm->bind(_label);
aoqi@0 3506 }
aoqi@0 3507
aoqi@0 3508
aoqi@0 3509 // Writes to stack successive pages until offset reached to check for
aoqi@0 3510 // stack overflow + shadow pages. This clobbers tsp and scratch.
aoqi@0 3511 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
aoqi@0 3512 Register Rscratch) {
aoqi@0 3513 // Use stack pointer in temp stack pointer
aoqi@0 3514 mov(SP, Rtsp);
aoqi@0 3515
aoqi@0 3516 // Bang stack for total size given plus stack shadow page size.
aoqi@0 3517 // Bang one page at a time because a large size can overflow yellow and
aoqi@0 3518 // red zones (the bang will fail but stack overflow handling can't tell that
aoqi@0 3519 // it was a stack overflow bang vs a regular segv).
aoqi@0 3520 int offset = os::vm_page_size();
aoqi@0 3521 Register Roffset = Rscratch;
aoqi@0 3522
aoqi@0 3523 Label loop;
aoqi@0 3524 bind(loop);
aoqi@0 3525 set((-offset)+STACK_BIAS, Rscratch);
aoqi@0 3526 st(G0, Rtsp, Rscratch);
aoqi@0 3527 set(offset, Roffset);
aoqi@0 3528 sub(Rsize, Roffset, Rsize);
aoqi@0 3529 cmp(Rsize, G0);
aoqi@0 3530 br(Assembler::greater, false, Assembler::pn, loop);
aoqi@0 3531 delayed()->sub(Rtsp, Roffset, Rtsp);
aoqi@0 3532
aoqi@0 3533 // Bang down shadow pages too.
aoqi@0 3534 // At this point, (tmp-0) is the last address touched, so don't
aoqi@0 3535 // touch it again. (It was touched as (tmp-pagesize) but then tmp
aoqi@0 3536 // was post-decremented.) Skip this address by starting at i=1, and
aoqi@0 3537 // touch a few more pages below. N.B. It is important to touch all
aoqi@0 3538 // the way down to and including i=StackShadowPages.
aoqi@0 3539 for (int i = 1; i < StackShadowPages; i++) {
aoqi@0 3540 set((-i*offset)+STACK_BIAS, Rscratch);
aoqi@0 3541 st(G0, Rtsp, Rscratch);
aoqi@0 3542 }
aoqi@0 3543 }
aoqi@0 3544
aoqi@0 3545 ///////////////////////////////////////////////////////////////////////////////////
aoqi@0 3546 #if INCLUDE_ALL_GCS
aoqi@0 3547
aoqi@0 3548 static address satb_log_enqueue_with_frame = NULL;
aoqi@0 3549 static u_char* satb_log_enqueue_with_frame_end = NULL;
aoqi@0 3550
aoqi@0 3551 static address satb_log_enqueue_frameless = NULL;
aoqi@0 3552 static u_char* satb_log_enqueue_frameless_end = NULL;
aoqi@0 3553
aoqi@0 3554 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
aoqi@0 3555
aoqi@0 3556 static void generate_satb_log_enqueue(bool with_frame) {
aoqi@0 3557 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
aoqi@0 3558 CodeBuffer buf(bb);
aoqi@0 3559 MacroAssembler masm(&buf);
aoqi@0 3560
aoqi@0 3561 #define __ masm.
aoqi@0 3562
aoqi@0 3563 address start = __ pc();
aoqi@0 3564 Register pre_val;
aoqi@0 3565
aoqi@0 3566 Label refill, restart;
aoqi@0 3567 if (with_frame) {
aoqi@0 3568 __ save_frame(0);
aoqi@0 3569 pre_val = I0; // Was O0 before the save.
aoqi@0 3570 } else {
aoqi@0 3571 pre_val = O0;
aoqi@0 3572 }
aoqi@0 3573
aoqi@0 3574 int satb_q_index_byte_offset =
aoqi@0 3575 in_bytes(JavaThread::satb_mark_queue_offset() +
aoqi@0 3576 PtrQueue::byte_offset_of_index());
aoqi@0 3577
aoqi@0 3578 int satb_q_buf_byte_offset =
aoqi@0 3579 in_bytes(JavaThread::satb_mark_queue_offset() +
aoqi@0 3580 PtrQueue::byte_offset_of_buf());
aoqi@0 3581
aoqi@0 3582 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
aoqi@0 3583 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
aoqi@0 3584 "check sizes in assembly below");
aoqi@0 3585
aoqi@0 3586 __ bind(restart);
aoqi@0 3587
aoqi@0 3588 // Load the index into the SATB buffer. PtrQueue::_index is a size_t
aoqi@0 3589 // so ld_ptr is appropriate.
aoqi@0 3590 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
aoqi@0 3591
aoqi@0 3592 // index == 0?
aoqi@0 3593 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
aoqi@0 3594
aoqi@0 3595 __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
aoqi@0 3596 __ sub(L0, oopSize, L0);
aoqi@0 3597
aoqi@0 3598 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
aoqi@0 3599 if (!with_frame) {
aoqi@0 3600 // Use return-from-leaf
aoqi@0 3601 __ retl();
aoqi@0 3602 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
aoqi@0 3603 } else {
aoqi@0 3604 // Not delayed.
aoqi@0 3605 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
aoqi@0 3606 }
aoqi@0 3607 if (with_frame) {
aoqi@0 3608 __ ret();
aoqi@0 3609 __ delayed()->restore();
aoqi@0 3610 }
aoqi@0 3611 __ bind(refill);
aoqi@0 3612
aoqi@0 3613 address handle_zero =
aoqi@0 3614 CAST_FROM_FN_PTR(address,
aoqi@0 3615 &SATBMarkQueueSet::handle_zero_index_for_thread);
aoqi@0 3616 // This should be rare enough that we can afford to save all the
aoqi@0 3617 // scratch registers that the calling context might be using.
aoqi@0 3618 __ mov(G1_scratch, L0);
aoqi@0 3619 __ mov(G3_scratch, L1);
aoqi@0 3620 __ mov(G4, L2);
aoqi@0 3621 // We need the value of O0 above (for the write into the buffer), so we
aoqi@0 3622 // save and restore it.
aoqi@0 3623 __ mov(O0, L3);
aoqi@0 3624 // Since the call will overwrite O7, we save and restore that, as well.
aoqi@0 3625 __ mov(O7, L4);
aoqi@0 3626 __ call_VM_leaf(L5, handle_zero, G2_thread);
aoqi@0 3627 __ mov(L0, G1_scratch);
aoqi@0 3628 __ mov(L1, G3_scratch);
aoqi@0 3629 __ mov(L2, G4);
aoqi@0 3630 __ mov(L3, O0);
aoqi@0 3631 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
aoqi@0 3632 __ delayed()->mov(L4, O7);
aoqi@0 3633
aoqi@0 3634 if (with_frame) {
aoqi@0 3635 satb_log_enqueue_with_frame = start;
aoqi@0 3636 satb_log_enqueue_with_frame_end = __ pc();
aoqi@0 3637 } else {
aoqi@0 3638 satb_log_enqueue_frameless = start;
aoqi@0 3639 satb_log_enqueue_frameless_end = __ pc();
aoqi@0 3640 }
aoqi@0 3641
aoqi@0 3642 #undef __
aoqi@0 3643 }
aoqi@0 3644
aoqi@0 3645 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
aoqi@0 3646 if (with_frame) {
aoqi@0 3647 if (satb_log_enqueue_with_frame == 0) {
aoqi@0 3648 generate_satb_log_enqueue(with_frame);
aoqi@0 3649 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
aoqi@0 3650 if (G1SATBPrintStubs) {
aoqi@0 3651 tty->print_cr("Generated with-frame satb enqueue:");
aoqi@0 3652 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
aoqi@0 3653 satb_log_enqueue_with_frame_end,
aoqi@0 3654 tty);
aoqi@0 3655 }
aoqi@0 3656 }
aoqi@0 3657 } else {
aoqi@0 3658 if (satb_log_enqueue_frameless == 0) {
aoqi@0 3659 generate_satb_log_enqueue(with_frame);
aoqi@0 3660 assert(satb_log_enqueue_frameless != 0, "postcondition.");
aoqi@0 3661 if (G1SATBPrintStubs) {
aoqi@0 3662 tty->print_cr("Generated frameless satb enqueue:");
aoqi@0 3663 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
aoqi@0 3664 satb_log_enqueue_frameless_end,
aoqi@0 3665 tty);
aoqi@0 3666 }
aoqi@0 3667 }
aoqi@0 3668 }
aoqi@0 3669 }
aoqi@0 3670
aoqi@0 3671 void MacroAssembler::g1_write_barrier_pre(Register obj,
aoqi@0 3672 Register index,
aoqi@0 3673 int offset,
aoqi@0 3674 Register pre_val,
aoqi@0 3675 Register tmp,
aoqi@0 3676 bool preserve_o_regs) {
aoqi@0 3677 Label filtered;
aoqi@0 3678
aoqi@0 3679 if (obj == noreg) {
aoqi@0 3680 // We are not loading the previous value so make
aoqi@0 3681 // sure that we don't trash the value in pre_val
aoqi@0 3682 // with the code below.
aoqi@0 3683 assert_different_registers(pre_val, tmp);
aoqi@0 3684 } else {
aoqi@0 3685 // We will be loading the previous value
aoqi@0 3686 // in this code so...
aoqi@0 3687 assert(offset == 0 || index == noreg, "choose one");
aoqi@0 3688 assert(pre_val == noreg, "check this code");
aoqi@0 3689 }
aoqi@0 3690
aoqi@0 3691 // Is marking active?
aoqi@0 3692 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
aoqi@0 3693 ld(G2,
aoqi@0 3694 in_bytes(JavaThread::satb_mark_queue_offset() +
aoqi@0 3695 PtrQueue::byte_offset_of_active()),
aoqi@0 3696 tmp);
aoqi@0 3697 } else {
aoqi@0 3698 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
aoqi@0 3699 "Assumption");
aoqi@0 3700 ldsb(G2,
aoqi@0 3701 in_bytes(JavaThread::satb_mark_queue_offset() +
aoqi@0 3702 PtrQueue::byte_offset_of_active()),
aoqi@0 3703 tmp);
aoqi@0 3704 }
aoqi@0 3705
aoqi@0 3706 // Is marking active?
aoqi@0 3707 cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
aoqi@0 3708
aoqi@0 3709 // Do we need to load the previous value?
aoqi@0 3710 if (obj != noreg) {
aoqi@0 3711 // Load the previous value...
aoqi@0 3712 if (index == noreg) {
aoqi@0 3713 if (Assembler::is_simm13(offset)) {
aoqi@0 3714 load_heap_oop(obj, offset, tmp);
aoqi@0 3715 } else {
aoqi@0 3716 set(offset, tmp);
aoqi@0 3717 load_heap_oop(obj, tmp, tmp);
aoqi@0 3718 }
aoqi@0 3719 } else {
aoqi@0 3720 load_heap_oop(obj, index, tmp);
aoqi@0 3721 }
aoqi@0 3722 // Previous value has been loaded into tmp
aoqi@0 3723 pre_val = tmp;
aoqi@0 3724 }
aoqi@0 3725
aoqi@0 3726 assert(pre_val != noreg, "must have a real register");
aoqi@0 3727
aoqi@0 3728 // Is the previous value null?
aoqi@0 3729 cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
aoqi@0 3730
aoqi@0 3731 // OK, it's not filtered, so we'll need to call enqueue. In the normal
aoqi@0 3732 // case, pre_val will be a scratch G-reg, but there are some cases in
aoqi@0 3733 // which it's an O-reg. In the first case, do a normal call. In the
aoqi@0 3734 // latter, do a save here and call the frameless version.
aoqi@0 3735
aoqi@0 3736 guarantee(pre_val->is_global() || pre_val->is_out(),
aoqi@0 3737 "Or we need to think harder.");
aoqi@0 3738
aoqi@0 3739 if (pre_val->is_global() && !preserve_o_regs) {
aoqi@0 3740 generate_satb_log_enqueue_if_necessary(true); // with frame
aoqi@0 3741
aoqi@0 3742 call(satb_log_enqueue_with_frame);
aoqi@0 3743 delayed()->mov(pre_val, O0);
aoqi@0 3744 } else {
aoqi@0 3745 generate_satb_log_enqueue_if_necessary(false); // frameless
aoqi@0 3746
aoqi@0 3747 save_frame(0);
aoqi@0 3748 call(satb_log_enqueue_frameless);
aoqi@0 3749 delayed()->mov(pre_val->after_save(), O0);
aoqi@0 3750 restore();
aoqi@0 3751 }
aoqi@0 3752
aoqi@0 3753 bind(filtered);
aoqi@0 3754 }
aoqi@0 3755
aoqi@0 3756 static address dirty_card_log_enqueue = 0;
aoqi@0 3757 static u_char* dirty_card_log_enqueue_end = 0;
aoqi@0 3758
aoqi@0 3759 // This gets to assume that o0 contains the object address.
aoqi@0 3760 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
aoqi@0 3761 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
aoqi@0 3762 CodeBuffer buf(bb);
aoqi@0 3763 MacroAssembler masm(&buf);
aoqi@0 3764 #define __ masm.
aoqi@0 3765 address start = __ pc();
aoqi@0 3766
aoqi@0 3767 Label not_already_dirty, restart, refill, young_card;
aoqi@0 3768
aoqi@0 3769 #ifdef _LP64
aoqi@0 3770 __ srlx(O0, CardTableModRefBS::card_shift, O0);
aoqi@0 3771 #else
aoqi@0 3772 __ srl(O0, CardTableModRefBS::card_shift, O0);
aoqi@0 3773 #endif
aoqi@0 3774 AddressLiteral addrlit(byte_map_base);
aoqi@0 3775 __ set(addrlit, O1); // O1 := <card table base>
aoqi@0 3776 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
aoqi@0 3777
aoqi@0 3778 __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
aoqi@0 3779
aoqi@0 3780 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
aoqi@0 3781 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
aoqi@0 3782
aoqi@0 3783 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
aoqi@0 3784 __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
aoqi@0 3785
aoqi@0 3786 __ bind(young_card);
aoqi@0 3787 // We didn't take the branch, so we're already dirty: return.
aoqi@0 3788 // Use return-from-leaf
aoqi@0 3789 __ retl();
aoqi@0 3790 __ delayed()->nop();
aoqi@0 3791
aoqi@0 3792 // Not dirty.
aoqi@0 3793 __ bind(not_already_dirty);
aoqi@0 3794
aoqi@0 3795 // Get O0 + O1 into a reg by itself
aoqi@0 3796 __ add(O0, O1, O3);
aoqi@0 3797
aoqi@0 3798 // First, dirty it.
aoqi@0 3799 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
aoqi@0 3800
aoqi@0 3801 int dirty_card_q_index_byte_offset =
aoqi@0 3802 in_bytes(JavaThread::dirty_card_queue_offset() +
aoqi@0 3803 PtrQueue::byte_offset_of_index());
aoqi@0 3804 int dirty_card_q_buf_byte_offset =
aoqi@0 3805 in_bytes(JavaThread::dirty_card_queue_offset() +
aoqi@0 3806 PtrQueue::byte_offset_of_buf());
aoqi@0 3807 __ bind(restart);
aoqi@0 3808
aoqi@0 3809 // Load the index into the update buffer. PtrQueue::_index is
aoqi@0 3810 // a size_t so ld_ptr is appropriate here.
aoqi@0 3811 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
aoqi@0 3812
aoqi@0 3813 // index == 0?
aoqi@0 3814 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
aoqi@0 3815
aoqi@0 3816 __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
aoqi@0 3817 __ sub(L0, oopSize, L0);
aoqi@0 3818
aoqi@0 3819 __ st_ptr(O3, L1, L0); // [_buf + index] := I0
aoqi@0 3820 // Use return-from-leaf
aoqi@0 3821 __ retl();
aoqi@0 3822 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
aoqi@0 3823
aoqi@0 3824 __ bind(refill);
aoqi@0 3825 address handle_zero =
aoqi@0 3826 CAST_FROM_FN_PTR(address,
aoqi@0 3827 &DirtyCardQueueSet::handle_zero_index_for_thread);
aoqi@0 3828 // This should be rare enough that we can afford to save all the
aoqi@0 3829 // scratch registers that the calling context might be using.
aoqi@0 3830 __ mov(G1_scratch, L3);
aoqi@0 3831 __ mov(G3_scratch, L5);
aoqi@0 3832 // We need the value of O3 above (for the write into the buffer), so we
aoqi@0 3833 // save and restore it.
aoqi@0 3834 __ mov(O3, L6);
aoqi@0 3835 // Since the call will overwrite O7, we save and restore that, as well.
aoqi@0 3836 __ mov(O7, L4);
aoqi@0 3837
aoqi@0 3838 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
aoqi@0 3839 __ mov(L3, G1_scratch);
aoqi@0 3840 __ mov(L5, G3_scratch);
aoqi@0 3841 __ mov(L6, O3);
aoqi@0 3842 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
aoqi@0 3843 __ delayed()->mov(L4, O7);
aoqi@0 3844
aoqi@0 3845 dirty_card_log_enqueue = start;
aoqi@0 3846 dirty_card_log_enqueue_end = __ pc();
aoqi@0 3847 // XXX Should have a guarantee here about not going off the end!
aoqi@0 3848 // Does it already do so? Do an experiment...
aoqi@0 3849
aoqi@0 3850 #undef __
aoqi@0 3851
aoqi@0 3852 }
aoqi@0 3853
aoqi@0 3854 static inline void
aoqi@0 3855 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
aoqi@0 3856 if (dirty_card_log_enqueue == 0) {
aoqi@0 3857 generate_dirty_card_log_enqueue(byte_map_base);
aoqi@0 3858 assert(dirty_card_log_enqueue != 0, "postcondition.");
aoqi@0 3859 if (G1SATBPrintStubs) {
aoqi@0 3860 tty->print_cr("Generated dirty_card enqueue:");
aoqi@0 3861 Disassembler::decode((u_char*)dirty_card_log_enqueue,
aoqi@0 3862 dirty_card_log_enqueue_end,
aoqi@0 3863 tty);
aoqi@0 3864 }
aoqi@0 3865 }
aoqi@0 3866 }
aoqi@0 3867
aoqi@0 3868
aoqi@0 3869 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
aoqi@0 3870
aoqi@0 3871 Label filtered;
aoqi@0 3872 MacroAssembler* post_filter_masm = this;
aoqi@0 3873
aoqi@0 3874 if (new_val == G0) return;
aoqi@0 3875
aoqi@0 3876 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
aoqi@0 3877 assert(bs->kind() == BarrierSet::G1SATBCT ||
aoqi@0 3878 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
aoqi@0 3879
aoqi@0 3880 if (G1RSBarrierRegionFilter) {
aoqi@0 3881 xor3(store_addr, new_val, tmp);
aoqi@0 3882 #ifdef _LP64
aoqi@0 3883 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
aoqi@0 3884 #else
aoqi@0 3885 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
aoqi@0 3886 #endif
aoqi@0 3887
aoqi@0 3888 // XXX Should I predict this taken or not? Does it matter?
aoqi@0 3889 cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
aoqi@0 3890 }
aoqi@0 3891
aoqi@0 3892 // If the "store_addr" register is an "in" or "local" register, move it to
aoqi@0 3893 // a scratch reg so we can pass it as an argument.
aoqi@0 3894 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
aoqi@0 3895 // Pick a scratch register different from "tmp".
aoqi@0 3896 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
aoqi@0 3897 // Make sure we use up the delay slot!
aoqi@0 3898 if (use_scr) {
aoqi@0 3899 post_filter_masm->mov(store_addr, scr);
aoqi@0 3900 } else {
aoqi@0 3901 post_filter_masm->nop();
aoqi@0 3902 }
aoqi@0 3903 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
aoqi@0 3904 save_frame(0);
aoqi@0 3905 call(dirty_card_log_enqueue);
aoqi@0 3906 if (use_scr) {
aoqi@0 3907 delayed()->mov(scr, O0);
aoqi@0 3908 } else {
aoqi@0 3909 delayed()->mov(store_addr->after_save(), O0);
aoqi@0 3910 }
aoqi@0 3911 restore();
aoqi@0 3912
aoqi@0 3913 bind(filtered);
aoqi@0 3914 }
aoqi@0 3915
aoqi@0 3916 #endif // INCLUDE_ALL_GCS
aoqi@0 3917 ///////////////////////////////////////////////////////////////////////////////////
aoqi@0 3918
aoqi@0 3919 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
aoqi@0 3920 // If we're writing constant NULL, we can skip the write barrier.
aoqi@0 3921 if (new_val == G0) return;
aoqi@0 3922 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
aoqi@0 3923 assert(bs->kind() == BarrierSet::CardTableModRef ||
aoqi@0 3924 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
aoqi@0 3925 card_table_write(bs->byte_map_base, tmp, store_addr);
aoqi@0 3926 }
aoqi@0 3927
aoqi@0 3928 void MacroAssembler::load_klass(Register src_oop, Register klass) {
aoqi@0 3929 // The number of bytes in this code is used by
aoqi@0 3930 // MachCallDynamicJavaNode::ret_addr_offset()
aoqi@0 3931 // if this changes, change that.
aoqi@0 3932 if (UseCompressedClassPointers) {
aoqi@0 3933 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
aoqi@0 3934 decode_klass_not_null(klass);
aoqi@0 3935 } else {
aoqi@0 3936 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
aoqi@0 3937 }
aoqi@0 3938 }
aoqi@0 3939
aoqi@0 3940 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
aoqi@0 3941 if (UseCompressedClassPointers) {
aoqi@0 3942 assert(dst_oop != klass, "not enough registers");
aoqi@0 3943 encode_klass_not_null(klass);
aoqi@0 3944 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
aoqi@0 3945 } else {
aoqi@0 3946 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
aoqi@0 3947 }
aoqi@0 3948 }
aoqi@0 3949
aoqi@0 3950 void MacroAssembler::store_klass_gap(Register s, Register d) {
aoqi@0 3951 if (UseCompressedClassPointers) {
aoqi@0 3952 assert(s != d, "not enough registers");
aoqi@0 3953 st(s, d, oopDesc::klass_gap_offset_in_bytes());
aoqi@0 3954 }
aoqi@0 3955 }
aoqi@0 3956
aoqi@0 3957 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
aoqi@0 3958 if (UseCompressedOops) {
aoqi@0 3959 lduw(s, d);
aoqi@0 3960 decode_heap_oop(d);
aoqi@0 3961 } else {
aoqi@0 3962 ld_ptr(s, d);
aoqi@0 3963 }
aoqi@0 3964 }
aoqi@0 3965
aoqi@0 3966 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
aoqi@0 3967 if (UseCompressedOops) {
aoqi@0 3968 lduw(s1, s2, d);
aoqi@0 3969 decode_heap_oop(d, d);
aoqi@0 3970 } else {
aoqi@0 3971 ld_ptr(s1, s2, d);
aoqi@0 3972 }
aoqi@0 3973 }
aoqi@0 3974
aoqi@0 3975 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
aoqi@0 3976 if (UseCompressedOops) {
aoqi@0 3977 lduw(s1, simm13a, d);
aoqi@0 3978 decode_heap_oop(d, d);
aoqi@0 3979 } else {
aoqi@0 3980 ld_ptr(s1, simm13a, d);
aoqi@0 3981 }
aoqi@0 3982 }
aoqi@0 3983
aoqi@0 3984 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
aoqi@0 3985 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
aoqi@0 3986 else load_heap_oop(s1, s2.as_register(), d);
aoqi@0 3987 }
aoqi@0 3988
aoqi@0 3989 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
aoqi@0 3990 if (UseCompressedOops) {
aoqi@0 3991 assert(s1 != d && s2 != d, "not enough registers");
aoqi@0 3992 encode_heap_oop(d);
aoqi@0 3993 st(d, s1, s2);
aoqi@0 3994 } else {
aoqi@0 3995 st_ptr(d, s1, s2);
aoqi@0 3996 }
aoqi@0 3997 }
aoqi@0 3998
aoqi@0 3999 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
aoqi@0 4000 if (UseCompressedOops) {
aoqi@0 4001 assert(s1 != d, "not enough registers");
aoqi@0 4002 encode_heap_oop(d);
aoqi@0 4003 st(d, s1, simm13a);
aoqi@0 4004 } else {
aoqi@0 4005 st_ptr(d, s1, simm13a);
aoqi@0 4006 }
aoqi@0 4007 }
aoqi@0 4008
aoqi@0 4009 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
aoqi@0 4010 if (UseCompressedOops) {
aoqi@0 4011 assert(a.base() != d, "not enough registers");
aoqi@0 4012 encode_heap_oop(d);
aoqi@0 4013 st(d, a, offset);
aoqi@0 4014 } else {
aoqi@0 4015 st_ptr(d, a, offset);
aoqi@0 4016 }
aoqi@0 4017 }
aoqi@0 4018
aoqi@0 4019
aoqi@0 4020 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
aoqi@0 4021 assert (UseCompressedOops, "must be compressed");
aoqi@0 4022 assert (Universe::heap() != NULL, "java heap should be initialized");
aoqi@0 4023 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4024 verify_oop(src);
aoqi@0 4025 if (Universe::narrow_oop_base() == NULL) {
aoqi@0 4026 srlx(src, LogMinObjAlignmentInBytes, dst);
aoqi@0 4027 return;
aoqi@0 4028 }
aoqi@0 4029 Label done;
aoqi@0 4030 if (src == dst) {
aoqi@0 4031 // optimize for frequent case src == dst
aoqi@0 4032 bpr(rc_nz, true, Assembler::pt, src, done);
aoqi@0 4033 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
aoqi@0 4034 bind(done);
aoqi@0 4035 srlx(src, LogMinObjAlignmentInBytes, dst);
aoqi@0 4036 } else {
aoqi@0 4037 bpr(rc_z, false, Assembler::pn, src, done);
aoqi@0 4038 delayed() -> mov(G0, dst);
aoqi@0 4039 // could be moved before branch, and annulate delay,
aoqi@0 4040 // but may add some unneeded work decoding null
aoqi@0 4041 sub(src, G6_heapbase, dst);
aoqi@0 4042 srlx(dst, LogMinObjAlignmentInBytes, dst);
aoqi@0 4043 bind(done);
aoqi@0 4044 }
aoqi@0 4045 }
aoqi@0 4046
aoqi@0 4047
aoqi@0 4048 void MacroAssembler::encode_heap_oop_not_null(Register r) {
aoqi@0 4049 assert (UseCompressedOops, "must be compressed");
aoqi@0 4050 assert (Universe::heap() != NULL, "java heap should be initialized");
aoqi@0 4051 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4052 verify_oop(r);
aoqi@0 4053 if (Universe::narrow_oop_base() != NULL)
aoqi@0 4054 sub(r, G6_heapbase, r);
aoqi@0 4055 srlx(r, LogMinObjAlignmentInBytes, r);
aoqi@0 4056 }
aoqi@0 4057
aoqi@0 4058 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
aoqi@0 4059 assert (UseCompressedOops, "must be compressed");
aoqi@0 4060 assert (Universe::heap() != NULL, "java heap should be initialized");
aoqi@0 4061 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4062 verify_oop(src);
aoqi@0 4063 if (Universe::narrow_oop_base() == NULL) {
aoqi@0 4064 srlx(src, LogMinObjAlignmentInBytes, dst);
aoqi@0 4065 } else {
aoqi@0 4066 sub(src, G6_heapbase, dst);
aoqi@0 4067 srlx(dst, LogMinObjAlignmentInBytes, dst);
aoqi@0 4068 }
aoqi@0 4069 }
aoqi@0 4070
aoqi@0 4071 // Same algorithm as oops.inline.hpp decode_heap_oop.
aoqi@0 4072 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
aoqi@0 4073 assert (UseCompressedOops, "must be compressed");
aoqi@0 4074 assert (Universe::heap() != NULL, "java heap should be initialized");
aoqi@0 4075 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4076 sllx(src, LogMinObjAlignmentInBytes, dst);
aoqi@0 4077 if (Universe::narrow_oop_base() != NULL) {
aoqi@0 4078 Label done;
aoqi@0 4079 bpr(rc_nz, true, Assembler::pt, dst, done);
aoqi@0 4080 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
aoqi@0 4081 bind(done);
aoqi@0 4082 }
aoqi@0 4083 verify_oop(dst);
aoqi@0 4084 }
aoqi@0 4085
aoqi@0 4086 void MacroAssembler::decode_heap_oop_not_null(Register r) {
aoqi@0 4087 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
aoqi@0 4088 // pd_code_size_limit.
aoqi@0 4089 // Also do not verify_oop as this is called by verify_oop.
aoqi@0 4090 assert (UseCompressedOops, "must be compressed");
aoqi@0 4091 assert (Universe::heap() != NULL, "java heap should be initialized");
aoqi@0 4092 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4093 sllx(r, LogMinObjAlignmentInBytes, r);
aoqi@0 4094 if (Universe::narrow_oop_base() != NULL)
aoqi@0 4095 add(r, G6_heapbase, r);
aoqi@0 4096 }
aoqi@0 4097
aoqi@0 4098 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
aoqi@0 4099 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
aoqi@0 4100 // pd_code_size_limit.
aoqi@0 4101 // Also do not verify_oop as this is called by verify_oop.
aoqi@0 4102 assert (UseCompressedOops, "must be compressed");
aoqi@0 4103 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
aoqi@0 4104 sllx(src, LogMinObjAlignmentInBytes, dst);
aoqi@0 4105 if (Universe::narrow_oop_base() != NULL)
aoqi@0 4106 add(dst, G6_heapbase, dst);
aoqi@0 4107 }
aoqi@0 4108
aoqi@0 4109 void MacroAssembler::encode_klass_not_null(Register r) {
aoqi@0 4110 assert (UseCompressedClassPointers, "must be compressed");
aoqi@0 4111 if (Universe::narrow_klass_base() != NULL) {
aoqi@0 4112 assert(r != G6_heapbase, "bad register choice");
aoqi@0 4113 set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
aoqi@0 4114 sub(r, G6_heapbase, r);
aoqi@0 4115 if (Universe::narrow_klass_shift() != 0) {
aoqi@0 4116 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
aoqi@0 4117 srlx(r, LogKlassAlignmentInBytes, r);
aoqi@0 4118 }
aoqi@0 4119 reinit_heapbase();
aoqi@0 4120 } else {
aoqi@0 4121 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
aoqi@0 4122 srlx(r, Universe::narrow_klass_shift(), r);
aoqi@0 4123 }
aoqi@0 4124 }
aoqi@0 4125
aoqi@0 4126 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
aoqi@0 4127 if (src == dst) {
aoqi@0 4128 encode_klass_not_null(src);
aoqi@0 4129 } else {
aoqi@0 4130 assert (UseCompressedClassPointers, "must be compressed");
aoqi@0 4131 if (Universe::narrow_klass_base() != NULL) {
aoqi@0 4132 set((intptr_t)Universe::narrow_klass_base(), dst);
aoqi@0 4133 sub(src, dst, dst);
aoqi@0 4134 if (Universe::narrow_klass_shift() != 0) {
aoqi@0 4135 srlx(dst, LogKlassAlignmentInBytes, dst);
aoqi@0 4136 }
aoqi@0 4137 } else {
aoqi@0 4138 // shift src into dst
aoqi@0 4139 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
aoqi@0 4140 srlx(src, Universe::narrow_klass_shift(), dst);
aoqi@0 4141 }
aoqi@0 4142 }
aoqi@0 4143 }
aoqi@0 4144
aoqi@0 4145 // Function instr_size_for_decode_klass_not_null() counts the instructions
aoqi@0 4146 // generated by decode_klass_not_null() and reinit_heapbase(). Hence, if
aoqi@0 4147 // the instructions they generate change, then this method needs to be updated.
aoqi@0 4148 int MacroAssembler::instr_size_for_decode_klass_not_null() {
aoqi@0 4149 assert (UseCompressedClassPointers, "only for compressed klass ptrs");
aoqi@0 4150 int num_instrs = 1; // shift src,dst or add
aoqi@0 4151 if (Universe::narrow_klass_base() != NULL) {
aoqi@0 4152 // set + add + set
aoqi@0 4153 num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
aoqi@0 4154 insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
aoqi@0 4155 if (Universe::narrow_klass_shift() != 0) {
aoqi@0 4156 num_instrs += 1; // sllx
aoqi@0 4157 }
aoqi@0 4158 }
aoqi@0 4159 return num_instrs * BytesPerInstWord;
aoqi@0 4160 }
aoqi@0 4161
aoqi@0 4162 // !!! If the instructions that get generated here change then function
aoqi@0 4163 // instr_size_for_decode_klass_not_null() needs to get updated.
aoqi@0 4164 void MacroAssembler::decode_klass_not_null(Register r) {
aoqi@0 4165 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
aoqi@0 4166 // pd_code_size_limit.
aoqi@0 4167 assert (UseCompressedClassPointers, "must be compressed");
aoqi@0 4168 if (Universe::narrow_klass_base() != NULL) {
aoqi@0 4169 assert(r != G6_heapbase, "bad register choice");
aoqi@0 4170 set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
aoqi@0 4171 if (Universe::narrow_klass_shift() != 0)
aoqi@0 4172 sllx(r, LogKlassAlignmentInBytes, r);
aoqi@0 4173 add(r, G6_heapbase, r);
aoqi@0 4174 reinit_heapbase();
aoqi@0 4175 } else {
aoqi@0 4176 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
aoqi@0 4177 sllx(r, Universe::narrow_klass_shift(), r);
aoqi@0 4178 }
aoqi@0 4179 }
aoqi@0 4180
aoqi@0 4181 void MacroAssembler::decode_klass_not_null(Register src, Register dst) {
aoqi@0 4182 if (src == dst) {
aoqi@0 4183 decode_klass_not_null(src);
aoqi@0 4184 } else {
aoqi@0 4185 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
aoqi@0 4186 // pd_code_size_limit.
aoqi@0 4187 assert (UseCompressedClassPointers, "must be compressed");
aoqi@0 4188 if (Universe::narrow_klass_base() != NULL) {
aoqi@0 4189 if (Universe::narrow_klass_shift() != 0) {
aoqi@0 4190 assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
aoqi@0 4191 set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
aoqi@0 4192 sllx(src, LogKlassAlignmentInBytes, dst);
aoqi@0 4193 add(dst, G6_heapbase, dst);
aoqi@0 4194 reinit_heapbase();
aoqi@0 4195 } else {
aoqi@0 4196 set((intptr_t)Universe::narrow_klass_base(), dst);
aoqi@0 4197 add(src, dst, dst);
aoqi@0 4198 }
aoqi@0 4199 } else {
aoqi@0 4200 // shift/mov src into dst.
aoqi@0 4201 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
aoqi@0 4202 sllx(src, Universe::narrow_klass_shift(), dst);
aoqi@0 4203 }
aoqi@0 4204 }
aoqi@0 4205 }
aoqi@0 4206
aoqi@0 4207 void MacroAssembler::reinit_heapbase() {
aoqi@0 4208 if (UseCompressedOops || UseCompressedClassPointers) {
aoqi@0 4209 if (Universe::heap() != NULL) {
aoqi@0 4210 set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
aoqi@0 4211 } else {
aoqi@0 4212 AddressLiteral base(Universe::narrow_ptrs_base_addr());
aoqi@0 4213 load_ptr_contents(base, G6_heapbase);
aoqi@0 4214 }
aoqi@0 4215 }
aoqi@0 4216 }
aoqi@0 4217
aoqi@0 4218 // Compare char[] arrays aligned to 4 bytes.
aoqi@0 4219 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
aoqi@0 4220 Register limit, Register result,
aoqi@0 4221 Register chr1, Register chr2, Label& Ldone) {
aoqi@0 4222 Label Lvector, Lloop;
aoqi@0 4223 assert(chr1 == result, "should be the same");
aoqi@0 4224
aoqi@0 4225 // Note: limit contains number of bytes (2*char_elements) != 0.
aoqi@0 4226 andcc(limit, 0x2, chr1); // trailing character ?
aoqi@0 4227 br(Assembler::zero, false, Assembler::pt, Lvector);
aoqi@0 4228 delayed()->nop();
aoqi@0 4229
aoqi@0 4230 // compare the trailing char
aoqi@0 4231 sub(limit, sizeof(jchar), limit);
aoqi@0 4232 lduh(ary1, limit, chr1);
aoqi@0 4233 lduh(ary2, limit, chr2);
aoqi@0 4234 cmp(chr1, chr2);
aoqi@0 4235 br(Assembler::notEqual, true, Assembler::pt, Ldone);
aoqi@0 4236 delayed()->mov(G0, result); // not equal
aoqi@0 4237
aoqi@0 4238 // only one char ?
aoqi@0 4239 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
aoqi@0 4240 delayed()->add(G0, 1, result); // zero-length arrays are equal
aoqi@0 4241
aoqi@0 4242 // word by word compare, dont't need alignment check
aoqi@0 4243 bind(Lvector);
aoqi@0 4244 // Shift ary1 and ary2 to the end of the arrays, negate limit
aoqi@0 4245 add(ary1, limit, ary1);
aoqi@0 4246 add(ary2, limit, ary2);
aoqi@0 4247 neg(limit, limit);
aoqi@0 4248
aoqi@0 4249 lduw(ary1, limit, chr1);
aoqi@0 4250 bind(Lloop);
aoqi@0 4251 lduw(ary2, limit, chr2);
aoqi@0 4252 cmp(chr1, chr2);
aoqi@0 4253 br(Assembler::notEqual, true, Assembler::pt, Ldone);
aoqi@0 4254 delayed()->mov(G0, result); // not equal
aoqi@0 4255 inccc(limit, 2*sizeof(jchar));
aoqi@0 4256 // annul LDUW if branch is not taken to prevent access past end of array
aoqi@0 4257 br(Assembler::notZero, true, Assembler::pt, Lloop);
aoqi@0 4258 delayed()->lduw(ary1, limit, chr1); // hoisted
aoqi@0 4259
aoqi@0 4260 // Caller should set it:
aoqi@0 4261 // add(G0, 1, result); // equals
aoqi@0 4262 }
aoqi@0 4263
aoqi@0 4264 // Use BIS for zeroing (count is in bytes).
aoqi@0 4265 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
aoqi@0 4266 assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
aoqi@0 4267 Register end = count;
aoqi@0 4268 int cache_line_size = VM_Version::prefetch_data_size();
vkempik@8645 4269 assert(cache_line_size > 0, "cache line size should be known for this code");
aoqi@0 4270 // Minimum count when BIS zeroing can be used since
aoqi@0 4271 // it needs membar which is expensive.
aoqi@0 4272 int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
aoqi@0 4273
aoqi@0 4274 Label small_loop;
aoqi@0 4275 // Check if count is negative (dead code) or zero.
aoqi@0 4276 // Note, count uses 64bit in 64 bit VM.
aoqi@0 4277 cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
aoqi@0 4278
aoqi@0 4279 // Use BIS zeroing only for big arrays since it requires membar.
aoqi@0 4280 if (Assembler::is_simm13(block_zero_size)) { // < 4096
aoqi@0 4281 cmp(count, block_zero_size);
aoqi@0 4282 } else {
aoqi@0 4283 set(block_zero_size, temp);
aoqi@0 4284 cmp(count, temp);
aoqi@0 4285 }
aoqi@0 4286 br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
aoqi@0 4287 delayed()->add(to, count, end);
aoqi@0 4288
aoqi@0 4289 // Note: size is >= three (32 bytes) cache lines.
aoqi@0 4290
aoqi@0 4291 // Clean the beginning of space up to next cache line.
aoqi@0 4292 for (int offs = 0; offs < cache_line_size; offs += 8) {
aoqi@0 4293 stx(G0, to, offs);
aoqi@0 4294 }
aoqi@0 4295
aoqi@0 4296 // align to next cache line
aoqi@0 4297 add(to, cache_line_size, to);
aoqi@0 4298 and3(to, -cache_line_size, to);
aoqi@0 4299
aoqi@0 4300 // Note: size left >= two (32 bytes) cache lines.
aoqi@0 4301
aoqi@0 4302 // BIS should not be used to zero tail (64 bytes)
aoqi@0 4303 // to avoid zeroing a header of the following object.
aoqi@0 4304 sub(end, (cache_line_size*2)-8, end);
aoqi@0 4305
aoqi@0 4306 Label bis_loop;
aoqi@0 4307 bind(bis_loop);
aoqi@0 4308 stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
aoqi@0 4309 add(to, cache_line_size, to);
aoqi@0 4310 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
aoqi@0 4311
aoqi@0 4312 // BIS needs membar.
aoqi@0 4313 membar(Assembler::StoreLoad);
aoqi@0 4314
aoqi@0 4315 add(end, (cache_line_size*2)-8, end); // restore end
aoqi@0 4316 cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
aoqi@0 4317
aoqi@0 4318 // Clean the tail.
aoqi@0 4319 bind(small_loop);
aoqi@0 4320 stx(G0, to, 0);
aoqi@0 4321 add(to, 8, to);
aoqi@0 4322 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
aoqi@0 4323 nop(); // Separate short branches
aoqi@0 4324 }

mercurial