src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Fri, 01 Nov 2013 17:09:38 +0100

author
jwilhelm
date
Fri, 01 Nov 2013 17:09:38 +0100
changeset 6085
8f07aa079343
parent 5192
14d3f71f831d
child 6461
bdd155477289
permissions
-rw-r--r--

8016309: assert(eden_size > 0 && survivor_size > 0) failed: just checking
7057939: jmap shows MaxNewSize=4GB when Java is using parallel collector
Summary: Major cleanup of the collectorpolicy classes
Reviewed-by: tschatzl, jcoomes

duke@435 1 /*
tamao@5192 2 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcStats.hpp"
stefank@2314 28 #include "memory/defNewGeneration.hpp"
stefank@2314 29 #include "memory/genCollectedHeap.hpp"
stefank@2314 30 #include "runtime/thread.hpp"
stefank@2314 31 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 32 # include "os_linux.inline.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 35 # include "os_solaris.inline.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 38 # include "os_windows.inline.hpp"
stefank@2314 39 #endif
never@3156 40 #ifdef TARGET_OS_FAMILY_bsd
never@3156 41 # include "os_bsd.inline.hpp"
never@3156 42 #endif
duke@435 43 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
duke@435 44 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
duke@435 45
duke@435 46 // Defined if the granularity of the time measurements is potentially too large.
duke@435 47 #define CLOCK_GRANULARITY_TOO_LARGE
duke@435 48
duke@435 49 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 50 size_t init_promo_size,
duke@435 51 size_t init_survivor_size,
duke@435 52 double max_gc_minor_pause_sec,
duke@435 53 double max_gc_pause_sec,
duke@435 54 uint gc_cost_ratio) :
duke@435 55 AdaptiveSizePolicy(init_eden_size,
duke@435 56 init_promo_size,
duke@435 57 init_survivor_size,
duke@435 58 max_gc_pause_sec,
duke@435 59 gc_cost_ratio) {
duke@435 60
duke@435 61 clear_internal_time_intervals();
duke@435 62
duke@435 63 _processor_count = os::active_processor_count();
duke@435 64
jmasa@1719 65 if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
duke@435 66 assert(_processor_count > 0, "Processor count is suspect");
jmasa@1719 67 _concurrent_processor_count = MIN2((uint) ConcGCThreads,
duke@435 68 (uint) _processor_count);
duke@435 69 } else {
duke@435 70 _concurrent_processor_count = 1;
duke@435 71 }
duke@435 72
duke@435 73 _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 74 _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 75 _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 76
duke@435 77 _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 78 PausePadding);
duke@435 79 _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 80 PausePadding);
duke@435 81
duke@435 82 _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 83 _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 84
duke@435 85 _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 86 _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 87 _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 88
duke@435 89 // Mark-sweep-compact
duke@435 90 _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 91 _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 92 _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 93
duke@435 94 // Mark-sweep
duke@435 95 _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 96 _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 97 _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 98
duke@435 99 // Variables that estimate pause times as a function of generation
duke@435 100 // size.
duke@435 101 _remark_pause_old_estimator =
duke@435 102 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 103 _initial_pause_old_estimator =
duke@435 104 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 105 _remark_pause_young_estimator =
duke@435 106 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 107 _initial_pause_young_estimator =
duke@435 108 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 109
duke@435 110 // Alignment comes from that used in ReservedSpace.
duke@435 111 _generation_alignment = os::vm_allocation_granularity();
duke@435 112
duke@435 113 // Start the concurrent timer here so that the first
duke@435 114 // concurrent_phases_begin() measures a finite mutator
duke@435 115 // time. A finite mutator time is used to determine
duke@435 116 // if a concurrent collection has been started. If this
duke@435 117 // proves to be a problem, use some explicit flag to
duke@435 118 // signal that a concurrent collection has been started.
duke@435 119 _concurrent_timer.start();
duke@435 120 _STW_timer.start();
duke@435 121 }
duke@435 122
duke@435 123 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
duke@435 124 // For now assume no other daemon threads are taking alway
duke@435 125 // cpu's from the application.
duke@435 126 return ((double) _concurrent_processor_count / (double) _processor_count);
duke@435 127 }
duke@435 128
duke@435 129 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
duke@435 130 double interval_in_seconds) {
duke@435 131 // When the precleaning and sweeping phases use multiple
duke@435 132 // threads, change one_processor_fraction to
duke@435 133 // concurrent_processor_fraction().
duke@435 134 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 135 double concurrent_cost =
duke@435 136 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 137 interval_in_seconds) * concurrent_processor_fraction() +
duke@435 138 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 139 interval_in_seconds) * one_processor_fraction +
duke@435 140 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 141 interval_in_seconds) * one_processor_fraction;
duke@435 142 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 143 gclog_or_tty->print_cr(
duke@435 144 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
duke@435 145 "_latest_cms_concurrent_marking_cost %f "
duke@435 146 "_latest_cms_concurrent_precleaning_cost %f "
duke@435 147 "_latest_cms_concurrent_sweeping_cost %f "
duke@435 148 "concurrent_processor_fraction %f "
duke@435 149 "concurrent_cost %f ",
duke@435 150 interval_in_seconds,
duke@435 151 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 152 interval_in_seconds),
duke@435 153 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 154 interval_in_seconds),
duke@435 155 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 156 interval_in_seconds),
duke@435 157 concurrent_processor_fraction(),
duke@435 158 concurrent_cost);
duke@435 159 }
duke@435 160 return concurrent_cost;
duke@435 161 }
duke@435 162
duke@435 163 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
duke@435 164 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 165 _latest_cms_concurrent_marking_time_secs +
duke@435 166 _latest_cms_concurrent_precleaning_time_secs +
duke@435 167 _latest_cms_concurrent_sweeping_time_secs;
duke@435 168 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 169 }
duke@435 170
duke@435 171 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
duke@435 172 // When the precleaning and sweeping phases use multiple
duke@435 173 // threads, change one_processor_fraction to
duke@435 174 // concurrent_processor_fraction().
duke@435 175 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 176 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 177 _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
duke@435 178 _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
duke@435 179 _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
duke@435 180 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 181 gclog_or_tty->print_cr(
duke@435 182 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
duke@435 183 "_latest_cms_concurrent_marking_time_secs %f "
duke@435 184 "_latest_cms_concurrent_precleaning_time_secs %f "
duke@435 185 "_latest_cms_concurrent_sweeping_time_secs %f "
duke@435 186 "concurrent_processor_fraction %f "
duke@435 187 "latest_cms_sum_concurrent_phases_time_secs %f ",
duke@435 188 _latest_cms_concurrent_marking_time_secs,
duke@435 189 _latest_cms_concurrent_precleaning_time_secs,
duke@435 190 _latest_cms_concurrent_sweeping_time_secs,
duke@435 191 concurrent_processor_fraction(),
duke@435 192 latest_cms_sum_concurrent_phases_time_secs);
duke@435 193 }
duke@435 194 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 195 }
duke@435 196
duke@435 197 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 198 double minor_pause_in_ms) {
duke@435 199 // Get the equivalent of the free space
duke@435 200 // that is available for promotions in the CMS generation
duke@435 201 // and use that to update _minor_pause_old_estimator
duke@435 202
duke@435 203 // Don't implement this until it is needed. A warning is
duke@435 204 // printed if _minor_pause_old_estimator is used.
duke@435 205 }
duke@435 206
duke@435 207 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
duke@435 208 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 209 gclog_or_tty->print(" ");
duke@435 210 gclog_or_tty->stamp();
duke@435 211 gclog_or_tty->print(": concurrent_marking_begin ");
duke@435 212 }
duke@435 213 // Update the interval time
duke@435 214 _concurrent_timer.stop();
duke@435 215 _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
duke@435 216 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 217 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
duke@435 218 "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
duke@435 219 }
duke@435 220 _concurrent_timer.reset();
duke@435 221 _concurrent_timer.start();
duke@435 222 }
duke@435 223
duke@435 224 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
duke@435 225 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 226 gclog_or_tty->stamp();
duke@435 227 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
duke@435 228 }
duke@435 229
duke@435 230 _concurrent_timer.stop();
duke@435 231 _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
duke@435 232
duke@435 233 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 234 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
duke@435 235 ":concurrent marking time (s) %f",
duke@435 236 _latest_cms_concurrent_marking_time_secs);
duke@435 237 }
duke@435 238 }
duke@435 239
duke@435 240 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
duke@435 241 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 242 gclog_or_tty->stamp();
duke@435 243 gclog_or_tty->print_cr(
duke@435 244 "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
duke@435 245 }
duke@435 246 _concurrent_timer.reset();
duke@435 247 _concurrent_timer.start();
duke@435 248 }
duke@435 249
duke@435 250
duke@435 251 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
duke@435 252 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 253 gclog_or_tty->stamp();
duke@435 254 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
duke@435 255 }
duke@435 256
duke@435 257 _concurrent_timer.stop();
duke@435 258 // May be set again by a second call during the same collection.
duke@435 259 _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
duke@435 260
duke@435 261 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 262 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
duke@435 263 ":concurrent precleaning time (s) %f",
duke@435 264 _latest_cms_concurrent_precleaning_time_secs);
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
duke@435 269 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 270 gclog_or_tty->stamp();
duke@435 271 gclog_or_tty->print_cr(
duke@435 272 "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
duke@435 273 }
duke@435 274 _concurrent_timer.reset();
duke@435 275 _concurrent_timer.start();
duke@435 276 }
duke@435 277
duke@435 278
duke@435 279 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
duke@435 280 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 281 gclog_or_tty->stamp();
duke@435 282 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
duke@435 283 }
duke@435 284
duke@435 285 _concurrent_timer.stop();
duke@435 286 _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
duke@435 287
duke@435 288 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 289 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
duke@435 290 ":concurrent sweeping time (s) %f",
duke@435 291 _latest_cms_concurrent_sweeping_time_secs);
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
duke@435 296 size_t cur_eden,
duke@435 297 size_t cur_promo) {
duke@435 298 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 299 gclog_or_tty->print(" ");
duke@435 300 gclog_or_tty->stamp();
duke@435 301 gclog_or_tty->print(": concurrent_phases_end ");
duke@435 302 }
duke@435 303
duke@435 304 // Update the concurrent timer
duke@435 305 _concurrent_timer.stop();
duke@435 306
duke@435 307 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 308 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 309
duke@435 310 avg_cms_free()->sample(cur_promo);
duke@435 311 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 312 concurrent_collection_time();
duke@435 313
duke@435 314 _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
duke@435 315
duke@435 316 // Cost of collection (unit-less)
duke@435 317
duke@435 318 // Total interval for collection. May not be valid. Tests
duke@435 319 // below determine whether to use this.
duke@435 320 //
duke@435 321 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 322 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
duke@435 323 "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
duke@435 324 "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
duke@435 325 "_latest_cms_remark_start_to_end_time_secs %f \n"
duke@435 326 "_latest_cms_concurrent_marking_time_secs %f \n"
duke@435 327 "_latest_cms_concurrent_precleaning_time_secs %f \n"
duke@435 328 "_latest_cms_concurrent_sweeping_time_secs %f \n"
duke@435 329 "latest_cms_sum_concurrent_phases_time_secs %f \n"
duke@435 330 "_latest_cms_collection_end_to_collection_start_secs %f \n"
duke@435 331 "concurrent_processor_fraction %f",
duke@435 332 _latest_cms_reset_end_to_initial_mark_start_secs,
duke@435 333 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 334 _latest_cms_remark_start_to_end_time_secs,
duke@435 335 _latest_cms_concurrent_marking_time_secs,
duke@435 336 _latest_cms_concurrent_precleaning_time_secs,
duke@435 337 _latest_cms_concurrent_sweeping_time_secs,
duke@435 338 latest_cms_sum_concurrent_phases_time_secs,
duke@435 339 _latest_cms_collection_end_to_collection_start_secs,
duke@435 340 concurrent_processor_fraction());
duke@435 341 }
duke@435 342 double interval_in_seconds =
duke@435 343 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 344 _latest_cms_remark_start_to_end_time_secs +
duke@435 345 latest_cms_sum_concurrent_phases_time_secs +
duke@435 346 _latest_cms_collection_end_to_collection_start_secs;
duke@435 347 assert(interval_in_seconds >= 0.0,
duke@435 348 "Bad interval between cms collections");
duke@435 349
duke@435 350 // Sample for performance counter
duke@435 351 avg_concurrent_interval()->sample(interval_in_seconds);
duke@435 352
duke@435 353 // STW costs (initial and remark pauses)
duke@435 354 // Cost of collection (unit-less)
duke@435 355 assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
duke@435 356 "Bad initial mark pause");
duke@435 357 assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
duke@435 358 "Bad remark pause");
duke@435 359 double STW_time_in_seconds =
duke@435 360 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 361 _latest_cms_remark_start_to_end_time_secs;
duke@435 362 double STW_collection_cost = 0.0;
duke@435 363 if (interval_in_seconds > 0.0) {
duke@435 364 // cost for the STW phases of the concurrent collection.
duke@435 365 STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
duke@435 366 avg_cms_STW_gc_cost()->sample(STW_collection_cost);
duke@435 367 }
duke@435 368 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 369 gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
duke@435 370 "STW gc cost: %f average: %f", STW_collection_cost,
duke@435 371 avg_cms_STW_gc_cost()->average());
duke@435 372 gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)",
duke@435 373 (double) STW_time_in_seconds * MILLIUNITS,
duke@435 374 (double) interval_in_seconds * MILLIUNITS);
duke@435 375 }
duke@435 376
duke@435 377 double concurrent_cost = 0.0;
duke@435 378 if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
duke@435 379 concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 380
duke@435 381 avg_concurrent_gc_cost()->sample(concurrent_cost);
duke@435 382 // Average this ms cost into all the other types gc costs
duke@435 383
duke@435 384 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 385 gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
duke@435 386 "concurrent gc cost: %f average: %f",
duke@435 387 concurrent_cost,
duke@435 388 _avg_concurrent_gc_cost->average());
duke@435 389 gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)"
duke@435 390 " processor fraction: %f",
duke@435 391 latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
duke@435 392 interval_in_seconds * MILLIUNITS,
duke@435 393 concurrent_processor_fraction());
duke@435 394 }
duke@435 395 }
duke@435 396 double total_collection_cost = STW_collection_cost + concurrent_cost;
duke@435 397 avg_major_gc_cost()->sample(total_collection_cost);
duke@435 398
duke@435 399 // Gather information for estimating future behavior
duke@435 400 double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
duke@435 401 double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
duke@435 402
duke@435 403 double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
duke@435 404 initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 405 initial_pause_in_ms);
duke@435 406 remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 407 remark_pause_in_ms);
duke@435 408 major_collection_estimator()->update(cur_promo_size_in_mbytes,
duke@435 409 total_collection_cost);
duke@435 410
duke@435 411 // This estimate uses the average eden size. It could also
duke@435 412 // have used the latest eden size. Which is better?
duke@435 413 double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
duke@435 414 initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 415 initial_pause_in_ms);
duke@435 416 remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 417 remark_pause_in_ms);
duke@435 418 }
duke@435 419
duke@435 420 clear_internal_time_intervals();
duke@435 421
duke@435 422 set_first_after_collection();
duke@435 423
duke@435 424 // The concurrent phases keeps track of it's own mutator interval
duke@435 425 // with this timer. This allows the stop-the-world phase to
duke@435 426 // be included in the mutator time so that the stop-the-world time
duke@435 427 // is not double counted. Reset and start it.
duke@435 428 _concurrent_timer.reset();
duke@435 429 _concurrent_timer.start();
duke@435 430
duke@435 431 // The mutator time between STW phases does not include the
duke@435 432 // concurrent collection time.
duke@435 433 _STW_timer.reset();
duke@435 434 _STW_timer.start();
duke@435 435 }
duke@435 436
duke@435 437 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
duke@435 438 // Update the interval time
duke@435 439 _STW_timer.stop();
duke@435 440 _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
duke@435 441 // Reset for the initial mark
duke@435 442 _STW_timer.reset();
duke@435 443 _STW_timer.start();
duke@435 444 }
duke@435 445
duke@435 446 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
duke@435 447 GCCause::Cause gc_cause) {
duke@435 448 _STW_timer.stop();
duke@435 449
duke@435 450 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 451 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 452 _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 453 avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
duke@435 454
duke@435 455 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 456 gclog_or_tty->print(
duke@435 457 "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
duke@435 458 "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
duke@435 459 }
duke@435 460 }
duke@435 461
duke@435 462 _STW_timer.reset();
duke@435 463 _STW_timer.start();
duke@435 464 }
duke@435 465
duke@435 466 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
duke@435 467 _STW_timer.stop();
duke@435 468 _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
duke@435 469 // Start accumumlating time for the remark in the STW timer.
duke@435 470 _STW_timer.reset();
duke@435 471 _STW_timer.start();
duke@435 472 }
duke@435 473
duke@435 474 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
duke@435 475 GCCause::Cause gc_cause) {
duke@435 476 _STW_timer.stop();
duke@435 477 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 478 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 479 // Total initial mark pause + remark pause.
duke@435 480 _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 481 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 482 _latest_cms_remark_start_to_end_time_secs;
duke@435 483 double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
duke@435 484
duke@435 485 avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
duke@435 486
duke@435 487 // Sample total for initial mark + remark
duke@435 488 avg_cms_STW_time()->sample(STW_time_in_seconds);
duke@435 489
duke@435 490 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 491 gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
duke@435 492 "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
duke@435 493 }
duke@435 494
duke@435 495 }
duke@435 496 // Don't start the STW times here because the concurrent
duke@435 497 // sweep and reset has not happened.
duke@435 498 // Keep the old comment above in case I don't understand
duke@435 499 // what is going on but now
duke@435 500 // Start the STW timer because it is used by ms_collection_begin()
duke@435 501 // and ms_collection_end() to get the sweep time if a MS is being
duke@435 502 // done in the foreground.
duke@435 503 _STW_timer.reset();
duke@435 504 _STW_timer.start();
duke@435 505 }
duke@435 506
duke@435 507 void CMSAdaptiveSizePolicy::msc_collection_begin() {
duke@435 508 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 509 gclog_or_tty->print(" ");
duke@435 510 gclog_or_tty->stamp();
duke@435 511 gclog_or_tty->print(": msc_collection_begin ");
duke@435 512 }
duke@435 513 _STW_timer.stop();
duke@435 514 _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
duke@435 515 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 516 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
duke@435 517 "mutator time %f",
duke@435 518 _latest_cms_msc_end_to_msc_start_time_secs);
duke@435 519 }
duke@435 520 avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
duke@435 521 _STW_timer.reset();
duke@435 522 _STW_timer.start();
duke@435 523 }
duke@435 524
duke@435 525 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
duke@435 526 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 527 gclog_or_tty->print(" ");
duke@435 528 gclog_or_tty->stamp();
duke@435 529 gclog_or_tty->print(": msc_collection_end ");
duke@435 530 }
duke@435 531 _STW_timer.stop();
duke@435 532 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 533 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 534 double msc_pause_in_seconds = _STW_timer.seconds();
duke@435 535 if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
duke@435 536 (msc_pause_in_seconds > 0.0)) {
duke@435 537 avg_msc_pause()->sample(msc_pause_in_seconds);
duke@435 538 double mutator_time_in_seconds = 0.0;
duke@435 539 if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
duke@435 540 // This assertion may fail because of time stamp gradularity.
duke@435 541 // Comment it out and investiage it at a later time. The large
duke@435 542 // time stamp granularity occurs on some older linux systems.
duke@435 543 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 544 assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
duke@435 545 (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
duke@435 546 (_latest_cms_concurrent_sweeping_time_secs == 0.0),
duke@435 547 "There should not be any concurrent time");
duke@435 548 #endif
duke@435 549 // A concurrent collection did not start. Mutator time
duke@435 550 // between collections comes from the STW MSC timer.
duke@435 551 mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
duke@435 552 } else {
duke@435 553 // The concurrent collection did start so count the mutator
duke@435 554 // time to the start of the concurrent collection. In this
duke@435 555 // case the _latest_cms_msc_end_to_msc_start_time_secs measures
duke@435 556 // the time between the initial mark or remark and the
duke@435 557 // start of the MSC. That has no real meaning.
duke@435 558 mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
duke@435 559 }
duke@435 560
duke@435 561 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 562 concurrent_collection_time();
duke@435 563 double interval_in_seconds =
duke@435 564 mutator_time_in_seconds +
duke@435 565 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 566 _latest_cms_remark_start_to_end_time_secs +
duke@435 567 latest_cms_sum_concurrent_phases_time_secs +
duke@435 568 msc_pause_in_seconds;
duke@435 569
duke@435 570 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 571 gclog_or_tty->print_cr(" interval_in_seconds %f \n"
duke@435 572 " mutator_time_in_seconds %f \n"
duke@435 573 " _latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 574 " _latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 575 " latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 576 " msc_pause_in_seconds %f\n",
duke@435 577 interval_in_seconds,
duke@435 578 mutator_time_in_seconds,
duke@435 579 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 580 _latest_cms_remark_start_to_end_time_secs,
duke@435 581 latest_cms_sum_concurrent_phases_time_secs,
duke@435 582 msc_pause_in_seconds);
duke@435 583 }
duke@435 584
duke@435 585 // The concurrent cost is wasted cost but it should be
duke@435 586 // included.
duke@435 587 double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 588
duke@435 589 // Initial mark and remark, also wasted.
duke@435 590 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 591 _latest_cms_remark_start_to_end_time_secs;
duke@435 592 double STW_collection_cost =
duke@435 593 collection_cost(STW_time_in_seconds, interval_in_seconds) +
duke@435 594 concurrent_cost;
duke@435 595
duke@435 596 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 597 gclog_or_tty->print_cr(" msc_collection_end:\n"
duke@435 598 "_latest_cms_collection_end_to_collection_start_secs %f\n"
duke@435 599 "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
duke@435 600 "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 601 "_latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 602 "latest_cms_sum_concurrent_phases_time_secs %f\n",
duke@435 603 _latest_cms_collection_end_to_collection_start_secs,
duke@435 604 _latest_cms_msc_end_to_msc_start_time_secs,
duke@435 605 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 606 _latest_cms_remark_start_to_end_time_secs,
duke@435 607 latest_cms_sum_concurrent_phases_time_secs);
duke@435 608
duke@435 609 gclog_or_tty->print_cr(" msc_collection_end: \n"
duke@435 610 "latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 611 "STW_time_in_seconds %f\n"
duke@435 612 "msc_pause_in_seconds %f\n",
duke@435 613 latest_cms_sum_concurrent_phases_time_secs,
duke@435 614 STW_time_in_seconds,
duke@435 615 msc_pause_in_seconds);
duke@435 616 }
duke@435 617
duke@435 618 double cost = concurrent_cost + STW_collection_cost +
duke@435 619 collection_cost(msc_pause_in_seconds, interval_in_seconds);
duke@435 620
duke@435 621 _avg_msc_gc_cost->sample(cost);
duke@435 622
duke@435 623 // Average this ms cost into all the other types gc costs
duke@435 624 avg_major_gc_cost()->sample(cost);
duke@435 625
duke@435 626 // Sample for performance counter
duke@435 627 _avg_msc_interval->sample(interval_in_seconds);
duke@435 628 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 629 gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
duke@435 630 "MSC gc cost: %f average: %f", cost,
duke@435 631 _avg_msc_gc_cost->average());
duke@435 632
duke@435 633 double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
duke@435 634 gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)",
duke@435 635 msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
duke@435 636 }
duke@435 637 }
duke@435 638 }
duke@435 639
duke@435 640 clear_internal_time_intervals();
duke@435 641
duke@435 642 // Can this call be put into the epilogue?
duke@435 643 set_first_after_collection();
duke@435 644
duke@435 645 // The concurrent phases keeps track of it's own mutator interval
duke@435 646 // with this timer. This allows the stop-the-world phase to
duke@435 647 // be included in the mutator time so that the stop-the-world time
duke@435 648 // is not double counted. Reset and start it.
duke@435 649 _concurrent_timer.stop();
duke@435 650 _concurrent_timer.reset();
duke@435 651 _concurrent_timer.start();
duke@435 652
duke@435 653 _STW_timer.reset();
duke@435 654 _STW_timer.start();
duke@435 655 }
duke@435 656
duke@435 657 void CMSAdaptiveSizePolicy::ms_collection_begin() {
duke@435 658 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 659 gclog_or_tty->print(" ");
duke@435 660 gclog_or_tty->stamp();
duke@435 661 gclog_or_tty->print(": ms_collection_begin ");
duke@435 662 }
duke@435 663 _STW_timer.stop();
duke@435 664 _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
duke@435 665 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 666 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
duke@435 667 "mutator time %f",
duke@435 668 _latest_cms_ms_end_to_ms_start);
duke@435 669 }
duke@435 670 avg_ms_interval()->sample(_STW_timer.seconds());
duke@435 671 _STW_timer.reset();
duke@435 672 _STW_timer.start();
duke@435 673 }
duke@435 674
duke@435 675 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
duke@435 676 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 677 gclog_or_tty->print(" ");
duke@435 678 gclog_or_tty->stamp();
duke@435 679 gclog_or_tty->print(": ms_collection_end ");
duke@435 680 }
duke@435 681 _STW_timer.stop();
duke@435 682 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 683 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 684 // The MS collection is a foreground collection that does all
duke@435 685 // the parts of a mostly concurrent collection.
duke@435 686 //
duke@435 687 // For this collection include the cost of the
duke@435 688 // initial mark
duke@435 689 // remark
duke@435 690 // all concurrent time (scaled down by the
duke@435 691 // concurrent_processor_fraction). Some
duke@435 692 // may be zero if the baton was passed before
duke@435 693 // it was reached.
duke@435 694 // concurrent marking
duke@435 695 // sweeping
duke@435 696 // resetting
duke@435 697 // STW after baton was passed (STW_in_foreground_in_seconds)
duke@435 698 double STW_in_foreground_in_seconds = _STW_timer.seconds();
duke@435 699
duke@435 700 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 701 concurrent_collection_time();
duke@435 702 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 703 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
duke@435 704 "STW_in_foreground_in_seconds %f "
duke@435 705 "_latest_cms_initial_mark_start_to_end_time_secs %f "
duke@435 706 "_latest_cms_remark_start_to_end_time_secs %f "
duke@435 707 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 708 "_latest_cms_ms_marking_start_to_end_time_secs %f "
duke@435 709 "_latest_cms_ms_end_to_ms_start %f",
duke@435 710 STW_in_foreground_in_seconds,
duke@435 711 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 712 _latest_cms_remark_start_to_end_time_secs,
duke@435 713 latest_cms_sum_concurrent_phases_time_secs,
duke@435 714 _latest_cms_ms_marking_start_to_end_time_secs,
duke@435 715 _latest_cms_ms_end_to_ms_start);
duke@435 716 }
duke@435 717
duke@435 718 double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 719 _latest_cms_remark_start_to_end_time_secs;
duke@435 720 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 721 assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
duke@435 722 latest_cms_sum_concurrent_phases_time_secs == 0.0,
duke@435 723 "marking done twice?");
duke@435 724 #endif
duke@435 725 double ms_time_in_seconds = STW_marking_in_seconds +
duke@435 726 STW_in_foreground_in_seconds +
duke@435 727 _latest_cms_ms_marking_start_to_end_time_secs +
duke@435 728 scaled_concurrent_collection_time();
duke@435 729 avg_ms_pause()->sample(ms_time_in_seconds);
duke@435 730 // Use the STW costs from the initial mark and remark plus
duke@435 731 // the cost of the concurrent phase to calculate a
duke@435 732 // collection cost.
duke@435 733 double cost = 0.0;
duke@435 734 if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
duke@435 735 (ms_time_in_seconds > 0.0)) {
duke@435 736 double interval_in_seconds =
duke@435 737 _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
duke@435 738
duke@435 739 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 740 gclog_or_tty->print_cr("\n ms_time_in_seconds %f "
duke@435 741 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 742 "interval_in_seconds %f",
duke@435 743 ms_time_in_seconds,
duke@435 744 latest_cms_sum_concurrent_phases_time_secs,
duke@435 745 interval_in_seconds);
duke@435 746 }
duke@435 747
duke@435 748 cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
duke@435 749
duke@435 750 _avg_ms_gc_cost->sample(cost);
duke@435 751 // Average this ms cost into all the other types gc costs
duke@435 752 avg_major_gc_cost()->sample(cost);
duke@435 753
duke@435 754 // Sample for performance counter
duke@435 755 _avg_ms_interval->sample(interval_in_seconds);
duke@435 756 }
duke@435 757 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 758 gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
duke@435 759 "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average());
duke@435 760
duke@435 761 double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
duke@435 762 gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)",
duke@435 763 ms_time_in_ms,
duke@435 764 _latest_cms_ms_end_to_ms_start * MILLIUNITS);
duke@435 765 }
duke@435 766 }
duke@435 767
duke@435 768 // Consider putting this code (here to end) into a
duke@435 769 // method for convenience.
duke@435 770 clear_internal_time_intervals();
duke@435 771
duke@435 772 set_first_after_collection();
duke@435 773
duke@435 774 // The concurrent phases keeps track of it's own mutator interval
duke@435 775 // with this timer. This allows the stop-the-world phase to
duke@435 776 // be included in the mutator time so that the stop-the-world time
duke@435 777 // is not double counted. Reset and start it.
duke@435 778 _concurrent_timer.stop();
duke@435 779 _concurrent_timer.reset();
duke@435 780 _concurrent_timer.start();
duke@435 781
duke@435 782 _STW_timer.reset();
duke@435 783 _STW_timer.start();
duke@435 784 }
duke@435 785
duke@435 786 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
duke@435 787 _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
duke@435 788 _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
duke@435 789 _latest_cms_collection_end_to_collection_start_secs = 0.0;
duke@435 790 _latest_cms_concurrent_marking_time_secs = 0.0;
duke@435 791 _latest_cms_concurrent_precleaning_time_secs = 0.0;
duke@435 792 _latest_cms_concurrent_sweeping_time_secs = 0.0;
duke@435 793 _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
duke@435 794 _latest_cms_ms_end_to_ms_start = 0.0;
duke@435 795 _latest_cms_remark_start_to_end_time_secs = 0.0;
duke@435 796 _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
duke@435 797 _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
duke@435 798 }
duke@435 799
duke@435 800 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 801 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 802
duke@435 803 set_change_young_gen_for_maj_pauses(0);
duke@435 804 }
duke@435 805
duke@435 806 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
duke@435 807 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 808 gclog_or_tty->stamp();
duke@435 809 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
duke@435 810 }
duke@435 811 _concurrent_timer.start();
duke@435 812 }
duke@435 813
duke@435 814 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
duke@435 815 _concurrent_timer.stop();
duke@435 816 double time_since_cms_gc = _concurrent_timer.seconds();
duke@435 817 _concurrent_timer.start();
duke@435 818 _STW_timer.stop();
duke@435 819 double time_since_STW_gc = _STW_timer.seconds();
duke@435 820 _STW_timer.start();
duke@435 821
duke@435 822 return MIN2(time_since_cms_gc, time_since_STW_gc);
duke@435 823 }
duke@435 824
duke@435 825 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
duke@435 826 double cms_interval = _avg_concurrent_interval->average();
duke@435 827 double msc_interval = _avg_msc_interval->average();
duke@435 828 double ms_interval = _avg_ms_interval->average();
duke@435 829
duke@435 830 return MAX3(cms_interval, msc_interval, ms_interval);
duke@435 831 }
duke@435 832
duke@435 833 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
duke@435 834 return avg_major_gc_cost()->average();
duke@435 835 }
duke@435 836
duke@435 837 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
duke@435 838 _STW_timer.stop();
duke@435 839 // Start accumumlating time for the marking in the STW timer.
duke@435 840 _STW_timer.reset();
duke@435 841 _STW_timer.start();
duke@435 842 }
duke@435 843
duke@435 844 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
duke@435 845 GCCause::Cause gc_cause) {
duke@435 846 _STW_timer.stop();
duke@435 847 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 848 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 849 _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
duke@435 850 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 851 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
duke@435 852 "msc_collection_marking_end: mutator time %f",
duke@435 853 _latest_cms_ms_marking_start_to_end_time_secs);
duke@435 854 }
duke@435 855 }
duke@435 856 _STW_timer.reset();
duke@435 857 _STW_timer.start();
duke@435 858 }
duke@435 859
duke@435 860 double CMSAdaptiveSizePolicy::gc_cost() const {
duke@435 861 double cms_gen_cost = cms_gc_cost();
duke@435 862 double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost);
duke@435 863 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 864 return result;
duke@435 865 }
duke@435 866
duke@435 867 // Cost of collection (unit-less)
duke@435 868 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
duke@435 869 double interval_in_seconds) {
duke@435 870 // Cost of collection (unit-less)
duke@435 871 double cost = 0.0;
duke@435 872 if ((interval_in_seconds > 0.0) &&
duke@435 873 (pause_in_seconds > 0.0)) {
duke@435 874 cost =
duke@435 875 pause_in_seconds / interval_in_seconds;
duke@435 876 }
duke@435 877 return cost;
duke@435 878 }
duke@435 879
duke@435 880 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
duke@435 881 size_t change = 0;
duke@435 882 size_t desired_eden = cur_eden;
duke@435 883
duke@435 884 // reduce eden size
duke@435 885 change = eden_decrement_aligned_down(cur_eden);
duke@435 886 desired_eden = cur_eden - change;
duke@435 887
duke@435 888 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 889 gclog_or_tty->print_cr(
duke@435 890 "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
duke@435 891 "adjusting eden for pause time. "
duke@435 892 " starting eden size " SIZE_FORMAT
duke@435 893 " reduced eden size " SIZE_FORMAT
duke@435 894 " eden delta " SIZE_FORMAT,
duke@435 895 cur_eden, desired_eden, change);
duke@435 896 }
duke@435 897
duke@435 898 return desired_eden;
duke@435 899 }
duke@435 900
duke@435 901 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
duke@435 902
duke@435 903 size_t desired_eden = cur_eden;
duke@435 904
duke@435 905 set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
duke@435 906
duke@435 907 size_t change = eden_increment_aligned_up(cur_eden);
duke@435 908 size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
duke@435 909
duke@435 910 if (cur_eden + scaled_change > cur_eden) {
duke@435 911 desired_eden = cur_eden + scaled_change;
duke@435 912 }
duke@435 913
duke@435 914 _young_gen_change_for_minor_throughput++;
duke@435 915
duke@435 916 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 917 gclog_or_tty->print_cr(
duke@435 918 "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
duke@435 919 "adjusting eden for throughput. "
duke@435 920 " starting eden size " SIZE_FORMAT
duke@435 921 " increased eden size " SIZE_FORMAT
duke@435 922 " eden delta " SIZE_FORMAT,
duke@435 923 cur_eden, desired_eden, scaled_change);
duke@435 924 }
duke@435 925
duke@435 926 return desired_eden;
duke@435 927 }
duke@435 928
duke@435 929 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
duke@435 930
duke@435 931 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 932
duke@435 933 size_t change = eden_decrement(cur_eden);
duke@435 934 size_t desired_eden_size = cur_eden - change;
duke@435 935
duke@435 936 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 937 gclog_or_tty->print_cr(
duke@435 938 "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
duke@435 939 "adjusting eden for footprint. "
duke@435 940 " starting eden size " SIZE_FORMAT
duke@435 941 " reduced eden size " SIZE_FORMAT
duke@435 942 " eden delta " SIZE_FORMAT,
duke@435 943 cur_eden, desired_eden_size, change);
duke@435 944 }
duke@435 945 return desired_eden_size;
duke@435 946 }
duke@435 947
duke@435 948 // The eden and promo versions should be combined if possible.
duke@435 949 // They are the same except that the sizes of the decrement
duke@435 950 // and increment are different for eden and promo.
duke@435 951 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 952 size_t delta = eden_decrement(cur_eden);
duke@435 953 return align_size_down(delta, generation_alignment());
duke@435 954 }
duke@435 955
duke@435 956 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 957 size_t delta = eden_increment(cur_eden);
duke@435 958 return align_size_up(delta, generation_alignment());
duke@435 959 }
duke@435 960
duke@435 961 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 962 size_t delta = promo_decrement(cur_promo);
duke@435 963 return align_size_down(delta, generation_alignment());
duke@435 964 }
duke@435 965
duke@435 966 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 967 size_t delta = promo_increment(cur_promo);
duke@435 968 return align_size_up(delta, generation_alignment());
duke@435 969 }
duke@435 970
duke@435 971
tamao@5192 972 void CMSAdaptiveSizePolicy::compute_eden_space_size(size_t cur_eden,
tamao@5192 973 size_t max_eden_size)
duke@435 974 {
duke@435 975 size_t desired_eden_size = cur_eden;
duke@435 976 size_t eden_limit = max_eden_size;
duke@435 977
duke@435 978 // Printout input
duke@435 979 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 980 gclog_or_tty->print_cr(
tamao@5192 981 "CMSAdaptiveSizePolicy::compute_eden_space_size: "
duke@435 982 "cur_eden " SIZE_FORMAT,
duke@435 983 cur_eden);
duke@435 984 }
duke@435 985
duke@435 986 // Used for diagnostics
duke@435 987 clear_generation_free_space_flags();
duke@435 988
duke@435 989 if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
duke@435 990 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 991 // If the minor pause is too long, shrink the young gen.
duke@435 992 set_change_young_gen_for_min_pauses(
duke@435 993 decrease_young_gen_for_min_pauses_true);
duke@435 994 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 995 }
duke@435 996 } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 997 (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
duke@435 998 // The remark or initial pauses are not meeting the goal. Should
duke@435 999 // the generation be shrunk?
duke@435 1000 if (get_and_clear_first_after_collection() &&
duke@435 1001 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 1002 remark_pause_young_estimator()->decrement_will_decrease()) ||
duke@435 1003 (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 1004 initial_pause_young_estimator()->decrement_will_decrease()))) {
duke@435 1005
duke@435 1006 set_change_young_gen_for_maj_pauses(
duke@435 1007 decrease_young_gen_for_maj_pauses_true);
duke@435 1008
duke@435 1009 // If the remark or initial pause is too long and this is the
duke@435 1010 // first young gen collection after a cms collection, shrink
duke@435 1011 // the young gen.
duke@435 1012 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 1013 }
duke@435 1014 // If not the first young gen collection after a cms collection,
duke@435 1015 // don't do anything. In this case an adjustment has already
duke@435 1016 // been made and the results of the adjustment has not yet been
duke@435 1017 // measured.
duke@435 1018 } else if ((minor_gc_cost() >= 0.0) &&
duke@435 1019 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1020 desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
duke@435 1021 } else {
duke@435 1022 desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
duke@435 1023 }
duke@435 1024
duke@435 1025 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1026 gclog_or_tty->print_cr(
tamao@5192 1027 "CMSAdaptiveSizePolicy::compute_eden_space_size limits:"
duke@435 1028 " desired_eden_size: " SIZE_FORMAT
duke@435 1029 " old_eden_size: " SIZE_FORMAT,
duke@435 1030 desired_eden_size, cur_eden);
duke@435 1031 }
duke@435 1032
duke@435 1033 set_eden_size(desired_eden_size);
duke@435 1034 }
duke@435 1035
duke@435 1036 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
duke@435 1037 size_t change = 0;
duke@435 1038 size_t desired_promo = cur_promo;
duke@435 1039 // Move this test up to caller like the adjust_eden_for_pause_time()
duke@435 1040 // call.
duke@435 1041 if ((AdaptiveSizePausePolicy == 0) &&
duke@435 1042 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 1043 (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
duke@435 1044 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1045 change = promo_decrement_aligned_down(cur_promo);
duke@435 1046 desired_promo = cur_promo - change;
duke@435 1047 } else if ((AdaptiveSizePausePolicy > 0) &&
duke@435 1048 (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1049 remark_pause_old_estimator()->decrement_will_decrease()) ||
duke@435 1050 ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1051 initial_pause_old_estimator()->decrement_will_decrease()))) {
duke@435 1052 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1053 change = promo_decrement_aligned_down(cur_promo);
duke@435 1054 desired_promo = cur_promo - change;
duke@435 1055 }
duke@435 1056
duke@435 1057 if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
duke@435 1058 gclog_or_tty->print_cr(
duke@435 1059 "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
duke@435 1060 "adjusting promo for pause time. "
duke@435 1061 " starting promo size " SIZE_FORMAT
duke@435 1062 " reduced promo size " SIZE_FORMAT
duke@435 1063 " promo delta " SIZE_FORMAT,
duke@435 1064 cur_promo, desired_promo, change);
duke@435 1065 }
duke@435 1066
duke@435 1067 return desired_promo;
duke@435 1068 }
duke@435 1069
duke@435 1070 // Try to share this with PS.
duke@435 1071 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
duke@435 1072 double gen_gc_cost) {
duke@435 1073
duke@435 1074 // Calculate the change to use for the tenured gen.
duke@435 1075 size_t scaled_change = 0;
duke@435 1076 // Can the increment to the generation be scaled?
duke@435 1077 if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
duke@435 1078 double scale_by_ratio = gen_gc_cost / gc_cost();
duke@435 1079 scaled_change =
duke@435 1080 (size_t) (scale_by_ratio * (double) base_change);
duke@435 1081 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1082 gclog_or_tty->print_cr(
duke@435 1083 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 1084 SIZE_FORMAT,
duke@435 1085 base_change, scale_by_ratio, scaled_change);
duke@435 1086 }
duke@435 1087 } else if (gen_gc_cost >= 0.0) {
duke@435 1088 // Scaling is not going to work. If the major gc time is the
duke@435 1089 // larger than the other GC costs, give it a full increment.
duke@435 1090 if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
duke@435 1091 scaled_change = base_change;
duke@435 1092 }
duke@435 1093 } else {
duke@435 1094 // Don't expect to get here but it's ok if it does
duke@435 1095 // in the product build since the delta will be 0
duke@435 1096 // and nothing will change.
duke@435 1097 assert(false, "Unexpected value for gc costs");
duke@435 1098 }
duke@435 1099
duke@435 1100 return scaled_change;
duke@435 1101 }
duke@435 1102
duke@435 1103 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
duke@435 1104
duke@435 1105 size_t desired_promo = cur_promo;
duke@435 1106
duke@435 1107 set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
duke@435 1108
duke@435 1109 size_t change = promo_increment_aligned_up(cur_promo);
duke@435 1110 size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
duke@435 1111
duke@435 1112 if (cur_promo + scaled_change > cur_promo) {
duke@435 1113 desired_promo = cur_promo + scaled_change;
duke@435 1114 }
duke@435 1115
duke@435 1116 _old_gen_change_for_major_throughput++;
duke@435 1117
duke@435 1118 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1119 gclog_or_tty->print_cr(
duke@435 1120 "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
duke@435 1121 "adjusting promo for throughput. "
duke@435 1122 " starting promo size " SIZE_FORMAT
duke@435 1123 " increased promo size " SIZE_FORMAT
duke@435 1124 " promo delta " SIZE_FORMAT,
duke@435 1125 cur_promo, desired_promo, scaled_change);
duke@435 1126 }
duke@435 1127
duke@435 1128 return desired_promo;
duke@435 1129 }
duke@435 1130
duke@435 1131 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
duke@435 1132 size_t cur_eden) {
duke@435 1133
duke@435 1134 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 1135
duke@435 1136 size_t change = promo_decrement(cur_promo);
duke@435 1137 size_t desired_promo_size = cur_promo - change;
duke@435 1138
duke@435 1139 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1140 gclog_or_tty->print_cr(
duke@435 1141 "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
duke@435 1142 "adjusting promo for footprint. "
duke@435 1143 " starting promo size " SIZE_FORMAT
duke@435 1144 " reduced promo size " SIZE_FORMAT
duke@435 1145 " promo delta " SIZE_FORMAT,
duke@435 1146 cur_promo, desired_promo_size, change);
duke@435 1147 }
duke@435 1148 return desired_promo_size;
duke@435 1149 }
duke@435 1150
duke@435 1151 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
duke@435 1152 size_t cur_tenured_free,
duke@435 1153 size_t max_tenured_available,
duke@435 1154 size_t cur_eden) {
duke@435 1155 // This can be bad if the desired value grows/shrinks without
duke@435 1156 // any connection to the read free space
duke@435 1157 size_t desired_promo_size = promo_size();
duke@435 1158 size_t tenured_limit = max_tenured_available;
duke@435 1159
duke@435 1160 // Printout input
duke@435 1161 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1162 gclog_or_tty->print_cr(
duke@435 1163 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
duke@435 1164 "cur_tenured_free " SIZE_FORMAT
duke@435 1165 " max_tenured_available " SIZE_FORMAT,
duke@435 1166 cur_tenured_free, max_tenured_available);
duke@435 1167 }
duke@435 1168
duke@435 1169 // Used for diagnostics
duke@435 1170 clear_generation_free_space_flags();
duke@435 1171
duke@435 1172 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 1173 if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
duke@435 1174 avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1175 desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
duke@435 1176 } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1177 // Nothing to do since the minor collections are too large and
duke@435 1178 // this method only deals with the cms generation.
duke@435 1179 } else if ((cms_gc_cost() >= 0.0) &&
duke@435 1180 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1181 desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
duke@435 1182 } else {
duke@435 1183 desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
duke@435 1184 cur_eden);
duke@435 1185 }
duke@435 1186
duke@435 1187 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1188 gclog_or_tty->print_cr(
duke@435 1189 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
duke@435 1190 " desired_promo_size: " SIZE_FORMAT
duke@435 1191 " old_promo_size: " SIZE_FORMAT,
duke@435 1192 desired_promo_size, cur_tenured_free);
duke@435 1193 }
duke@435 1194
duke@435 1195 set_promo_size(desired_promo_size);
duke@435 1196 }
duke@435 1197
jwilhelm@4129 1198 uint CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 1199 bool is_survivor_overflow,
jwilhelm@4129 1200 uint tenuring_threshold,
duke@435 1201 size_t survivor_limit) {
duke@435 1202 assert(survivor_limit >= generation_alignment(),
duke@435 1203 "survivor_limit too small");
duke@435 1204 assert((size_t)align_size_down(survivor_limit, generation_alignment())
duke@435 1205 == survivor_limit, "survivor_limit not aligned");
duke@435 1206
duke@435 1207 // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
duke@435 1208 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 1209 !young_gen_policy_is_ready()) {
duke@435 1210 return tenuring_threshold;
duke@435 1211 }
duke@435 1212
duke@435 1213 // We'll decide whether to increase or decrease the tenuring
duke@435 1214 // threshold based partly on the newly computed survivor size
duke@435 1215 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 1216 // decrement the threshold).
duke@435 1217 bool incr_tenuring_threshold = false;
duke@435 1218 bool decr_tenuring_threshold = false;
duke@435 1219
duke@435 1220 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 1221 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 1222 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 1223
duke@435 1224 if (!is_survivor_overflow) {
duke@435 1225 // Keep running averages on how much survived
duke@435 1226
duke@435 1227 // We use the tenuring threshold to equalize the cost of major
duke@435 1228 // and minor collections.
duke@435 1229 // ThresholdTolerance is used to indicate how sensitive the
duke@435 1230 // tenuring threshold is to differences in cost betweent the
duke@435 1231 // collection types.
duke@435 1232
duke@435 1233 // Get the times of interest. This involves a little work, so
duke@435 1234 // we cache the values here.
duke@435 1235 const double major_cost = major_gc_cost();
duke@435 1236 const double minor_cost = minor_gc_cost();
duke@435 1237
duke@435 1238 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 1239 // Minor times are getting too long; lower the threshold so
duke@435 1240 // less survives and more is promoted.
duke@435 1241 decr_tenuring_threshold = true;
duke@435 1242 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 1243 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 1244 // Major times are too long, so we want less promotion.
duke@435 1245 incr_tenuring_threshold = true;
duke@435 1246 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 1247 }
duke@435 1248
duke@435 1249 } else {
duke@435 1250 // Survivor space overflow occurred, so promoted and survived are
duke@435 1251 // not accurate. We'll make our best guess by combining survived
duke@435 1252 // and promoted and count them as survivors.
duke@435 1253 //
duke@435 1254 // We'll lower the tenuring threshold to see if we can correct
duke@435 1255 // things. Also, set the survivor size conservatively. We're
duke@435 1256 // trying to avoid many overflows from occurring if defnew size
duke@435 1257 // is just too small.
duke@435 1258
duke@435 1259 decr_tenuring_threshold = true;
duke@435 1260 }
duke@435 1261
duke@435 1262 // The padded average also maintains a deviation from the average;
duke@435 1263 // we use this to see how good of an estimate we have of what survived.
duke@435 1264 // We're trying to pad the survivor size as little as possible without
duke@435 1265 // overflowing the survivor spaces.
duke@435 1266 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
duke@435 1267 generation_alignment());
duke@435 1268 target_size = MAX2(target_size, generation_alignment());
duke@435 1269
duke@435 1270 if (target_size > survivor_limit) {
duke@435 1271 // Target size is bigger than we can handle. Let's also reduce
duke@435 1272 // the tenuring threshold.
duke@435 1273 target_size = survivor_limit;
duke@435 1274 decr_tenuring_threshold = true;
duke@435 1275 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1276 }
duke@435 1277
duke@435 1278 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1279 // We test for decrementing first, as we might have hit the target size
duke@435 1280 // limit.
duke@435 1281 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1282 if (tenuring_threshold > 1) {
duke@435 1283 tenuring_threshold--;
duke@435 1284 }
duke@435 1285 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1286 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1287 tenuring_threshold++;
duke@435 1288 }
duke@435 1289 }
duke@435 1290
duke@435 1291 // We keep a running average of the amount promoted which is used
duke@435 1292 // to decide when we should collect the old generation (when
duke@435 1293 // the amount of old gen free space is less than what we expect to
duke@435 1294 // promote).
duke@435 1295
duke@435 1296 if (PrintAdaptiveSizePolicy) {
duke@435 1297 // A little more detail if Verbose is on
duke@435 1298 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1299 if (Verbose) {
duke@435 1300 gclog_or_tty->print( " avg_survived: %f"
duke@435 1301 " avg_deviation: %f",
duke@435 1302 _avg_survived->average(),
duke@435 1303 _avg_survived->deviation());
duke@435 1304 }
duke@435 1305
duke@435 1306 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1307 _avg_survived->padded_average());
duke@435 1308
duke@435 1309 if (Verbose) {
duke@435 1310 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1311 " avg_promoted_dev: %f",
duke@435 1312 gch->gc_stats(1)->avg_promoted()->average(),
duke@435 1313 gch->gc_stats(1)->avg_promoted()->deviation());
duke@435 1314 }
duke@435 1315
duke@435 1316 gclog_or_tty->print( " avg_promoted_padded_avg: %f"
duke@435 1317 " avg_pretenured_padded_avg: %f"
jwilhelm@4129 1318 " tenuring_thresh: %u"
duke@435 1319 " target_size: " SIZE_FORMAT
duke@435 1320 " survivor_limit: " SIZE_FORMAT,
duke@435 1321 gch->gc_stats(1)->avg_promoted()->padded_average(),
duke@435 1322 _avg_pretenured->padded_average(),
duke@435 1323 tenuring_threshold, target_size, survivor_limit);
duke@435 1324 gclog_or_tty->cr();
duke@435 1325 }
duke@435 1326
duke@435 1327 set_survivor_size(target_size);
duke@435 1328
duke@435 1329 return tenuring_threshold;
duke@435 1330 }
duke@435 1331
duke@435 1332 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
duke@435 1333 bool result = _first_after_collection;
duke@435 1334 _first_after_collection = false;
duke@435 1335 return result;
duke@435 1336 }
duke@435 1337
duke@435 1338 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1339 outputStream* st) const {
duke@435 1340
duke@435 1341 if (!UseAdaptiveSizePolicy) return false;
duke@435 1342
duke@435 1343 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1344 Generation* gen0 = gch->get_gen(0);
duke@435 1345 DefNewGeneration* def_new = gen0->as_DefNewGeneration();
duke@435 1346 return
duke@435 1347 AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1348 st,
duke@435 1349 def_new->tenuring_threshold());
duke@435 1350 }

mercurial