src/share/vm/memory/cardTableModRefBS.cpp

Fri, 15 Apr 2011 09:36:28 -0400

author
coleenp
date
Fri, 15 Apr 2011 09:36:28 -0400
changeset 2777
8ce625481709
parent 2314
f95d63e2154a
child 2788
c69b1043dfb1
permissions
-rw-r--r--

7032407: Crash in LinkResolver::runtime_resolve_virtual_method()
Summary: Make CDS reorder vtables so that dump time vtables match run time order, so when redefine classes reinitializes them, they aren't in the wrong order.
Reviewed-by: dcubed, acorn

duke@435 1 /*
jmasa@1967 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "memory/space.inline.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
stefank@2314 36 #ifdef COMPILER1
stefank@2314 37 #include "c1/c1_LIR.hpp"
stefank@2314 38 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 39 #endif
stefank@2314 40
duke@435 41 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 42 // enumerate ref fields that have been modified (since the last
duke@435 43 // enumeration.)
duke@435 44
duke@435 45 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 46 {
duke@435 47 // Add one for a guard card, used to detect errors.
duke@435 48 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 49 return words / card_size_in_words + 1;
duke@435 50 }
duke@435 51
duke@435 52 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 53 {
duke@435 54 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 55 "unitialized, check declaration order");
duke@435 56 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 57 const size_t granularity = os::vm_allocation_granularity();
duke@435 58 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 59 }
duke@435 60
duke@435 61 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 62 int max_covered_regions):
duke@435 63 ModRefBarrierSet(max_covered_regions),
duke@435 64 _whole_heap(whole_heap),
duke@435 65 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 66 _last_valid_index(_guard_index - 1),
jcoomes@456 67 _page_size(os::vm_page_size()),
duke@435 68 _byte_map_size(compute_byte_map_size())
duke@435 69 {
duke@435 70 _kind = BarrierSet::CardTableModRef;
duke@435 71
duke@435 72 HeapWord* low_bound = _whole_heap.start();
duke@435 73 HeapWord* high_bound = _whole_heap.end();
duke@435 74 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 75 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 76
duke@435 77 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 78
duke@435 79 _covered = new MemRegion[max_covered_regions];
duke@435 80 _committed = new MemRegion[max_covered_regions];
duke@435 81 if (_covered == NULL || _committed == NULL)
duke@435 82 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 83 int i;
duke@435 84 for (i = 0; i < max_covered_regions; i++) {
duke@435 85 _covered[i].set_word_size(0);
duke@435 86 _committed[i].set_word_size(0);
duke@435 87 }
duke@435 88 _cur_covered_regions = 0;
duke@435 89
duke@435 90 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 91 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 92 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
duke@435 93 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 94 _page_size, heap_rs.base(), heap_rs.size());
duke@435 95 if (!heap_rs.is_reserved()) {
duke@435 96 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 97 "card marking array");
duke@435 98 }
duke@435 99
duke@435 100 // The assember store_check code will do an unsigned shift of the oop,
duke@435 101 // then add it to byte_map_base, i.e.
duke@435 102 //
duke@435 103 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 104 _byte_map = (jbyte*) heap_rs.base();
duke@435 105 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 106 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 107 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 108
duke@435 109 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 110 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 111 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
duke@435 112 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
duke@435 113 // Do better than this for Merlin
duke@435 114 vm_exit_out_of_memory(_page_size, "card table last card");
duke@435 115 }
duke@435 116 *guard_card = last_card;
duke@435 117
duke@435 118 _lowest_non_clean =
duke@435 119 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
duke@435 120 _lowest_non_clean_chunk_size =
duke@435 121 NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
duke@435 122 _lowest_non_clean_base_chunk_index =
duke@435 123 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
duke@435 124 _last_LNC_resizing_collection =
duke@435 125 NEW_C_HEAP_ARRAY(int, max_covered_regions);
duke@435 126 if (_lowest_non_clean == NULL
duke@435 127 || _lowest_non_clean_chunk_size == NULL
duke@435 128 || _lowest_non_clean_base_chunk_index == NULL
duke@435 129 || _last_LNC_resizing_collection == NULL)
duke@435 130 vm_exit_during_initialization("couldn't allocate an LNC array.");
duke@435 131 for (i = 0; i < max_covered_regions; i++) {
duke@435 132 _lowest_non_clean[i] = NULL;
duke@435 133 _lowest_non_clean_chunk_size[i] = 0;
duke@435 134 _last_LNC_resizing_collection[i] = -1;
duke@435 135 }
duke@435 136
duke@435 137 if (TraceCardTableModRefBS) {
duke@435 138 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 139 gclog_or_tty->print_cr(" "
duke@435 140 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 141 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
duke@435 142 &_byte_map[0],
duke@435 143 &_byte_map[_last_valid_index]);
duke@435 144 gclog_or_tty->print_cr(" "
duke@435 145 " byte_map_base: " INTPTR_FORMAT,
duke@435 146 byte_map_base);
duke@435 147 }
duke@435 148 }
duke@435 149
duke@435 150 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 151 int i;
duke@435 152 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 153 if (_covered[i].start() == base) return i;
duke@435 154 if (_covered[i].start() > base) break;
duke@435 155 }
duke@435 156 // If we didn't find it, create a new one.
duke@435 157 assert(_cur_covered_regions < _max_covered_regions,
duke@435 158 "too many covered regions");
duke@435 159 // Move the ones above up, to maintain sorted order.
duke@435 160 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 161 _covered[j] = _covered[j-1];
duke@435 162 _committed[j] = _committed[j-1];
duke@435 163 }
duke@435 164 int res = i;
duke@435 165 _cur_covered_regions++;
duke@435 166 _covered[res].set_start(base);
duke@435 167 _covered[res].set_word_size(0);
duke@435 168 jbyte* ct_start = byte_for(base);
duke@435 169 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 170 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 171 _committed[res].set_word_size(0);
duke@435 172 return res;
duke@435 173 }
duke@435 174
duke@435 175 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 176 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 177 if (_covered[i].contains(addr)) {
duke@435 178 return i;
duke@435 179 }
duke@435 180 }
duke@435 181 assert(0, "address outside of heap?");
duke@435 182 return -1;
duke@435 183 }
duke@435 184
duke@435 185 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 186 HeapWord* max_end = NULL;
duke@435 187 for (int j = 0; j < ind; j++) {
duke@435 188 HeapWord* this_end = _committed[j].end();
duke@435 189 if (this_end > max_end) max_end = this_end;
duke@435 190 }
duke@435 191 return max_end;
duke@435 192 }
duke@435 193
duke@435 194 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 195 MemRegion mr) const {
duke@435 196 MemRegion result = mr;
duke@435 197 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 198 if (r != self) {
duke@435 199 result = result.minus(_committed[r]);
duke@435 200 }
duke@435 201 }
duke@435 202 // Never include the guard page.
duke@435 203 result = result.minus(_guard_region);
duke@435 204 return result;
duke@435 205 }
duke@435 206
duke@435 207 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 208 // We don't change the start of a region, only the end.
duke@435 209 assert(_whole_heap.contains(new_region),
duke@435 210 "attempt to cover area not in reserved area");
duke@435 211 debug_only(verify_guard();)
jmasa@643 212 // collided is true if the expansion would push into another committed region
jmasa@643 213 debug_only(bool collided = false;)
jmasa@441 214 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 215 MemRegion const old_region = _covered[ind];
duke@435 216 assert(old_region.start() == new_region.start(), "just checking");
duke@435 217 if (new_region.word_size() != old_region.word_size()) {
duke@435 218 // Commit new or uncommit old pages, if necessary.
duke@435 219 MemRegion cur_committed = _committed[ind];
duke@435 220 // Extend the end of this _commited region
duke@435 221 // to cover the end of any lower _committed regions.
duke@435 222 // This forms overlapping regions, but never interior regions.
jmasa@441 223 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 224 if (max_prev_end > cur_committed.end()) {
duke@435 225 cur_committed.set_end(max_prev_end);
duke@435 226 }
duke@435 227 // Align the end up to a page size (starts are already aligned).
jmasa@441 228 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 229 HeapWord* new_end_aligned =
jmasa@441 230 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 231 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 232 "align up, but less");
jmasa@1016 233 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 234 // the new_end_aligned does not intrude onto the committed
jmasa@1016 235 // space of another region.
jmasa@643 236 int ri = 0;
jmasa@643 237 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 238 if (ri != ind) {
jmasa@643 239 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 240 // The prior check included in the assert
jmasa@1016 241 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 242 // is redundant with the "contains" test.
jmasa@1016 243 // Any region containing the new end
jmasa@1016 244 // should start at or beyond the region found (ind)
jmasa@1016 245 // for the new end (committed regions are not expected to
jmasa@1016 246 // be proper subsets of other committed regions).
jmasa@1016 247 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 248 "New end of committed region is inconsistent");
jmasa@643 249 new_end_aligned = _committed[ri].start();
jmasa@1016 250 // new_end_aligned can be equal to the start of its
jmasa@1016 251 // committed region (i.e., of "ind") if a second
jmasa@1016 252 // region following "ind" also start at the same location
jmasa@1016 253 // as "ind".
jmasa@1016 254 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 255 "New end of committed region is before start");
jmasa@643 256 debug_only(collided = true;)
jmasa@643 257 // Should only collide with 1 region
jmasa@643 258 break;
jmasa@643 259 }
jmasa@643 260 }
jmasa@643 261 }
jmasa@643 262 #ifdef ASSERT
jmasa@643 263 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 264 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 265 "New end of committed region is in a second committed region");
jmasa@643 266 }
jmasa@643 267 #endif
duke@435 268 // The guard page is always committed and should not be committed over.
jmasa@1322 269 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 270 // that the would-be end of the new committed region would have
jmasa@1322 271 // penetrated the guard page.
jmasa@1322 272 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 273
jmasa@1322 274 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 275 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 276 new_end_for_commit = _guard_region.start();
jmasa@1322 277 DEBUG_ONLY(guarded = true;)
jmasa@1322 278 }
jmasa@643 279
duke@435 280 if (new_end_for_commit > cur_committed.end()) {
duke@435 281 // Must commit new pages.
jmasa@441 282 MemRegion const new_committed =
duke@435 283 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 284
duke@435 285 assert(!new_committed.is_empty(), "Region should not be empty here");
duke@435 286 if (!os::commit_memory((char*)new_committed.start(),
duke@435 287 new_committed.byte_size(), _page_size)) {
duke@435 288 // Do better than this for Merlin
duke@435 289 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 290 "card table expansion");
duke@435 291 }
duke@435 292 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 293 // the cur_committed region may include the guard region.
duke@435 294 } else if (new_end_aligned < cur_committed.end()) {
duke@435 295 // Must uncommit pages.
jmasa@441 296 MemRegion const uncommit_region =
duke@435 297 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 298 cur_committed.end()));
duke@435 299 if (!uncommit_region.is_empty()) {
jmasa@1967 300 // It is not safe to uncommit cards if the boundary between
jmasa@1967 301 // the generations is moving. A shrink can uncommit cards
jmasa@1967 302 // owned by generation A but being used by generation B.
jmasa@1967 303 if (!UseAdaptiveGCBoundary) {
jmasa@1967 304 if (!os::uncommit_memory((char*)uncommit_region.start(),
jmasa@1967 305 uncommit_region.byte_size())) {
jmasa@1967 306 assert(false, "Card table contraction failed");
jmasa@1967 307 // The call failed so don't change the end of the
jmasa@1967 308 // committed region. This is better than taking the
jmasa@1967 309 // VM down.
jmasa@1967 310 new_end_aligned = _committed[ind].end();
jmasa@1967 311 }
jmasa@1967 312 } else {
jmasa@643 313 new_end_aligned = _committed[ind].end();
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317 // In any case, we can reset the end of the current committed entry.
duke@435 318 _committed[ind].set_end(new_end_aligned);
duke@435 319
jmasa@1967 320 #ifdef ASSERT
jmasa@1967 321 // Check that the last card in the new region is committed according
jmasa@1967 322 // to the tables.
jmasa@1967 323 bool covered = false;
jmasa@1967 324 for (int cr = 0; cr < _cur_covered_regions; cr++) {
jmasa@1967 325 if (_committed[cr].contains(new_end - 1)) {
jmasa@1967 326 covered = true;
jmasa@1967 327 break;
jmasa@1967 328 }
jmasa@1967 329 }
jmasa@1967 330 assert(covered, "Card for end of new region not committed");
jmasa@1967 331 #endif
jmasa@1967 332
duke@435 333 // The default of 0 is not necessarily clean cards.
duke@435 334 jbyte* entry;
duke@435 335 if (old_region.last() < _whole_heap.start()) {
duke@435 336 entry = byte_for(_whole_heap.start());
duke@435 337 } else {
duke@435 338 entry = byte_after(old_region.last());
duke@435 339 }
swamyv@924 340 assert(index_for(new_region.last()) < _guard_index,
duke@435 341 "The guard card will be overwritten");
jmasa@643 342 // This line commented out cleans the newly expanded region and
jmasa@643 343 // not the aligned up expanded region.
jmasa@643 344 // jbyte* const end = byte_after(new_region.last());
jmasa@643 345 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 346 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 347 "Expect to be beyond new region unless impacting another region");
duke@435 348 // do nothing if we resized downward.
jmasa@643 349 #ifdef ASSERT
jmasa@643 350 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 351 if (ri != ind) {
jmasa@643 352 // The end of the new committed region should not
jmasa@643 353 // be in any existing region unless it matches
jmasa@643 354 // the start of the next region.
jmasa@643 355 assert(!_committed[ri].contains(end) ||
jmasa@643 356 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 357 "Overlapping committed regions");
jmasa@643 358 }
jmasa@643 359 }
jmasa@643 360 #endif
duke@435 361 if (entry < end) {
duke@435 362 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 363 }
duke@435 364 }
duke@435 365 // In any case, the covered size changes.
duke@435 366 _covered[ind].set_word_size(new_region.word_size());
duke@435 367 if (TraceCardTableModRefBS) {
duke@435 368 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 369 gclog_or_tty->print_cr(" "
duke@435 370 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 371 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 372 ind, _covered[ind].start(),
duke@435 373 ind, _covered[ind].last());
duke@435 374 gclog_or_tty->print_cr(" "
duke@435 375 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 376 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 377 ind, _committed[ind].start(),
duke@435 378 ind, _committed[ind].last());
duke@435 379 gclog_or_tty->print_cr(" "
duke@435 380 " byte_for(start): " INTPTR_FORMAT
duke@435 381 " byte_for(last): " INTPTR_FORMAT,
duke@435 382 byte_for(_covered[ind].start()),
duke@435 383 byte_for(_covered[ind].last()));
duke@435 384 gclog_or_tty->print_cr(" "
duke@435 385 " addr_for(start): " INTPTR_FORMAT
duke@435 386 " addr_for(last): " INTPTR_FORMAT,
duke@435 387 addr_for((jbyte*) _committed[ind].start()),
duke@435 388 addr_for((jbyte*) _committed[ind].last()));
duke@435 389 }
jmasa@1967 390 // Touch the last card of the covered region to show that it
jmasa@1967 391 // is committed (or SEGV).
jmasa@1967 392 debug_only(*byte_for(_covered[ind].last());)
duke@435 393 debug_only(verify_guard();)
duke@435 394 }
duke@435 395
duke@435 396 // Note that these versions are precise! The scanning code has to handle the
duke@435 397 // fact that the write barrier may be either precise or imprecise.
duke@435 398
coleenp@548 399 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
duke@435 400 inline_write_ref_field(field, newVal);
duke@435 401 }
duke@435 402
iveresov@1051 403 /*
iveresov@1051 404 Claimed and deferred bits are used together in G1 during the evacuation
iveresov@1051 405 pause. These bits can have the following state transitions:
iveresov@1051 406 1. The claimed bit can be put over any other card state. Except that
iveresov@1051 407 the "dirty -> dirty and claimed" transition is checked for in
iveresov@1051 408 G1 code and is not used.
iveresov@1051 409 2. Deferred bit can be set only if the previous state of the card
iveresov@1051 410 was either clean or claimed. mark_card_deferred() is wait-free.
iveresov@1051 411 We do not care if the operation is be successful because if
iveresov@1051 412 it does not it will only result in duplicate entry in the update
iveresov@1051 413 buffer because of the "cache-miss". So it's not worth spinning.
iveresov@1051 414 */
iveresov@1051 415
duke@435 416
ysr@777 417 bool CardTableModRefBS::claim_card(size_t card_index) {
ysr@777 418 jbyte val = _byte_map[card_index];
iveresov@1051 419 assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
iveresov@1051 420 while (val == clean_card_val() ||
iveresov@1051 421 (val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
iveresov@1051 422 jbyte new_val = val;
iveresov@1051 423 if (val == clean_card_val()) {
iveresov@1051 424 new_val = (jbyte)claimed_card_val();
iveresov@1051 425 } else {
iveresov@1051 426 new_val = val | (jbyte)claimed_card_val();
iveresov@1051 427 }
iveresov@1051 428 jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 429 if (res == val) {
ysr@777 430 return true;
iveresov@1051 431 }
iveresov@1051 432 val = res;
ysr@777 433 }
ysr@777 434 return false;
ysr@777 435 }
ysr@777 436
iveresov@1051 437 bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
iveresov@1051 438 jbyte val = _byte_map[card_index];
iveresov@1051 439 // It's already processed
iveresov@1051 440 if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
iveresov@1051 441 return false;
iveresov@1051 442 }
iveresov@1051 443 // Cached bit can be installed either on a clean card or on a claimed card.
iveresov@1051 444 jbyte new_val = val;
iveresov@1051 445 if (val == clean_card_val()) {
iveresov@1051 446 new_val = (jbyte)deferred_card_val();
iveresov@1051 447 } else {
iveresov@1051 448 if (val & claimed_card_val()) {
iveresov@1051 449 new_val = val | (jbyte)deferred_card_val();
iveresov@1051 450 }
iveresov@1051 451 }
iveresov@1051 452 if (new_val != val) {
iveresov@1051 453 Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 454 }
iveresov@1051 455 return true;
iveresov@1051 456 }
iveresov@1051 457
iveresov@1051 458
duke@435 459 void CardTableModRefBS::non_clean_card_iterate(Space* sp,
duke@435 460 MemRegion mr,
duke@435 461 DirtyCardToOopClosure* dcto_cl,
duke@435 462 MemRegionClosure* cl,
duke@435 463 bool clear) {
duke@435 464 if (!mr.is_empty()) {
duke@435 465 int n_threads = SharedHeap::heap()->n_par_threads();
duke@435 466 if (n_threads > 0) {
duke@435 467 #ifndef SERIALGC
duke@435 468 par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
duke@435 469 #else // SERIALGC
duke@435 470 fatal("Parallel gc not supported here.");
duke@435 471 #endif // SERIALGC
duke@435 472 } else {
duke@435 473 non_clean_card_iterate_work(mr, cl, clear);
duke@435 474 }
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478 // NOTE: For this to work correctly, it is important that
duke@435 479 // we look for non-clean cards below (so as to catch those
duke@435 480 // marked precleaned), rather than look explicitly for dirty
duke@435 481 // cards (and miss those marked precleaned). In that sense,
duke@435 482 // the name precleaned is currently somewhat of a misnomer.
duke@435 483 void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
duke@435 484 MemRegionClosure* cl,
duke@435 485 bool clear) {
duke@435 486 // Figure out whether we have to worry about parallelism.
duke@435 487 bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
duke@435 488 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 489 MemRegion mri = mr.intersection(_covered[i]);
duke@435 490 if (mri.word_size() > 0) {
duke@435 491 jbyte* cur_entry = byte_for(mri.last());
duke@435 492 jbyte* limit = byte_for(mri.start());
duke@435 493 while (cur_entry >= limit) {
duke@435 494 jbyte* next_entry = cur_entry - 1;
duke@435 495 if (*cur_entry != clean_card) {
duke@435 496 size_t non_clean_cards = 1;
duke@435 497 // Should the next card be included in this range of dirty cards.
duke@435 498 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 499 non_clean_cards++;
duke@435 500 cur_entry = next_entry;
duke@435 501 next_entry--;
duke@435 502 }
duke@435 503 // The memory region may not be on a card boundary. So that
duke@435 504 // objects beyond the end of the region are not processed, make
duke@435 505 // cur_cards precise with regard to the end of the memory region.
duke@435 506 MemRegion cur_cards(addr_for(cur_entry),
duke@435 507 non_clean_cards * card_size_in_words);
duke@435 508 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 509 if (clear) {
duke@435 510 for (size_t i = 0; i < non_clean_cards; i++) {
duke@435 511 // Clean the dirty cards (but leave the other non-clean
duke@435 512 // alone.) If parallel, do the cleaning atomically.
duke@435 513 jbyte cur_entry_val = cur_entry[i];
duke@435 514 if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
duke@435 515 if (is_par) {
duke@435 516 jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
duke@435 517 assert(res != clean_card,
duke@435 518 "Dirty card mysteriously cleaned");
duke@435 519 } else {
duke@435 520 cur_entry[i] = clean_card;
duke@435 521 }
duke@435 522 }
duke@435 523 }
duke@435 524 }
duke@435 525 cl->do_MemRegion(dirty_region);
duke@435 526 }
duke@435 527 cur_entry = next_entry;
duke@435 528 }
duke@435 529 }
duke@435 530 }
duke@435 531 }
duke@435 532
duke@435 533 void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
duke@435 534 OopClosure* cl,
duke@435 535 bool clear,
duke@435 536 bool before_save_marks) {
duke@435 537 // Note that dcto_cl is resource-allocated, so there is no
duke@435 538 // corresponding "delete".
duke@435 539 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
duke@435 540 MemRegion used_mr;
duke@435 541 if (before_save_marks) {
duke@435 542 used_mr = sp->used_region_at_save_marks();
duke@435 543 } else {
duke@435 544 used_mr = sp->used_region();
duke@435 545 }
duke@435 546 non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
duke@435 547 }
duke@435 548
duke@435 549 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 550 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 551 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 552 jbyte* cur = byte_for(mr.start());
duke@435 553 jbyte* last = byte_after(mr.last());
duke@435 554 while (cur < last) {
duke@435 555 *cur = dirty_card;
duke@435 556 cur++;
duke@435 557 }
duke@435 558 }
duke@435 559
ysr@777 560 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 561 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 562 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 563 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 564 MemRegion mri = mr.intersection(_covered[i]);
duke@435 565 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 566 }
duke@435 567 }
duke@435 568
duke@435 569 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 570 // Be conservative: only clean cards entirely contained within the
duke@435 571 // region.
duke@435 572 jbyte* cur;
duke@435 573 if (mr.start() == _whole_heap.start()) {
duke@435 574 cur = byte_for(mr.start());
duke@435 575 } else {
duke@435 576 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 577 cur = byte_after(mr.start() - 1);
duke@435 578 }
duke@435 579 jbyte* last = byte_after(mr.last());
duke@435 580 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 581 }
duke@435 582
duke@435 583 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 584 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 585 MemRegion mri = mr.intersection(_covered[i]);
duke@435 586 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 587 }
duke@435 588 }
duke@435 589
ysr@777 590 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 591 jbyte* first = byte_for(mr.start());
ysr@777 592 jbyte* last = byte_after(mr.last());
ysr@777 593 memset(first, dirty_card, last-first);
ysr@777 594 }
ysr@777 595
duke@435 596 // NOTES:
duke@435 597 // (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
duke@435 598 // iterates over dirty cards ranges in increasing address order.
duke@435 599 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 600 MemRegionClosure* cl) {
duke@435 601 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 602 MemRegion mri = mr.intersection(_covered[i]);
duke@435 603 if (!mri.is_empty()) {
duke@435 604 jbyte *cur_entry, *next_entry, *limit;
duke@435 605 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 606 cur_entry <= limit;
duke@435 607 cur_entry = next_entry) {
duke@435 608 next_entry = cur_entry + 1;
duke@435 609 if (*cur_entry == dirty_card) {
duke@435 610 size_t dirty_cards;
duke@435 611 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 612 for (dirty_cards = 1;
duke@435 613 next_entry <= limit && *next_entry == dirty_card;
duke@435 614 dirty_cards++, next_entry++);
duke@435 615 MemRegion cur_cards(addr_for(cur_entry),
duke@435 616 dirty_cards*card_size_in_words);
duke@435 617 cl->do_MemRegion(cur_cards);
duke@435 618 }
duke@435 619 }
duke@435 620 }
duke@435 621 }
duke@435 622 }
duke@435 623
ysr@777 624 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 625 bool reset,
ysr@777 626 int reset_val) {
duke@435 627 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 628 MemRegion mri = mr.intersection(_covered[i]);
duke@435 629 if (!mri.is_empty()) {
duke@435 630 jbyte* cur_entry, *next_entry, *limit;
duke@435 631 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 632 cur_entry <= limit;
duke@435 633 cur_entry = next_entry) {
duke@435 634 next_entry = cur_entry + 1;
duke@435 635 if (*cur_entry == dirty_card) {
duke@435 636 size_t dirty_cards;
duke@435 637 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 638 for (dirty_cards = 1;
duke@435 639 next_entry <= limit && *next_entry == dirty_card;
duke@435 640 dirty_cards++, next_entry++);
duke@435 641 MemRegion cur_cards(addr_for(cur_entry),
duke@435 642 dirty_cards*card_size_in_words);
ysr@777 643 if (reset) {
ysr@777 644 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 645 cur_entry[i] = reset_val;
ysr@777 646 }
duke@435 647 }
duke@435 648 return cur_cards;
duke@435 649 }
duke@435 650 }
duke@435 651 }
duke@435 652 }
duke@435 653 return MemRegion(mr.end(), mr.end());
duke@435 654 }
duke@435 655
duke@435 656 // Set all the dirty cards in the given region to "precleaned" state.
duke@435 657 void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
duke@435 658 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 659 MemRegion mri = mr.intersection(_covered[i]);
duke@435 660 if (!mri.is_empty()) {
duke@435 661 jbyte *cur_entry, *limit;
duke@435 662 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 663 cur_entry <= limit;
duke@435 664 cur_entry++) {
duke@435 665 if (*cur_entry == dirty_card) {
duke@435 666 *cur_entry = precleaned_card;
duke@435 667 }
duke@435 668 }
duke@435 669 }
duke@435 670 }
duke@435 671 }
duke@435 672
duke@435 673 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 674 return card_size * os::vm_page_size();
duke@435 675 }
duke@435 676
duke@435 677 void CardTableModRefBS::verify_guard() {
duke@435 678 // For product build verification
duke@435 679 guarantee(_byte_map[_guard_index] == last_card,
duke@435 680 "card table guard has been modified");
duke@435 681 }
duke@435 682
duke@435 683 void CardTableModRefBS::verify() {
duke@435 684 verify_guard();
duke@435 685 }
duke@435 686
duke@435 687 #ifndef PRODUCT
duke@435 688 class GuaranteeNotModClosure: public MemRegionClosure {
duke@435 689 CardTableModRefBS* _ct;
duke@435 690 public:
duke@435 691 GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
duke@435 692 void do_MemRegion(MemRegion mr) {
duke@435 693 jbyte* entry = _ct->byte_for(mr.start());
duke@435 694 guarantee(*entry != CardTableModRefBS::clean_card,
duke@435 695 "Dirty card in region that should be clean");
duke@435 696 }
duke@435 697 };
duke@435 698
duke@435 699 void CardTableModRefBS::verify_clean_region(MemRegion mr) {
duke@435 700 GuaranteeNotModClosure blk(this);
duke@435 701 non_clean_card_iterate_work(mr, &blk, false);
duke@435 702 }
apetrusenko@1375 703
apetrusenko@1375 704 // To verify a MemRegion is entirely dirty this closure is passed to
apetrusenko@1375 705 // dirty_card_iterate. If the region is dirty do_MemRegion will be
apetrusenko@1375 706 // invoked only once with a MemRegion equal to the one being
apetrusenko@1375 707 // verified.
apetrusenko@1375 708 class GuaranteeDirtyClosure: public MemRegionClosure {
apetrusenko@1375 709 CardTableModRefBS* _ct;
apetrusenko@1375 710 MemRegion _mr;
apetrusenko@1375 711 bool _result;
apetrusenko@1375 712 public:
apetrusenko@1375 713 GuaranteeDirtyClosure(CardTableModRefBS* ct, MemRegion mr)
apetrusenko@1375 714 : _ct(ct), _mr(mr), _result(false) {}
apetrusenko@1375 715 void do_MemRegion(MemRegion mr) {
apetrusenko@1375 716 _result = _mr.equals(mr);
apetrusenko@1375 717 }
apetrusenko@1375 718 bool result() const { return _result; }
apetrusenko@1375 719 };
apetrusenko@1375 720
apetrusenko@1375 721 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
apetrusenko@1375 722 GuaranteeDirtyClosure blk(this, mr);
apetrusenko@1375 723 dirty_card_iterate(mr, &blk);
apetrusenko@1375 724 guarantee(blk.result(), "Non-dirty cards in region that should be dirty");
apetrusenko@1375 725 }
duke@435 726 #endif
duke@435 727
duke@435 728 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 729 return
duke@435 730 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 731 _rs->is_prev_nonclean_card_val(cv);
duke@435 732 };
duke@435 733
duke@435 734 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 735 return
duke@435 736 cv != clean_card &&
duke@435 737 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 738 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 739 };

mercurial