src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 2314
f95d63e2154a
child 4037
da91efe96a93
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

duke@435 1 /*
trims@1907 2 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 30 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 31 #include "gc_interface/gcCause.hpp"
stefank@2314 32 #include "memory/collectorPolicy.hpp"
stefank@2314 33 #include "runtime/timer.hpp"
stefank@2314 34 #include "utilities/top.hpp"
duke@435 35
duke@435 36 #include <math.h>
duke@435 37
duke@435 38 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 39 size_t init_promo_size,
duke@435 40 size_t init_survivor_size,
duke@435 41 size_t intra_generation_alignment,
duke@435 42 double gc_pause_goal_sec,
duke@435 43 double gc_minor_pause_goal_sec,
duke@435 44 uint gc_cost_ratio) :
duke@435 45 AdaptiveSizePolicy(init_eden_size,
duke@435 46 init_promo_size,
duke@435 47 init_survivor_size,
duke@435 48 gc_pause_goal_sec,
duke@435 49 gc_cost_ratio),
duke@435 50 _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
duke@435 51 100.0),
duke@435 52 _intra_generation_alignment(intra_generation_alignment),
duke@435 53 _live_at_last_full_gc(init_promo_size),
duke@435 54 _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
duke@435 55 _latest_major_mutator_interval_seconds(0),
duke@435 56 _young_gen_change_for_major_pause_count(0)
duke@435 57 {
duke@435 58 // Sizing policy statistics
duke@435 59 _avg_major_pause =
duke@435 60 new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
duke@435 61 _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 62 _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 63
duke@435 64 _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
duke@435 65 _major_pause_old_estimator =
duke@435 66 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 67 _major_pause_young_estimator =
duke@435 68 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 69 _major_collection_estimator =
duke@435 70 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 71
duke@435 72 _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
duke@435 73 _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
duke@435 74
duke@435 75 // Start the timers
duke@435 76 _major_timer.start();
duke@435 77
duke@435 78 _old_gen_policy_is_ready = false;
duke@435 79 }
duke@435 80
duke@435 81 void PSAdaptiveSizePolicy::major_collection_begin() {
duke@435 82 // Update the interval time
duke@435 83 _major_timer.stop();
duke@435 84 // Save most recent collection time
duke@435 85 _latest_major_mutator_interval_seconds = _major_timer.seconds();
duke@435 86 _major_timer.reset();
duke@435 87 _major_timer.start();
duke@435 88 }
duke@435 89
duke@435 90 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 91 double minor_pause_in_ms) {
duke@435 92 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 93 _minor_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 94 minor_pause_in_ms);
duke@435 95 }
duke@435 96
duke@435 97 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
duke@435 98 GCCause::Cause gc_cause) {
duke@435 99 // Update the pause time.
duke@435 100 _major_timer.stop();
duke@435 101
duke@435 102 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 103 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 104 double major_pause_in_seconds = _major_timer.seconds();
duke@435 105 double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
duke@435 106
duke@435 107 // Sample for performance counter
duke@435 108 _avg_major_pause->sample(major_pause_in_seconds);
duke@435 109
duke@435 110 // Cost of collection (unit-less)
duke@435 111 double collection_cost = 0.0;
duke@435 112 if ((_latest_major_mutator_interval_seconds > 0.0) &&
duke@435 113 (major_pause_in_seconds > 0.0)) {
duke@435 114 double interval_in_seconds =
duke@435 115 _latest_major_mutator_interval_seconds + major_pause_in_seconds;
duke@435 116 collection_cost =
duke@435 117 major_pause_in_seconds / interval_in_seconds;
duke@435 118 avg_major_gc_cost()->sample(collection_cost);
duke@435 119
duke@435 120 // Sample for performance counter
duke@435 121 _avg_major_interval->sample(interval_in_seconds);
duke@435 122 }
duke@435 123
duke@435 124 // Calculate variables used to estimate pause time vs. gen sizes
duke@435 125 double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
duke@435 126 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 127 _major_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 128 major_pause_in_ms);
duke@435 129 _major_pause_young_estimator->update(eden_size_in_mbytes,
duke@435 130 major_pause_in_ms);
duke@435 131
duke@435 132 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 133 gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
duke@435 134 "major gc cost: %f average: %f", collection_cost,
duke@435 135 avg_major_gc_cost()->average());
duke@435 136 gclog_or_tty->print_cr(" major pause: %f major period %f",
duke@435 137 major_pause_in_ms,
duke@435 138 _latest_major_mutator_interval_seconds * MILLIUNITS);
duke@435 139 }
duke@435 140
duke@435 141 // Calculate variable used to estimate collection cost vs. gen sizes
duke@435 142 assert(collection_cost >= 0.0, "Expected to be non-negative");
duke@435 143 _major_collection_estimator->update(promo_size_in_mbytes,
duke@435 144 collection_cost);
duke@435 145 }
duke@435 146
duke@435 147 // Update the amount live at the end of a full GC
duke@435 148 _live_at_last_full_gc = amount_live;
duke@435 149
duke@435 150 // The policy does not have enough data until at least some major collections
duke@435 151 // have been done.
duke@435 152 if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
duke@435 153 _old_gen_policy_is_ready = true;
duke@435 154 }
duke@435 155
duke@435 156 // Interval times use this timer to measure the interval that
duke@435 157 // the mutator runs. Reset after the GC pause has been measured.
duke@435 158 _major_timer.reset();
duke@435 159 _major_timer.start();
duke@435 160 }
duke@435 161
duke@435 162 // If the remaining free space in the old generation is less that
duke@435 163 // that expected to be needed by the next collection, do a full
duke@435 164 // collection now.
duke@435 165 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
duke@435 166
duke@435 167 // A similar test is done in the scavenge's should_attempt_scavenge(). If
duke@435 168 // this is changed, decide if that test should also be changed.
duke@435 169 bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
duke@435 170 if (PrintGCDetails && Verbose) {
duke@435 171 if (result) {
duke@435 172 gclog_or_tty->print(" full after scavenge: ");
duke@435 173 } else {
duke@435 174 gclog_or_tty->print(" no full after scavenge: ");
duke@435 175 }
duke@435 176 gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
duke@435 177 " padded_average_promoted " SIZE_FORMAT
duke@435 178 " free in old gen " SIZE_FORMAT,
duke@435 179 (size_t) average_promoted_in_bytes(),
duke@435 180 (size_t) padded_average_promoted_in_bytes(),
duke@435 181 old_free_in_bytes);
duke@435 182 }
duke@435 183 return result;
duke@435 184 }
duke@435 185
duke@435 186 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 187
duke@435 188 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 189
duke@435 190 set_change_old_gen_for_min_pauses(0);
duke@435 191
duke@435 192 set_change_young_gen_for_maj_pauses(0);
duke@435 193 }
duke@435 194
duke@435 195 // If this is not a full GC, only test and modify the young generation.
duke@435 196
jmasa@1822 197 void PSAdaptiveSizePolicy::compute_generation_free_space(
jmasa@1822 198 size_t young_live,
jmasa@1822 199 size_t eden_live,
jmasa@1822 200 size_t old_live,
jmasa@1822 201 size_t perm_live,
jmasa@1822 202 size_t cur_eden,
jmasa@1822 203 size_t max_old_gen_size,
jmasa@1822 204 size_t max_eden_size,
jmasa@1822 205 bool is_full_gc,
jmasa@1822 206 GCCause::Cause gc_cause,
jmasa@1822 207 CollectorPolicy* collector_policy) {
duke@435 208
duke@435 209 // Update statistics
duke@435 210 // Time statistics are updated as we go, update footprint stats here
duke@435 211 _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
duke@435 212 avg_young_live()->sample(young_live);
duke@435 213 avg_eden_live()->sample(eden_live);
duke@435 214 if (is_full_gc) {
duke@435 215 // old_live is only accurate after a full gc
duke@435 216 avg_old_live()->sample(old_live);
duke@435 217 }
duke@435 218
duke@435 219 // This code used to return if the policy was not ready , i.e.,
duke@435 220 // policy_is_ready() returning false. The intent was that
duke@435 221 // decisions below needed major collection times and so could
duke@435 222 // not be made before two major collections. A consequence was
duke@435 223 // adjustments to the young generation were not done until after
duke@435 224 // two major collections even if the minor collections times
duke@435 225 // exceeded the requested goals. Now let the young generation
duke@435 226 // adjust for the minor collection times. Major collection times
duke@435 227 // will be zero for the first collection and will naturally be
duke@435 228 // ignored. Tenured generation adjustments are only made at the
duke@435 229 // full collections so until the second major collection has
duke@435 230 // been reached, no tenured generation adjustments will be made.
duke@435 231
duke@435 232 // Until we know better, desired promotion size uses the last calculation
duke@435 233 size_t desired_promo_size = _promo_size;
duke@435 234
duke@435 235 // Start eden at the current value. The desired value that is stored
duke@435 236 // in _eden_size is not bounded by constraints of the heap and can
duke@435 237 // run away.
duke@435 238 //
duke@435 239 // As expected setting desired_eden_size to the current
duke@435 240 // value of desired_eden_size as a starting point
duke@435 241 // caused desired_eden_size to grow way too large and caused
duke@435 242 // an overflow down stream. It may have improved performance in
duke@435 243 // some case but is dangerous.
duke@435 244 size_t desired_eden_size = cur_eden;
duke@435 245
duke@435 246 #ifdef ASSERT
duke@435 247 size_t original_promo_size = desired_promo_size;
duke@435 248 size_t original_eden_size = desired_eden_size;
duke@435 249 #endif
duke@435 250
duke@435 251 // Cache some values. There's a bit of work getting these, so
duke@435 252 // we might save a little time.
duke@435 253 const double major_cost = major_gc_cost();
duke@435 254 const double minor_cost = minor_gc_cost();
duke@435 255
duke@435 256 // Used for diagnostics
duke@435 257 clear_generation_free_space_flags();
duke@435 258
duke@435 259 // Limits on our growth
duke@435 260 size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 261
duke@435 262 // This method sets the desired eden size. That plus the
duke@435 263 // desired survivor space sizes sets the desired young generation
duke@435 264 // size. This methods does not know what the desired survivor
duke@435 265 // size is but expects that other policy will attempt to make
duke@435 266 // the survivor sizes compatible with the live data in the
duke@435 267 // young generation. This limit is an estimate of the space left
duke@435 268 // in the young generation after the survivor spaces have been
duke@435 269 // subtracted out.
duke@435 270 size_t eden_limit = max_eden_size;
duke@435 271
duke@435 272 // But don't force a promo size below the current promo size. Otherwise,
duke@435 273 // the promo size will shrink for no good reason.
duke@435 274 promo_limit = MAX2(promo_limit, _promo_size);
duke@435 275
duke@435 276 const double gc_cost_limit = GCTimeLimit/100.0;
duke@435 277
duke@435 278 // Which way should we go?
duke@435 279 // if pause requirement is not met
duke@435 280 // adjust size of any generation with average paus exceeding
duke@435 281 // the pause limit. Adjust one pause at a time (the larger)
duke@435 282 // and only make adjustments for the major pause at full collections.
duke@435 283 // else if throughput requirement not met
duke@435 284 // adjust the size of the generation with larger gc time. Only
duke@435 285 // adjust one generation at a time.
duke@435 286 // else
duke@435 287 // adjust down the total heap size. Adjust down the larger of the
duke@435 288 // generations.
duke@435 289
duke@435 290 // Add some checks for a threshhold for a change. For example,
duke@435 291 // a change less than the necessary alignment is probably not worth
duke@435 292 // attempting.
duke@435 293
duke@435 294
duke@435 295 if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
duke@435 296 (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
duke@435 297 //
duke@435 298 // Check pauses
duke@435 299 //
duke@435 300 // Make changes only to affect one of the pauses (the larger)
duke@435 301 // at a time.
duke@435 302 adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 303
duke@435 304 } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
duke@435 305 // Adjust only for the minor pause time goal
duke@435 306 adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 307
duke@435 308 } else if(adjusted_mutator_cost() < _throughput_goal) {
duke@435 309 // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
duke@435 310 // This sometimes resulted in skipping to the minimize footprint
duke@435 311 // code. Change this to try and reduce GC time if mutator time is
duke@435 312 // negative for whatever reason. Or for future consideration,
duke@435 313 // bail out of the code if mutator time is negative.
duke@435 314 //
duke@435 315 // Throughput
duke@435 316 //
duke@435 317 assert(major_cost >= 0.0, "major cost is < 0.0");
duke@435 318 assert(minor_cost >= 0.0, "minor cost is < 0.0");
duke@435 319 // Try to reduce the GC times.
duke@435 320 adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 321
duke@435 322 } else {
duke@435 323
duke@435 324 // Be conservative about reducing the footprint.
duke@435 325 // Do a minimum number of major collections first.
duke@435 326 // Have reasonable averages for major and minor collections costs.
duke@435 327 if (UseAdaptiveSizePolicyFootprintGoal &&
duke@435 328 young_gen_policy_is_ready() &&
duke@435 329 avg_major_gc_cost()->average() >= 0.0 &&
duke@435 330 avg_minor_gc_cost()->average() >= 0.0) {
duke@435 331 size_t desired_sum = desired_eden_size + desired_promo_size;
duke@435 332 desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
duke@435 333 desired_sum);
duke@435 334 if (is_full_gc) {
duke@435 335 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 336 desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
duke@435 337 desired_sum);
duke@435 338 }
duke@435 339 }
duke@435 340 }
duke@435 341
duke@435 342 // Note we make the same tests as in the code block below; the code
duke@435 343 // seems a little easier to read with the printing in another block.
duke@435 344 if (PrintAdaptiveSizePolicy) {
duke@435 345 if (desired_promo_size > promo_limit) {
duke@435 346 // "free_in_old_gen" was the original value for used for promo_limit
duke@435 347 size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 348 gclog_or_tty->print_cr(
duke@435 349 "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
duke@435 350 " desired_promo_size: " SIZE_FORMAT
duke@435 351 " promo_limit: " SIZE_FORMAT
duke@435 352 " free_in_old_gen: " SIZE_FORMAT
duke@435 353 " max_old_gen_size: " SIZE_FORMAT
duke@435 354 " avg_old_live: " SIZE_FORMAT,
duke@435 355 desired_promo_size, promo_limit, free_in_old_gen,
duke@435 356 max_old_gen_size, (size_t) avg_old_live()->average());
duke@435 357 }
duke@435 358 if (desired_eden_size > eden_limit) {
duke@435 359 gclog_or_tty->print_cr(
duke@435 360 "AdaptiveSizePolicy::compute_generation_free_space limits:"
duke@435 361 " desired_eden_size: " SIZE_FORMAT
duke@435 362 " old_eden_size: " SIZE_FORMAT
duke@435 363 " eden_limit: " SIZE_FORMAT
duke@435 364 " cur_eden: " SIZE_FORMAT
duke@435 365 " max_eden_size: " SIZE_FORMAT
duke@435 366 " avg_young_live: " SIZE_FORMAT,
duke@435 367 desired_eden_size, _eden_size, eden_limit, cur_eden,
duke@435 368 max_eden_size, (size_t)avg_young_live()->average());
duke@435 369 }
duke@435 370 if (gc_cost() > gc_cost_limit) {
duke@435 371 gclog_or_tty->print_cr(
duke@435 372 "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
duke@435 373 " gc_cost: %f "
duke@435 374 " GCTimeLimit: %d",
duke@435 375 gc_cost(), GCTimeLimit);
duke@435 376 }
duke@435 377 }
duke@435 378
duke@435 379 // Align everything and make a final limit check
duke@435 380 const size_t alignment = _intra_generation_alignment;
duke@435 381 desired_eden_size = align_size_up(desired_eden_size, alignment);
duke@435 382 desired_eden_size = MAX2(desired_eden_size, alignment);
duke@435 383 desired_promo_size = align_size_up(desired_promo_size, alignment);
duke@435 384 desired_promo_size = MAX2(desired_promo_size, alignment);
duke@435 385
duke@435 386 eden_limit = align_size_down(eden_limit, alignment);
duke@435 387 promo_limit = align_size_down(promo_limit, alignment);
duke@435 388
duke@435 389 // Is too much time being spent in GC?
duke@435 390 // Is the heap trying to grow beyond it's limits?
duke@435 391
jmasa@1822 392 const size_t free_in_old_gen =
jmasa@1822 393 (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 394 if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
jmasa@1822 395 check_gc_overhead_limit(young_live,
jmasa@1822 396 eden_live,
jmasa@1822 397 max_old_gen_size,
jmasa@1822 398 max_eden_size,
jmasa@1822 399 is_full_gc,
jmasa@1822 400 gc_cause,
jmasa@1822 401 collector_policy);
duke@435 402 }
duke@435 403
duke@435 404
duke@435 405 // And one last limit check, now that we've aligned things.
duke@435 406 if (desired_eden_size > eden_limit) {
duke@435 407 // If the policy says to get a larger eden but
duke@435 408 // is hitting the limit, don't decrease eden.
duke@435 409 // This can lead to a general drifting down of the
duke@435 410 // eden size. Let the tenuring calculation push more
duke@435 411 // into the old gen.
duke@435 412 desired_eden_size = MAX2(eden_limit, cur_eden);
duke@435 413 }
duke@435 414 desired_promo_size = MIN2(desired_promo_size, promo_limit);
duke@435 415
duke@435 416
duke@435 417 if (PrintAdaptiveSizePolicy) {
duke@435 418 // Timing stats
duke@435 419 gclog_or_tty->print(
duke@435 420 "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
duke@435 421 " minor_time: %f"
duke@435 422 " major_cost: %f"
duke@435 423 " mutator_cost: %f"
duke@435 424 " throughput_goal: %f",
duke@435 425 minor_gc_cost(), major_gc_cost(), mutator_cost(),
duke@435 426 _throughput_goal);
duke@435 427
duke@435 428 // We give more details if Verbose is set
duke@435 429 if (Verbose) {
duke@435 430 gclog_or_tty->print( " minor_pause: %f"
duke@435 431 " major_pause: %f"
duke@435 432 " minor_interval: %f"
duke@435 433 " major_interval: %f"
duke@435 434 " pause_goal: %f",
duke@435 435 _avg_minor_pause->padded_average(),
duke@435 436 _avg_major_pause->padded_average(),
duke@435 437 _avg_minor_interval->average(),
duke@435 438 _avg_major_interval->average(),
duke@435 439 gc_pause_goal_sec());
duke@435 440 }
duke@435 441
duke@435 442 // Footprint stats
duke@435 443 gclog_or_tty->print( " live_space: " SIZE_FORMAT
duke@435 444 " free_space: " SIZE_FORMAT,
duke@435 445 live_space(), free_space());
duke@435 446 // More detail
duke@435 447 if (Verbose) {
duke@435 448 gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
duke@435 449 " avg_young_live: " SIZE_FORMAT
duke@435 450 " avg_old_live: " SIZE_FORMAT,
duke@435 451 (size_t)_avg_base_footprint->average(),
duke@435 452 (size_t)avg_young_live()->average(),
duke@435 453 (size_t)avg_old_live()->average());
duke@435 454 }
duke@435 455
duke@435 456 // And finally, our old and new sizes.
duke@435 457 gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
duke@435 458 " old_eden_size: " SIZE_FORMAT
duke@435 459 " desired_promo_size: " SIZE_FORMAT
duke@435 460 " desired_eden_size: " SIZE_FORMAT,
duke@435 461 _promo_size, _eden_size,
duke@435 462 desired_promo_size, desired_eden_size);
duke@435 463 gclog_or_tty->cr();
duke@435 464 }
duke@435 465
duke@435 466 decay_supplemental_growth(is_full_gc);
duke@435 467
duke@435 468 set_promo_size(desired_promo_size);
duke@435 469 set_eden_size(desired_eden_size);
duke@435 470 };
duke@435 471
duke@435 472 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
duke@435 473 // Decay the supplemental increment? Decay the supplement growth
duke@435 474 // factor even if it is not used. It is only meant to give a boost
duke@435 475 // to the initial growth and if it is not used, then it was not
duke@435 476 // needed.
duke@435 477 if (is_full_gc) {
duke@435 478 // Don't wait for the threshold value for the major collections. If
duke@435 479 // here, the supplemental growth term was used and should decay.
duke@435 480 if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
duke@435 481 == 0) {
duke@435 482 _old_gen_size_increment_supplement =
duke@435 483 _old_gen_size_increment_supplement >> 1;
duke@435 484 }
duke@435 485 } else {
duke@435 486 if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
duke@435 487 (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
duke@435 488 _young_gen_size_increment_supplement =
duke@435 489 _young_gen_size_increment_supplement >> 1;
duke@435 490 }
duke@435 491 }
duke@435 492 }
duke@435 493
duke@435 494 void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
duke@435 495 size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
duke@435 496
duke@435 497 // Adjust the young generation size to reduce pause time of
duke@435 498 // of collections.
duke@435 499 //
duke@435 500 // The AdaptiveSizePolicyInitializingSteps test is not used
duke@435 501 // here. It has not seemed to be needed but perhaps should
duke@435 502 // be added for consistency.
duke@435 503 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 504 // reduce eden size
duke@435 505 set_change_young_gen_for_min_pauses(
duke@435 506 decrease_young_gen_for_min_pauses_true);
duke@435 507 *desired_eden_size_ptr = *desired_eden_size_ptr -
duke@435 508 eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 509 } else {
duke@435 510 // EXPERIMENTAL ADJUSTMENT
duke@435 511 // Only record that the estimator indicated such an action.
duke@435 512 // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
duke@435 513 set_change_young_gen_for_min_pauses(
duke@435 514 increase_young_gen_for_min_pauses_true);
duke@435 515 }
duke@435 516 if (PSAdjustTenuredGenForMinorPause) {
duke@435 517 // If the desired eden size is as small as it will get,
duke@435 518 // try to adjust the old gen size.
duke@435 519 if (*desired_eden_size_ptr <= _intra_generation_alignment) {
duke@435 520 // Vary the old gen size to reduce the young gen pause. This
duke@435 521 // may not be a good idea. This is just a test.
duke@435 522 if (minor_pause_old_estimator()->decrement_will_decrease()) {
duke@435 523 set_change_old_gen_for_min_pauses(
duke@435 524 decrease_old_gen_for_min_pauses_true);
duke@435 525 *desired_promo_size_ptr =
duke@435 526 _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 527 } else {
duke@435 528 set_change_old_gen_for_min_pauses(
duke@435 529 increase_old_gen_for_min_pauses_true);
duke@435 530 size_t promo_heap_delta =
duke@435 531 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 532 if ((*desired_promo_size_ptr + promo_heap_delta) >
duke@435 533 *desired_promo_size_ptr) {
duke@435 534 *desired_promo_size_ptr =
duke@435 535 _promo_size + promo_heap_delta;
duke@435 536 }
duke@435 537 }
duke@435 538 }
duke@435 539 }
duke@435 540 }
duke@435 541
duke@435 542 void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
duke@435 543 size_t* desired_promo_size_ptr,
duke@435 544 size_t* desired_eden_size_ptr) {
duke@435 545
duke@435 546 size_t promo_heap_delta = 0;
duke@435 547 size_t eden_heap_delta = 0;
duke@435 548 // Add some checks for a threshhold for a change. For example,
duke@435 549 // a change less than the required alignment is probably not worth
duke@435 550 // attempting.
duke@435 551 if (is_full_gc) {
duke@435 552 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 553 }
duke@435 554
duke@435 555 if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
duke@435 556 adjust_for_minor_pause_time(is_full_gc,
duke@435 557 desired_promo_size_ptr,
duke@435 558 desired_eden_size_ptr);
duke@435 559 // major pause adjustments
duke@435 560 } else if (is_full_gc) {
duke@435 561 // Adjust for the major pause time only at full gc's because the
duke@435 562 // affects of a change can only be seen at full gc's.
duke@435 563
duke@435 564 // Reduce old generation size to reduce pause?
duke@435 565 if (major_pause_old_estimator()->decrement_will_decrease()) {
duke@435 566 // reduce old generation size
duke@435 567 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 568 promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 569 *desired_promo_size_ptr = _promo_size - promo_heap_delta;
duke@435 570 } else {
duke@435 571 // EXPERIMENTAL ADJUSTMENT
duke@435 572 // Only record that the estimator indicated such an action.
duke@435 573 // *desired_promo_size_ptr = _promo_size +
duke@435 574 // promo_increment_aligned_up(*desired_promo_size_ptr);
duke@435 575 set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
duke@435 576 }
duke@435 577 if (PSAdjustYoungGenForMajorPause) {
duke@435 578 // If the promo size is at the minimum (i.e., the old gen
duke@435 579 // size will not actually decrease), consider changing the
duke@435 580 // young gen size.
duke@435 581 if (*desired_promo_size_ptr < _intra_generation_alignment) {
duke@435 582 // If increasing the young generation will decrease the old gen
duke@435 583 // pause, do it.
duke@435 584 // During startup there is noise in the statistics for deciding
duke@435 585 // on whether to increase or decrease the young gen size. For
duke@435 586 // some number of iterations, just try to increase the young
duke@435 587 // gen size if the major pause is too long to try and establish
duke@435 588 // good statistics for later decisions.
duke@435 589 if (major_pause_young_estimator()->increment_will_decrease() ||
duke@435 590 (_young_gen_change_for_major_pause_count
duke@435 591 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 592 set_change_young_gen_for_maj_pauses(
duke@435 593 increase_young_gen_for_maj_pauses_true);
duke@435 594 eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
duke@435 595 *desired_eden_size_ptr = _eden_size + eden_heap_delta;
duke@435 596 _young_gen_change_for_major_pause_count++;
duke@435 597 } else {
duke@435 598 // Record that decreasing the young gen size would decrease
duke@435 599 // the major pause
duke@435 600 set_change_young_gen_for_maj_pauses(
duke@435 601 decrease_young_gen_for_maj_pauses_true);
duke@435 602 eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 603 *desired_eden_size_ptr = _eden_size - eden_heap_delta;
duke@435 604 }
duke@435 605 }
duke@435 606 }
duke@435 607 }
duke@435 608
duke@435 609 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 610 gclog_or_tty->print_cr(
duke@435 611 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 612 "adjusting gen sizes for major pause (avg %f goal %f). "
duke@435 613 "desired_promo_size " SIZE_FORMAT "desired_eden_size "
duke@435 614 SIZE_FORMAT
duke@435 615 " promo delta " SIZE_FORMAT " eden delta " SIZE_FORMAT,
duke@435 616 _avg_major_pause->average(), gc_pause_goal_sec(),
duke@435 617 *desired_promo_size_ptr, *desired_eden_size_ptr,
duke@435 618 promo_heap_delta, eden_heap_delta);
duke@435 619 }
duke@435 620 }
duke@435 621
duke@435 622 void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
duke@435 623 size_t* desired_promo_size_ptr,
duke@435 624 size_t* desired_eden_size_ptr) {
duke@435 625
duke@435 626 // Add some checks for a threshhold for a change. For example,
duke@435 627 // a change less than the required alignment is probably not worth
duke@435 628 // attempting.
duke@435 629 if (is_full_gc) {
duke@435 630 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 631 }
duke@435 632
duke@435 633 if ((gc_cost() + mutator_cost()) == 0.0) {
duke@435 634 return;
duke@435 635 }
duke@435 636
duke@435 637 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 638 gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
duke@435 639 "is_full: %d, promo: " SIZE_FORMAT ", cur_eden: " SIZE_FORMAT "): ",
duke@435 640 is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
duke@435 641 gclog_or_tty->print_cr("mutator_cost %f major_gc_cost %f "
duke@435 642 "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
duke@435 643 }
duke@435 644
duke@435 645 // Tenured generation
duke@435 646 if (is_full_gc) {
duke@435 647
duke@435 648 // Calculate the change to use for the tenured gen.
duke@435 649 size_t scaled_promo_heap_delta = 0;
duke@435 650 // Can the increment to the generation be scaled?
duke@435 651 if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
duke@435 652 size_t promo_heap_delta =
duke@435 653 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 654 double scale_by_ratio = major_gc_cost() / gc_cost();
duke@435 655 scaled_promo_heap_delta =
duke@435 656 (size_t) (scale_by_ratio * (double) promo_heap_delta);
duke@435 657 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 658 gclog_or_tty->print_cr(
duke@435 659 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 660 SIZE_FORMAT,
duke@435 661 promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
duke@435 662 }
duke@435 663 } else if (major_gc_cost() >= 0.0) {
duke@435 664 // Scaling is not going to work. If the major gc time is the
duke@435 665 // larger, give it a full increment.
duke@435 666 if (major_gc_cost() >= minor_gc_cost()) {
duke@435 667 scaled_promo_heap_delta =
duke@435 668 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 669 }
duke@435 670 } else {
duke@435 671 // Don't expect to get here but it's ok if it does
duke@435 672 // in the product build since the delta will be 0
duke@435 673 // and nothing will change.
duke@435 674 assert(false, "Unexpected value for gc costs");
duke@435 675 }
duke@435 676
duke@435 677 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 678 case 1:
duke@435 679 // Early in the run the statistics might not be good. Until
duke@435 680 // a specific number of collections have been, use the heuristic
duke@435 681 // that a larger generation size means lower collection costs.
duke@435 682 if (major_collection_estimator()->increment_will_decrease() ||
duke@435 683 (_old_gen_change_for_major_throughput
duke@435 684 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 685 // Increase tenured generation size to reduce major collection cost
duke@435 686 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 687 *desired_promo_size_ptr) {
duke@435 688 *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
duke@435 689 }
duke@435 690 set_change_old_gen_for_throughput(
duke@435 691 increase_old_gen_for_throughput_true);
duke@435 692 _old_gen_change_for_major_throughput++;
duke@435 693 } else {
duke@435 694 // EXPERIMENTAL ADJUSTMENT
duke@435 695 // Record that decreasing the old gen size would decrease
duke@435 696 // the major collection cost but don't do it.
duke@435 697 // *desired_promo_size_ptr = _promo_size -
duke@435 698 // promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 699 set_change_old_gen_for_throughput(
duke@435 700 decrease_old_gen_for_throughput_true);
duke@435 701 }
duke@435 702
duke@435 703 break;
duke@435 704 default:
duke@435 705 // Simplest strategy
duke@435 706 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 707 *desired_promo_size_ptr) {
duke@435 708 *desired_promo_size_ptr = *desired_promo_size_ptr +
duke@435 709 scaled_promo_heap_delta;
duke@435 710 }
duke@435 711 set_change_old_gen_for_throughput(
duke@435 712 increase_old_gen_for_throughput_true);
duke@435 713 _old_gen_change_for_major_throughput++;
duke@435 714 }
duke@435 715
duke@435 716 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 717 gclog_or_tty->print_cr(
duke@435 718 "adjusting tenured gen for throughput (avg %f goal %f). "
duke@435 719 "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
duke@435 720 mutator_cost(), _throughput_goal,
duke@435 721 *desired_promo_size_ptr, scaled_promo_heap_delta);
duke@435 722 }
duke@435 723 }
duke@435 724
duke@435 725 // Young generation
duke@435 726 size_t scaled_eden_heap_delta = 0;
duke@435 727 // Can the increment to the generation be scaled?
duke@435 728 if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
duke@435 729 size_t eden_heap_delta =
duke@435 730 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 731 double scale_by_ratio = minor_gc_cost() / gc_cost();
duke@435 732 assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
duke@435 733 scaled_eden_heap_delta =
duke@435 734 (size_t) (scale_by_ratio * (double) eden_heap_delta);
duke@435 735 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 736 gclog_or_tty->print_cr(
duke@435 737 "Scaled eden increment: " SIZE_FORMAT " by %f down to "
duke@435 738 SIZE_FORMAT,
duke@435 739 eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
duke@435 740 }
duke@435 741 } else if (minor_gc_cost() >= 0.0) {
duke@435 742 // Scaling is not going to work. If the minor gc time is the
duke@435 743 // larger, give it a full increment.
duke@435 744 if (minor_gc_cost() > major_gc_cost()) {
duke@435 745 scaled_eden_heap_delta =
duke@435 746 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 747 }
duke@435 748 } else {
duke@435 749 // Don't expect to get here but it's ok if it does
duke@435 750 // in the product build since the delta will be 0
duke@435 751 // and nothing will change.
duke@435 752 assert(false, "Unexpected value for gc costs");
duke@435 753 }
duke@435 754
duke@435 755 // Use a heuristic for some number of collections to give
duke@435 756 // the averages time to settle down.
duke@435 757 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 758 case 1:
duke@435 759 if (minor_collection_estimator()->increment_will_decrease() ||
duke@435 760 (_young_gen_change_for_minor_throughput
duke@435 761 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 762 // Expand young generation size to reduce frequency of
duke@435 763 // of collections.
duke@435 764 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 765 *desired_eden_size_ptr) {
duke@435 766 *desired_eden_size_ptr =
duke@435 767 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 768 }
duke@435 769 set_change_young_gen_for_throughput(
duke@435 770 increase_young_gen_for_througput_true);
duke@435 771 _young_gen_change_for_minor_throughput++;
duke@435 772 } else {
duke@435 773 // EXPERIMENTAL ADJUSTMENT
duke@435 774 // Record that decreasing the young gen size would decrease
duke@435 775 // the minor collection cost but don't do it.
duke@435 776 // *desired_eden_size_ptr = _eden_size -
duke@435 777 // eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 778 set_change_young_gen_for_throughput(
duke@435 779 decrease_young_gen_for_througput_true);
duke@435 780 }
duke@435 781 break;
duke@435 782 default:
duke@435 783 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 784 *desired_eden_size_ptr) {
duke@435 785 *desired_eden_size_ptr =
duke@435 786 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 787 }
duke@435 788 set_change_young_gen_for_throughput(
duke@435 789 increase_young_gen_for_througput_true);
duke@435 790 _young_gen_change_for_minor_throughput++;
duke@435 791 }
duke@435 792
duke@435 793 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 794 gclog_or_tty->print_cr(
duke@435 795 "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
duke@435 796 SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
duke@435 797 mutator_cost(), _throughput_goal,
duke@435 798 *desired_eden_size_ptr, scaled_eden_heap_delta);
duke@435 799 }
duke@435 800 }
duke@435 801
duke@435 802 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
duke@435 803 size_t desired_promo_size, size_t desired_sum) {
duke@435 804 assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
duke@435 805 set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
duke@435 806
duke@435 807 size_t change = promo_decrement(desired_promo_size);
duke@435 808 change = scale_down(change, desired_promo_size, desired_sum);
duke@435 809
duke@435 810 size_t reduced_size = desired_promo_size - change;
duke@435 811
duke@435 812 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 813 gclog_or_tty->print_cr(
duke@435 814 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 815 "adjusting tenured gen for footprint. "
duke@435 816 "starting promo size " SIZE_FORMAT
duke@435 817 " reduced promo size " SIZE_FORMAT,
duke@435 818 " promo delta " SIZE_FORMAT,
duke@435 819 desired_promo_size, reduced_size, change );
duke@435 820 }
duke@435 821
duke@435 822 assert(reduced_size <= desired_promo_size, "Inconsistent result");
duke@435 823 return reduced_size;
duke@435 824 }
duke@435 825
duke@435 826 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
duke@435 827 size_t desired_eden_size, size_t desired_sum) {
duke@435 828 assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
duke@435 829 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 830
duke@435 831 size_t change = eden_decrement(desired_eden_size);
duke@435 832 change = scale_down(change, desired_eden_size, desired_sum);
duke@435 833
duke@435 834 size_t reduced_size = desired_eden_size - change;
duke@435 835
duke@435 836 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 837 gclog_or_tty->print_cr(
duke@435 838 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 839 "adjusting eden for footprint. "
duke@435 840 " starting eden size " SIZE_FORMAT
duke@435 841 " reduced eden size " SIZE_FORMAT
duke@435 842 " eden delta " SIZE_FORMAT,
duke@435 843 desired_eden_size, reduced_size, change);
duke@435 844 }
duke@435 845
duke@435 846 assert(reduced_size <= desired_eden_size, "Inconsistent result");
duke@435 847 return reduced_size;
duke@435 848 }
duke@435 849
duke@435 850 // Scale down "change" by the factor
duke@435 851 // part / total
duke@435 852 // Don't align the results.
duke@435 853
duke@435 854 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
duke@435 855 double part,
duke@435 856 double total) {
duke@435 857 assert(part <= total, "Inconsistent input");
duke@435 858 size_t reduced_change = change;
duke@435 859 if (total > 0) {
duke@435 860 double fraction = part / total;
duke@435 861 reduced_change = (size_t) (fraction * (double) change);
duke@435 862 }
duke@435 863 assert(reduced_change <= change, "Inconsistent result");
duke@435 864 return reduced_change;
duke@435 865 }
duke@435 866
duke@435 867 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
duke@435 868 uint percent_change) {
duke@435 869 size_t eden_heap_delta;
duke@435 870 eden_heap_delta = cur_eden / 100 * percent_change;
duke@435 871 return eden_heap_delta;
duke@435 872 }
duke@435 873
duke@435 874 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
duke@435 875 return eden_increment(cur_eden, YoungGenerationSizeIncrement);
duke@435 876 }
duke@435 877
duke@435 878 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 879 size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
duke@435 880 return align_size_up(result, _intra_generation_alignment);
duke@435 881 }
duke@435 882
duke@435 883 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
duke@435 884 size_t result = eden_increment(cur_eden);
duke@435 885 return align_size_down(result, _intra_generation_alignment);
duke@435 886 }
duke@435 887
duke@435 888 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
duke@435 889 size_t cur_eden) {
duke@435 890 size_t result = eden_increment(cur_eden,
duke@435 891 YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
duke@435 892 return align_size_up(result, _intra_generation_alignment);
duke@435 893 }
duke@435 894
duke@435 895 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 896 size_t eden_heap_delta = eden_decrement(cur_eden);
duke@435 897 return align_size_down(eden_heap_delta, _intra_generation_alignment);
duke@435 898 }
duke@435 899
duke@435 900 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
duke@435 901 size_t eden_heap_delta = eden_increment(cur_eden) /
duke@435 902 AdaptiveSizeDecrementScaleFactor;
duke@435 903 return eden_heap_delta;
duke@435 904 }
duke@435 905
duke@435 906 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
duke@435 907 uint percent_change) {
duke@435 908 size_t promo_heap_delta;
duke@435 909 promo_heap_delta = cur_promo / 100 * percent_change;
duke@435 910 return promo_heap_delta;
duke@435 911 }
duke@435 912
duke@435 913 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
duke@435 914 return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 915 }
duke@435 916
duke@435 917 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 918 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 919 return align_size_up(result, _intra_generation_alignment);
duke@435 920 }
duke@435 921
duke@435 922 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
duke@435 923 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 924 return align_size_down(result, _intra_generation_alignment);
duke@435 925 }
duke@435 926
duke@435 927 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
duke@435 928 size_t cur_promo) {
duke@435 929 size_t result = promo_increment(cur_promo,
duke@435 930 TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
duke@435 931 return align_size_up(result, _intra_generation_alignment);
duke@435 932 }
duke@435 933
duke@435 934 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 935 size_t promo_heap_delta = promo_decrement(cur_promo);
duke@435 936 return align_size_down(promo_heap_delta, _intra_generation_alignment);
duke@435 937 }
duke@435 938
duke@435 939 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
duke@435 940 size_t promo_heap_delta = promo_increment(cur_promo);
duke@435 941 promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
duke@435 942 return promo_heap_delta;
duke@435 943 }
duke@435 944
duke@435 945 int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 946 bool is_survivor_overflow,
duke@435 947 int tenuring_threshold,
duke@435 948 size_t survivor_limit) {
duke@435 949 assert(survivor_limit >= _intra_generation_alignment,
duke@435 950 "survivor_limit too small");
duke@435 951 assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
duke@435 952 == survivor_limit, "survivor_limit not aligned");
duke@435 953
duke@435 954 // This method is called even if the tenuring threshold and survivor
duke@435 955 // spaces are not adjusted so that the averages are sampled above.
duke@435 956 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 957 !young_gen_policy_is_ready()) {
duke@435 958 return tenuring_threshold;
duke@435 959 }
duke@435 960
duke@435 961 // We'll decide whether to increase or decrease the tenuring
duke@435 962 // threshold based partly on the newly computed survivor size
duke@435 963 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 964 // decrement the threshold).
duke@435 965 bool incr_tenuring_threshold = false;
duke@435 966 bool decr_tenuring_threshold = false;
duke@435 967
duke@435 968 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 969 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 970 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 971
duke@435 972 if (!is_survivor_overflow) {
duke@435 973 // Keep running averages on how much survived
duke@435 974
duke@435 975 // We use the tenuring threshold to equalize the cost of major
duke@435 976 // and minor collections.
duke@435 977 // ThresholdTolerance is used to indicate how sensitive the
duke@435 978 // tenuring threshold is to differences in cost betweent the
duke@435 979 // collection types.
duke@435 980
duke@435 981 // Get the times of interest. This involves a little work, so
duke@435 982 // we cache the values here.
duke@435 983 const double major_cost = major_gc_cost();
duke@435 984 const double minor_cost = minor_gc_cost();
duke@435 985
duke@435 986 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 987 // Minor times are getting too long; lower the threshold so
duke@435 988 // less survives and more is promoted.
duke@435 989 decr_tenuring_threshold = true;
duke@435 990 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 991 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 992 // Major times are too long, so we want less promotion.
duke@435 993 incr_tenuring_threshold = true;
duke@435 994 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 995 }
duke@435 996
duke@435 997 } else {
duke@435 998 // Survivor space overflow occurred, so promoted and survived are
duke@435 999 // not accurate. We'll make our best guess by combining survived
duke@435 1000 // and promoted and count them as survivors.
duke@435 1001 //
duke@435 1002 // We'll lower the tenuring threshold to see if we can correct
duke@435 1003 // things. Also, set the survivor size conservatively. We're
duke@435 1004 // trying to avoid many overflows from occurring if defnew size
duke@435 1005 // is just too small.
duke@435 1006
duke@435 1007 decr_tenuring_threshold = true;
duke@435 1008 }
duke@435 1009
duke@435 1010 // The padded average also maintains a deviation from the average;
duke@435 1011 // we use this to see how good of an estimate we have of what survived.
duke@435 1012 // We're trying to pad the survivor size as little as possible without
duke@435 1013 // overflowing the survivor spaces.
duke@435 1014 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
duke@435 1015 _intra_generation_alignment);
duke@435 1016 target_size = MAX2(target_size, _intra_generation_alignment);
duke@435 1017
duke@435 1018 if (target_size > survivor_limit) {
duke@435 1019 // Target size is bigger than we can handle. Let's also reduce
duke@435 1020 // the tenuring threshold.
duke@435 1021 target_size = survivor_limit;
duke@435 1022 decr_tenuring_threshold = true;
duke@435 1023 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1024 }
duke@435 1025
duke@435 1026 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1027 // We test for decrementing first, as we might have hit the target size
duke@435 1028 // limit.
duke@435 1029 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1030 if (tenuring_threshold > 1) {
duke@435 1031 tenuring_threshold--;
duke@435 1032 }
duke@435 1033 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1034 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1035 tenuring_threshold++;
duke@435 1036 }
duke@435 1037 }
duke@435 1038
duke@435 1039 // We keep a running average of the amount promoted which is used
duke@435 1040 // to decide when we should collect the old generation (when
duke@435 1041 // the amount of old gen free space is less than what we expect to
duke@435 1042 // promote).
duke@435 1043
duke@435 1044 if (PrintAdaptiveSizePolicy) {
duke@435 1045 // A little more detail if Verbose is on
duke@435 1046 if (Verbose) {
duke@435 1047 gclog_or_tty->print( " avg_survived: %f"
duke@435 1048 " avg_deviation: %f",
duke@435 1049 _avg_survived->average(),
duke@435 1050 _avg_survived->deviation());
duke@435 1051 }
duke@435 1052
duke@435 1053 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1054 _avg_survived->padded_average());
duke@435 1055
duke@435 1056 if (Verbose) {
duke@435 1057 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1058 " avg_promoted_dev: %f",
duke@435 1059 avg_promoted()->average(),
duke@435 1060 avg_promoted()->deviation());
duke@435 1061 }
duke@435 1062
duke@435 1063 gclog_or_tty->print( " avg_promoted_padded_avg: %f"
duke@435 1064 " avg_pretenured_padded_avg: %f"
duke@435 1065 " tenuring_thresh: %d"
duke@435 1066 " target_size: " SIZE_FORMAT,
duke@435 1067 avg_promoted()->padded_average(),
duke@435 1068 _avg_pretenured->padded_average(),
duke@435 1069 tenuring_threshold, target_size);
duke@435 1070 tty->cr();
duke@435 1071 }
duke@435 1072
duke@435 1073 set_survivor_size(target_size);
duke@435 1074
duke@435 1075 return tenuring_threshold;
duke@435 1076 }
duke@435 1077
duke@435 1078 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
duke@435 1079 size_t survived,
duke@435 1080 size_t promoted) {
duke@435 1081 // Update averages
duke@435 1082 if (!is_survivor_overflow) {
duke@435 1083 // Keep running averages on how much survived
duke@435 1084 _avg_survived->sample(survived);
duke@435 1085 } else {
duke@435 1086 size_t survived_guess = survived + promoted;
duke@435 1087 _avg_survived->sample(survived_guess);
duke@435 1088 }
duke@435 1089 avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
duke@435 1090
duke@435 1091 if (PrintAdaptiveSizePolicy) {
duke@435 1092 gclog_or_tty->print(
duke@435 1093 "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
duke@435 1094 " survived: " SIZE_FORMAT
duke@435 1095 " promoted: " SIZE_FORMAT
duke@435 1096 " overflow: %s",
duke@435 1097 survived, promoted, is_survivor_overflow ? "true" : "false");
duke@435 1098 }
duke@435 1099 }
duke@435 1100
duke@435 1101 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
duke@435 1102 const {
duke@435 1103
duke@435 1104 if (!UseAdaptiveSizePolicy) return false;
duke@435 1105
duke@435 1106 return AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1107 st,
duke@435 1108 PSScavenge::tenuring_threshold());
duke@435 1109 }

mercurial