src/share/vm/runtime/objectMonitor.cpp

Fri, 24 Jun 2016 17:12:13 +0800

author
aoqi<aoqi@loongson.cn>
date
Fri, 24 Jun 2016 17:12:13 +0800
changeset 25
873fd82b133d
parent 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

[Code Reorganization] Removed GC related modifications made by Loongson, for example, UseOldNUMA.

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "classfile/vmSymbols.hpp"
aoqi@0 27 #include "memory/resourceArea.hpp"
aoqi@0 28 #include "oops/markOop.hpp"
aoqi@0 29 #include "oops/oop.inline.hpp"
aoqi@0 30 #include "runtime/handles.inline.hpp"
aoqi@0 31 #include "runtime/interfaceSupport.hpp"
aoqi@0 32 #include "runtime/mutexLocker.hpp"
aoqi@0 33 #include "runtime/objectMonitor.hpp"
aoqi@0 34 #include "runtime/objectMonitor.inline.hpp"
aoqi@0 35 #include "runtime/osThread.hpp"
aoqi@0 36 #include "runtime/stubRoutines.hpp"
aoqi@0 37 #include "runtime/thread.inline.hpp"
aoqi@0 38 #include "services/threadService.hpp"
aoqi@0 39 #include "trace/tracing.hpp"
aoqi@0 40 #include "trace/traceMacros.hpp"
aoqi@0 41 #include "utilities/dtrace.hpp"
aoqi@0 42 #include "utilities/macros.hpp"
aoqi@0 43 #include "utilities/preserveException.hpp"
aoqi@0 44 #ifdef TARGET_OS_FAMILY_linux
aoqi@0 45 # include "os_linux.inline.hpp"
aoqi@0 46 #endif
aoqi@0 47 #ifdef TARGET_OS_FAMILY_solaris
aoqi@0 48 # include "os_solaris.inline.hpp"
aoqi@0 49 #endif
aoqi@0 50 #ifdef TARGET_OS_FAMILY_windows
aoqi@0 51 # include "os_windows.inline.hpp"
aoqi@0 52 #endif
aoqi@0 53 #ifdef TARGET_OS_FAMILY_bsd
aoqi@0 54 # include "os_bsd.inline.hpp"
aoqi@0 55 #endif
aoqi@0 56
aoqi@0 57 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
aoqi@0 58 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
aoqi@0 59 #define ATTR __attribute__((noinline))
aoqi@0 60 #else
aoqi@0 61 #define ATTR
aoqi@0 62 #endif
aoqi@0 63
aoqi@0 64
aoqi@0 65 #ifdef DTRACE_ENABLED
aoqi@0 66
aoqi@0 67 // Only bother with this argument setup if dtrace is available
aoqi@0 68 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
aoqi@0 69
aoqi@0 70
aoqi@0 71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \
aoqi@0 72 char* bytes = NULL; \
aoqi@0 73 int len = 0; \
aoqi@0 74 jlong jtid = SharedRuntime::get_java_tid(thread); \
aoqi@0 75 Symbol* klassname = ((oop)obj)->klass()->name(); \
aoqi@0 76 if (klassname != NULL) { \
aoqi@0 77 bytes = (char*)klassname->bytes(); \
aoqi@0 78 len = klassname->utf8_length(); \
aoqi@0 79 }
aoqi@0 80
aoqi@0 81 #ifndef USDT2
aoqi@0 82
aoqi@0 83 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
aoqi@0 84 jlong, uintptr_t, char*, int);
aoqi@0 85 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
aoqi@0 86 jlong, uintptr_t, char*, int);
aoqi@0 87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
aoqi@0 88 jlong, uintptr_t, char*, int);
aoqi@0 89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
aoqi@0 90 jlong, uintptr_t, char*, int);
aoqi@0 91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
aoqi@0 92 jlong, uintptr_t, char*, int);
aoqi@0 93
aoqi@0 94 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
aoqi@0 95 { \
aoqi@0 96 if (DTraceMonitorProbes) { \
aoqi@0 97 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
aoqi@0 98 HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid, \
aoqi@0 99 (monitor), bytes, len, (millis)); \
aoqi@0 100 } \
aoqi@0 101 }
aoqi@0 102
aoqi@0 103 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
aoqi@0 104 { \
aoqi@0 105 if (DTraceMonitorProbes) { \
aoqi@0 106 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
aoqi@0 107 HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid, \
aoqi@0 108 (uintptr_t)(monitor), bytes, len); \
aoqi@0 109 } \
aoqi@0 110 }
aoqi@0 111
aoqi@0 112 #else /* USDT2 */
aoqi@0 113
aoqi@0 114 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
aoqi@0 115 { \
aoqi@0 116 if (DTraceMonitorProbes) { \
aoqi@0 117 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
aoqi@0 118 HOTSPOT_MONITOR_WAIT(jtid, \
aoqi@0 119 (monitor), bytes, len, (millis)); \
aoqi@0 120 } \
aoqi@0 121 }
aoqi@0 122
aoqi@0 123 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
aoqi@0 124 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
aoqi@0 125 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
aoqi@0 126 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
aoqi@0 127 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
aoqi@0 128
aoqi@0 129 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
aoqi@0 130 { \
aoqi@0 131 if (DTraceMonitorProbes) { \
aoqi@0 132 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
aoqi@0 133 HOTSPOT_MONITOR_##probe(jtid, \
aoqi@0 134 (uintptr_t)(monitor), bytes, len); \
aoqi@0 135 } \
aoqi@0 136 }
aoqi@0 137
aoqi@0 138 #endif /* USDT2 */
aoqi@0 139 #else // ndef DTRACE_ENABLED
aoqi@0 140
aoqi@0 141 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;}
aoqi@0 142 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;}
aoqi@0 143
aoqi@0 144 #endif // ndef DTRACE_ENABLED
aoqi@0 145
aoqi@0 146 // Tunables ...
aoqi@0 147 // The knob* variables are effectively final. Once set they should
aoqi@0 148 // never be modified hence. Consider using __read_mostly with GCC.
aoqi@0 149
aoqi@0 150 int ObjectMonitor::Knob_Verbose = 0 ;
aoqi@0 151 int ObjectMonitor::Knob_SpinLimit = 5000 ; // derived by an external tool -
aoqi@0 152 static int Knob_LogSpins = 0 ; // enable jvmstat tally for spins
aoqi@0 153 static int Knob_HandOff = 0 ;
aoqi@0 154 static int Knob_ReportSettings = 0 ;
aoqi@0 155
aoqi@0 156 static int Knob_SpinBase = 0 ; // Floor AKA SpinMin
aoqi@0 157 static int Knob_SpinBackOff = 0 ; // spin-loop backoff
aoqi@0 158 static int Knob_CASPenalty = -1 ; // Penalty for failed CAS
aoqi@0 159 static int Knob_OXPenalty = -1 ; // Penalty for observed _owner change
aoqi@0 160 static int Knob_SpinSetSucc = 1 ; // spinners set the _succ field
aoqi@0 161 static int Knob_SpinEarly = 1 ;
aoqi@0 162 static int Knob_SuccEnabled = 1 ; // futile wake throttling
aoqi@0 163 static int Knob_SuccRestrict = 0 ; // Limit successors + spinners to at-most-one
aoqi@0 164 static int Knob_MaxSpinners = -1 ; // Should be a function of # CPUs
aoqi@0 165 static int Knob_Bonus = 100 ; // spin success bonus
aoqi@0 166 static int Knob_BonusB = 100 ; // spin success bonus
aoqi@0 167 static int Knob_Penalty = 200 ; // spin failure penalty
aoqi@0 168 static int Knob_Poverty = 1000 ;
aoqi@0 169 static int Knob_SpinAfterFutile = 1 ; // Spin after returning from park()
aoqi@0 170 static int Knob_FixedSpin = 0 ;
aoqi@0 171 static int Knob_OState = 3 ; // Spinner checks thread state of _owner
aoqi@0 172 static int Knob_UsePause = 1 ;
aoqi@0 173 static int Knob_ExitPolicy = 0 ;
aoqi@0 174 static int Knob_PreSpin = 10 ; // 20-100 likely better
aoqi@0 175 static int Knob_ResetEvent = 0 ;
aoqi@0 176 static int BackOffMask = 0 ;
aoqi@0 177
aoqi@0 178 static int Knob_FastHSSEC = 0 ;
aoqi@0 179 static int Knob_MoveNotifyee = 2 ; // notify() - disposition of notifyee
aoqi@0 180 static int Knob_QMode = 0 ; // EntryList-cxq policy - queue discipline
aoqi@0 181 static volatile int InitDone = 0 ;
aoqi@0 182
aoqi@0 183 #define TrySpin TrySpin_VaryDuration
aoqi@0 184
aoqi@0 185 // -----------------------------------------------------------------------------
aoqi@0 186 // Theory of operations -- Monitors lists, thread residency, etc:
aoqi@0 187 //
aoqi@0 188 // * A thread acquires ownership of a monitor by successfully
aoqi@0 189 // CAS()ing the _owner field from null to non-null.
aoqi@0 190 //
aoqi@0 191 // * Invariant: A thread appears on at most one monitor list --
aoqi@0 192 // cxq, EntryList or WaitSet -- at any one time.
aoqi@0 193 //
aoqi@0 194 // * Contending threads "push" themselves onto the cxq with CAS
aoqi@0 195 // and then spin/park.
aoqi@0 196 //
aoqi@0 197 // * After a contending thread eventually acquires the lock it must
aoqi@0 198 // dequeue itself from either the EntryList or the cxq.
aoqi@0 199 //
aoqi@0 200 // * The exiting thread identifies and unparks an "heir presumptive"
aoqi@0 201 // tentative successor thread on the EntryList. Critically, the
aoqi@0 202 // exiting thread doesn't unlink the successor thread from the EntryList.
aoqi@0 203 // After having been unparked, the wakee will recontend for ownership of
aoqi@0 204 // the monitor. The successor (wakee) will either acquire the lock or
aoqi@0 205 // re-park itself.
aoqi@0 206 //
aoqi@0 207 // Succession is provided for by a policy of competitive handoff.
aoqi@0 208 // The exiting thread does _not_ grant or pass ownership to the
aoqi@0 209 // successor thread. (This is also referred to as "handoff" succession").
aoqi@0 210 // Instead the exiting thread releases ownership and possibly wakes
aoqi@0 211 // a successor, so the successor can (re)compete for ownership of the lock.
aoqi@0 212 // If the EntryList is empty but the cxq is populated the exiting
aoqi@0 213 // thread will drain the cxq into the EntryList. It does so by
aoqi@0 214 // by detaching the cxq (installing null with CAS) and folding
aoqi@0 215 // the threads from the cxq into the EntryList. The EntryList is
aoqi@0 216 // doubly linked, while the cxq is singly linked because of the
aoqi@0 217 // CAS-based "push" used to enqueue recently arrived threads (RATs).
aoqi@0 218 //
aoqi@0 219 // * Concurrency invariants:
aoqi@0 220 //
aoqi@0 221 // -- only the monitor owner may access or mutate the EntryList.
aoqi@0 222 // The mutex property of the monitor itself protects the EntryList
aoqi@0 223 // from concurrent interference.
aoqi@0 224 // -- Only the monitor owner may detach the cxq.
aoqi@0 225 //
aoqi@0 226 // * The monitor entry list operations avoid locks, but strictly speaking
aoqi@0 227 // they're not lock-free. Enter is lock-free, exit is not.
aoqi@0 228 // See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
aoqi@0 229 //
aoqi@0 230 // * The cxq can have multiple concurrent "pushers" but only one concurrent
aoqi@0 231 // detaching thread. This mechanism is immune from the ABA corruption.
aoqi@0 232 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
aoqi@0 233 //
aoqi@0 234 // * Taken together, the cxq and the EntryList constitute or form a
aoqi@0 235 // single logical queue of threads stalled trying to acquire the lock.
aoqi@0 236 // We use two distinct lists to improve the odds of a constant-time
aoqi@0 237 // dequeue operation after acquisition (in the ::enter() epilog) and
aoqi@0 238 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm).
aoqi@0 239 // A key desideratum is to minimize queue & monitor metadata manipulation
aoqi@0 240 // that occurs while holding the monitor lock -- that is, we want to
aoqi@0 241 // minimize monitor lock holds times. Note that even a small amount of
aoqi@0 242 // fixed spinning will greatly reduce the # of enqueue-dequeue operations
aoqi@0 243 // on EntryList|cxq. That is, spinning relieves contention on the "inner"
aoqi@0 244 // locks and monitor metadata.
aoqi@0 245 //
aoqi@0 246 // Cxq points to the the set of Recently Arrived Threads attempting entry.
aoqi@0 247 // Because we push threads onto _cxq with CAS, the RATs must take the form of
aoqi@0 248 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when
aoqi@0 249 // the unlocking thread notices that EntryList is null but _cxq is != null.
aoqi@0 250 //
aoqi@0 251 // The EntryList is ordered by the prevailing queue discipline and
aoqi@0 252 // can be organized in any convenient fashion, such as a doubly-linked list or
aoqi@0 253 // a circular doubly-linked list. Critically, we want insert and delete operations
aoqi@0 254 // to operate in constant-time. If we need a priority queue then something akin
aoqi@0 255 // to Solaris' sleepq would work nicely. Viz.,
aoqi@0 256 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
aoqi@0 257 // Queue discipline is enforced at ::exit() time, when the unlocking thread
aoqi@0 258 // drains the cxq into the EntryList, and orders or reorders the threads on the
aoqi@0 259 // EntryList accordingly.
aoqi@0 260 //
aoqi@0 261 // Barring "lock barging", this mechanism provides fair cyclic ordering,
aoqi@0 262 // somewhat similar to an elevator-scan.
aoqi@0 263 //
aoqi@0 264 // * The monitor synchronization subsystem avoids the use of native
aoqi@0 265 // synchronization primitives except for the narrow platform-specific
aoqi@0 266 // park-unpark abstraction. See the comments in os_solaris.cpp regarding
aoqi@0 267 // the semantics of park-unpark. Put another way, this monitor implementation
aoqi@0 268 // depends only on atomic operations and park-unpark. The monitor subsystem
aoqi@0 269 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
aoqi@0 270 // underlying OS manages the READY<->RUN transitions.
aoqi@0 271 //
aoqi@0 272 // * Waiting threads reside on the WaitSet list -- wait() puts
aoqi@0 273 // the caller onto the WaitSet.
aoqi@0 274 //
aoqi@0 275 // * notify() or notifyAll() simply transfers threads from the WaitSet to
aoqi@0 276 // either the EntryList or cxq. Subsequent exit() operations will
aoqi@0 277 // unpark the notifyee. Unparking a notifee in notify() is inefficient -
aoqi@0 278 // it's likely the notifyee would simply impale itself on the lock held
aoqi@0 279 // by the notifier.
aoqi@0 280 //
aoqi@0 281 // * An interesting alternative is to encode cxq as (List,LockByte) where
aoqi@0 282 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary
aoqi@0 283 // variable, like _recursions, in the scheme. The threads or Events that form
aoqi@0 284 // the list would have to be aligned in 256-byte addresses. A thread would
aoqi@0 285 // try to acquire the lock or enqueue itself with CAS, but exiting threads
aoqi@0 286 // could use a 1-0 protocol and simply STB to set the LockByte to 0.
aoqi@0 287 // Note that is is *not* word-tearing, but it does presume that full-word
aoqi@0 288 // CAS operations are coherent with intermix with STB operations. That's true
aoqi@0 289 // on most common processors.
aoqi@0 290 //
aoqi@0 291 // * See also http://blogs.sun.com/dave
aoqi@0 292
aoqi@0 293
aoqi@0 294 // -----------------------------------------------------------------------------
aoqi@0 295 // Enter support
aoqi@0 296
aoqi@0 297 bool ObjectMonitor::try_enter(Thread* THREAD) {
aoqi@0 298 if (THREAD != _owner) {
aoqi@0 299 if (THREAD->is_lock_owned ((address)_owner)) {
aoqi@0 300 assert(_recursions == 0, "internal state error");
aoqi@0 301 _owner = THREAD ;
aoqi@0 302 _recursions = 1 ;
aoqi@0 303 OwnerIsThread = 1 ;
aoqi@0 304 return true;
aoqi@0 305 }
aoqi@0 306 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
aoqi@0 307 return false;
aoqi@0 308 }
aoqi@0 309 return true;
aoqi@0 310 } else {
aoqi@0 311 _recursions++;
aoqi@0 312 return true;
aoqi@0 313 }
aoqi@0 314 }
aoqi@0 315
aoqi@0 316 void ATTR ObjectMonitor::enter(TRAPS) {
aoqi@0 317 // The following code is ordered to check the most common cases first
aoqi@0 318 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
aoqi@0 319 Thread * const Self = THREAD ;
aoqi@0 320 void * cur ;
aoqi@0 321
aoqi@0 322 cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
aoqi@0 323 if (cur == NULL) {
aoqi@0 324 // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
aoqi@0 325 assert (_recursions == 0 , "invariant") ;
aoqi@0 326 assert (_owner == Self, "invariant") ;
aoqi@0 327 // CONSIDER: set or assert OwnerIsThread == 1
aoqi@0 328 return ;
aoqi@0 329 }
aoqi@0 330
aoqi@0 331 if (cur == Self) {
aoqi@0 332 // TODO-FIXME: check for integer overflow! BUGID 6557169.
aoqi@0 333 _recursions ++ ;
aoqi@0 334 return ;
aoqi@0 335 }
aoqi@0 336
aoqi@0 337 if (Self->is_lock_owned ((address)cur)) {
aoqi@0 338 assert (_recursions == 0, "internal state error");
aoqi@0 339 _recursions = 1 ;
aoqi@0 340 // Commute owner from a thread-specific on-stack BasicLockObject address to
aoqi@0 341 // a full-fledged "Thread *".
aoqi@0 342 _owner = Self ;
aoqi@0 343 OwnerIsThread = 1 ;
aoqi@0 344 return ;
aoqi@0 345 }
aoqi@0 346
aoqi@0 347 // We've encountered genuine contention.
aoqi@0 348 assert (Self->_Stalled == 0, "invariant") ;
aoqi@0 349 Self->_Stalled = intptr_t(this) ;
aoqi@0 350
aoqi@0 351 // Try one round of spinning *before* enqueueing Self
aoqi@0 352 // and before going through the awkward and expensive state
aoqi@0 353 // transitions. The following spin is strictly optional ...
aoqi@0 354 // Note that if we acquire the monitor from an initial spin
aoqi@0 355 // we forgo posting JVMTI events and firing DTRACE probes.
aoqi@0 356 if (Knob_SpinEarly && TrySpin (Self) > 0) {
aoqi@0 357 assert (_owner == Self , "invariant") ;
aoqi@0 358 assert (_recursions == 0 , "invariant") ;
aoqi@0 359 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
aoqi@0 360 Self->_Stalled = 0 ;
aoqi@0 361 return ;
aoqi@0 362 }
aoqi@0 363
aoqi@0 364 assert (_owner != Self , "invariant") ;
aoqi@0 365 assert (_succ != Self , "invariant") ;
aoqi@0 366 assert (Self->is_Java_thread() , "invariant") ;
aoqi@0 367 JavaThread * jt = (JavaThread *) Self ;
aoqi@0 368 assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
aoqi@0 369 assert (jt->thread_state() != _thread_blocked , "invariant") ;
aoqi@0 370 assert (this->object() != NULL , "invariant") ;
aoqi@0 371 assert (_count >= 0, "invariant") ;
aoqi@0 372
aoqi@0 373 // Prevent deflation at STW-time. See deflate_idle_monitors() and is_busy().
aoqi@0 374 // Ensure the object-monitor relationship remains stable while there's contention.
aoqi@0 375 Atomic::inc_ptr(&_count);
aoqi@0 376
aoqi@0 377 EventJavaMonitorEnter event;
aoqi@0 378
aoqi@0 379 { // Change java thread status to indicate blocked on monitor enter.
aoqi@0 380 JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
aoqi@0 381
aoqi@0 382 DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
aoqi@0 383 if (JvmtiExport::should_post_monitor_contended_enter()) {
aoqi@0 384 JvmtiExport::post_monitor_contended_enter(jt, this);
aoqi@0 385
aoqi@0 386 // The current thread does not yet own the monitor and does not
aoqi@0 387 // yet appear on any queues that would get it made the successor.
aoqi@0 388 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
aoqi@0 389 // handler cannot accidentally consume an unpark() meant for the
aoqi@0 390 // ParkEvent associated with this ObjectMonitor.
aoqi@0 391 }
aoqi@0 392
aoqi@0 393 OSThreadContendState osts(Self->osthread());
aoqi@0 394 ThreadBlockInVM tbivm(jt);
aoqi@0 395
aoqi@0 396 Self->set_current_pending_monitor(this);
aoqi@0 397
aoqi@0 398 // TODO-FIXME: change the following for(;;) loop to straight-line code.
aoqi@0 399 for (;;) {
aoqi@0 400 jt->set_suspend_equivalent();
aoqi@0 401 // cleared by handle_special_suspend_equivalent_condition()
aoqi@0 402 // or java_suspend_self()
aoqi@0 403
aoqi@0 404 EnterI (THREAD) ;
aoqi@0 405
aoqi@0 406 if (!ExitSuspendEquivalent(jt)) break ;
aoqi@0 407
aoqi@0 408 //
aoqi@0 409 // We have acquired the contended monitor, but while we were
aoqi@0 410 // waiting another thread suspended us. We don't want to enter
aoqi@0 411 // the monitor while suspended because that would surprise the
aoqi@0 412 // thread that suspended us.
aoqi@0 413 //
aoqi@0 414 _recursions = 0 ;
aoqi@0 415 _succ = NULL ;
aoqi@0 416 exit (false, Self) ;
aoqi@0 417
aoqi@0 418 jt->java_suspend_self();
aoqi@0 419 }
aoqi@0 420 Self->set_current_pending_monitor(NULL);
aoqi@0 421
aoqi@0 422 // We cleared the pending monitor info since we've just gotten past
aoqi@0 423 // the enter-check-for-suspend dance and we now own the monitor free
aoqi@0 424 // and clear, i.e., it is no longer pending. The ThreadBlockInVM
aoqi@0 425 // destructor can go to a safepoint at the end of this block. If we
aoqi@0 426 // do a thread dump during that safepoint, then this thread will show
aoqi@0 427 // as having "-locked" the monitor, but the OS and java.lang.Thread
aoqi@0 428 // states will still report that the thread is blocked trying to
aoqi@0 429 // acquire it.
aoqi@0 430 }
aoqi@0 431
aoqi@0 432 Atomic::dec_ptr(&_count);
aoqi@0 433 assert (_count >= 0, "invariant") ;
aoqi@0 434 Self->_Stalled = 0 ;
aoqi@0 435
aoqi@0 436 // Must either set _recursions = 0 or ASSERT _recursions == 0.
aoqi@0 437 assert (_recursions == 0 , "invariant") ;
aoqi@0 438 assert (_owner == Self , "invariant") ;
aoqi@0 439 assert (_succ != Self , "invariant") ;
aoqi@0 440 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
aoqi@0 441
aoqi@0 442 // The thread -- now the owner -- is back in vm mode.
aoqi@0 443 // Report the glorious news via TI,DTrace and jvmstat.
aoqi@0 444 // The probe effect is non-trivial. All the reportage occurs
aoqi@0 445 // while we hold the monitor, increasing the length of the critical
aoqi@0 446 // section. Amdahl's parallel speedup law comes vividly into play.
aoqi@0 447 //
aoqi@0 448 // Another option might be to aggregate the events (thread local or
aoqi@0 449 // per-monitor aggregation) and defer reporting until a more opportune
aoqi@0 450 // time -- such as next time some thread encounters contention but has
aoqi@0 451 // yet to acquire the lock. While spinning that thread could
aoqi@0 452 // spinning we could increment JVMStat counters, etc.
aoqi@0 453
aoqi@0 454 DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
aoqi@0 455 if (JvmtiExport::should_post_monitor_contended_entered()) {
aoqi@0 456 JvmtiExport::post_monitor_contended_entered(jt, this);
aoqi@0 457
aoqi@0 458 // The current thread already owns the monitor and is not going to
aoqi@0 459 // call park() for the remainder of the monitor enter protocol. So
aoqi@0 460 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
aoqi@0 461 // event handler consumed an unpark() issued by the thread that
aoqi@0 462 // just exited the monitor.
aoqi@0 463 }
aoqi@0 464
aoqi@0 465 if (event.should_commit()) {
aoqi@0 466 event.set_klass(((oop)this->object())->klass());
aoqi@0 467 event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
aoqi@0 468 event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
aoqi@0 469 event.commit();
aoqi@0 470 }
aoqi@0 471
aoqi@0 472 if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
aoqi@0 473 ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
aoqi@0 474 }
aoqi@0 475 }
aoqi@0 476
aoqi@0 477
aoqi@0 478 // Caveat: TryLock() is not necessarily serializing if it returns failure.
aoqi@0 479 // Callers must compensate as needed.
aoqi@0 480
aoqi@0 481 int ObjectMonitor::TryLock (Thread * Self) {
aoqi@0 482 for (;;) {
aoqi@0 483 void * own = _owner ;
aoqi@0 484 if (own != NULL) return 0 ;
aoqi@0 485 if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
aoqi@0 486 // Either guarantee _recursions == 0 or set _recursions = 0.
aoqi@0 487 assert (_recursions == 0, "invariant") ;
aoqi@0 488 assert (_owner == Self, "invariant") ;
aoqi@0 489 // CONSIDER: set or assert that OwnerIsThread == 1
aoqi@0 490 return 1 ;
aoqi@0 491 }
aoqi@0 492 // The lock had been free momentarily, but we lost the race to the lock.
aoqi@0 493 // Interference -- the CAS failed.
aoqi@0 494 // We can either return -1 or retry.
aoqi@0 495 // Retry doesn't make as much sense because the lock was just acquired.
aoqi@0 496 if (true) return -1 ;
aoqi@0 497 }
aoqi@0 498 }
aoqi@0 499
aoqi@0 500 void ATTR ObjectMonitor::EnterI (TRAPS) {
aoqi@0 501 Thread * Self = THREAD ;
aoqi@0 502 assert (Self->is_Java_thread(), "invariant") ;
aoqi@0 503 assert (((JavaThread *) Self)->thread_state() == _thread_blocked , "invariant") ;
aoqi@0 504
aoqi@0 505 // Try the lock - TATAS
aoqi@0 506 if (TryLock (Self) > 0) {
aoqi@0 507 assert (_succ != Self , "invariant") ;
aoqi@0 508 assert (_owner == Self , "invariant") ;
aoqi@0 509 assert (_Responsible != Self , "invariant") ;
aoqi@0 510 return ;
aoqi@0 511 }
aoqi@0 512
aoqi@0 513 DeferredInitialize () ;
aoqi@0 514
aoqi@0 515 // We try one round of spinning *before* enqueueing Self.
aoqi@0 516 //
aoqi@0 517 // If the _owner is ready but OFFPROC we could use a YieldTo()
aoqi@0 518 // operation to donate the remainder of this thread's quantum
aoqi@0 519 // to the owner. This has subtle but beneficial affinity
aoqi@0 520 // effects.
aoqi@0 521
aoqi@0 522 if (TrySpin (Self) > 0) {
aoqi@0 523 assert (_owner == Self , "invariant") ;
aoqi@0 524 assert (_succ != Self , "invariant") ;
aoqi@0 525 assert (_Responsible != Self , "invariant") ;
aoqi@0 526 return ;
aoqi@0 527 }
aoqi@0 528
aoqi@0 529 // The Spin failed -- Enqueue and park the thread ...
aoqi@0 530 assert (_succ != Self , "invariant") ;
aoqi@0 531 assert (_owner != Self , "invariant") ;
aoqi@0 532 assert (_Responsible != Self , "invariant") ;
aoqi@0 533
aoqi@0 534 // Enqueue "Self" on ObjectMonitor's _cxq.
aoqi@0 535 //
aoqi@0 536 // Node acts as a proxy for Self.
aoqi@0 537 // As an aside, if were to ever rewrite the synchronization code mostly
aoqi@0 538 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
aoqi@0 539 // Java objects. This would avoid awkward lifecycle and liveness issues,
aoqi@0 540 // as well as eliminate a subset of ABA issues.
aoqi@0 541 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
aoqi@0 542 //
aoqi@0 543
aoqi@0 544 ObjectWaiter node(Self) ;
aoqi@0 545 Self->_ParkEvent->reset() ;
aoqi@0 546 node._prev = (ObjectWaiter *) 0xBAD ;
aoqi@0 547 node.TState = ObjectWaiter::TS_CXQ ;
aoqi@0 548
aoqi@0 549 // Push "Self" onto the front of the _cxq.
aoqi@0 550 // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
aoqi@0 551 // Note that spinning tends to reduce the rate at which threads
aoqi@0 552 // enqueue and dequeue on EntryList|cxq.
aoqi@0 553 ObjectWaiter * nxt ;
aoqi@0 554 for (;;) {
aoqi@0 555 node._next = nxt = _cxq ;
aoqi@0 556 if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
aoqi@0 557
aoqi@0 558 // Interference - the CAS failed because _cxq changed. Just retry.
aoqi@0 559 // As an optional optimization we retry the lock.
aoqi@0 560 if (TryLock (Self) > 0) {
aoqi@0 561 assert (_succ != Self , "invariant") ;
aoqi@0 562 assert (_owner == Self , "invariant") ;
aoqi@0 563 assert (_Responsible != Self , "invariant") ;
aoqi@0 564 return ;
aoqi@0 565 }
aoqi@0 566 }
aoqi@0 567
aoqi@0 568 // Check for cxq|EntryList edge transition to non-null. This indicates
aoqi@0 569 // the onset of contention. While contention persists exiting threads
aoqi@0 570 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit
aoqi@0 571 // operations revert to the faster 1-0 mode. This enter operation may interleave
aoqi@0 572 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
aoqi@0 573 // arrange for one of the contending thread to use a timed park() operations
aoqi@0 574 // to detect and recover from the race. (Stranding is form of progress failure
aoqi@0 575 // where the monitor is unlocked but all the contending threads remain parked).
aoqi@0 576 // That is, at least one of the contended threads will periodically poll _owner.
aoqi@0 577 // One of the contending threads will become the designated "Responsible" thread.
aoqi@0 578 // The Responsible thread uses a timed park instead of a normal indefinite park
aoqi@0 579 // operation -- it periodically wakes and checks for and recovers from potential
aoqi@0 580 // strandings admitted by 1-0 exit operations. We need at most one Responsible
aoqi@0 581 // thread per-monitor at any given moment. Only threads on cxq|EntryList may
aoqi@0 582 // be responsible for a monitor.
aoqi@0 583 //
aoqi@0 584 // Currently, one of the contended threads takes on the added role of "Responsible".
aoqi@0 585 // A viable alternative would be to use a dedicated "stranding checker" thread
aoqi@0 586 // that periodically iterated over all the threads (or active monitors) and unparked
aoqi@0 587 // successors where there was risk of stranding. This would help eliminate the
aoqi@0 588 // timer scalability issues we see on some platforms as we'd only have one thread
aoqi@0 589 // -- the checker -- parked on a timer.
aoqi@0 590
aoqi@0 591 if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
aoqi@0 592 // Try to assume the role of responsible thread for the monitor.
aoqi@0 593 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=Self }
aoqi@0 594 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
aoqi@0 595 }
aoqi@0 596
aoqi@0 597 // The lock have been released while this thread was occupied queueing
aoqi@0 598 // itself onto _cxq. To close the race and avoid "stranding" and
aoqi@0 599 // progress-liveness failure we must resample-retry _owner before parking.
aoqi@0 600 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
aoqi@0 601 // In this case the ST-MEMBAR is accomplished with CAS().
aoqi@0 602 //
aoqi@0 603 // TODO: Defer all thread state transitions until park-time.
aoqi@0 604 // Since state transitions are heavy and inefficient we'd like
aoqi@0 605 // to defer the state transitions until absolutely necessary,
aoqi@0 606 // and in doing so avoid some transitions ...
aoqi@0 607
aoqi@0 608 TEVENT (Inflated enter - Contention) ;
aoqi@0 609 int nWakeups = 0 ;
aoqi@0 610 int RecheckInterval = 1 ;
aoqi@0 611
aoqi@0 612 for (;;) {
aoqi@0 613
aoqi@0 614 if (TryLock (Self) > 0) break ;
aoqi@0 615 assert (_owner != Self, "invariant") ;
aoqi@0 616
aoqi@0 617 if ((SyncFlags & 2) && _Responsible == NULL) {
aoqi@0 618 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
aoqi@0 619 }
aoqi@0 620
aoqi@0 621 // park self
aoqi@0 622 if (_Responsible == Self || (SyncFlags & 1)) {
aoqi@0 623 TEVENT (Inflated enter - park TIMED) ;
aoqi@0 624 Self->_ParkEvent->park ((jlong) RecheckInterval) ;
aoqi@0 625 // Increase the RecheckInterval, but clamp the value.
aoqi@0 626 RecheckInterval *= 8 ;
aoqi@0 627 if (RecheckInterval > 1000) RecheckInterval = 1000 ;
aoqi@0 628 } else {
aoqi@0 629 TEVENT (Inflated enter - park UNTIMED) ;
aoqi@0 630 Self->_ParkEvent->park() ;
aoqi@0 631 }
aoqi@0 632
aoqi@0 633 if (TryLock(Self) > 0) break ;
aoqi@0 634
aoqi@0 635 // The lock is still contested.
aoqi@0 636 // Keep a tally of the # of futile wakeups.
aoqi@0 637 // Note that the counter is not protected by a lock or updated by atomics.
aoqi@0 638 // That is by design - we trade "lossy" counters which are exposed to
aoqi@0 639 // races during updates for a lower probe effect.
aoqi@0 640 TEVENT (Inflated enter - Futile wakeup) ;
aoqi@0 641 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
aoqi@0 642 ObjectMonitor::_sync_FutileWakeups->inc() ;
aoqi@0 643 }
aoqi@0 644 ++ nWakeups ;
aoqi@0 645
aoqi@0 646 // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
aoqi@0 647 // We can defer clearing _succ until after the spin completes
aoqi@0 648 // TrySpin() must tolerate being called with _succ == Self.
aoqi@0 649 // Try yet another round of adaptive spinning.
aoqi@0 650 if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
aoqi@0 651
aoqi@0 652 // We can find that we were unpark()ed and redesignated _succ while
aoqi@0 653 // we were spinning. That's harmless. If we iterate and call park(),
aoqi@0 654 // park() will consume the event and return immediately and we'll
aoqi@0 655 // just spin again. This pattern can repeat, leaving _succ to simply
aoqi@0 656 // spin on a CPU. Enable Knob_ResetEvent to clear pending unparks().
aoqi@0 657 // Alternately, we can sample fired() here, and if set, forgo spinning
aoqi@0 658 // in the next iteration.
aoqi@0 659
aoqi@0 660 if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
aoqi@0 661 Self->_ParkEvent->reset() ;
aoqi@0 662 OrderAccess::fence() ;
aoqi@0 663 }
aoqi@0 664 if (_succ == Self) _succ = NULL ;
aoqi@0 665
aoqi@0 666 // Invariant: after clearing _succ a thread *must* retry _owner before parking.
aoqi@0 667 OrderAccess::fence() ;
aoqi@0 668 }
aoqi@0 669
aoqi@0 670 // Egress :
aoqi@0 671 // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
aoqi@0 672 // Normally we'll find Self on the EntryList .
aoqi@0 673 // From the perspective of the lock owner (this thread), the
aoqi@0 674 // EntryList is stable and cxq is prepend-only.
aoqi@0 675 // The head of cxq is volatile but the interior is stable.
aoqi@0 676 // In addition, Self.TState is stable.
aoqi@0 677
aoqi@0 678 assert (_owner == Self , "invariant") ;
aoqi@0 679 assert (object() != NULL , "invariant") ;
aoqi@0 680 // I'd like to write:
aoqi@0 681 // guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
aoqi@0 682 // but as we're at a safepoint that's not safe.
aoqi@0 683
aoqi@0 684 UnlinkAfterAcquire (Self, &node) ;
aoqi@0 685 if (_succ == Self) _succ = NULL ;
aoqi@0 686
aoqi@0 687 assert (_succ != Self, "invariant") ;
aoqi@0 688 if (_Responsible == Self) {
aoqi@0 689 _Responsible = NULL ;
aoqi@0 690 OrderAccess::fence(); // Dekker pivot-point
aoqi@0 691
aoqi@0 692 // We may leave threads on cxq|EntryList without a designated
aoqi@0 693 // "Responsible" thread. This is benign. When this thread subsequently
aoqi@0 694 // exits the monitor it can "see" such preexisting "old" threads --
aoqi@0 695 // threads that arrived on the cxq|EntryList before the fence, above --
aoqi@0 696 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads
aoqi@0 697 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
aoqi@0 698 // non-null and elect a new "Responsible" timer thread.
aoqi@0 699 //
aoqi@0 700 // This thread executes:
aoqi@0 701 // ST Responsible=null; MEMBAR (in enter epilog - here)
aoqi@0 702 // LD cxq|EntryList (in subsequent exit)
aoqi@0 703 //
aoqi@0 704 // Entering threads in the slow/contended path execute:
aoqi@0 705 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
aoqi@0 706 // The (ST cxq; MEMBAR) is accomplished with CAS().
aoqi@0 707 //
aoqi@0 708 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
aoqi@0 709 // exit operation from floating above the ST Responsible=null.
aoqi@0 710 }
aoqi@0 711
aoqi@0 712 // We've acquired ownership with CAS().
aoqi@0 713 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
aoqi@0 714 // But since the CAS() this thread may have also stored into _succ,
aoqi@0 715 // EntryList, cxq or Responsible. These meta-data updates must be
aoqi@0 716 // visible __before this thread subsequently drops the lock.
aoqi@0 717 // Consider what could occur if we didn't enforce this constraint --
aoqi@0 718 // STs to monitor meta-data and user-data could reorder with (become
aoqi@0 719 // visible after) the ST in exit that drops ownership of the lock.
aoqi@0 720 // Some other thread could then acquire the lock, but observe inconsistent
aoqi@0 721 // or old monitor meta-data and heap data. That violates the JMM.
aoqi@0 722 // To that end, the 1-0 exit() operation must have at least STST|LDST
aoqi@0 723 // "release" barrier semantics. Specifically, there must be at least a
aoqi@0 724 // STST|LDST barrier in exit() before the ST of null into _owner that drops
aoqi@0 725 // the lock. The barrier ensures that changes to monitor meta-data and data
aoqi@0 726 // protected by the lock will be visible before we release the lock, and
aoqi@0 727 // therefore before some other thread (CPU) has a chance to acquire the lock.
aoqi@0 728 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
aoqi@0 729 //
aoqi@0 730 // Critically, any prior STs to _succ or EntryList must be visible before
aoqi@0 731 // the ST of null into _owner in the *subsequent* (following) corresponding
aoqi@0 732 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily
aoqi@0 733 // execute a serializing instruction.
aoqi@0 734
aoqi@0 735 if (SyncFlags & 8) {
aoqi@0 736 OrderAccess::fence() ;
aoqi@0 737 }
aoqi@0 738 return ;
aoqi@0 739 }
aoqi@0 740
aoqi@0 741 // ReenterI() is a specialized inline form of the latter half of the
aoqi@0 742 // contended slow-path from EnterI(). We use ReenterI() only for
aoqi@0 743 // monitor reentry in wait().
aoqi@0 744 //
aoqi@0 745 // In the future we should reconcile EnterI() and ReenterI(), adding
aoqi@0 746 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
aoqi@0 747 // loop accordingly.
aoqi@0 748
aoqi@0 749 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
aoqi@0 750 assert (Self != NULL , "invariant") ;
aoqi@0 751 assert (SelfNode != NULL , "invariant") ;
aoqi@0 752 assert (SelfNode->_thread == Self , "invariant") ;
aoqi@0 753 assert (_waiters > 0 , "invariant") ;
aoqi@0 754 assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
aoqi@0 755 assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
aoqi@0 756 JavaThread * jt = (JavaThread *) Self ;
aoqi@0 757
aoqi@0 758 int nWakeups = 0 ;
aoqi@0 759 for (;;) {
aoqi@0 760 ObjectWaiter::TStates v = SelfNode->TState ;
aoqi@0 761 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
aoqi@0 762 assert (_owner != Self, "invariant") ;
aoqi@0 763
aoqi@0 764 if (TryLock (Self) > 0) break ;
aoqi@0 765 if (TrySpin (Self) > 0) break ;
aoqi@0 766
aoqi@0 767 TEVENT (Wait Reentry - parking) ;
aoqi@0 768
aoqi@0 769 // State transition wrappers around park() ...
aoqi@0 770 // ReenterI() wisely defers state transitions until
aoqi@0 771 // it's clear we must park the thread.
aoqi@0 772 {
aoqi@0 773 OSThreadContendState osts(Self->osthread());
aoqi@0 774 ThreadBlockInVM tbivm(jt);
aoqi@0 775
aoqi@0 776 // cleared by handle_special_suspend_equivalent_condition()
aoqi@0 777 // or java_suspend_self()
aoqi@0 778 jt->set_suspend_equivalent();
aoqi@0 779 if (SyncFlags & 1) {
aoqi@0 780 Self->_ParkEvent->park ((jlong)1000) ;
aoqi@0 781 } else {
aoqi@0 782 Self->_ParkEvent->park () ;
aoqi@0 783 }
aoqi@0 784
aoqi@0 785 // were we externally suspended while we were waiting?
aoqi@0 786 for (;;) {
aoqi@0 787 if (!ExitSuspendEquivalent (jt)) break ;
aoqi@0 788 if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
aoqi@0 789 jt->java_suspend_self();
aoqi@0 790 jt->set_suspend_equivalent();
aoqi@0 791 }
aoqi@0 792 }
aoqi@0 793
aoqi@0 794 // Try again, but just so we distinguish between futile wakeups and
aoqi@0 795 // successful wakeups. The following test isn't algorithmically
aoqi@0 796 // necessary, but it helps us maintain sensible statistics.
aoqi@0 797 if (TryLock(Self) > 0) break ;
aoqi@0 798
aoqi@0 799 // The lock is still contested.
aoqi@0 800 // Keep a tally of the # of futile wakeups.
aoqi@0 801 // Note that the counter is not protected by a lock or updated by atomics.
aoqi@0 802 // That is by design - we trade "lossy" counters which are exposed to
aoqi@0 803 // races during updates for a lower probe effect.
aoqi@0 804 TEVENT (Wait Reentry - futile wakeup) ;
aoqi@0 805 ++ nWakeups ;
aoqi@0 806
aoqi@0 807 // Assuming this is not a spurious wakeup we'll normally
aoqi@0 808 // find that _succ == Self.
aoqi@0 809 if (_succ == Self) _succ = NULL ;
aoqi@0 810
aoqi@0 811 // Invariant: after clearing _succ a contending thread
aoqi@0 812 // *must* retry _owner before parking.
aoqi@0 813 OrderAccess::fence() ;
aoqi@0 814
aoqi@0 815 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
aoqi@0 816 ObjectMonitor::_sync_FutileWakeups->inc() ;
aoqi@0 817 }
aoqi@0 818 }
aoqi@0 819
aoqi@0 820 // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
aoqi@0 821 // Normally we'll find Self on the EntryList.
aoqi@0 822 // Unlinking from the EntryList is constant-time and atomic-free.
aoqi@0 823 // From the perspective of the lock owner (this thread), the
aoqi@0 824 // EntryList is stable and cxq is prepend-only.
aoqi@0 825 // The head of cxq is volatile but the interior is stable.
aoqi@0 826 // In addition, Self.TState is stable.
aoqi@0 827
aoqi@0 828 assert (_owner == Self, "invariant") ;
aoqi@0 829 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
aoqi@0 830 UnlinkAfterAcquire (Self, SelfNode) ;
aoqi@0 831 if (_succ == Self) _succ = NULL ;
aoqi@0 832 assert (_succ != Self, "invariant") ;
aoqi@0 833 SelfNode->TState = ObjectWaiter::TS_RUN ;
aoqi@0 834 OrderAccess::fence() ; // see comments at the end of EnterI()
aoqi@0 835 }
aoqi@0 836
aoqi@0 837 // after the thread acquires the lock in ::enter(). Equally, we could defer
aoqi@0 838 // unlinking the thread until ::exit()-time.
aoqi@0 839
aoqi@0 840 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
aoqi@0 841 {
aoqi@0 842 assert (_owner == Self, "invariant") ;
aoqi@0 843 assert (SelfNode->_thread == Self, "invariant") ;
aoqi@0 844
aoqi@0 845 if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
aoqi@0 846 // Normal case: remove Self from the DLL EntryList .
aoqi@0 847 // This is a constant-time operation.
aoqi@0 848 ObjectWaiter * nxt = SelfNode->_next ;
aoqi@0 849 ObjectWaiter * prv = SelfNode->_prev ;
aoqi@0 850 if (nxt != NULL) nxt->_prev = prv ;
aoqi@0 851 if (prv != NULL) prv->_next = nxt ;
aoqi@0 852 if (SelfNode == _EntryList ) _EntryList = nxt ;
aoqi@0 853 assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 854 assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 855 TEVENT (Unlink from EntryList) ;
aoqi@0 856 } else {
aoqi@0 857 guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
aoqi@0 858 // Inopportune interleaving -- Self is still on the cxq.
aoqi@0 859 // This usually means the enqueue of self raced an exiting thread.
aoqi@0 860 // Normally we'll find Self near the front of the cxq, so
aoqi@0 861 // dequeueing is typically fast. If needbe we can accelerate
aoqi@0 862 // this with some MCS/CHL-like bidirectional list hints and advisory
aoqi@0 863 // back-links so dequeueing from the interior will normally operate
aoqi@0 864 // in constant-time.
aoqi@0 865 // Dequeue Self from either the head (with CAS) or from the interior
aoqi@0 866 // with a linear-time scan and normal non-atomic memory operations.
aoqi@0 867 // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
aoqi@0 868 // and then unlink Self from EntryList. We have to drain eventually,
aoqi@0 869 // so it might as well be now.
aoqi@0 870
aoqi@0 871 ObjectWaiter * v = _cxq ;
aoqi@0 872 assert (v != NULL, "invariant") ;
aoqi@0 873 if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
aoqi@0 874 // The CAS above can fail from interference IFF a "RAT" arrived.
aoqi@0 875 // In that case Self must be in the interior and can no longer be
aoqi@0 876 // at the head of cxq.
aoqi@0 877 if (v == SelfNode) {
aoqi@0 878 assert (_cxq != v, "invariant") ;
aoqi@0 879 v = _cxq ; // CAS above failed - start scan at head of list
aoqi@0 880 }
aoqi@0 881 ObjectWaiter * p ;
aoqi@0 882 ObjectWaiter * q = NULL ;
aoqi@0 883 for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
aoqi@0 884 q = p ;
aoqi@0 885 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
aoqi@0 886 }
aoqi@0 887 assert (v != SelfNode, "invariant") ;
aoqi@0 888 assert (p == SelfNode, "Node not found on cxq") ;
aoqi@0 889 assert (p != _cxq, "invariant") ;
aoqi@0 890 assert (q != NULL, "invariant") ;
aoqi@0 891 assert (q->_next == p, "invariant") ;
aoqi@0 892 q->_next = p->_next ;
aoqi@0 893 }
aoqi@0 894 TEVENT (Unlink from cxq) ;
aoqi@0 895 }
aoqi@0 896
aoqi@0 897 // Diagnostic hygiene ...
aoqi@0 898 SelfNode->_prev = (ObjectWaiter *) 0xBAD ;
aoqi@0 899 SelfNode->_next = (ObjectWaiter *) 0xBAD ;
aoqi@0 900 SelfNode->TState = ObjectWaiter::TS_RUN ;
aoqi@0 901 }
aoqi@0 902
aoqi@0 903 // -----------------------------------------------------------------------------
aoqi@0 904 // Exit support
aoqi@0 905 //
aoqi@0 906 // exit()
aoqi@0 907 // ~~~~~~
aoqi@0 908 // Note that the collector can't reclaim the objectMonitor or deflate
aoqi@0 909 // the object out from underneath the thread calling ::exit() as the
aoqi@0 910 // thread calling ::exit() never transitions to a stable state.
aoqi@0 911 // This inhibits GC, which in turn inhibits asynchronous (and
aoqi@0 912 // inopportune) reclamation of "this".
aoqi@0 913 //
aoqi@0 914 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
aoqi@0 915 // There's one exception to the claim above, however. EnterI() can call
aoqi@0 916 // exit() to drop a lock if the acquirer has been externally suspended.
aoqi@0 917 // In that case exit() is called with _thread_state as _thread_blocked,
aoqi@0 918 // but the monitor's _count field is > 0, which inhibits reclamation.
aoqi@0 919 //
aoqi@0 920 // 1-0 exit
aoqi@0 921 // ~~~~~~~~
aoqi@0 922 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
aoqi@0 923 // the fast-path operators have been optimized so the common ::exit()
aoqi@0 924 // operation is 1-0. See i486.ad fast_unlock(), for instance.
aoqi@0 925 // The code emitted by fast_unlock() elides the usual MEMBAR. This
aoqi@0 926 // greatly improves latency -- MEMBAR and CAS having considerable local
aoqi@0 927 // latency on modern processors -- but at the cost of "stranding". Absent the
aoqi@0 928 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
aoqi@0 929 // ::enter() path, resulting in the entering thread being stranding
aoqi@0 930 // and a progress-liveness failure. Stranding is extremely rare.
aoqi@0 931 // We use timers (timed park operations) & periodic polling to detect
aoqi@0 932 // and recover from stranding. Potentially stranded threads periodically
aoqi@0 933 // wake up and poll the lock. See the usage of the _Responsible variable.
aoqi@0 934 //
aoqi@0 935 // The CAS() in enter provides for safety and exclusion, while the CAS or
aoqi@0 936 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking
aoqi@0 937 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
aoqi@0 938 // We detect and recover from stranding with timers.
aoqi@0 939 //
aoqi@0 940 // If a thread transiently strands it'll park until (a) another
aoqi@0 941 // thread acquires the lock and then drops the lock, at which time the
aoqi@0 942 // exiting thread will notice and unpark the stranded thread, or, (b)
aoqi@0 943 // the timer expires. If the lock is high traffic then the stranding latency
aoqi@0 944 // will be low due to (a). If the lock is low traffic then the odds of
aoqi@0 945 // stranding are lower, although the worst-case stranding latency
aoqi@0 946 // is longer. Critically, we don't want to put excessive load in the
aoqi@0 947 // platform's timer subsystem. We want to minimize both the timer injection
aoqi@0 948 // rate (timers created/sec) as well as the number of timers active at
aoqi@0 949 // any one time. (more precisely, we want to minimize timer-seconds, which is
aoqi@0 950 // the integral of the # of active timers at any instant over time).
aoqi@0 951 // Both impinge on OS scalability. Given that, at most one thread parked on
aoqi@0 952 // a monitor will use a timer.
aoqi@0 953
aoqi@0 954 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
aoqi@0 955 Thread * Self = THREAD ;
aoqi@0 956 if (THREAD != _owner) {
aoqi@0 957 if (THREAD->is_lock_owned((address) _owner)) {
aoqi@0 958 // Transmute _owner from a BasicLock pointer to a Thread address.
aoqi@0 959 // We don't need to hold _mutex for this transition.
aoqi@0 960 // Non-null to Non-null is safe as long as all readers can
aoqi@0 961 // tolerate either flavor.
aoqi@0 962 assert (_recursions == 0, "invariant") ;
aoqi@0 963 _owner = THREAD ;
aoqi@0 964 _recursions = 0 ;
aoqi@0 965 OwnerIsThread = 1 ;
aoqi@0 966 } else {
aoqi@0 967 // NOTE: we need to handle unbalanced monitor enter/exit
aoqi@0 968 // in native code by throwing an exception.
aoqi@0 969 // TODO: Throw an IllegalMonitorStateException ?
aoqi@0 970 TEVENT (Exit - Throw IMSX) ;
aoqi@0 971 assert(false, "Non-balanced monitor enter/exit!");
aoqi@0 972 if (false) {
aoqi@0 973 THROW(vmSymbols::java_lang_IllegalMonitorStateException());
aoqi@0 974 }
aoqi@0 975 return;
aoqi@0 976 }
aoqi@0 977 }
aoqi@0 978
aoqi@0 979 if (_recursions != 0) {
aoqi@0 980 _recursions--; // this is simple recursive enter
aoqi@0 981 TEVENT (Inflated exit - recursive) ;
aoqi@0 982 return ;
aoqi@0 983 }
aoqi@0 984
aoqi@0 985 // Invariant: after setting Responsible=null an thread must execute
aoqi@0 986 // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
aoqi@0 987 if ((SyncFlags & 4) == 0) {
aoqi@0 988 _Responsible = NULL ;
aoqi@0 989 }
aoqi@0 990
aoqi@0 991 #if INCLUDE_TRACE
aoqi@0 992 // get the owner's thread id for the MonitorEnter event
aoqi@0 993 // if it is enabled and the thread isn't suspended
aoqi@0 994 if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
aoqi@0 995 _previous_owner_tid = SharedRuntime::get_java_tid(Self);
aoqi@0 996 }
aoqi@0 997 #endif
aoqi@0 998
aoqi@0 999 for (;;) {
aoqi@0 1000 assert (THREAD == _owner, "invariant") ;
aoqi@0 1001
aoqi@0 1002
aoqi@0 1003 if (Knob_ExitPolicy == 0) {
aoqi@0 1004 // release semantics: prior loads and stores from within the critical section
aoqi@0 1005 // must not float (reorder) past the following store that drops the lock.
aoqi@0 1006 // On SPARC that requires MEMBAR #loadstore|#storestore.
aoqi@0 1007 // But of course in TSO #loadstore|#storestore is not required.
aoqi@0 1008 // I'd like to write one of the following:
aoqi@0 1009 // A. OrderAccess::release() ; _owner = NULL
aoqi@0 1010 // B. OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
aoqi@0 1011 // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
aoqi@0 1012 // store into a _dummy variable. That store is not needed, but can result
aoqi@0 1013 // in massive wasteful coherency traffic on classic SMP systems.
aoqi@0 1014 // Instead, I use release_store(), which is implemented as just a simple
aoqi@0 1015 // ST on x64, x86 and SPARC.
aoqi@0 1016 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
aoqi@0 1017 OrderAccess::storeload() ; // See if we need to wake a successor
aoqi@0 1018 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
aoqi@0 1019 TEVENT (Inflated exit - simple egress) ;
aoqi@0 1020 return ;
aoqi@0 1021 }
aoqi@0 1022 TEVENT (Inflated exit - complex egress) ;
aoqi@0 1023
aoqi@0 1024 // Normally the exiting thread is responsible for ensuring succession,
aoqi@0 1025 // but if other successors are ready or other entering threads are spinning
aoqi@0 1026 // then this thread can simply store NULL into _owner and exit without
aoqi@0 1027 // waking a successor. The existence of spinners or ready successors
aoqi@0 1028 // guarantees proper succession (liveness). Responsibility passes to the
aoqi@0 1029 // ready or running successors. The exiting thread delegates the duty.
aoqi@0 1030 // More precisely, if a successor already exists this thread is absolved
aoqi@0 1031 // of the responsibility of waking (unparking) one.
aoqi@0 1032 //
aoqi@0 1033 // The _succ variable is critical to reducing futile wakeup frequency.
aoqi@0 1034 // _succ identifies the "heir presumptive" thread that has been made
aoqi@0 1035 // ready (unparked) but that has not yet run. We need only one such
aoqi@0 1036 // successor thread to guarantee progress.
aoqi@0 1037 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
aoqi@0 1038 // section 3.3 "Futile Wakeup Throttling" for details.
aoqi@0 1039 //
aoqi@0 1040 // Note that spinners in Enter() also set _succ non-null.
aoqi@0 1041 // In the current implementation spinners opportunistically set
aoqi@0 1042 // _succ so that exiting threads might avoid waking a successor.
aoqi@0 1043 // Another less appealing alternative would be for the exiting thread
aoqi@0 1044 // to drop the lock and then spin briefly to see if a spinner managed
aoqi@0 1045 // to acquire the lock. If so, the exiting thread could exit
aoqi@0 1046 // immediately without waking a successor, otherwise the exiting
aoqi@0 1047 // thread would need to dequeue and wake a successor.
aoqi@0 1048 // (Note that we'd need to make the post-drop spin short, but no
aoqi@0 1049 // shorter than the worst-case round-trip cache-line migration time.
aoqi@0 1050 // The dropped lock needs to become visible to the spinner, and then
aoqi@0 1051 // the acquisition of the lock by the spinner must become visible to
aoqi@0 1052 // the exiting thread).
aoqi@0 1053 //
aoqi@0 1054
aoqi@0 1055 // It appears that an heir-presumptive (successor) must be made ready.
aoqi@0 1056 // Only the current lock owner can manipulate the EntryList or
aoqi@0 1057 // drain _cxq, so we need to reacquire the lock. If we fail
aoqi@0 1058 // to reacquire the lock the responsibility for ensuring succession
aoqi@0 1059 // falls to the new owner.
aoqi@0 1060 //
aoqi@0 1061 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
aoqi@0 1062 return ;
aoqi@0 1063 }
aoqi@0 1064 TEVENT (Exit - Reacquired) ;
aoqi@0 1065 } else {
aoqi@0 1066 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
aoqi@0 1067 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
aoqi@0 1068 OrderAccess::storeload() ;
aoqi@0 1069 // Ratify the previously observed values.
aoqi@0 1070 if (_cxq == NULL || _succ != NULL) {
aoqi@0 1071 TEVENT (Inflated exit - simple egress) ;
aoqi@0 1072 return ;
aoqi@0 1073 }
aoqi@0 1074
aoqi@0 1075 // inopportune interleaving -- the exiting thread (this thread)
aoqi@0 1076 // in the fast-exit path raced an entering thread in the slow-enter
aoqi@0 1077 // path.
aoqi@0 1078 // We have two choices:
aoqi@0 1079 // A. Try to reacquire the lock.
aoqi@0 1080 // If the CAS() fails return immediately, otherwise
aoqi@0 1081 // we either restart/rerun the exit operation, or simply
aoqi@0 1082 // fall-through into the code below which wakes a successor.
aoqi@0 1083 // B. If the elements forming the EntryList|cxq are TSM
aoqi@0 1084 // we could simply unpark() the lead thread and return
aoqi@0 1085 // without having set _succ.
aoqi@0 1086 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
aoqi@0 1087 TEVENT (Inflated exit - reacquired succeeded) ;
aoqi@0 1088 return ;
aoqi@0 1089 }
aoqi@0 1090 TEVENT (Inflated exit - reacquired failed) ;
aoqi@0 1091 } else {
aoqi@0 1092 TEVENT (Inflated exit - complex egress) ;
aoqi@0 1093 }
aoqi@0 1094 }
aoqi@0 1095
aoqi@0 1096 guarantee (_owner == THREAD, "invariant") ;
aoqi@0 1097
aoqi@0 1098 ObjectWaiter * w = NULL ;
aoqi@0 1099 int QMode = Knob_QMode ;
aoqi@0 1100
aoqi@0 1101 if (QMode == 2 && _cxq != NULL) {
aoqi@0 1102 // QMode == 2 : cxq has precedence over EntryList.
aoqi@0 1103 // Try to directly wake a successor from the cxq.
aoqi@0 1104 // If successful, the successor will need to unlink itself from cxq.
aoqi@0 1105 w = _cxq ;
aoqi@0 1106 assert (w != NULL, "invariant") ;
aoqi@0 1107 assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
aoqi@0 1108 ExitEpilog (Self, w) ;
aoqi@0 1109 return ;
aoqi@0 1110 }
aoqi@0 1111
aoqi@0 1112 if (QMode == 3 && _cxq != NULL) {
aoqi@0 1113 // Aggressively drain cxq into EntryList at the first opportunity.
aoqi@0 1114 // This policy ensure that recently-run threads live at the head of EntryList.
aoqi@0 1115 // Drain _cxq into EntryList - bulk transfer.
aoqi@0 1116 // First, detach _cxq.
aoqi@0 1117 // The following loop is tantamount to: w = swap (&cxq, NULL)
aoqi@0 1118 w = _cxq ;
aoqi@0 1119 for (;;) {
aoqi@0 1120 assert (w != NULL, "Invariant") ;
aoqi@0 1121 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
aoqi@0 1122 if (u == w) break ;
aoqi@0 1123 w = u ;
aoqi@0 1124 }
aoqi@0 1125 assert (w != NULL , "invariant") ;
aoqi@0 1126
aoqi@0 1127 ObjectWaiter * q = NULL ;
aoqi@0 1128 ObjectWaiter * p ;
aoqi@0 1129 for (p = w ; p != NULL ; p = p->_next) {
aoqi@0 1130 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
aoqi@0 1131 p->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1132 p->_prev = q ;
aoqi@0 1133 q = p ;
aoqi@0 1134 }
aoqi@0 1135
aoqi@0 1136 // Append the RATs to the EntryList
aoqi@0 1137 // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
aoqi@0 1138 ObjectWaiter * Tail ;
aoqi@0 1139 for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
aoqi@0 1140 if (Tail == NULL) {
aoqi@0 1141 _EntryList = w ;
aoqi@0 1142 } else {
aoqi@0 1143 Tail->_next = w ;
aoqi@0 1144 w->_prev = Tail ;
aoqi@0 1145 }
aoqi@0 1146
aoqi@0 1147 // Fall thru into code that tries to wake a successor from EntryList
aoqi@0 1148 }
aoqi@0 1149
aoqi@0 1150 if (QMode == 4 && _cxq != NULL) {
aoqi@0 1151 // Aggressively drain cxq into EntryList at the first opportunity.
aoqi@0 1152 // This policy ensure that recently-run threads live at the head of EntryList.
aoqi@0 1153
aoqi@0 1154 // Drain _cxq into EntryList - bulk transfer.
aoqi@0 1155 // First, detach _cxq.
aoqi@0 1156 // The following loop is tantamount to: w = swap (&cxq, NULL)
aoqi@0 1157 w = _cxq ;
aoqi@0 1158 for (;;) {
aoqi@0 1159 assert (w != NULL, "Invariant") ;
aoqi@0 1160 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
aoqi@0 1161 if (u == w) break ;
aoqi@0 1162 w = u ;
aoqi@0 1163 }
aoqi@0 1164 assert (w != NULL , "invariant") ;
aoqi@0 1165
aoqi@0 1166 ObjectWaiter * q = NULL ;
aoqi@0 1167 ObjectWaiter * p ;
aoqi@0 1168 for (p = w ; p != NULL ; p = p->_next) {
aoqi@0 1169 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
aoqi@0 1170 p->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1171 p->_prev = q ;
aoqi@0 1172 q = p ;
aoqi@0 1173 }
aoqi@0 1174
aoqi@0 1175 // Prepend the RATs to the EntryList
aoqi@0 1176 if (_EntryList != NULL) {
aoqi@0 1177 q->_next = _EntryList ;
aoqi@0 1178 _EntryList->_prev = q ;
aoqi@0 1179 }
aoqi@0 1180 _EntryList = w ;
aoqi@0 1181
aoqi@0 1182 // Fall thru into code that tries to wake a successor from EntryList
aoqi@0 1183 }
aoqi@0 1184
aoqi@0 1185 w = _EntryList ;
aoqi@0 1186 if (w != NULL) {
aoqi@0 1187 // I'd like to write: guarantee (w->_thread != Self).
aoqi@0 1188 // But in practice an exiting thread may find itself on the EntryList.
aoqi@0 1189 // Lets say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and
aoqi@0 1190 // then calls exit(). Exit release the lock by setting O._owner to NULL.
aoqi@0 1191 // Lets say T1 then stalls. T2 acquires O and calls O.notify(). The
aoqi@0 1192 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
aoqi@0 1193 // release the lock "O". T2 resumes immediately after the ST of null into
aoqi@0 1194 // _owner, above. T2 notices that the EntryList is populated, so it
aoqi@0 1195 // reacquires the lock and then finds itself on the EntryList.
aoqi@0 1196 // Given all that, we have to tolerate the circumstance where "w" is
aoqi@0 1197 // associated with Self.
aoqi@0 1198 assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 1199 ExitEpilog (Self, w) ;
aoqi@0 1200 return ;
aoqi@0 1201 }
aoqi@0 1202
aoqi@0 1203 // If we find that both _cxq and EntryList are null then just
aoqi@0 1204 // re-run the exit protocol from the top.
aoqi@0 1205 w = _cxq ;
aoqi@0 1206 if (w == NULL) continue ;
aoqi@0 1207
aoqi@0 1208 // Drain _cxq into EntryList - bulk transfer.
aoqi@0 1209 // First, detach _cxq.
aoqi@0 1210 // The following loop is tantamount to: w = swap (&cxq, NULL)
aoqi@0 1211 for (;;) {
aoqi@0 1212 assert (w != NULL, "Invariant") ;
aoqi@0 1213 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
aoqi@0 1214 if (u == w) break ;
aoqi@0 1215 w = u ;
aoqi@0 1216 }
aoqi@0 1217 TEVENT (Inflated exit - drain cxq into EntryList) ;
aoqi@0 1218
aoqi@0 1219 assert (w != NULL , "invariant") ;
aoqi@0 1220 assert (_EntryList == NULL , "invariant") ;
aoqi@0 1221
aoqi@0 1222 // Convert the LIFO SLL anchored by _cxq into a DLL.
aoqi@0 1223 // The list reorganization step operates in O(LENGTH(w)) time.
aoqi@0 1224 // It's critical that this step operate quickly as
aoqi@0 1225 // "Self" still holds the outer-lock, restricting parallelism
aoqi@0 1226 // and effectively lengthening the critical section.
aoqi@0 1227 // Invariant: s chases t chases u.
aoqi@0 1228 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
aoqi@0 1229 // we have faster access to the tail.
aoqi@0 1230
aoqi@0 1231 if (QMode == 1) {
aoqi@0 1232 // QMode == 1 : drain cxq to EntryList, reversing order
aoqi@0 1233 // We also reverse the order of the list.
aoqi@0 1234 ObjectWaiter * s = NULL ;
aoqi@0 1235 ObjectWaiter * t = w ;
aoqi@0 1236 ObjectWaiter * u = NULL ;
aoqi@0 1237 while (t != NULL) {
aoqi@0 1238 guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
aoqi@0 1239 t->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1240 u = t->_next ;
aoqi@0 1241 t->_prev = u ;
aoqi@0 1242 t->_next = s ;
aoqi@0 1243 s = t;
aoqi@0 1244 t = u ;
aoqi@0 1245 }
aoqi@0 1246 _EntryList = s ;
aoqi@0 1247 assert (s != NULL, "invariant") ;
aoqi@0 1248 } else {
aoqi@0 1249 // QMode == 0 or QMode == 2
aoqi@0 1250 _EntryList = w ;
aoqi@0 1251 ObjectWaiter * q = NULL ;
aoqi@0 1252 ObjectWaiter * p ;
aoqi@0 1253 for (p = w ; p != NULL ; p = p->_next) {
aoqi@0 1254 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
aoqi@0 1255 p->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1256 p->_prev = q ;
aoqi@0 1257 q = p ;
aoqi@0 1258 }
aoqi@0 1259 }
aoqi@0 1260
aoqi@0 1261 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
aoqi@0 1262 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
aoqi@0 1263
aoqi@0 1264 // See if we can abdicate to a spinner instead of waking a thread.
aoqi@0 1265 // A primary goal of the implementation is to reduce the
aoqi@0 1266 // context-switch rate.
aoqi@0 1267 if (_succ != NULL) continue;
aoqi@0 1268
aoqi@0 1269 w = _EntryList ;
aoqi@0 1270 if (w != NULL) {
aoqi@0 1271 guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 1272 ExitEpilog (Self, w) ;
aoqi@0 1273 return ;
aoqi@0 1274 }
aoqi@0 1275 }
aoqi@0 1276 }
aoqi@0 1277
aoqi@0 1278 // ExitSuspendEquivalent:
aoqi@0 1279 // A faster alternate to handle_special_suspend_equivalent_condition()
aoqi@0 1280 //
aoqi@0 1281 // handle_special_suspend_equivalent_condition() unconditionally
aoqi@0 1282 // acquires the SR_lock. On some platforms uncontended MutexLocker()
aoqi@0 1283 // operations have high latency. Note that in ::enter() we call HSSEC
aoqi@0 1284 // while holding the monitor, so we effectively lengthen the critical sections.
aoqi@0 1285 //
aoqi@0 1286 // There are a number of possible solutions:
aoqi@0 1287 //
aoqi@0 1288 // A. To ameliorate the problem we might also defer state transitions
aoqi@0 1289 // to as late as possible -- just prior to parking.
aoqi@0 1290 // Given that, we'd call HSSEC after having returned from park(),
aoqi@0 1291 // but before attempting to acquire the monitor. This is only a
aoqi@0 1292 // partial solution. It avoids calling HSSEC while holding the
aoqi@0 1293 // monitor (good), but it still increases successor reacquisition latency --
aoqi@0 1294 // the interval between unparking a successor and the time the successor
aoqi@0 1295 // resumes and retries the lock. See ReenterI(), which defers state transitions.
aoqi@0 1296 // If we use this technique we can also avoid EnterI()-exit() loop
aoqi@0 1297 // in ::enter() where we iteratively drop the lock and then attempt
aoqi@0 1298 // to reacquire it after suspending.
aoqi@0 1299 //
aoqi@0 1300 // B. In the future we might fold all the suspend bits into a
aoqi@0 1301 // composite per-thread suspend flag and then update it with CAS().
aoqi@0 1302 // Alternately, a Dekker-like mechanism with multiple variables
aoqi@0 1303 // would suffice:
aoqi@0 1304 // ST Self->_suspend_equivalent = false
aoqi@0 1305 // MEMBAR
aoqi@0 1306 // LD Self_>_suspend_flags
aoqi@0 1307 //
aoqi@0 1308
aoqi@0 1309
aoqi@0 1310 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
aoqi@0 1311 int Mode = Knob_FastHSSEC ;
aoqi@0 1312 if (Mode && !jSelf->is_external_suspend()) {
aoqi@0 1313 assert (jSelf->is_suspend_equivalent(), "invariant") ;
aoqi@0 1314 jSelf->clear_suspend_equivalent() ;
aoqi@0 1315 if (2 == Mode) OrderAccess::storeload() ;
aoqi@0 1316 if (!jSelf->is_external_suspend()) return false ;
aoqi@0 1317 // We raced a suspension -- fall thru into the slow path
aoqi@0 1318 TEVENT (ExitSuspendEquivalent - raced) ;
aoqi@0 1319 jSelf->set_suspend_equivalent() ;
aoqi@0 1320 }
aoqi@0 1321 return jSelf->handle_special_suspend_equivalent_condition() ;
aoqi@0 1322 }
aoqi@0 1323
aoqi@0 1324
aoqi@0 1325 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
aoqi@0 1326 assert (_owner == Self, "invariant") ;
aoqi@0 1327
aoqi@0 1328 // Exit protocol:
aoqi@0 1329 // 1. ST _succ = wakee
aoqi@0 1330 // 2. membar #loadstore|#storestore;
aoqi@0 1331 // 2. ST _owner = NULL
aoqi@0 1332 // 3. unpark(wakee)
aoqi@0 1333
aoqi@0 1334 _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
aoqi@0 1335 ParkEvent * Trigger = Wakee->_event ;
aoqi@0 1336
aoqi@0 1337 // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
aoqi@0 1338 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
aoqi@0 1339 // out-of-scope (non-extant).
aoqi@0 1340 Wakee = NULL ;
aoqi@0 1341
aoqi@0 1342 // Drop the lock
aoqi@0 1343 OrderAccess::release_store_ptr (&_owner, NULL) ;
aoqi@0 1344 OrderAccess::fence() ; // ST _owner vs LD in unpark()
aoqi@0 1345
aoqi@0 1346 if (SafepointSynchronize::do_call_back()) {
aoqi@0 1347 TEVENT (unpark before SAFEPOINT) ;
aoqi@0 1348 }
aoqi@0 1349
aoqi@0 1350 DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
aoqi@0 1351 Trigger->unpark() ;
aoqi@0 1352
aoqi@0 1353 // Maintain stats and report events to JVMTI
aoqi@0 1354 if (ObjectMonitor::_sync_Parks != NULL) {
aoqi@0 1355 ObjectMonitor::_sync_Parks->inc() ;
aoqi@0 1356 }
aoqi@0 1357 }
aoqi@0 1358
aoqi@0 1359
aoqi@0 1360 // -----------------------------------------------------------------------------
aoqi@0 1361 // Class Loader deadlock handling.
aoqi@0 1362 //
aoqi@0 1363 // complete_exit exits a lock returning recursion count
aoqi@0 1364 // complete_exit/reenter operate as a wait without waiting
aoqi@0 1365 // complete_exit requires an inflated monitor
aoqi@0 1366 // The _owner field is not always the Thread addr even with an
aoqi@0 1367 // inflated monitor, e.g. the monitor can be inflated by a non-owning
aoqi@0 1368 // thread due to contention.
aoqi@0 1369 intptr_t ObjectMonitor::complete_exit(TRAPS) {
aoqi@0 1370 Thread * const Self = THREAD;
aoqi@0 1371 assert(Self->is_Java_thread(), "Must be Java thread!");
aoqi@0 1372 JavaThread *jt = (JavaThread *)THREAD;
aoqi@0 1373
aoqi@0 1374 DeferredInitialize();
aoqi@0 1375
aoqi@0 1376 if (THREAD != _owner) {
aoqi@0 1377 if (THREAD->is_lock_owned ((address)_owner)) {
aoqi@0 1378 assert(_recursions == 0, "internal state error");
aoqi@0 1379 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */
aoqi@0 1380 _recursions = 0 ;
aoqi@0 1381 OwnerIsThread = 1 ;
aoqi@0 1382 }
aoqi@0 1383 }
aoqi@0 1384
aoqi@0 1385 guarantee(Self == _owner, "complete_exit not owner");
aoqi@0 1386 intptr_t save = _recursions; // record the old recursion count
aoqi@0 1387 _recursions = 0; // set the recursion level to be 0
aoqi@0 1388 exit (true, Self) ; // exit the monitor
aoqi@0 1389 guarantee (_owner != Self, "invariant");
aoqi@0 1390 return save;
aoqi@0 1391 }
aoqi@0 1392
aoqi@0 1393 // reenter() enters a lock and sets recursion count
aoqi@0 1394 // complete_exit/reenter operate as a wait without waiting
aoqi@0 1395 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
aoqi@0 1396 Thread * const Self = THREAD;
aoqi@0 1397 assert(Self->is_Java_thread(), "Must be Java thread!");
aoqi@0 1398 JavaThread *jt = (JavaThread *)THREAD;
aoqi@0 1399
aoqi@0 1400 guarantee(_owner != Self, "reenter already owner");
aoqi@0 1401 enter (THREAD); // enter the monitor
aoqi@0 1402 guarantee (_recursions == 0, "reenter recursion");
aoqi@0 1403 _recursions = recursions;
aoqi@0 1404 return;
aoqi@0 1405 }
aoqi@0 1406
aoqi@0 1407
aoqi@0 1408 // -----------------------------------------------------------------------------
aoqi@0 1409 // A macro is used below because there may already be a pending
aoqi@0 1410 // exception which should not abort the execution of the routines
aoqi@0 1411 // which use this (which is why we don't put this into check_slow and
aoqi@0 1412 // call it with a CHECK argument).
aoqi@0 1413
aoqi@0 1414 #define CHECK_OWNER() \
aoqi@0 1415 do { \
aoqi@0 1416 if (THREAD != _owner) { \
aoqi@0 1417 if (THREAD->is_lock_owned((address) _owner)) { \
aoqi@0 1418 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */ \
aoqi@0 1419 _recursions = 0; \
aoqi@0 1420 OwnerIsThread = 1 ; \
aoqi@0 1421 } else { \
aoqi@0 1422 TEVENT (Throw IMSX) ; \
aoqi@0 1423 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); \
aoqi@0 1424 } \
aoqi@0 1425 } \
aoqi@0 1426 } while (false)
aoqi@0 1427
aoqi@0 1428 // check_slow() is a misnomer. It's called to simply to throw an IMSX exception.
aoqi@0 1429 // TODO-FIXME: remove check_slow() -- it's likely dead.
aoqi@0 1430
aoqi@0 1431 void ObjectMonitor::check_slow(TRAPS) {
aoqi@0 1432 TEVENT (check_slow - throw IMSX) ;
aoqi@0 1433 assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
aoqi@0 1434 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
aoqi@0 1435 }
aoqi@0 1436
aoqi@0 1437 static int Adjust (volatile int * adr, int dx) {
aoqi@0 1438 int v ;
aoqi@0 1439 for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
aoqi@0 1440 return v ;
aoqi@0 1441 }
aoqi@0 1442
aoqi@0 1443 // helper method for posting a monitor wait event
aoqi@0 1444 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
aoqi@0 1445 jlong notifier_tid,
aoqi@0 1446 jlong timeout,
aoqi@0 1447 bool timedout) {
aoqi@0 1448 event->set_klass(((oop)this->object())->klass());
aoqi@0 1449 event->set_timeout((TYPE_ULONG)timeout);
aoqi@0 1450 event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
aoqi@0 1451 event->set_notifier((TYPE_OSTHREAD)notifier_tid);
aoqi@0 1452 event->set_timedOut((TYPE_BOOLEAN)timedout);
aoqi@0 1453 event->commit();
aoqi@0 1454 }
aoqi@0 1455
aoqi@0 1456 // -----------------------------------------------------------------------------
aoqi@0 1457 // Wait/Notify/NotifyAll
aoqi@0 1458 //
aoqi@0 1459 // Note: a subset of changes to ObjectMonitor::wait()
aoqi@0 1460 // will need to be replicated in complete_exit above
aoqi@0 1461 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
aoqi@0 1462 Thread * const Self = THREAD ;
aoqi@0 1463 assert(Self->is_Java_thread(), "Must be Java thread!");
aoqi@0 1464 JavaThread *jt = (JavaThread *)THREAD;
aoqi@0 1465
aoqi@0 1466 DeferredInitialize () ;
aoqi@0 1467
aoqi@0 1468 // Throw IMSX or IEX.
aoqi@0 1469 CHECK_OWNER();
aoqi@0 1470
aoqi@0 1471 EventJavaMonitorWait event;
aoqi@0 1472
aoqi@0 1473 // check for a pending interrupt
aoqi@0 1474 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
aoqi@0 1475 // post monitor waited event. Note that this is past-tense, we are done waiting.
aoqi@0 1476 if (JvmtiExport::should_post_monitor_waited()) {
aoqi@0 1477 // Note: 'false' parameter is passed here because the
aoqi@0 1478 // wait was not timed out due to thread interrupt.
aoqi@0 1479 JvmtiExport::post_monitor_waited(jt, this, false);
aoqi@0 1480
aoqi@0 1481 // In this short circuit of the monitor wait protocol, the
aoqi@0 1482 // current thread never drops ownership of the monitor and
aoqi@0 1483 // never gets added to the wait queue so the current thread
aoqi@0 1484 // cannot be made the successor. This means that the
aoqi@0 1485 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
aoqi@0 1486 // consume an unpark() meant for the ParkEvent associated with
aoqi@0 1487 // this ObjectMonitor.
aoqi@0 1488 }
aoqi@0 1489 if (event.should_commit()) {
aoqi@0 1490 post_monitor_wait_event(&event, 0, millis, false);
aoqi@0 1491 }
aoqi@0 1492 TEVENT (Wait - Throw IEX) ;
aoqi@0 1493 THROW(vmSymbols::java_lang_InterruptedException());
aoqi@0 1494 return ;
aoqi@0 1495 }
aoqi@0 1496
aoqi@0 1497 TEVENT (Wait) ;
aoqi@0 1498
aoqi@0 1499 assert (Self->_Stalled == 0, "invariant") ;
aoqi@0 1500 Self->_Stalled = intptr_t(this) ;
aoqi@0 1501 jt->set_current_waiting_monitor(this);
aoqi@0 1502
aoqi@0 1503 // create a node to be put into the queue
aoqi@0 1504 // Critically, after we reset() the event but prior to park(), we must check
aoqi@0 1505 // for a pending interrupt.
aoqi@0 1506 ObjectWaiter node(Self);
aoqi@0 1507 node.TState = ObjectWaiter::TS_WAIT ;
aoqi@0 1508 Self->_ParkEvent->reset() ;
aoqi@0 1509 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag
aoqi@0 1510
aoqi@0 1511 // Enter the waiting queue, which is a circular doubly linked list in this case
aoqi@0 1512 // but it could be a priority queue or any data structure.
aoqi@0 1513 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only
aoqi@0 1514 // by the the owner of the monitor *except* in the case where park()
aoqi@0 1515 // returns because of a timeout of interrupt. Contention is exceptionally rare
aoqi@0 1516 // so we use a simple spin-lock instead of a heavier-weight blocking lock.
aoqi@0 1517
aoqi@0 1518 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
aoqi@0 1519 AddWaiter (&node) ;
aoqi@0 1520 Thread::SpinRelease (&_WaitSetLock) ;
aoqi@0 1521
aoqi@0 1522 if ((SyncFlags & 4) == 0) {
aoqi@0 1523 _Responsible = NULL ;
aoqi@0 1524 }
aoqi@0 1525 intptr_t save = _recursions; // record the old recursion count
aoqi@0 1526 _waiters++; // increment the number of waiters
aoqi@0 1527 _recursions = 0; // set the recursion level to be 1
aoqi@0 1528 exit (true, Self) ; // exit the monitor
aoqi@0 1529 guarantee (_owner != Self, "invariant") ;
aoqi@0 1530
aoqi@0 1531 // The thread is on the WaitSet list - now park() it.
aoqi@0 1532 // On MP systems it's conceivable that a brief spin before we park
aoqi@0 1533 // could be profitable.
aoqi@0 1534 //
aoqi@0 1535 // TODO-FIXME: change the following logic to a loop of the form
aoqi@0 1536 // while (!timeout && !interrupted && _notified == 0) park()
aoqi@0 1537
aoqi@0 1538 int ret = OS_OK ;
aoqi@0 1539 int WasNotified = 0 ;
aoqi@0 1540 { // State transition wrappers
aoqi@0 1541 OSThread* osthread = Self->osthread();
aoqi@0 1542 OSThreadWaitState osts(osthread, true);
aoqi@0 1543 {
aoqi@0 1544 ThreadBlockInVM tbivm(jt);
aoqi@0 1545 // Thread is in thread_blocked state and oop access is unsafe.
aoqi@0 1546 jt->set_suspend_equivalent();
aoqi@0 1547
aoqi@0 1548 if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
aoqi@0 1549 // Intentionally empty
aoqi@0 1550 } else
aoqi@0 1551 if (node._notified == 0) {
aoqi@0 1552 if (millis <= 0) {
aoqi@0 1553 Self->_ParkEvent->park () ;
aoqi@0 1554 } else {
aoqi@0 1555 ret = Self->_ParkEvent->park (millis) ;
aoqi@0 1556 }
aoqi@0 1557 }
aoqi@0 1558
aoqi@0 1559 // were we externally suspended while we were waiting?
aoqi@0 1560 if (ExitSuspendEquivalent (jt)) {
aoqi@0 1561 // TODO-FIXME: add -- if succ == Self then succ = null.
aoqi@0 1562 jt->java_suspend_self();
aoqi@0 1563 }
aoqi@0 1564
aoqi@0 1565 } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
aoqi@0 1566
aoqi@0 1567
aoqi@0 1568 // Node may be on the WaitSet, the EntryList (or cxq), or in transition
aoqi@0 1569 // from the WaitSet to the EntryList.
aoqi@0 1570 // See if we need to remove Node from the WaitSet.
aoqi@0 1571 // We use double-checked locking to avoid grabbing _WaitSetLock
aoqi@0 1572 // if the thread is not on the wait queue.
aoqi@0 1573 //
aoqi@0 1574 // Note that we don't need a fence before the fetch of TState.
aoqi@0 1575 // In the worst case we'll fetch a old-stale value of TS_WAIT previously
aoqi@0 1576 // written by the is thread. (perhaps the fetch might even be satisfied
aoqi@0 1577 // by a look-aside into the processor's own store buffer, although given
aoqi@0 1578 // the length of the code path between the prior ST and this load that's
aoqi@0 1579 // highly unlikely). If the following LD fetches a stale TS_WAIT value
aoqi@0 1580 // then we'll acquire the lock and then re-fetch a fresh TState value.
aoqi@0 1581 // That is, we fail toward safety.
aoqi@0 1582
aoqi@0 1583 if (node.TState == ObjectWaiter::TS_WAIT) {
aoqi@0 1584 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
aoqi@0 1585 if (node.TState == ObjectWaiter::TS_WAIT) {
aoqi@0 1586 DequeueSpecificWaiter (&node) ; // unlink from WaitSet
aoqi@0 1587 assert(node._notified == 0, "invariant");
aoqi@0 1588 node.TState = ObjectWaiter::TS_RUN ;
aoqi@0 1589 }
aoqi@0 1590 Thread::SpinRelease (&_WaitSetLock) ;
aoqi@0 1591 }
aoqi@0 1592
aoqi@0 1593 // The thread is now either on off-list (TS_RUN),
aoqi@0 1594 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
aoqi@0 1595 // The Node's TState variable is stable from the perspective of this thread.
aoqi@0 1596 // No other threads will asynchronously modify TState.
aoqi@0 1597 guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
aoqi@0 1598 OrderAccess::loadload() ;
aoqi@0 1599 if (_succ == Self) _succ = NULL ;
aoqi@0 1600 WasNotified = node._notified ;
aoqi@0 1601
aoqi@0 1602 // Reentry phase -- reacquire the monitor.
aoqi@0 1603 // re-enter contended monitor after object.wait().
aoqi@0 1604 // retain OBJECT_WAIT state until re-enter successfully completes
aoqi@0 1605 // Thread state is thread_in_vm and oop access is again safe,
aoqi@0 1606 // although the raw address of the object may have changed.
aoqi@0 1607 // (Don't cache naked oops over safepoints, of course).
aoqi@0 1608
aoqi@0 1609 // post monitor waited event. Note that this is past-tense, we are done waiting.
aoqi@0 1610 if (JvmtiExport::should_post_monitor_waited()) {
aoqi@0 1611 JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
aoqi@0 1612
aoqi@0 1613 if (node._notified != 0 && _succ == Self) {
aoqi@0 1614 // In this part of the monitor wait-notify-reenter protocol it
aoqi@0 1615 // is possible (and normal) for another thread to do a fastpath
aoqi@0 1616 // monitor enter-exit while this thread is still trying to get
aoqi@0 1617 // to the reenter portion of the protocol.
aoqi@0 1618 //
aoqi@0 1619 // The ObjectMonitor was notified and the current thread is
aoqi@0 1620 // the successor which also means that an unpark() has already
aoqi@0 1621 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
aoqi@0 1622 // consume the unpark() that was done when the successor was
aoqi@0 1623 // set because the same ParkEvent is shared between Java
aoqi@0 1624 // monitors and JVM/TI RawMonitors (for now).
aoqi@0 1625 //
aoqi@0 1626 // We redo the unpark() to ensure forward progress, i.e., we
aoqi@0 1627 // don't want all pending threads hanging (parked) with none
aoqi@0 1628 // entering the unlocked monitor.
aoqi@0 1629 node._event->unpark();
aoqi@0 1630 }
aoqi@0 1631 }
aoqi@0 1632
aoqi@0 1633 if (event.should_commit()) {
aoqi@0 1634 post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
aoqi@0 1635 }
aoqi@0 1636
aoqi@0 1637 OrderAccess::fence() ;
aoqi@0 1638
aoqi@0 1639 assert (Self->_Stalled != 0, "invariant") ;
aoqi@0 1640 Self->_Stalled = 0 ;
aoqi@0 1641
aoqi@0 1642 assert (_owner != Self, "invariant") ;
aoqi@0 1643 ObjectWaiter::TStates v = node.TState ;
aoqi@0 1644 if (v == ObjectWaiter::TS_RUN) {
aoqi@0 1645 enter (Self) ;
aoqi@0 1646 } else {
aoqi@0 1647 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
aoqi@0 1648 ReenterI (Self, &node) ;
aoqi@0 1649 node.wait_reenter_end(this);
aoqi@0 1650 }
aoqi@0 1651
aoqi@0 1652 // Self has reacquired the lock.
aoqi@0 1653 // Lifecycle - the node representing Self must not appear on any queues.
aoqi@0 1654 // Node is about to go out-of-scope, but even if it were immortal we wouldn't
aoqi@0 1655 // want residual elements associated with this thread left on any lists.
aoqi@0 1656 guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
aoqi@0 1657 assert (_owner == Self, "invariant") ;
aoqi@0 1658 assert (_succ != Self , "invariant") ;
aoqi@0 1659 } // OSThreadWaitState()
aoqi@0 1660
aoqi@0 1661 jt->set_current_waiting_monitor(NULL);
aoqi@0 1662
aoqi@0 1663 guarantee (_recursions == 0, "invariant") ;
aoqi@0 1664 _recursions = save; // restore the old recursion count
aoqi@0 1665 _waiters--; // decrement the number of waiters
aoqi@0 1666
aoqi@0 1667 // Verify a few postconditions
aoqi@0 1668 assert (_owner == Self , "invariant") ;
aoqi@0 1669 assert (_succ != Self , "invariant") ;
aoqi@0 1670 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
aoqi@0 1671
aoqi@0 1672 if (SyncFlags & 32) {
aoqi@0 1673 OrderAccess::fence() ;
aoqi@0 1674 }
aoqi@0 1675
aoqi@0 1676 // check if the notification happened
aoqi@0 1677 if (!WasNotified) {
aoqi@0 1678 // no, it could be timeout or Thread.interrupt() or both
aoqi@0 1679 // check for interrupt event, otherwise it is timeout
aoqi@0 1680 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
aoqi@0 1681 TEVENT (Wait - throw IEX from epilog) ;
aoqi@0 1682 THROW(vmSymbols::java_lang_InterruptedException());
aoqi@0 1683 }
aoqi@0 1684 }
aoqi@0 1685
aoqi@0 1686 // NOTE: Spurious wake up will be consider as timeout.
aoqi@0 1687 // Monitor notify has precedence over thread interrupt.
aoqi@0 1688 }
aoqi@0 1689
aoqi@0 1690
aoqi@0 1691 // Consider:
aoqi@0 1692 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
aoqi@0 1693 // then instead of transferring a thread from the WaitSet to the EntryList
aoqi@0 1694 // we might just dequeue a thread from the WaitSet and directly unpark() it.
aoqi@0 1695
aoqi@0 1696 void ObjectMonitor::notify(TRAPS) {
aoqi@0 1697 CHECK_OWNER();
aoqi@0 1698 if (_WaitSet == NULL) {
aoqi@0 1699 TEVENT (Empty-Notify) ;
aoqi@0 1700 return ;
aoqi@0 1701 }
aoqi@0 1702 DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
aoqi@0 1703
aoqi@0 1704 int Policy = Knob_MoveNotifyee ;
aoqi@0 1705
aoqi@0 1706 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
aoqi@0 1707 ObjectWaiter * iterator = DequeueWaiter() ;
aoqi@0 1708 if (iterator != NULL) {
aoqi@0 1709 TEVENT (Notify1 - Transfer) ;
aoqi@0 1710 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
aoqi@0 1711 guarantee (iterator->_notified == 0, "invariant") ;
aoqi@0 1712 if (Policy != 4) {
aoqi@0 1713 iterator->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1714 }
aoqi@0 1715 iterator->_notified = 1 ;
aoqi@0 1716 Thread * Self = THREAD;
aoqi@0 1717 iterator->_notifier_tid = Self->osthread()->thread_id();
aoqi@0 1718
aoqi@0 1719 ObjectWaiter * List = _EntryList ;
aoqi@0 1720 if (List != NULL) {
aoqi@0 1721 assert (List->_prev == NULL, "invariant") ;
aoqi@0 1722 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 1723 assert (List != iterator, "invariant") ;
aoqi@0 1724 }
aoqi@0 1725
aoqi@0 1726 if (Policy == 0) { // prepend to EntryList
aoqi@0 1727 if (List == NULL) {
aoqi@0 1728 iterator->_next = iterator->_prev = NULL ;
aoqi@0 1729 _EntryList = iterator ;
aoqi@0 1730 } else {
aoqi@0 1731 List->_prev = iterator ;
aoqi@0 1732 iterator->_next = List ;
aoqi@0 1733 iterator->_prev = NULL ;
aoqi@0 1734 _EntryList = iterator ;
aoqi@0 1735 }
aoqi@0 1736 } else
aoqi@0 1737 if (Policy == 1) { // append to EntryList
aoqi@0 1738 if (List == NULL) {
aoqi@0 1739 iterator->_next = iterator->_prev = NULL ;
aoqi@0 1740 _EntryList = iterator ;
aoqi@0 1741 } else {
aoqi@0 1742 // CONSIDER: finding the tail currently requires a linear-time walk of
aoqi@0 1743 // the EntryList. We can make tail access constant-time by converting to
aoqi@0 1744 // a CDLL instead of using our current DLL.
aoqi@0 1745 ObjectWaiter * Tail ;
aoqi@0 1746 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
aoqi@0 1747 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
aoqi@0 1748 Tail->_next = iterator ;
aoqi@0 1749 iterator->_prev = Tail ;
aoqi@0 1750 iterator->_next = NULL ;
aoqi@0 1751 }
aoqi@0 1752 } else
aoqi@0 1753 if (Policy == 2) { // prepend to cxq
aoqi@0 1754 // prepend to cxq
aoqi@0 1755 if (List == NULL) {
aoqi@0 1756 iterator->_next = iterator->_prev = NULL ;
aoqi@0 1757 _EntryList = iterator ;
aoqi@0 1758 } else {
aoqi@0 1759 iterator->TState = ObjectWaiter::TS_CXQ ;
aoqi@0 1760 for (;;) {
aoqi@0 1761 ObjectWaiter * Front = _cxq ;
aoqi@0 1762 iterator->_next = Front ;
aoqi@0 1763 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
aoqi@0 1764 break ;
aoqi@0 1765 }
aoqi@0 1766 }
aoqi@0 1767 }
aoqi@0 1768 } else
aoqi@0 1769 if (Policy == 3) { // append to cxq
aoqi@0 1770 iterator->TState = ObjectWaiter::TS_CXQ ;
aoqi@0 1771 for (;;) {
aoqi@0 1772 ObjectWaiter * Tail ;
aoqi@0 1773 Tail = _cxq ;
aoqi@0 1774 if (Tail == NULL) {
aoqi@0 1775 iterator->_next = NULL ;
aoqi@0 1776 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
aoqi@0 1777 break ;
aoqi@0 1778 }
aoqi@0 1779 } else {
aoqi@0 1780 while (Tail->_next != NULL) Tail = Tail->_next ;
aoqi@0 1781 Tail->_next = iterator ;
aoqi@0 1782 iterator->_prev = Tail ;
aoqi@0 1783 iterator->_next = NULL ;
aoqi@0 1784 break ;
aoqi@0 1785 }
aoqi@0 1786 }
aoqi@0 1787 } else {
aoqi@0 1788 ParkEvent * ev = iterator->_event ;
aoqi@0 1789 iterator->TState = ObjectWaiter::TS_RUN ;
aoqi@0 1790 OrderAccess::fence() ;
aoqi@0 1791 ev->unpark() ;
aoqi@0 1792 }
aoqi@0 1793
aoqi@0 1794 if (Policy < 4) {
aoqi@0 1795 iterator->wait_reenter_begin(this);
aoqi@0 1796 }
aoqi@0 1797
aoqi@0 1798 // _WaitSetLock protects the wait queue, not the EntryList. We could
aoqi@0 1799 // move the add-to-EntryList operation, above, outside the critical section
aoqi@0 1800 // protected by _WaitSetLock. In practice that's not useful. With the
aoqi@0 1801 // exception of wait() timeouts and interrupts the monitor owner
aoqi@0 1802 // is the only thread that grabs _WaitSetLock. There's almost no contention
aoqi@0 1803 // on _WaitSetLock so it's not profitable to reduce the length of the
aoqi@0 1804 // critical section.
aoqi@0 1805 }
aoqi@0 1806
aoqi@0 1807 Thread::SpinRelease (&_WaitSetLock) ;
aoqi@0 1808
aoqi@0 1809 if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
aoqi@0 1810 ObjectMonitor::_sync_Notifications->inc() ;
aoqi@0 1811 }
aoqi@0 1812 }
aoqi@0 1813
aoqi@0 1814
aoqi@0 1815 void ObjectMonitor::notifyAll(TRAPS) {
aoqi@0 1816 CHECK_OWNER();
aoqi@0 1817 ObjectWaiter* iterator;
aoqi@0 1818 if (_WaitSet == NULL) {
aoqi@0 1819 TEVENT (Empty-NotifyAll) ;
aoqi@0 1820 return ;
aoqi@0 1821 }
aoqi@0 1822 DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
aoqi@0 1823
aoqi@0 1824 int Policy = Knob_MoveNotifyee ;
aoqi@0 1825 int Tally = 0 ;
aoqi@0 1826 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
aoqi@0 1827
aoqi@0 1828 for (;;) {
aoqi@0 1829 iterator = DequeueWaiter () ;
aoqi@0 1830 if (iterator == NULL) break ;
aoqi@0 1831 TEVENT (NotifyAll - Transfer1) ;
aoqi@0 1832 ++Tally ;
aoqi@0 1833
aoqi@0 1834 // Disposition - what might we do with iterator ?
aoqi@0 1835 // a. add it directly to the EntryList - either tail or head.
aoqi@0 1836 // b. push it onto the front of the _cxq.
aoqi@0 1837 // For now we use (a).
aoqi@0 1838
aoqi@0 1839 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
aoqi@0 1840 guarantee (iterator->_notified == 0, "invariant") ;
aoqi@0 1841 iterator->_notified = 1 ;
aoqi@0 1842 Thread * Self = THREAD;
aoqi@0 1843 iterator->_notifier_tid = Self->osthread()->thread_id();
aoqi@0 1844 if (Policy != 4) {
aoqi@0 1845 iterator->TState = ObjectWaiter::TS_ENTER ;
aoqi@0 1846 }
aoqi@0 1847
aoqi@0 1848 ObjectWaiter * List = _EntryList ;
aoqi@0 1849 if (List != NULL) {
aoqi@0 1850 assert (List->_prev == NULL, "invariant") ;
aoqi@0 1851 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
aoqi@0 1852 assert (List != iterator, "invariant") ;
aoqi@0 1853 }
aoqi@0 1854
aoqi@0 1855 if (Policy == 0) { // prepend to EntryList
aoqi@0 1856 if (List == NULL) {
aoqi@0 1857 iterator->_next = iterator->_prev = NULL ;
aoqi@0 1858 _EntryList = iterator ;
aoqi@0 1859 } else {
aoqi@0 1860 List->_prev = iterator ;
aoqi@0 1861 iterator->_next = List ;
aoqi@0 1862 iterator->_prev = NULL ;
aoqi@0 1863 _EntryList = iterator ;
aoqi@0 1864 }
aoqi@0 1865 } else
aoqi@0 1866 if (Policy == 1) { // append to EntryList
aoqi@0 1867 if (List == NULL) {
aoqi@0 1868 iterator->_next = iterator->_prev = NULL ;
aoqi@0 1869 _EntryList = iterator ;
aoqi@0 1870 } else {
aoqi@0 1871 // CONSIDER: finding the tail currently requires a linear-time walk of
aoqi@0 1872 // the EntryList. We can make tail access constant-time by converting to
aoqi@0 1873 // a CDLL instead of using our current DLL.
aoqi@0 1874 ObjectWaiter * Tail ;
aoqi@0 1875 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
aoqi@0 1876 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
aoqi@0 1877 Tail->_next = iterator ;
aoqi@0 1878 iterator->_prev = Tail ;
aoqi@0 1879 iterator->_next = NULL ;
aoqi@0 1880 }
aoqi@0 1881 } else
aoqi@0 1882 if (Policy == 2) { // prepend to cxq
aoqi@0 1883 // prepend to cxq
aoqi@0 1884 iterator->TState = ObjectWaiter::TS_CXQ ;
aoqi@0 1885 for (;;) {
aoqi@0 1886 ObjectWaiter * Front = _cxq ;
aoqi@0 1887 iterator->_next = Front ;
aoqi@0 1888 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
aoqi@0 1889 break ;
aoqi@0 1890 }
aoqi@0 1891 }
aoqi@0 1892 } else
aoqi@0 1893 if (Policy == 3) { // append to cxq
aoqi@0 1894 iterator->TState = ObjectWaiter::TS_CXQ ;
aoqi@0 1895 for (;;) {
aoqi@0 1896 ObjectWaiter * Tail ;
aoqi@0 1897 Tail = _cxq ;
aoqi@0 1898 if (Tail == NULL) {
aoqi@0 1899 iterator->_next = NULL ;
aoqi@0 1900 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
aoqi@0 1901 break ;
aoqi@0 1902 }
aoqi@0 1903 } else {
aoqi@0 1904 while (Tail->_next != NULL) Tail = Tail->_next ;
aoqi@0 1905 Tail->_next = iterator ;
aoqi@0 1906 iterator->_prev = Tail ;
aoqi@0 1907 iterator->_next = NULL ;
aoqi@0 1908 break ;
aoqi@0 1909 }
aoqi@0 1910 }
aoqi@0 1911 } else {
aoqi@0 1912 ParkEvent * ev = iterator->_event ;
aoqi@0 1913 iterator->TState = ObjectWaiter::TS_RUN ;
aoqi@0 1914 OrderAccess::fence() ;
aoqi@0 1915 ev->unpark() ;
aoqi@0 1916 }
aoqi@0 1917
aoqi@0 1918 if (Policy < 4) {
aoqi@0 1919 iterator->wait_reenter_begin(this);
aoqi@0 1920 }
aoqi@0 1921
aoqi@0 1922 // _WaitSetLock protects the wait queue, not the EntryList. We could
aoqi@0 1923 // move the add-to-EntryList operation, above, outside the critical section
aoqi@0 1924 // protected by _WaitSetLock. In practice that's not useful. With the
aoqi@0 1925 // exception of wait() timeouts and interrupts the monitor owner
aoqi@0 1926 // is the only thread that grabs _WaitSetLock. There's almost no contention
aoqi@0 1927 // on _WaitSetLock so it's not profitable to reduce the length of the
aoqi@0 1928 // critical section.
aoqi@0 1929 }
aoqi@0 1930
aoqi@0 1931 Thread::SpinRelease (&_WaitSetLock) ;
aoqi@0 1932
aoqi@0 1933 if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
aoqi@0 1934 ObjectMonitor::_sync_Notifications->inc(Tally) ;
aoqi@0 1935 }
aoqi@0 1936 }
aoqi@0 1937
aoqi@0 1938 // -----------------------------------------------------------------------------
aoqi@0 1939 // Adaptive Spinning Support
aoqi@0 1940 //
aoqi@0 1941 // Adaptive spin-then-block - rational spinning
aoqi@0 1942 //
aoqi@0 1943 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
aoqi@0 1944 // algorithm. On high order SMP systems it would be better to start with
aoqi@0 1945 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH,
aoqi@0 1946 // a contending thread could enqueue itself on the cxq and then spin locally
aoqi@0 1947 // on a thread-specific variable such as its ParkEvent._Event flag.
aoqi@0 1948 // That's left as an exercise for the reader. Note that global spinning is
aoqi@0 1949 // not problematic on Niagara, as the L2$ serves the interconnect and has both
aoqi@0 1950 // low latency and massive bandwidth.
aoqi@0 1951 //
aoqi@0 1952 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
aoqi@0 1953 // acquisition attempts where we opt to spin -- at 100% and vary the spin count
aoqi@0 1954 // (duration) or we can fix the count at approximately the duration of
aoqi@0 1955 // a context switch and vary the frequency. Of course we could also
aoqi@0 1956 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
aoqi@0 1957 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
aoqi@0 1958 //
aoqi@0 1959 // This implementation varies the duration "D", where D varies with
aoqi@0 1960 // the success rate of recent spin attempts. (D is capped at approximately
aoqi@0 1961 // length of a round-trip context switch). The success rate for recent
aoqi@0 1962 // spin attempts is a good predictor of the success rate of future spin
aoqi@0 1963 // attempts. The mechanism adapts automatically to varying critical
aoqi@0 1964 // section length (lock modality), system load and degree of parallelism.
aoqi@0 1965 // D is maintained per-monitor in _SpinDuration and is initialized
aoqi@0 1966 // optimistically. Spin frequency is fixed at 100%.
aoqi@0 1967 //
aoqi@0 1968 // Note that _SpinDuration is volatile, but we update it without locks
aoqi@0 1969 // or atomics. The code is designed so that _SpinDuration stays within
aoqi@0 1970 // a reasonable range even in the presence of races. The arithmetic
aoqi@0 1971 // operations on _SpinDuration are closed over the domain of legal values,
aoqi@0 1972 // so at worst a race will install and older but still legal value.
aoqi@0 1973 // At the very worst this introduces some apparent non-determinism.
aoqi@0 1974 // We might spin when we shouldn't or vice-versa, but since the spin
aoqi@0 1975 // count are relatively short, even in the worst case, the effect is harmless.
aoqi@0 1976 //
aoqi@0 1977 // Care must be taken that a low "D" value does not become an
aoqi@0 1978 // an absorbing state. Transient spinning failures -- when spinning
aoqi@0 1979 // is overall profitable -- should not cause the system to converge
aoqi@0 1980 // on low "D" values. We want spinning to be stable and predictable
aoqi@0 1981 // and fairly responsive to change and at the same time we don't want
aoqi@0 1982 // it to oscillate, become metastable, be "too" non-deterministic,
aoqi@0 1983 // or converge on or enter undesirable stable absorbing states.
aoqi@0 1984 //
aoqi@0 1985 // We implement a feedback-based control system -- using past behavior
aoqi@0 1986 // to predict future behavior. We face two issues: (a) if the
aoqi@0 1987 // input signal is random then the spin predictor won't provide optimal
aoqi@0 1988 // results, and (b) if the signal frequency is too high then the control
aoqi@0 1989 // system, which has some natural response lag, will "chase" the signal.
aoqi@0 1990 // (b) can arise from multimodal lock hold times. Transient preemption
aoqi@0 1991 // can also result in apparent bimodal lock hold times.
aoqi@0 1992 // Although sub-optimal, neither condition is particularly harmful, as
aoqi@0 1993 // in the worst-case we'll spin when we shouldn't or vice-versa.
aoqi@0 1994 // The maximum spin duration is rather short so the failure modes aren't bad.
aoqi@0 1995 // To be conservative, I've tuned the gain in system to bias toward
aoqi@0 1996 // _not spinning. Relatedly, the system can sometimes enter a mode where it
aoqi@0 1997 // "rings" or oscillates between spinning and not spinning. This happens
aoqi@0 1998 // when spinning is just on the cusp of profitability, however, so the
aoqi@0 1999 // situation is not dire. The state is benign -- there's no need to add
aoqi@0 2000 // hysteresis control to damp the transition rate between spinning and
aoqi@0 2001 // not spinning.
aoqi@0 2002 //
aoqi@0 2003
aoqi@0 2004 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
aoqi@0 2005 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
aoqi@0 2006
aoqi@0 2007 // Spinning: Fixed frequency (100%), vary duration
aoqi@0 2008
aoqi@0 2009
aoqi@0 2010 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
aoqi@0 2011
aoqi@0 2012 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning.
aoqi@0 2013 int ctr = Knob_FixedSpin ;
aoqi@0 2014 if (ctr != 0) {
aoqi@0 2015 while (--ctr >= 0) {
aoqi@0 2016 if (TryLock (Self) > 0) return 1 ;
aoqi@0 2017 SpinPause () ;
aoqi@0 2018 }
aoqi@0 2019 return 0 ;
aoqi@0 2020 }
aoqi@0 2021
aoqi@0 2022 for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
aoqi@0 2023 if (TryLock(Self) > 0) {
aoqi@0 2024 // Increase _SpinDuration ...
aoqi@0 2025 // Note that we don't clamp SpinDuration precisely at SpinLimit.
aoqi@0 2026 // Raising _SpurDuration to the poverty line is key.
aoqi@0 2027 int x = _SpinDuration ;
aoqi@0 2028 if (x < Knob_SpinLimit) {
aoqi@0 2029 if (x < Knob_Poverty) x = Knob_Poverty ;
aoqi@0 2030 _SpinDuration = x + Knob_BonusB ;
aoqi@0 2031 }
aoqi@0 2032 return 1 ;
aoqi@0 2033 }
aoqi@0 2034 SpinPause () ;
aoqi@0 2035 }
aoqi@0 2036
aoqi@0 2037 // Admission control - verify preconditions for spinning
aoqi@0 2038 //
aoqi@0 2039 // We always spin a little bit, just to prevent _SpinDuration == 0 from
aoqi@0 2040 // becoming an absorbing state. Put another way, we spin briefly to
aoqi@0 2041 // sample, just in case the system load, parallelism, contention, or lock
aoqi@0 2042 // modality changed.
aoqi@0 2043 //
aoqi@0 2044 // Consider the following alternative:
aoqi@0 2045 // Periodically set _SpinDuration = _SpinLimit and try a long/full
aoqi@0 2046 // spin attempt. "Periodically" might mean after a tally of
aoqi@0 2047 // the # of failed spin attempts (or iterations) reaches some threshold.
aoqi@0 2048 // This takes us into the realm of 1-out-of-N spinning, where we
aoqi@0 2049 // hold the duration constant but vary the frequency.
aoqi@0 2050
aoqi@0 2051 ctr = _SpinDuration ;
aoqi@0 2052 if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
aoqi@0 2053 if (ctr <= 0) return 0 ;
aoqi@0 2054
aoqi@0 2055 if (Knob_SuccRestrict && _succ != NULL) return 0 ;
aoqi@0 2056 if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
aoqi@0 2057 TEVENT (Spin abort - notrunnable [TOP]);
aoqi@0 2058 return 0 ;
aoqi@0 2059 }
aoqi@0 2060
aoqi@0 2061 int MaxSpin = Knob_MaxSpinners ;
aoqi@0 2062 if (MaxSpin >= 0) {
aoqi@0 2063 if (_Spinner > MaxSpin) {
aoqi@0 2064 TEVENT (Spin abort -- too many spinners) ;
aoqi@0 2065 return 0 ;
aoqi@0 2066 }
aoqi@0 2067 // Slighty racy, but benign ...
aoqi@0 2068 Adjust (&_Spinner, 1) ;
aoqi@0 2069 }
aoqi@0 2070
aoqi@0 2071 // We're good to spin ... spin ingress.
aoqi@0 2072 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
aoqi@0 2073 // when preparing to LD...CAS _owner, etc and the CAS is likely
aoqi@0 2074 // to succeed.
aoqi@0 2075 int hits = 0 ;
aoqi@0 2076 int msk = 0 ;
aoqi@0 2077 int caspty = Knob_CASPenalty ;
aoqi@0 2078 int oxpty = Knob_OXPenalty ;
aoqi@0 2079 int sss = Knob_SpinSetSucc ;
aoqi@0 2080 if (sss && _succ == NULL ) _succ = Self ;
aoqi@0 2081 Thread * prv = NULL ;
aoqi@0 2082
aoqi@0 2083 // There are three ways to exit the following loop:
aoqi@0 2084 // 1. A successful spin where this thread has acquired the lock.
aoqi@0 2085 // 2. Spin failure with prejudice
aoqi@0 2086 // 3. Spin failure without prejudice
aoqi@0 2087
aoqi@0 2088 while (--ctr >= 0) {
aoqi@0 2089
aoqi@0 2090 // Periodic polling -- Check for pending GC
aoqi@0 2091 // Threads may spin while they're unsafe.
aoqi@0 2092 // We don't want spinning threads to delay the JVM from reaching
aoqi@0 2093 // a stop-the-world safepoint or to steal cycles from GC.
aoqi@0 2094 // If we detect a pending safepoint we abort in order that
aoqi@0 2095 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
aoqi@0 2096 // this thread, if safe, doesn't steal cycles from GC.
aoqi@0 2097 // This is in keeping with the "no loitering in runtime" rule.
aoqi@0 2098 // We periodically check to see if there's a safepoint pending.
aoqi@0 2099 if ((ctr & 0xFF) == 0) {
aoqi@0 2100 if (SafepointSynchronize::do_call_back()) {
aoqi@0 2101 TEVENT (Spin: safepoint) ;
aoqi@0 2102 goto Abort ; // abrupt spin egress
aoqi@0 2103 }
aoqi@0 2104 if (Knob_UsePause & 1) SpinPause () ;
aoqi@0 2105
aoqi@0 2106 int (*scb)(intptr_t,int) = SpinCallbackFunction ;
aoqi@0 2107 if (hits > 50 && scb != NULL) {
aoqi@0 2108 int abend = (*scb)(SpinCallbackArgument, 0) ;
aoqi@0 2109 }
aoqi@0 2110 }
aoqi@0 2111
aoqi@0 2112 if (Knob_UsePause & 2) SpinPause() ;
aoqi@0 2113
aoqi@0 2114 // Exponential back-off ... Stay off the bus to reduce coherency traffic.
aoqi@0 2115 // This is useful on classic SMP systems, but is of less utility on
aoqi@0 2116 // N1-style CMT platforms.
aoqi@0 2117 //
aoqi@0 2118 // Trade-off: lock acquisition latency vs coherency bandwidth.
aoqi@0 2119 // Lock hold times are typically short. A histogram
aoqi@0 2120 // of successful spin attempts shows that we usually acquire
aoqi@0 2121 // the lock early in the spin. That suggests we want to
aoqi@0 2122 // sample _owner frequently in the early phase of the spin,
aoqi@0 2123 // but then back-off and sample less frequently as the spin
aoqi@0 2124 // progresses. The back-off makes a good citizen on SMP big
aoqi@0 2125 // SMP systems. Oversampling _owner can consume excessive
aoqi@0 2126 // coherency bandwidth. Relatedly, if we _oversample _owner we
aoqi@0 2127 // can inadvertently interfere with the the ST m->owner=null.
aoqi@0 2128 // executed by the lock owner.
aoqi@0 2129 if (ctr & msk) continue ;
aoqi@0 2130 ++hits ;
aoqi@0 2131 if ((hits & 0xF) == 0) {
aoqi@0 2132 // The 0xF, above, corresponds to the exponent.
aoqi@0 2133 // Consider: (msk+1)|msk
aoqi@0 2134 msk = ((msk << 2)|3) & BackOffMask ;
aoqi@0 2135 }
aoqi@0 2136
aoqi@0 2137 // Probe _owner with TATAS
aoqi@0 2138 // If this thread observes the monitor transition or flicker
aoqi@0 2139 // from locked to unlocked to locked, then the odds that this
aoqi@0 2140 // thread will acquire the lock in this spin attempt go down
aoqi@0 2141 // considerably. The same argument applies if the CAS fails
aoqi@0 2142 // or if we observe _owner change from one non-null value to
aoqi@0 2143 // another non-null value. In such cases we might abort
aoqi@0 2144 // the spin without prejudice or apply a "penalty" to the
aoqi@0 2145 // spin count-down variable "ctr", reducing it by 100, say.
aoqi@0 2146
aoqi@0 2147 Thread * ox = (Thread *) _owner ;
aoqi@0 2148 if (ox == NULL) {
aoqi@0 2149 ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
aoqi@0 2150 if (ox == NULL) {
aoqi@0 2151 // The CAS succeeded -- this thread acquired ownership
aoqi@0 2152 // Take care of some bookkeeping to exit spin state.
aoqi@0 2153 if (sss && _succ == Self) {
aoqi@0 2154 _succ = NULL ;
aoqi@0 2155 }
aoqi@0 2156 if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
aoqi@0 2157
aoqi@0 2158 // Increase _SpinDuration :
aoqi@0 2159 // The spin was successful (profitable) so we tend toward
aoqi@0 2160 // longer spin attempts in the future.
aoqi@0 2161 // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
aoqi@0 2162 // If we acquired the lock early in the spin cycle it
aoqi@0 2163 // makes sense to increase _SpinDuration proportionally.
aoqi@0 2164 // Note that we don't clamp SpinDuration precisely at SpinLimit.
aoqi@0 2165 int x = _SpinDuration ;
aoqi@0 2166 if (x < Knob_SpinLimit) {
aoqi@0 2167 if (x < Knob_Poverty) x = Knob_Poverty ;
aoqi@0 2168 _SpinDuration = x + Knob_Bonus ;
aoqi@0 2169 }
aoqi@0 2170 return 1 ;
aoqi@0 2171 }
aoqi@0 2172
aoqi@0 2173 // The CAS failed ... we can take any of the following actions:
aoqi@0 2174 // * penalize: ctr -= Knob_CASPenalty
aoqi@0 2175 // * exit spin with prejudice -- goto Abort;
aoqi@0 2176 // * exit spin without prejudice.
aoqi@0 2177 // * Since CAS is high-latency, retry again immediately.
aoqi@0 2178 prv = ox ;
aoqi@0 2179 TEVENT (Spin: cas failed) ;
aoqi@0 2180 if (caspty == -2) break ;
aoqi@0 2181 if (caspty == -1) goto Abort ;
aoqi@0 2182 ctr -= caspty ;
aoqi@0 2183 continue ;
aoqi@0 2184 }
aoqi@0 2185
aoqi@0 2186 // Did lock ownership change hands ?
aoqi@0 2187 if (ox != prv && prv != NULL ) {
aoqi@0 2188 TEVENT (spin: Owner changed)
aoqi@0 2189 if (oxpty == -2) break ;
aoqi@0 2190 if (oxpty == -1) goto Abort ;
aoqi@0 2191 ctr -= oxpty ;
aoqi@0 2192 }
aoqi@0 2193 prv = ox ;
aoqi@0 2194
aoqi@0 2195 // Abort the spin if the owner is not executing.
aoqi@0 2196 // The owner must be executing in order to drop the lock.
aoqi@0 2197 // Spinning while the owner is OFFPROC is idiocy.
aoqi@0 2198 // Consider: ctr -= RunnablePenalty ;
aoqi@0 2199 if (Knob_OState && NotRunnable (Self, ox)) {
aoqi@0 2200 TEVENT (Spin abort - notrunnable);
aoqi@0 2201 goto Abort ;
aoqi@0 2202 }
aoqi@0 2203 if (sss && _succ == NULL ) _succ = Self ;
aoqi@0 2204 }
aoqi@0 2205
aoqi@0 2206 // Spin failed with prejudice -- reduce _SpinDuration.
aoqi@0 2207 // TODO: Use an AIMD-like policy to adjust _SpinDuration.
aoqi@0 2208 // AIMD is globally stable.
aoqi@0 2209 TEVENT (Spin failure) ;
aoqi@0 2210 {
aoqi@0 2211 int x = _SpinDuration ;
aoqi@0 2212 if (x > 0) {
aoqi@0 2213 // Consider an AIMD scheme like: x -= (x >> 3) + 100
aoqi@0 2214 // This is globally sample and tends to damp the response.
aoqi@0 2215 x -= Knob_Penalty ;
aoqi@0 2216 if (x < 0) x = 0 ;
aoqi@0 2217 _SpinDuration = x ;
aoqi@0 2218 }
aoqi@0 2219 }
aoqi@0 2220
aoqi@0 2221 Abort:
aoqi@0 2222 if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
aoqi@0 2223 if (sss && _succ == Self) {
aoqi@0 2224 _succ = NULL ;
aoqi@0 2225 // Invariant: after setting succ=null a contending thread
aoqi@0 2226 // must recheck-retry _owner before parking. This usually happens
aoqi@0 2227 // in the normal usage of TrySpin(), but it's safest
aoqi@0 2228 // to make TrySpin() as foolproof as possible.
aoqi@0 2229 OrderAccess::fence() ;
aoqi@0 2230 if (TryLock(Self) > 0) return 1 ;
aoqi@0 2231 }
aoqi@0 2232 return 0 ;
aoqi@0 2233 }
aoqi@0 2234
aoqi@0 2235 // NotRunnable() -- informed spinning
aoqi@0 2236 //
aoqi@0 2237 // Don't bother spinning if the owner is not eligible to drop the lock.
aoqi@0 2238 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
aoqi@0 2239 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
aoqi@0 2240 // The thread must be runnable in order to drop the lock in timely fashion.
aoqi@0 2241 // If the _owner is not runnable then spinning will not likely be
aoqi@0 2242 // successful (profitable).
aoqi@0 2243 //
aoqi@0 2244 // Beware -- the thread referenced by _owner could have died
aoqi@0 2245 // so a simply fetch from _owner->_thread_state might trap.
aoqi@0 2246 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
aoqi@0 2247 // Because of the lifecycle issues the schedctl and _thread_state values
aoqi@0 2248 // observed by NotRunnable() might be garbage. NotRunnable must
aoqi@0 2249 // tolerate this and consider the observed _thread_state value
aoqi@0 2250 // as advisory.
aoqi@0 2251 //
aoqi@0 2252 // Beware too, that _owner is sometimes a BasicLock address and sometimes
aoqi@0 2253 // a thread pointer. We differentiate the two cases with OwnerIsThread.
aoqi@0 2254 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
aoqi@0 2255 // with the LSB of _owner. Another option would be to probablistically probe
aoqi@0 2256 // the putative _owner->TypeTag value.
aoqi@0 2257 //
aoqi@0 2258 // Checking _thread_state isn't perfect. Even if the thread is
aoqi@0 2259 // in_java it might be blocked on a page-fault or have been preempted
aoqi@0 2260 // and sitting on a ready/dispatch queue. _thread state in conjunction
aoqi@0 2261 // with schedctl.sc_state gives us a good picture of what the
aoqi@0 2262 // thread is doing, however.
aoqi@0 2263 //
aoqi@0 2264 // TODO: check schedctl.sc_state.
aoqi@0 2265 // We'll need to use SafeFetch32() to read from the schedctl block.
aoqi@0 2266 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
aoqi@0 2267 //
aoqi@0 2268 // The return value from NotRunnable() is *advisory* -- the
aoqi@0 2269 // result is based on sampling and is not necessarily coherent.
aoqi@0 2270 // The caller must tolerate false-negative and false-positive errors.
aoqi@0 2271 // Spinning, in general, is probabilistic anyway.
aoqi@0 2272
aoqi@0 2273
aoqi@0 2274 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
aoqi@0 2275 // Check either OwnerIsThread or ox->TypeTag == 2BAD.
aoqi@0 2276 if (!OwnerIsThread) return 0 ;
aoqi@0 2277
aoqi@0 2278 if (ox == NULL) return 0 ;
aoqi@0 2279
aoqi@0 2280 // Avoid transitive spinning ...
aoqi@0 2281 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L.
aoqi@0 2282 // Immediately after T1 acquires L it's possible that T2, also
aoqi@0 2283 // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
aoqi@0 2284 // This occurs transiently after T1 acquired L but before
aoqi@0 2285 // T1 managed to clear T1.Stalled. T2 does not need to abort
aoqi@0 2286 // its spin in this circumstance.
aoqi@0 2287 intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
aoqi@0 2288
aoqi@0 2289 if (BlockedOn == 1) return 1 ;
aoqi@0 2290 if (BlockedOn != 0) {
aoqi@0 2291 return BlockedOn != intptr_t(this) && _owner == ox ;
aoqi@0 2292 }
aoqi@0 2293
aoqi@0 2294 assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
aoqi@0 2295 int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
aoqi@0 2296 // consider also: jst != _thread_in_Java -- but that's overspecific.
aoqi@0 2297 return jst == _thread_blocked || jst == _thread_in_native ;
aoqi@0 2298 }
aoqi@0 2299
aoqi@0 2300
aoqi@0 2301 // -----------------------------------------------------------------------------
aoqi@0 2302 // WaitSet management ...
aoqi@0 2303
aoqi@0 2304 ObjectWaiter::ObjectWaiter(Thread* thread) {
aoqi@0 2305 _next = NULL;
aoqi@0 2306 _prev = NULL;
aoqi@0 2307 _notified = 0;
aoqi@0 2308 TState = TS_RUN ;
aoqi@0 2309 _thread = thread;
aoqi@0 2310 _event = thread->_ParkEvent ;
aoqi@0 2311 _active = false;
aoqi@0 2312 assert (_event != NULL, "invariant") ;
aoqi@0 2313 }
aoqi@0 2314
aoqi@0 2315 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
aoqi@0 2316 JavaThread *jt = (JavaThread *)this->_thread;
aoqi@0 2317 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
aoqi@0 2318 }
aoqi@0 2319
aoqi@0 2320 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
aoqi@0 2321 JavaThread *jt = (JavaThread *)this->_thread;
aoqi@0 2322 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
aoqi@0 2323 }
aoqi@0 2324
aoqi@0 2325 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
aoqi@0 2326 assert(node != NULL, "should not dequeue NULL node");
aoqi@0 2327 assert(node->_prev == NULL, "node already in list");
aoqi@0 2328 assert(node->_next == NULL, "node already in list");
aoqi@0 2329 // put node at end of queue (circular doubly linked list)
aoqi@0 2330 if (_WaitSet == NULL) {
aoqi@0 2331 _WaitSet = node;
aoqi@0 2332 node->_prev = node;
aoqi@0 2333 node->_next = node;
aoqi@0 2334 } else {
aoqi@0 2335 ObjectWaiter* head = _WaitSet ;
aoqi@0 2336 ObjectWaiter* tail = head->_prev;
aoqi@0 2337 assert(tail->_next == head, "invariant check");
aoqi@0 2338 tail->_next = node;
aoqi@0 2339 head->_prev = node;
aoqi@0 2340 node->_next = head;
aoqi@0 2341 node->_prev = tail;
aoqi@0 2342 }
aoqi@0 2343 }
aoqi@0 2344
aoqi@0 2345 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
aoqi@0 2346 // dequeue the very first waiter
aoqi@0 2347 ObjectWaiter* waiter = _WaitSet;
aoqi@0 2348 if (waiter) {
aoqi@0 2349 DequeueSpecificWaiter(waiter);
aoqi@0 2350 }
aoqi@0 2351 return waiter;
aoqi@0 2352 }
aoqi@0 2353
aoqi@0 2354 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
aoqi@0 2355 assert(node != NULL, "should not dequeue NULL node");
aoqi@0 2356 assert(node->_prev != NULL, "node already removed from list");
aoqi@0 2357 assert(node->_next != NULL, "node already removed from list");
aoqi@0 2358 // when the waiter has woken up because of interrupt,
aoqi@0 2359 // timeout or other spurious wake-up, dequeue the
aoqi@0 2360 // waiter from waiting list
aoqi@0 2361 ObjectWaiter* next = node->_next;
aoqi@0 2362 if (next == node) {
aoqi@0 2363 assert(node->_prev == node, "invariant check");
aoqi@0 2364 _WaitSet = NULL;
aoqi@0 2365 } else {
aoqi@0 2366 ObjectWaiter* prev = node->_prev;
aoqi@0 2367 assert(prev->_next == node, "invariant check");
aoqi@0 2368 assert(next->_prev == node, "invariant check");
aoqi@0 2369 next->_prev = prev;
aoqi@0 2370 prev->_next = next;
aoqi@0 2371 if (_WaitSet == node) {
aoqi@0 2372 _WaitSet = next;
aoqi@0 2373 }
aoqi@0 2374 }
aoqi@0 2375 node->_next = NULL;
aoqi@0 2376 node->_prev = NULL;
aoqi@0 2377 }
aoqi@0 2378
aoqi@0 2379 // -----------------------------------------------------------------------------
aoqi@0 2380 // PerfData support
aoqi@0 2381 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL ;
aoqi@0 2382 PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL ;
aoqi@0 2383 PerfCounter * ObjectMonitor::_sync_Parks = NULL ;
aoqi@0 2384 PerfCounter * ObjectMonitor::_sync_EmptyNotifications = NULL ;
aoqi@0 2385 PerfCounter * ObjectMonitor::_sync_Notifications = NULL ;
aoqi@0 2386 PerfCounter * ObjectMonitor::_sync_PrivateA = NULL ;
aoqi@0 2387 PerfCounter * ObjectMonitor::_sync_PrivateB = NULL ;
aoqi@0 2388 PerfCounter * ObjectMonitor::_sync_SlowExit = NULL ;
aoqi@0 2389 PerfCounter * ObjectMonitor::_sync_SlowEnter = NULL ;
aoqi@0 2390 PerfCounter * ObjectMonitor::_sync_SlowNotify = NULL ;
aoqi@0 2391 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll = NULL ;
aoqi@0 2392 PerfCounter * ObjectMonitor::_sync_FailedSpins = NULL ;
aoqi@0 2393 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins = NULL ;
aoqi@0 2394 PerfCounter * ObjectMonitor::_sync_MonInCirculation = NULL ;
aoqi@0 2395 PerfCounter * ObjectMonitor::_sync_MonScavenged = NULL ;
aoqi@0 2396 PerfCounter * ObjectMonitor::_sync_Inflations = NULL ;
aoqi@0 2397 PerfCounter * ObjectMonitor::_sync_Deflations = NULL ;
aoqi@0 2398 PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL ;
aoqi@0 2399
aoqi@0 2400 // One-shot global initialization for the sync subsystem.
aoqi@0 2401 // We could also defer initialization and initialize on-demand
aoqi@0 2402 // the first time we call inflate(). Initialization would
aoqi@0 2403 // be protected - like so many things - by the MonitorCache_lock.
aoqi@0 2404
aoqi@0 2405 void ObjectMonitor::Initialize () {
aoqi@0 2406 static int InitializationCompleted = 0 ;
aoqi@0 2407 assert (InitializationCompleted == 0, "invariant") ;
aoqi@0 2408 InitializationCompleted = 1 ;
aoqi@0 2409 if (UsePerfData) {
aoqi@0 2410 EXCEPTION_MARK ;
aoqi@0 2411 #define NEWPERFCOUNTER(n) {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
aoqi@0 2412 #define NEWPERFVARIABLE(n) {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
aoqi@0 2413 NEWPERFCOUNTER(_sync_Inflations) ;
aoqi@0 2414 NEWPERFCOUNTER(_sync_Deflations) ;
aoqi@0 2415 NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
aoqi@0 2416 NEWPERFCOUNTER(_sync_FutileWakeups) ;
aoqi@0 2417 NEWPERFCOUNTER(_sync_Parks) ;
aoqi@0 2418 NEWPERFCOUNTER(_sync_EmptyNotifications) ;
aoqi@0 2419 NEWPERFCOUNTER(_sync_Notifications) ;
aoqi@0 2420 NEWPERFCOUNTER(_sync_SlowEnter) ;
aoqi@0 2421 NEWPERFCOUNTER(_sync_SlowExit) ;
aoqi@0 2422 NEWPERFCOUNTER(_sync_SlowNotify) ;
aoqi@0 2423 NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
aoqi@0 2424 NEWPERFCOUNTER(_sync_FailedSpins) ;
aoqi@0 2425 NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
aoqi@0 2426 NEWPERFCOUNTER(_sync_PrivateA) ;
aoqi@0 2427 NEWPERFCOUNTER(_sync_PrivateB) ;
aoqi@0 2428 NEWPERFCOUNTER(_sync_MonInCirculation) ;
aoqi@0 2429 NEWPERFCOUNTER(_sync_MonScavenged) ;
aoqi@0 2430 NEWPERFVARIABLE(_sync_MonExtant) ;
aoqi@0 2431 #undef NEWPERFCOUNTER
aoqi@0 2432 }
aoqi@0 2433 }
aoqi@0 2434
aoqi@0 2435
aoqi@0 2436 // Compile-time asserts
aoqi@0 2437 // When possible, it's better to catch errors deterministically at
aoqi@0 2438 // compile-time than at runtime. The down-side to using compile-time
aoqi@0 2439 // asserts is that error message -- often something about negative array
aoqi@0 2440 // indices -- is opaque.
aoqi@0 2441
aoqi@0 2442 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
aoqi@0 2443
aoqi@0 2444 void ObjectMonitor::ctAsserts() {
aoqi@0 2445 CTASSERT(offset_of (ObjectMonitor, _header) == 0);
aoqi@0 2446 }
aoqi@0 2447
aoqi@0 2448
aoqi@0 2449 static char * kvGet (char * kvList, const char * Key) {
aoqi@0 2450 if (kvList == NULL) return NULL ;
aoqi@0 2451 size_t n = strlen (Key) ;
aoqi@0 2452 char * Search ;
aoqi@0 2453 for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
aoqi@0 2454 if (strncmp (Search, Key, n) == 0) {
aoqi@0 2455 if (Search[n] == '=') return Search + n + 1 ;
aoqi@0 2456 if (Search[n] == 0) return (char *) "1" ;
aoqi@0 2457 }
aoqi@0 2458 }
aoqi@0 2459 return NULL ;
aoqi@0 2460 }
aoqi@0 2461
aoqi@0 2462 static int kvGetInt (char * kvList, const char * Key, int Default) {
aoqi@0 2463 char * v = kvGet (kvList, Key) ;
aoqi@0 2464 int rslt = v ? ::strtol (v, NULL, 0) : Default ;
aoqi@0 2465 if (Knob_ReportSettings && v != NULL) {
aoqi@0 2466 ::printf (" SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
aoqi@0 2467 ::fflush (stdout) ;
aoqi@0 2468 }
aoqi@0 2469 return rslt ;
aoqi@0 2470 }
aoqi@0 2471
aoqi@0 2472 void ObjectMonitor::DeferredInitialize () {
aoqi@0 2473 if (InitDone > 0) return ;
aoqi@0 2474 if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
aoqi@0 2475 while (InitDone != 1) ;
aoqi@0 2476 return ;
aoqi@0 2477 }
aoqi@0 2478
aoqi@0 2479 // One-shot global initialization ...
aoqi@0 2480 // The initialization is idempotent, so we don't need locks.
aoqi@0 2481 // In the future consider doing this via os::init_2().
aoqi@0 2482 // SyncKnobs consist of <Key>=<Value> pairs in the style
aoqi@0 2483 // of environment variables. Start by converting ':' to NUL.
aoqi@0 2484
aoqi@0 2485 if (SyncKnobs == NULL) SyncKnobs = "" ;
aoqi@0 2486
aoqi@0 2487 size_t sz = strlen (SyncKnobs) ;
aoqi@0 2488 char * knobs = (char *) malloc (sz + 2) ;
aoqi@0 2489 if (knobs == NULL) {
aoqi@0 2490 vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
aoqi@0 2491 guarantee (0, "invariant") ;
aoqi@0 2492 }
aoqi@0 2493 strcpy (knobs, SyncKnobs) ;
aoqi@0 2494 knobs[sz+1] = 0 ;
aoqi@0 2495 for (char * p = knobs ; *p ; p++) {
aoqi@0 2496 if (*p == ':') *p = 0 ;
aoqi@0 2497 }
aoqi@0 2498
aoqi@0 2499 #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
aoqi@0 2500 SETKNOB(ReportSettings) ;
aoqi@0 2501 SETKNOB(Verbose) ;
aoqi@0 2502 SETKNOB(FixedSpin) ;
aoqi@0 2503 SETKNOB(SpinLimit) ;
aoqi@0 2504 SETKNOB(SpinBase) ;
aoqi@0 2505 SETKNOB(SpinBackOff);
aoqi@0 2506 SETKNOB(CASPenalty) ;
aoqi@0 2507 SETKNOB(OXPenalty) ;
aoqi@0 2508 SETKNOB(LogSpins) ;
aoqi@0 2509 SETKNOB(SpinSetSucc) ;
aoqi@0 2510 SETKNOB(SuccEnabled) ;
aoqi@0 2511 SETKNOB(SuccRestrict) ;
aoqi@0 2512 SETKNOB(Penalty) ;
aoqi@0 2513 SETKNOB(Bonus) ;
aoqi@0 2514 SETKNOB(BonusB) ;
aoqi@0 2515 SETKNOB(Poverty) ;
aoqi@0 2516 SETKNOB(SpinAfterFutile) ;
aoqi@0 2517 SETKNOB(UsePause) ;
aoqi@0 2518 SETKNOB(SpinEarly) ;
aoqi@0 2519 SETKNOB(OState) ;
aoqi@0 2520 SETKNOB(MaxSpinners) ;
aoqi@0 2521 SETKNOB(PreSpin) ;
aoqi@0 2522 SETKNOB(ExitPolicy) ;
aoqi@0 2523 SETKNOB(QMode);
aoqi@0 2524 SETKNOB(ResetEvent) ;
aoqi@0 2525 SETKNOB(MoveNotifyee) ;
aoqi@0 2526 SETKNOB(FastHSSEC) ;
aoqi@0 2527 #undef SETKNOB
aoqi@0 2528
aoqi@0 2529 if (os::is_MP()) {
aoqi@0 2530 BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
aoqi@0 2531 if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
aoqi@0 2532 // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
aoqi@0 2533 } else {
aoqi@0 2534 Knob_SpinLimit = 0 ;
aoqi@0 2535 Knob_SpinBase = 0 ;
aoqi@0 2536 Knob_PreSpin = 0 ;
aoqi@0 2537 Knob_FixedSpin = -1 ;
aoqi@0 2538 }
aoqi@0 2539
aoqi@0 2540 if (Knob_LogSpins == 0) {
aoqi@0 2541 ObjectMonitor::_sync_FailedSpins = NULL ;
aoqi@0 2542 }
aoqi@0 2543
aoqi@0 2544 free (knobs) ;
aoqi@0 2545 OrderAccess::fence() ;
aoqi@0 2546 InitDone = 1 ;
aoqi@0 2547 }
aoqi@0 2548
aoqi@0 2549 #ifndef PRODUCT
aoqi@0 2550 void ObjectMonitor::verify() {
aoqi@0 2551 }
aoqi@0 2552
aoqi@0 2553 void ObjectMonitor::print() {
aoqi@0 2554 }
aoqi@0 2555 #endif

mercurial