src/share/vm/gc_implementation/parallelScavenge/gcTaskManager.hpp

Fri, 24 Jun 2016 17:12:13 +0800

author
aoqi<aoqi@loongson.cn>
date
Fri, 24 Jun 2016 17:12:13 +0800
changeset 25
873fd82b133d
parent 1
2d8a650513c2
child 6876
710a3c8b516e
permissions
-rw-r--r--

[Code Reorganization] Removed GC related modifications made by Loongson, for example, UseOldNUMA.

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_GCTASKMANAGER_HPP
aoqi@0 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_GCTASKMANAGER_HPP
aoqi@0 27
aoqi@0 28 #include "runtime/mutex.hpp"
aoqi@0 29 #include "utilities/growableArray.hpp"
aoqi@0 30
aoqi@0 31 //
aoqi@0 32 // The GCTaskManager is a queue of GCTasks, and accessors
aoqi@0 33 // to allow the queue to be accessed from many threads.
aoqi@0 34 //
aoqi@0 35
aoqi@0 36 // Forward declarations of types defined in this file.
aoqi@0 37 class GCTask;
aoqi@0 38 class GCTaskQueue;
aoqi@0 39 class SynchronizedGCTaskQueue;
aoqi@0 40 class GCTaskManager;
aoqi@0 41 class NotifyDoneClosure;
aoqi@0 42 // Some useful subclasses of GCTask. You can also make up your own.
aoqi@0 43 class NoopGCTask;
aoqi@0 44 class BarrierGCTask;
aoqi@0 45 class ReleasingBarrierGCTask;
aoqi@0 46 class NotifyingBarrierGCTask;
aoqi@0 47 class WaitForBarrierGCTask;
aoqi@0 48 class IdleGCTask;
aoqi@0 49 // A free list of Monitor*'s.
aoqi@0 50 class MonitorSupply;
aoqi@0 51
aoqi@0 52 // Forward declarations of classes referenced in this file via pointer.
aoqi@0 53 class GCTaskThread;
aoqi@0 54 class Mutex;
aoqi@0 55 class Monitor;
aoqi@0 56 class ThreadClosure;
aoqi@0 57
aoqi@0 58 // The abstract base GCTask.
aoqi@0 59 class GCTask : public ResourceObj {
aoqi@0 60 public:
aoqi@0 61 // Known kinds of GCTasks, for predicates.
aoqi@0 62 class Kind : AllStatic {
aoqi@0 63 public:
aoqi@0 64 enum kind {
aoqi@0 65 unknown_task,
aoqi@0 66 ordinary_task,
aoqi@0 67 barrier_task,
aoqi@0 68 noop_task,
aoqi@0 69 idle_task
aoqi@0 70 };
aoqi@0 71 static const char* to_string(kind value);
aoqi@0 72 };
aoqi@0 73 private:
aoqi@0 74 // Instance state.
aoqi@0 75 const Kind::kind _kind; // For runtime type checking.
aoqi@0 76 const uint _affinity; // Which worker should run task.
aoqi@0 77 GCTask* _newer; // Tasks are on doubly-linked ...
aoqi@0 78 GCTask* _older; // ... lists.
aoqi@0 79 public:
aoqi@0 80 virtual char* name() { return (char *)"task"; }
aoqi@0 81
aoqi@0 82 // Abstract do_it method
aoqi@0 83 virtual void do_it(GCTaskManager* manager, uint which) = 0;
aoqi@0 84 // Accessors
aoqi@0 85 Kind::kind kind() const {
aoqi@0 86 return _kind;
aoqi@0 87 }
aoqi@0 88 uint affinity() const {
aoqi@0 89 return _affinity;
aoqi@0 90 }
aoqi@0 91 GCTask* newer() const {
aoqi@0 92 return _newer;
aoqi@0 93 }
aoqi@0 94 void set_newer(GCTask* n) {
aoqi@0 95 _newer = n;
aoqi@0 96 }
aoqi@0 97 GCTask* older() const {
aoqi@0 98 return _older;
aoqi@0 99 }
aoqi@0 100 void set_older(GCTask* p) {
aoqi@0 101 _older = p;
aoqi@0 102 }
aoqi@0 103 // Predicates.
aoqi@0 104 bool is_ordinary_task() const {
aoqi@0 105 return kind()==Kind::ordinary_task;
aoqi@0 106 }
aoqi@0 107 bool is_barrier_task() const {
aoqi@0 108 return kind()==Kind::barrier_task;
aoqi@0 109 }
aoqi@0 110 bool is_noop_task() const {
aoqi@0 111 return kind()==Kind::noop_task;
aoqi@0 112 }
aoqi@0 113 bool is_idle_task() const {
aoqi@0 114 return kind()==Kind::idle_task;
aoqi@0 115 }
aoqi@0 116 void print(const char* message) const PRODUCT_RETURN;
aoqi@0 117 protected:
aoqi@0 118 // Constructors: Only create subclasses.
aoqi@0 119 // An ordinary GCTask.
aoqi@0 120 GCTask();
aoqi@0 121 // A GCTask of a particular kind, usually barrier or noop.
aoqi@0 122 GCTask(Kind::kind kind);
aoqi@0 123 // An ordinary GCTask with an affinity.
aoqi@0 124 GCTask(uint affinity);
aoqi@0 125 // A GCTask of a particular kind, with and affinity.
aoqi@0 126 GCTask(Kind::kind kind, uint affinity);
aoqi@0 127 // We want a virtual destructor because virtual methods,
aoqi@0 128 // but since ResourceObj's don't have their destructors
aoqi@0 129 // called, we don't have one at all. Instead we have
aoqi@0 130 // this method, which gets called by subclasses to clean up.
aoqi@0 131 virtual void destruct();
aoqi@0 132 // Methods.
aoqi@0 133 void initialize();
aoqi@0 134 };
aoqi@0 135
aoqi@0 136 // A doubly-linked list of GCTasks.
aoqi@0 137 // The list is not synchronized, because sometimes we want to
aoqi@0 138 // build up a list and then make it available to other threads.
aoqi@0 139 // See also: SynchronizedGCTaskQueue.
aoqi@0 140 class GCTaskQueue : public ResourceObj {
aoqi@0 141 private:
aoqi@0 142 // Instance state.
aoqi@0 143 GCTask* _insert_end; // Tasks are enqueued at this end.
aoqi@0 144 GCTask* _remove_end; // Tasks are dequeued from this end.
aoqi@0 145 uint _length; // The current length of the queue.
aoqi@0 146 const bool _is_c_heap_obj; // Is this a CHeapObj?
aoqi@0 147 public:
aoqi@0 148 // Factory create and destroy methods.
aoqi@0 149 // Create as ResourceObj.
aoqi@0 150 static GCTaskQueue* create();
aoqi@0 151 // Create as CHeapObj.
aoqi@0 152 static GCTaskQueue* create_on_c_heap();
aoqi@0 153 // Destroyer.
aoqi@0 154 static void destroy(GCTaskQueue* that);
aoqi@0 155 // Accessors.
aoqi@0 156 // These just examine the state of the queue.
aoqi@0 157 bool is_empty() const {
aoqi@0 158 assert(((insert_end() == NULL && remove_end() == NULL) ||
aoqi@0 159 (insert_end() != NULL && remove_end() != NULL)),
aoqi@0 160 "insert_end and remove_end don't match");
aoqi@0 161 assert((insert_end() != NULL) || (_length == 0), "Not empty");
aoqi@0 162 return insert_end() == NULL;
aoqi@0 163 }
aoqi@0 164 uint length() const {
aoqi@0 165 return _length;
aoqi@0 166 }
aoqi@0 167 // Methods.
aoqi@0 168 // Enqueue one task.
aoqi@0 169 void enqueue(GCTask* task);
aoqi@0 170 // Enqueue a list of tasks. Empties the argument list.
aoqi@0 171 void enqueue(GCTaskQueue* list);
aoqi@0 172 // Dequeue one task.
aoqi@0 173 GCTask* dequeue();
aoqi@0 174 // Dequeue one task, preferring one with affinity.
aoqi@0 175 GCTask* dequeue(uint affinity);
aoqi@0 176 protected:
aoqi@0 177 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 178 GCTaskQueue(bool on_c_heap);
aoqi@0 179 // Destructor-like method.
aoqi@0 180 // Because ResourceMark doesn't call destructors.
aoqi@0 181 // This method cleans up like one.
aoqi@0 182 virtual void destruct();
aoqi@0 183 // Accessors.
aoqi@0 184 GCTask* insert_end() const {
aoqi@0 185 return _insert_end;
aoqi@0 186 }
aoqi@0 187 void set_insert_end(GCTask* value) {
aoqi@0 188 _insert_end = value;
aoqi@0 189 }
aoqi@0 190 GCTask* remove_end() const {
aoqi@0 191 return _remove_end;
aoqi@0 192 }
aoqi@0 193 void set_remove_end(GCTask* value) {
aoqi@0 194 _remove_end = value;
aoqi@0 195 }
aoqi@0 196 void increment_length() {
aoqi@0 197 _length += 1;
aoqi@0 198 }
aoqi@0 199 void decrement_length() {
aoqi@0 200 _length -= 1;
aoqi@0 201 }
aoqi@0 202 void set_length(uint value) {
aoqi@0 203 _length = value;
aoqi@0 204 }
aoqi@0 205 bool is_c_heap_obj() const {
aoqi@0 206 return _is_c_heap_obj;
aoqi@0 207 }
aoqi@0 208 // Methods.
aoqi@0 209 void initialize();
aoqi@0 210 GCTask* remove(); // Remove from remove end.
aoqi@0 211 GCTask* remove(GCTask* task); // Remove from the middle.
aoqi@0 212 void print(const char* message) const PRODUCT_RETURN;
aoqi@0 213 // Debug support
aoqi@0 214 void verify_length() const PRODUCT_RETURN;
aoqi@0 215 };
aoqi@0 216
aoqi@0 217 // A GCTaskQueue that can be synchronized.
aoqi@0 218 // This "has-a" GCTaskQueue and a mutex to do the exclusion.
aoqi@0 219 class SynchronizedGCTaskQueue : public CHeapObj<mtGC> {
aoqi@0 220 private:
aoqi@0 221 // Instance state.
aoqi@0 222 GCTaskQueue* _unsynchronized_queue; // Has-a unsynchronized queue.
aoqi@0 223 Monitor * _lock; // Lock to control access.
aoqi@0 224 public:
aoqi@0 225 // Factory create and destroy methods.
aoqi@0 226 static SynchronizedGCTaskQueue* create(GCTaskQueue* queue, Monitor * lock) {
aoqi@0 227 return new SynchronizedGCTaskQueue(queue, lock);
aoqi@0 228 }
aoqi@0 229 static void destroy(SynchronizedGCTaskQueue* that) {
aoqi@0 230 if (that != NULL) {
aoqi@0 231 delete that;
aoqi@0 232 }
aoqi@0 233 }
aoqi@0 234 // Accessors
aoqi@0 235 GCTaskQueue* unsynchronized_queue() const {
aoqi@0 236 return _unsynchronized_queue;
aoqi@0 237 }
aoqi@0 238 Monitor * lock() const {
aoqi@0 239 return _lock;
aoqi@0 240 }
aoqi@0 241 // GCTaskQueue wrapper methods.
aoqi@0 242 // These check that you hold the lock
aoqi@0 243 // and then call the method on the queue.
aoqi@0 244 bool is_empty() const {
aoqi@0 245 guarantee(own_lock(), "don't own the lock");
aoqi@0 246 return unsynchronized_queue()->is_empty();
aoqi@0 247 }
aoqi@0 248 void enqueue(GCTask* task) {
aoqi@0 249 guarantee(own_lock(), "don't own the lock");
aoqi@0 250 unsynchronized_queue()->enqueue(task);
aoqi@0 251 }
aoqi@0 252 void enqueue(GCTaskQueue* list) {
aoqi@0 253 guarantee(own_lock(), "don't own the lock");
aoqi@0 254 unsynchronized_queue()->enqueue(list);
aoqi@0 255 }
aoqi@0 256 GCTask* dequeue() {
aoqi@0 257 guarantee(own_lock(), "don't own the lock");
aoqi@0 258 return unsynchronized_queue()->dequeue();
aoqi@0 259 }
aoqi@0 260 GCTask* dequeue(uint affinity) {
aoqi@0 261 guarantee(own_lock(), "don't own the lock");
aoqi@0 262 return unsynchronized_queue()->dequeue(affinity);
aoqi@0 263 }
aoqi@0 264 uint length() const {
aoqi@0 265 guarantee(own_lock(), "don't own the lock");
aoqi@0 266 return unsynchronized_queue()->length();
aoqi@0 267 }
aoqi@0 268 // For guarantees.
aoqi@0 269 bool own_lock() const {
aoqi@0 270 return lock()->owned_by_self();
aoqi@0 271 }
aoqi@0 272 protected:
aoqi@0 273 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 274 SynchronizedGCTaskQueue(GCTaskQueue* queue, Monitor * lock);
aoqi@0 275 // Destructor. Not virtual because no virtuals.
aoqi@0 276 ~SynchronizedGCTaskQueue();
aoqi@0 277 };
aoqi@0 278
aoqi@0 279 // This is an abstract base class for getting notifications
aoqi@0 280 // when a GCTaskManager is done.
aoqi@0 281 class NotifyDoneClosure : public CHeapObj<mtGC> {
aoqi@0 282 public:
aoqi@0 283 // The notification callback method.
aoqi@0 284 virtual void notify(GCTaskManager* manager) = 0;
aoqi@0 285 protected:
aoqi@0 286 // Constructor.
aoqi@0 287 NotifyDoneClosure() {
aoqi@0 288 // Nothing to do.
aoqi@0 289 }
aoqi@0 290 // Virtual destructor because virtual methods.
aoqi@0 291 virtual ~NotifyDoneClosure() {
aoqi@0 292 // Nothing to do.
aoqi@0 293 }
aoqi@0 294 };
aoqi@0 295
aoqi@0 296 // Dynamic number of GC threads
aoqi@0 297 //
aoqi@0 298 // GC threads wait in get_task() for work (i.e., a task) to perform.
aoqi@0 299 // When the number of GC threads was static, the number of tasks
aoqi@0 300 // created to do a job was equal to or greater than the maximum
aoqi@0 301 // number of GC threads (ParallelGCThreads). The job might be divided
aoqi@0 302 // into a number of tasks greater than the number of GC threads for
aoqi@0 303 // load balancing (i.e., over partitioning). The last task to be
aoqi@0 304 // executed by a GC thread in a job is a work stealing task. A
aoqi@0 305 // GC thread that gets a work stealing task continues to execute
aoqi@0 306 // that task until the job is done. In the static number of GC theads
aoqi@0 307 // case, tasks are added to a queue (FIFO). The work stealing tasks are
aoqi@0 308 // the last to be added. Once the tasks are added, the GC threads grab
aoqi@0 309 // a task and go. A single thread can do all the non-work stealing tasks
aoqi@0 310 // and then execute a work stealing and wait for all the other GC threads
aoqi@0 311 // to execute their work stealing task.
aoqi@0 312 // In the dynamic number of GC threads implementation, idle-tasks are
aoqi@0 313 // created to occupy the non-participating or "inactive" threads. An
aoqi@0 314 // idle-task makes the GC thread wait on a barrier that is part of the
aoqi@0 315 // GCTaskManager. The GC threads that have been "idled" in a IdleGCTask
aoqi@0 316 // are released once all the active GC threads have finished their work
aoqi@0 317 // stealing tasks. The GCTaskManager does not wait for all the "idled"
aoqi@0 318 // GC threads to resume execution. When those GC threads do resume
aoqi@0 319 // execution in the course of the thread scheduling, they call get_tasks()
aoqi@0 320 // as all the other GC threads do. Because all the "idled" threads are
aoqi@0 321 // not required to execute in order to finish a job, it is possible for
aoqi@0 322 // a GC thread to still be "idled" when the next job is started. Such
aoqi@0 323 // a thread stays "idled" for the next job. This can result in a new
aoqi@0 324 // job not having all the expected active workers. For example if on
aoqi@0 325 // job requests 4 active workers out of a total of 10 workers so the
aoqi@0 326 // remaining 6 are "idled", if the next job requests 6 active workers
aoqi@0 327 // but all 6 of the "idled" workers are still idle, then the next job
aoqi@0 328 // will only get 4 active workers.
aoqi@0 329 // The implementation for the parallel old compaction phase has an
aoqi@0 330 // added complication. In the static case parold partitions the chunks
aoqi@0 331 // ready to be filled into stacks, one for each GC thread. A GC thread
aoqi@0 332 // executing a draining task (drains the stack of ready chunks)
aoqi@0 333 // claims a stack according to it's id (the unique ordinal value assigned
aoqi@0 334 // to each GC thread). In the dynamic case not all GC threads will
aoqi@0 335 // actively participate so stacks with ready to fill chunks can only be
aoqi@0 336 // given to the active threads. An initial implementation chose stacks
aoqi@0 337 // number 1-n to get the ready chunks and required that GC threads
aoqi@0 338 // 1-n be the active workers. This was undesirable because it required
aoqi@0 339 // certain threads to participate. In the final implementation a
aoqi@0 340 // list of stacks equal in number to the active workers are filled
aoqi@0 341 // with ready chunks. GC threads that participate get a stack from
aoqi@0 342 // the task (DrainStacksCompactionTask), empty the stack, and then add it to a
aoqi@0 343 // recycling list at the end of the task. If the same GC thread gets
aoqi@0 344 // a second task, it gets a second stack to drain and returns it. The
aoqi@0 345 // stacks are added to a recycling list so that later stealing tasks
aoqi@0 346 // for this tasks can get a stack from the recycling list. Stealing tasks
aoqi@0 347 // use the stacks in its work in a way similar to the draining tasks.
aoqi@0 348 // A thread is not guaranteed to get anything but a stealing task and
aoqi@0 349 // a thread that only gets a stealing task has to get a stack. A failed
aoqi@0 350 // implementation tried to have the GC threads keep the stack they used
aoqi@0 351 // during a draining task for later use in the stealing task but that didn't
aoqi@0 352 // work because as noted a thread is not guaranteed to get a draining task.
aoqi@0 353 //
aoqi@0 354 // For PSScavenge and ParCompactionManager the GC threads are
aoqi@0 355 // held in the GCTaskThread** _thread array in GCTaskManager.
aoqi@0 356
aoqi@0 357
aoqi@0 358 class GCTaskManager : public CHeapObj<mtGC> {
aoqi@0 359 friend class ParCompactionManager;
aoqi@0 360 friend class PSParallelCompact;
aoqi@0 361 friend class PSScavenge;
aoqi@0 362 friend class PSRefProcTaskExecutor;
aoqi@0 363 friend class RefProcTaskExecutor;
aoqi@0 364 friend class GCTaskThread;
aoqi@0 365 friend class IdleGCTask;
aoqi@0 366 private:
aoqi@0 367 // Instance state.
aoqi@0 368 NotifyDoneClosure* _ndc; // Notify on completion.
aoqi@0 369 const uint _workers; // Number of workers.
aoqi@0 370 Monitor* _monitor; // Notification of changes.
aoqi@0 371 SynchronizedGCTaskQueue* _queue; // Queue of tasks.
aoqi@0 372 GCTaskThread** _thread; // Array of worker threads.
aoqi@0 373 uint _active_workers; // Number of active workers.
aoqi@0 374 uint _busy_workers; // Number of busy workers.
aoqi@0 375 uint _blocking_worker; // The worker that's blocking.
aoqi@0 376 bool* _resource_flag; // Array of flag per threads.
aoqi@0 377 uint _delivered_tasks; // Count of delivered tasks.
aoqi@0 378 uint _completed_tasks; // Count of completed tasks.
aoqi@0 379 uint _barriers; // Count of barrier tasks.
aoqi@0 380 uint _emptied_queue; // Times we emptied the queue.
aoqi@0 381 NoopGCTask* _noop_task; // The NoopGCTask instance.
aoqi@0 382 uint _noop_tasks; // Count of noop tasks.
aoqi@0 383 WaitForBarrierGCTask* _idle_inactive_task;// Task for inactive workers
aoqi@0 384 volatile uint _idle_workers; // Number of idled workers
aoqi@0 385 public:
aoqi@0 386 // Factory create and destroy methods.
aoqi@0 387 static GCTaskManager* create(uint workers) {
aoqi@0 388 return new GCTaskManager(workers);
aoqi@0 389 }
aoqi@0 390 static GCTaskManager* create(uint workers, NotifyDoneClosure* ndc) {
aoqi@0 391 return new GCTaskManager(workers, ndc);
aoqi@0 392 }
aoqi@0 393 static void destroy(GCTaskManager* that) {
aoqi@0 394 if (that != NULL) {
aoqi@0 395 delete that;
aoqi@0 396 }
aoqi@0 397 }
aoqi@0 398 // Accessors.
aoqi@0 399 uint busy_workers() const {
aoqi@0 400 return _busy_workers;
aoqi@0 401 }
aoqi@0 402 volatile uint idle_workers() const {
aoqi@0 403 return _idle_workers;
aoqi@0 404 }
aoqi@0 405 // Pun between Monitor* and Mutex*
aoqi@0 406 Monitor* monitor() const {
aoqi@0 407 return _monitor;
aoqi@0 408 }
aoqi@0 409 Monitor * lock() const {
aoqi@0 410 return _monitor;
aoqi@0 411 }
aoqi@0 412 WaitForBarrierGCTask* idle_inactive_task() {
aoqi@0 413 return _idle_inactive_task;
aoqi@0 414 }
aoqi@0 415 // Methods.
aoqi@0 416 // Add the argument task to be run.
aoqi@0 417 void add_task(GCTask* task);
aoqi@0 418 // Add a list of tasks. Removes task from the argument list.
aoqi@0 419 void add_list(GCTaskQueue* list);
aoqi@0 420 // Claim a task for argument worker.
aoqi@0 421 GCTask* get_task(uint which);
aoqi@0 422 // Note the completion of a task by the argument worker.
aoqi@0 423 void note_completion(uint which);
aoqi@0 424 // Is the queue blocked from handing out new tasks?
aoqi@0 425 bool is_blocked() const {
aoqi@0 426 return (blocking_worker() != sentinel_worker());
aoqi@0 427 }
aoqi@0 428 // Request that all workers release their resources.
aoqi@0 429 void release_all_resources();
aoqi@0 430 // Ask if a particular worker should release its resources.
aoqi@0 431 bool should_release_resources(uint which); // Predicate.
aoqi@0 432 // Note the release of resources by the argument worker.
aoqi@0 433 void note_release(uint which);
aoqi@0 434 // Create IdleGCTasks for inactive workers and start workers
aoqi@0 435 void task_idle_workers();
aoqi@0 436 // Release the workers in IdleGCTasks
aoqi@0 437 void release_idle_workers();
aoqi@0 438 // Constants.
aoqi@0 439 // A sentinel worker identifier.
aoqi@0 440 static uint sentinel_worker() {
aoqi@0 441 return (uint) -1; // Why isn't there a max_uint?
aoqi@0 442 }
aoqi@0 443
aoqi@0 444 // Execute the task queue and wait for the completion.
aoqi@0 445 void execute_and_wait(GCTaskQueue* list);
aoqi@0 446
aoqi@0 447 void print_task_time_stamps();
aoqi@0 448 void print_threads_on(outputStream* st);
aoqi@0 449 void threads_do(ThreadClosure* tc);
aoqi@0 450
aoqi@0 451 protected:
aoqi@0 452 // Constructors. Clients use factory, but there might be subclasses.
aoqi@0 453 // Create a GCTaskManager with the appropriate number of workers.
aoqi@0 454 GCTaskManager(uint workers);
aoqi@0 455 // Create a GCTaskManager that calls back when there's no more work.
aoqi@0 456 GCTaskManager(uint workers, NotifyDoneClosure* ndc);
aoqi@0 457 // Make virtual if necessary.
aoqi@0 458 ~GCTaskManager();
aoqi@0 459 // Accessors.
aoqi@0 460 uint workers() const {
aoqi@0 461 return _workers;
aoqi@0 462 }
aoqi@0 463 void set_active_workers(uint v) {
aoqi@0 464 assert(v <= _workers, "Trying to set more workers active than there are");
aoqi@0 465 _active_workers = MIN2(v, _workers);
aoqi@0 466 assert(v != 0, "Trying to set active workers to 0");
aoqi@0 467 _active_workers = MAX2(1U, _active_workers);
aoqi@0 468 }
aoqi@0 469 // Sets the number of threads that will be used in a collection
aoqi@0 470 void set_active_gang();
aoqi@0 471
aoqi@0 472 NotifyDoneClosure* notify_done_closure() const {
aoqi@0 473 return _ndc;
aoqi@0 474 }
aoqi@0 475 SynchronizedGCTaskQueue* queue() const {
aoqi@0 476 return _queue;
aoqi@0 477 }
aoqi@0 478 NoopGCTask* noop_task() const {
aoqi@0 479 return _noop_task;
aoqi@0 480 }
aoqi@0 481 // Bounds-checking per-thread data accessors.
aoqi@0 482 GCTaskThread* thread(uint which);
aoqi@0 483 void set_thread(uint which, GCTaskThread* value);
aoqi@0 484 bool resource_flag(uint which);
aoqi@0 485 void set_resource_flag(uint which, bool value);
aoqi@0 486 // Modifier methods with some semantics.
aoqi@0 487 // Is any worker blocking handing out new tasks?
aoqi@0 488 uint blocking_worker() const {
aoqi@0 489 return _blocking_worker;
aoqi@0 490 }
aoqi@0 491 void set_blocking_worker(uint value) {
aoqi@0 492 _blocking_worker = value;
aoqi@0 493 }
aoqi@0 494 void set_unblocked() {
aoqi@0 495 set_blocking_worker(sentinel_worker());
aoqi@0 496 }
aoqi@0 497 // Count of busy workers.
aoqi@0 498 void reset_busy_workers() {
aoqi@0 499 _busy_workers = 0;
aoqi@0 500 }
aoqi@0 501 uint increment_busy_workers();
aoqi@0 502 uint decrement_busy_workers();
aoqi@0 503 // Count of tasks delivered to workers.
aoqi@0 504 uint delivered_tasks() const {
aoqi@0 505 return _delivered_tasks;
aoqi@0 506 }
aoqi@0 507 void increment_delivered_tasks() {
aoqi@0 508 _delivered_tasks += 1;
aoqi@0 509 }
aoqi@0 510 void reset_delivered_tasks() {
aoqi@0 511 _delivered_tasks = 0;
aoqi@0 512 }
aoqi@0 513 // Count of tasks completed by workers.
aoqi@0 514 uint completed_tasks() const {
aoqi@0 515 return _completed_tasks;
aoqi@0 516 }
aoqi@0 517 void increment_completed_tasks() {
aoqi@0 518 _completed_tasks += 1;
aoqi@0 519 }
aoqi@0 520 void reset_completed_tasks() {
aoqi@0 521 _completed_tasks = 0;
aoqi@0 522 }
aoqi@0 523 // Count of barrier tasks completed.
aoqi@0 524 uint barriers() const {
aoqi@0 525 return _barriers;
aoqi@0 526 }
aoqi@0 527 void increment_barriers() {
aoqi@0 528 _barriers += 1;
aoqi@0 529 }
aoqi@0 530 void reset_barriers() {
aoqi@0 531 _barriers = 0;
aoqi@0 532 }
aoqi@0 533 // Count of how many times the queue has emptied.
aoqi@0 534 uint emptied_queue() const {
aoqi@0 535 return _emptied_queue;
aoqi@0 536 }
aoqi@0 537 void increment_emptied_queue() {
aoqi@0 538 _emptied_queue += 1;
aoqi@0 539 }
aoqi@0 540 void reset_emptied_queue() {
aoqi@0 541 _emptied_queue = 0;
aoqi@0 542 }
aoqi@0 543 // Count of the number of noop tasks we've handed out,
aoqi@0 544 // e.g., to handle resource release requests.
aoqi@0 545 uint noop_tasks() const {
aoqi@0 546 return _noop_tasks;
aoqi@0 547 }
aoqi@0 548 void increment_noop_tasks() {
aoqi@0 549 _noop_tasks += 1;
aoqi@0 550 }
aoqi@0 551 void reset_noop_tasks() {
aoqi@0 552 _noop_tasks = 0;
aoqi@0 553 }
aoqi@0 554 void increment_idle_workers() {
aoqi@0 555 _idle_workers++;
aoqi@0 556 }
aoqi@0 557 void decrement_idle_workers() {
aoqi@0 558 _idle_workers--;
aoqi@0 559 }
aoqi@0 560 // Other methods.
aoqi@0 561 void initialize();
aoqi@0 562
aoqi@0 563 public:
aoqi@0 564 // Return true if all workers are currently active.
aoqi@0 565 bool all_workers_active() { return workers() == active_workers(); }
aoqi@0 566 uint active_workers() const {
aoqi@0 567 return _active_workers;
aoqi@0 568 }
aoqi@0 569 };
aoqi@0 570
aoqi@0 571 //
aoqi@0 572 // Some exemplary GCTasks.
aoqi@0 573 //
aoqi@0 574
aoqi@0 575 // A noop task that does nothing,
aoqi@0 576 // except take us around the GCTaskThread loop.
aoqi@0 577 class NoopGCTask : public GCTask {
aoqi@0 578 private:
aoqi@0 579 const bool _is_c_heap_obj; // Is this a CHeapObj?
aoqi@0 580 public:
aoqi@0 581 // Factory create and destroy methods.
aoqi@0 582 static NoopGCTask* create();
aoqi@0 583 static NoopGCTask* create_on_c_heap();
aoqi@0 584 static void destroy(NoopGCTask* that);
aoqi@0 585
aoqi@0 586 virtual char* name() { return (char *)"noop task"; }
aoqi@0 587 // Methods from GCTask.
aoqi@0 588 void do_it(GCTaskManager* manager, uint which) {
aoqi@0 589 // Nothing to do.
aoqi@0 590 }
aoqi@0 591 protected:
aoqi@0 592 // Constructor.
aoqi@0 593 NoopGCTask(bool on_c_heap) :
aoqi@0 594 GCTask(GCTask::Kind::noop_task),
aoqi@0 595 _is_c_heap_obj(on_c_heap) {
aoqi@0 596 // Nothing to do.
aoqi@0 597 }
aoqi@0 598 // Destructor-like method.
aoqi@0 599 void destruct();
aoqi@0 600 // Accessors.
aoqi@0 601 bool is_c_heap_obj() const {
aoqi@0 602 return _is_c_heap_obj;
aoqi@0 603 }
aoqi@0 604 };
aoqi@0 605
aoqi@0 606 // A BarrierGCTask blocks other tasks from starting,
aoqi@0 607 // and waits until it is the only task running.
aoqi@0 608 class BarrierGCTask : public GCTask {
aoqi@0 609 public:
aoqi@0 610 // Factory create and destroy methods.
aoqi@0 611 static BarrierGCTask* create() {
aoqi@0 612 return new BarrierGCTask();
aoqi@0 613 }
aoqi@0 614 static void destroy(BarrierGCTask* that) {
aoqi@0 615 if (that != NULL) {
aoqi@0 616 that->destruct();
aoqi@0 617 delete that;
aoqi@0 618 }
aoqi@0 619 }
aoqi@0 620 // Methods from GCTask.
aoqi@0 621 void do_it(GCTaskManager* manager, uint which);
aoqi@0 622 protected:
aoqi@0 623 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 624 BarrierGCTask() :
aoqi@0 625 GCTask(GCTask::Kind::barrier_task) {
aoqi@0 626 // Nothing to do.
aoqi@0 627 }
aoqi@0 628 // Destructor-like method.
aoqi@0 629 void destruct();
aoqi@0 630
aoqi@0 631 virtual char* name() { return (char *)"barrier task"; }
aoqi@0 632 // Methods.
aoqi@0 633 // Wait for this to be the only task running.
aoqi@0 634 void do_it_internal(GCTaskManager* manager, uint which);
aoqi@0 635 };
aoqi@0 636
aoqi@0 637 // A ReleasingBarrierGCTask is a BarrierGCTask
aoqi@0 638 // that tells all the tasks to release their resource areas.
aoqi@0 639 class ReleasingBarrierGCTask : public BarrierGCTask {
aoqi@0 640 public:
aoqi@0 641 // Factory create and destroy methods.
aoqi@0 642 static ReleasingBarrierGCTask* create() {
aoqi@0 643 return new ReleasingBarrierGCTask();
aoqi@0 644 }
aoqi@0 645 static void destroy(ReleasingBarrierGCTask* that) {
aoqi@0 646 if (that != NULL) {
aoqi@0 647 that->destruct();
aoqi@0 648 delete that;
aoqi@0 649 }
aoqi@0 650 }
aoqi@0 651 // Methods from GCTask.
aoqi@0 652 void do_it(GCTaskManager* manager, uint which);
aoqi@0 653 protected:
aoqi@0 654 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 655 ReleasingBarrierGCTask() :
aoqi@0 656 BarrierGCTask() {
aoqi@0 657 // Nothing to do.
aoqi@0 658 }
aoqi@0 659 // Destructor-like method.
aoqi@0 660 void destruct();
aoqi@0 661 };
aoqi@0 662
aoqi@0 663 // A NotifyingBarrierGCTask is a BarrierGCTask
aoqi@0 664 // that calls a notification method when it is the only task running.
aoqi@0 665 class NotifyingBarrierGCTask : public BarrierGCTask {
aoqi@0 666 private:
aoqi@0 667 // Instance state.
aoqi@0 668 NotifyDoneClosure* _ndc; // The callback object.
aoqi@0 669 public:
aoqi@0 670 // Factory create and destroy methods.
aoqi@0 671 static NotifyingBarrierGCTask* create(NotifyDoneClosure* ndc) {
aoqi@0 672 return new NotifyingBarrierGCTask(ndc);
aoqi@0 673 }
aoqi@0 674 static void destroy(NotifyingBarrierGCTask* that) {
aoqi@0 675 if (that != NULL) {
aoqi@0 676 that->destruct();
aoqi@0 677 delete that;
aoqi@0 678 }
aoqi@0 679 }
aoqi@0 680 // Methods from GCTask.
aoqi@0 681 void do_it(GCTaskManager* manager, uint which);
aoqi@0 682 protected:
aoqi@0 683 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 684 NotifyingBarrierGCTask(NotifyDoneClosure* ndc) :
aoqi@0 685 BarrierGCTask(),
aoqi@0 686 _ndc(ndc) {
aoqi@0 687 assert(notify_done_closure() != NULL, "can't notify on NULL");
aoqi@0 688 }
aoqi@0 689 // Destructor-like method.
aoqi@0 690 void destruct();
aoqi@0 691 // Accessor.
aoqi@0 692 NotifyDoneClosure* notify_done_closure() const { return _ndc; }
aoqi@0 693 };
aoqi@0 694
aoqi@0 695 // A WaitForBarrierGCTask is a BarrierGCTask
aoqi@0 696 // with a method you can call to wait until
aoqi@0 697 // the BarrierGCTask is done.
aoqi@0 698 // This may cover many of the uses of NotifyingBarrierGCTasks.
aoqi@0 699 class WaitForBarrierGCTask : public BarrierGCTask {
aoqi@0 700 friend class GCTaskManager;
aoqi@0 701 friend class IdleGCTask;
aoqi@0 702 private:
aoqi@0 703 // Instance state.
aoqi@0 704 Monitor* _monitor; // Guard and notify changes.
aoqi@0 705 volatile bool _should_wait; // true=>wait, false=>proceed.
aoqi@0 706 const bool _is_c_heap_obj; // Was allocated on the heap.
aoqi@0 707 public:
aoqi@0 708 virtual char* name() { return (char *) "waitfor-barrier-task"; }
aoqi@0 709
aoqi@0 710 // Factory create and destroy methods.
aoqi@0 711 static WaitForBarrierGCTask* create();
aoqi@0 712 static WaitForBarrierGCTask* create_on_c_heap();
aoqi@0 713 static void destroy(WaitForBarrierGCTask* that);
aoqi@0 714 // Methods.
aoqi@0 715 void do_it(GCTaskManager* manager, uint which);
aoqi@0 716 void wait_for(bool reset);
aoqi@0 717 void set_should_wait(bool value) {
aoqi@0 718 _should_wait = value;
aoqi@0 719 }
aoqi@0 720 protected:
aoqi@0 721 // Constructor. Clients use factory, but there might be subclasses.
aoqi@0 722 WaitForBarrierGCTask(bool on_c_heap);
aoqi@0 723 // Destructor-like method.
aoqi@0 724 void destruct();
aoqi@0 725 // Accessors.
aoqi@0 726 Monitor* monitor() const {
aoqi@0 727 return _monitor;
aoqi@0 728 }
aoqi@0 729 bool should_wait() const {
aoqi@0 730 return _should_wait;
aoqi@0 731 }
aoqi@0 732 bool is_c_heap_obj() {
aoqi@0 733 return _is_c_heap_obj;
aoqi@0 734 }
aoqi@0 735 };
aoqi@0 736
aoqi@0 737 // Task that is used to idle a GC task when fewer than
aoqi@0 738 // the maximum workers are wanted.
aoqi@0 739 class IdleGCTask : public GCTask {
aoqi@0 740 const bool _is_c_heap_obj; // Was allocated on the heap.
aoqi@0 741 public:
aoqi@0 742 bool is_c_heap_obj() {
aoqi@0 743 return _is_c_heap_obj;
aoqi@0 744 }
aoqi@0 745 // Factory create and destroy methods.
aoqi@0 746 static IdleGCTask* create();
aoqi@0 747 static IdleGCTask* create_on_c_heap();
aoqi@0 748 static void destroy(IdleGCTask* that);
aoqi@0 749
aoqi@0 750 virtual char* name() { return (char *)"idle task"; }
aoqi@0 751 // Methods from GCTask.
aoqi@0 752 virtual void do_it(GCTaskManager* manager, uint which);
aoqi@0 753 protected:
aoqi@0 754 // Constructor.
aoqi@0 755 IdleGCTask(bool on_c_heap) :
aoqi@0 756 GCTask(GCTask::Kind::idle_task),
aoqi@0 757 _is_c_heap_obj(on_c_heap) {
aoqi@0 758 // Nothing to do.
aoqi@0 759 }
aoqi@0 760 // Destructor-like method.
aoqi@0 761 void destruct();
aoqi@0 762 };
aoqi@0 763
aoqi@0 764 class MonitorSupply : public AllStatic {
aoqi@0 765 private:
aoqi@0 766 // State.
aoqi@0 767 // Control multi-threaded access.
aoqi@0 768 static Mutex* _lock;
aoqi@0 769 // The list of available Monitor*'s.
aoqi@0 770 static GrowableArray<Monitor*>* _freelist;
aoqi@0 771 public:
aoqi@0 772 // Reserve a Monitor*.
aoqi@0 773 static Monitor* reserve();
aoqi@0 774 // Release a Monitor*.
aoqi@0 775 static void release(Monitor* instance);
aoqi@0 776 private:
aoqi@0 777 // Accessors.
aoqi@0 778 static Mutex* lock() {
aoqi@0 779 return _lock;
aoqi@0 780 }
aoqi@0 781 static GrowableArray<Monitor*>* freelist() {
aoqi@0 782 return _freelist;
aoqi@0 783 }
aoqi@0 784 };
aoqi@0 785
aoqi@0 786 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_GCTASKMANAGER_HPP

mercurial