src/share/vm/memory/space.hpp

Mon, 28 Jul 2008 15:30:23 -0700

author
jmasa
date
Mon, 28 Jul 2008 15:30:23 -0700
changeset 704
850fdf70db2b
parent 631
d1605aabd0a1
parent 698
12eea04c8b06
child 791
1ee8caae33af
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // A space is an abstraction for the "storage units" backing
duke@435 26 // up the generation abstraction. It includes specific
duke@435 27 // implementations for keeping track of free and used space,
duke@435 28 // for iterating over objects and free blocks, etc.
duke@435 29
duke@435 30 // Here's the Space hierarchy:
duke@435 31 //
duke@435 32 // - Space -- an asbtract base class describing a heap area
duke@435 33 // - CompactibleSpace -- a space supporting compaction
duke@435 34 // - CompactibleFreeListSpace -- (used for CMS generation)
duke@435 35 // - ContiguousSpace -- a compactible space in which all free space
duke@435 36 // is contiguous
duke@435 37 // - EdenSpace -- contiguous space used as nursery
duke@435 38 // - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
duke@435 39 // - OffsetTableContigSpace -- contiguous space with a block offset array
duke@435 40 // that allows "fast" block_start calls
duke@435 41 // - TenuredSpace -- (used for TenuredGeneration)
duke@435 42 // - ContigPermSpace -- an offset table contiguous space for perm gen
duke@435 43
duke@435 44 // Forward decls.
duke@435 45 class Space;
duke@435 46 class BlockOffsetArray;
duke@435 47 class BlockOffsetArrayContigSpace;
duke@435 48 class Generation;
duke@435 49 class CompactibleSpace;
duke@435 50 class BlockOffsetTable;
duke@435 51 class GenRemSet;
duke@435 52 class CardTableRS;
duke@435 53 class DirtyCardToOopClosure;
duke@435 54
duke@435 55 // An oop closure that is circumscribed by a filtering memory region.
coleenp@548 56 class SpaceMemRegionOopsIterClosure: public OopClosure {
coleenp@548 57 private:
coleenp@548 58 OopClosure* _cl;
coleenp@548 59 MemRegion _mr;
coleenp@548 60 protected:
coleenp@548 61 template <class T> void do_oop_work(T* p) {
coleenp@548 62 if (_mr.contains(p)) {
coleenp@548 63 _cl->do_oop(p);
duke@435 64 }
duke@435 65 }
coleenp@548 66 public:
coleenp@548 67 SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
coleenp@548 68 _cl(cl), _mr(mr) {}
coleenp@548 69 virtual void do_oop(oop* p);
coleenp@548 70 virtual void do_oop(narrowOop* p);
duke@435 71 };
duke@435 72
duke@435 73 // A Space describes a heap area. Class Space is an abstract
duke@435 74 // base class.
duke@435 75 //
duke@435 76 // Space supports allocation, size computation and GC support is provided.
duke@435 77 //
duke@435 78 // Invariant: bottom() and end() are on page_size boundaries and
duke@435 79 // bottom() <= top() <= end()
duke@435 80 // top() is inclusive and end() is exclusive.
duke@435 81
duke@435 82 class Space: public CHeapObj {
duke@435 83 friend class VMStructs;
duke@435 84 protected:
duke@435 85 HeapWord* _bottom;
duke@435 86 HeapWord* _end;
duke@435 87
duke@435 88 // Used in support of save_marks()
duke@435 89 HeapWord* _saved_mark_word;
duke@435 90
duke@435 91 MemRegionClosure* _preconsumptionDirtyCardClosure;
duke@435 92
duke@435 93 // A sequential tasks done structure. This supports
duke@435 94 // parallel GC, where we have threads dynamically
duke@435 95 // claiming sub-tasks from a larger parallel task.
duke@435 96 SequentialSubTasksDone _par_seq_tasks;
duke@435 97
duke@435 98 Space():
duke@435 99 _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
duke@435 100
duke@435 101 public:
duke@435 102 // Accessors
duke@435 103 HeapWord* bottom() const { return _bottom; }
duke@435 104 HeapWord* end() const { return _end; }
duke@435 105 virtual void set_bottom(HeapWord* value) { _bottom = value; }
duke@435 106 virtual void set_end(HeapWord* value) { _end = value; }
duke@435 107
duke@435 108 HeapWord* saved_mark_word() const { return _saved_mark_word; }
duke@435 109 void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
duke@435 110
duke@435 111 MemRegionClosure* preconsumptionDirtyCardClosure() const {
duke@435 112 return _preconsumptionDirtyCardClosure;
duke@435 113 }
duke@435 114 void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
duke@435 115 _preconsumptionDirtyCardClosure = cl;
duke@435 116 }
duke@435 117
duke@435 118 // Returns a subregion of the space containing all the objects in
duke@435 119 // the space.
duke@435 120 virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
duke@435 121
duke@435 122 // Returns a region that is guaranteed to contain (at least) all objects
duke@435 123 // allocated at the time of the last call to "save_marks". If the space
duke@435 124 // initializes its DirtyCardToOopClosure's specifying the "contig" option
duke@435 125 // (that is, if the space is contiguous), then this region must contain only
duke@435 126 // such objects: the memregion will be from the bottom of the region to the
duke@435 127 // saved mark. Otherwise, the "obj_allocated_since_save_marks" method of
duke@435 128 // the space must distiguish between objects in the region allocated before
duke@435 129 // and after the call to save marks.
duke@435 130 virtual MemRegion used_region_at_save_marks() const {
duke@435 131 return MemRegion(bottom(), saved_mark_word());
duke@435 132 }
duke@435 133
jmasa@698 134 // Initialization. These may be run to reset an existing
jmasa@698 135 // Space.
jmasa@698 136 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
jmasa@698 137 virtual void clear(bool mangle_space);
duke@435 138
duke@435 139 // For detecting GC bugs. Should only be called at GC boundaries, since
duke@435 140 // some unused space may be used as scratch space during GC's.
duke@435 141 // Default implementation does nothing. We also call this when expanding
duke@435 142 // a space to satisfy an allocation request. See bug #4668531
duke@435 143 virtual void mangle_unused_area() {}
jmasa@698 144 virtual void mangle_unused_area_complete() {}
duke@435 145 virtual void mangle_region(MemRegion mr) {}
duke@435 146
duke@435 147 // Testers
duke@435 148 bool is_empty() const { return used() == 0; }
duke@435 149 bool not_empty() const { return used() > 0; }
duke@435 150
duke@435 151 // Returns true iff the given the space contains the
duke@435 152 // given address as part of an allocated object. For
duke@435 153 // ceratin kinds of spaces, this might be a potentially
duke@435 154 // expensive operation. To prevent performance problems
duke@435 155 // on account of its inadvertent use in product jvm's,
duke@435 156 // we restrict its use to assertion checks only.
duke@435 157 virtual bool is_in(const void* p) const;
duke@435 158
duke@435 159 // Returns true iff the given reserved memory of the space contains the
duke@435 160 // given address.
duke@435 161 bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
duke@435 162
duke@435 163 // Returns true iff the given block is not allocated.
duke@435 164 virtual bool is_free_block(const HeapWord* p) const = 0;
duke@435 165
duke@435 166 // Test whether p is double-aligned
duke@435 167 static bool is_aligned(void* p) {
duke@435 168 return ((intptr_t)p & (sizeof(double)-1)) == 0;
duke@435 169 }
duke@435 170
duke@435 171 // Size computations. Sizes are in bytes.
duke@435 172 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 173 virtual size_t used() const = 0;
duke@435 174 virtual size_t free() const = 0;
duke@435 175
duke@435 176 // Iterate over all the ref-containing fields of all objects in the
duke@435 177 // space, calling "cl.do_oop" on each. Fields in objects allocated by
duke@435 178 // applications of the closure are not included in the iteration.
duke@435 179 virtual void oop_iterate(OopClosure* cl);
duke@435 180
duke@435 181 // Same as above, restricted to the intersection of a memory region and
duke@435 182 // the space. Fields in objects allocated by applications of the closure
duke@435 183 // are not included in the iteration.
duke@435 184 virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
duke@435 185
duke@435 186 // Iterate over all objects in the space, calling "cl.do_object" on
duke@435 187 // each. Objects allocated by applications of the closure are not
duke@435 188 // included in the iteration.
duke@435 189 virtual void object_iterate(ObjectClosure* blk) = 0;
duke@435 190
duke@435 191 // Iterate over all objects that intersect with mr, calling "cl->do_object"
duke@435 192 // on each. There is an exception to this: if this closure has already
duke@435 193 // been invoked on an object, it may skip such objects in some cases. This is
duke@435 194 // Most likely to happen in an "upwards" (ascending address) iteration of
duke@435 195 // MemRegions.
duke@435 196 virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 197
duke@435 198 // Iterate over as many initialized objects in the space as possible,
duke@435 199 // calling "cl.do_object_careful" on each. Return NULL if all objects
duke@435 200 // in the space (at the start of the iteration) were iterated over.
duke@435 201 // Return an address indicating the extent of the iteration in the
duke@435 202 // event that the iteration had to return because of finding an
duke@435 203 // uninitialized object in the space, or if the closure "cl"
duke@435 204 // signalled early termination.
duke@435 205 virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 206 virtual HeapWord* object_iterate_careful_m(MemRegion mr,
duke@435 207 ObjectClosureCareful* cl);
duke@435 208
duke@435 209 // Create and return a new dirty card to oop closure. Can be
duke@435 210 // overriden to return the appropriate type of closure
duke@435 211 // depending on the type of space in which the closure will
duke@435 212 // operate. ResourceArea allocated.
duke@435 213 virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 214 CardTableModRefBS::PrecisionStyle precision,
duke@435 215 HeapWord* boundary = NULL);
duke@435 216
duke@435 217 // If "p" is in the space, returns the address of the start of the
duke@435 218 // "block" that contains "p". We say "block" instead of "object" since
duke@435 219 // some heaps may not pack objects densely; a chunk may either be an
duke@435 220 // object or a non-object. If "p" is not in the space, return NULL.
duke@435 221 virtual HeapWord* block_start(const void* p) const = 0;
duke@435 222
duke@435 223 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 224 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 225 // of the active area of the heap.
duke@435 226 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 227
duke@435 228 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 229 // the block is an object.
duke@435 230 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 231
duke@435 232 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 233 // the block is an object and the object is alive.
duke@435 234 virtual bool obj_is_alive(const HeapWord* addr) const;
duke@435 235
duke@435 236 // Allocation (return NULL if full). Assumes the caller has established
duke@435 237 // mutually exclusive access to the space.
duke@435 238 virtual HeapWord* allocate(size_t word_size) = 0;
duke@435 239
duke@435 240 // Allocation (return NULL if full). Enforces mutual exclusion internally.
duke@435 241 virtual HeapWord* par_allocate(size_t word_size) = 0;
duke@435 242
duke@435 243 // Returns true if this object has been allocated since a
duke@435 244 // generation's "save_marks" call.
duke@435 245 virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
duke@435 246
duke@435 247 // Mark-sweep-compact support: all spaces can update pointers to objects
duke@435 248 // moving as a part of compaction.
duke@435 249 virtual void adjust_pointers();
duke@435 250
duke@435 251 // PrintHeapAtGC support
duke@435 252 virtual void print() const;
duke@435 253 virtual void print_on(outputStream* st) const;
duke@435 254 virtual void print_short() const;
duke@435 255 virtual void print_short_on(outputStream* st) const;
duke@435 256
duke@435 257
duke@435 258 // Accessor for parallel sequential tasks.
duke@435 259 SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
duke@435 260
duke@435 261 // IF "this" is a ContiguousSpace, return it, else return NULL.
duke@435 262 virtual ContiguousSpace* toContiguousSpace() {
duke@435 263 return NULL;
duke@435 264 }
duke@435 265
duke@435 266 // Debugging
duke@435 267 virtual void verify(bool allow_dirty) const = 0;
duke@435 268 };
duke@435 269
duke@435 270 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
duke@435 271 // OopClosure to (the addresses of) all the ref-containing fields that could
duke@435 272 // be modified by virtue of the given MemRegion being dirty. (Note that
duke@435 273 // because of the imprecise nature of the write barrier, this may iterate
duke@435 274 // over oops beyond the region.)
duke@435 275 // This base type for dirty card to oop closures handles memory regions
duke@435 276 // in non-contiguous spaces with no boundaries, and should be sub-classed
duke@435 277 // to support other space types. See ContiguousDCTOC for a sub-class
duke@435 278 // that works with ContiguousSpaces.
duke@435 279
duke@435 280 class DirtyCardToOopClosure: public MemRegionClosureRO {
duke@435 281 protected:
duke@435 282 OopClosure* _cl;
duke@435 283 Space* _sp;
duke@435 284 CardTableModRefBS::PrecisionStyle _precision;
duke@435 285 HeapWord* _boundary; // If non-NULL, process only non-NULL oops
duke@435 286 // pointing below boundary.
coleenp@548 287 HeapWord* _min_done; // ObjHeadPreciseArray precision requires
duke@435 288 // a downwards traversal; this is the
duke@435 289 // lowest location already done (or,
duke@435 290 // alternatively, the lowest address that
duke@435 291 // shouldn't be done again. NULL means infinity.)
duke@435 292 NOT_PRODUCT(HeapWord* _last_bottom;)
duke@435 293
duke@435 294 // Get the actual top of the area on which the closure will
duke@435 295 // operate, given where the top is assumed to be (the end of the
duke@435 296 // memory region passed to do_MemRegion) and where the object
duke@435 297 // at the top is assumed to start. For example, an object may
duke@435 298 // start at the top but actually extend past the assumed top,
duke@435 299 // in which case the top becomes the end of the object.
duke@435 300 virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 301
duke@435 302 // Walk the given memory region from bottom to (actual) top
duke@435 303 // looking for objects and applying the oop closure (_cl) to
duke@435 304 // them. The base implementation of this treats the area as
duke@435 305 // blocks, where a block may or may not be an object. Sub-
duke@435 306 // classes should override this to provide more accurate
duke@435 307 // or possibly more efficient walking.
duke@435 308 virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
duke@435 309
duke@435 310 public:
duke@435 311 DirtyCardToOopClosure(Space* sp, OopClosure* cl,
duke@435 312 CardTableModRefBS::PrecisionStyle precision,
duke@435 313 HeapWord* boundary) :
duke@435 314 _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
duke@435 315 _min_done(NULL) {
duke@435 316 NOT_PRODUCT(_last_bottom = NULL;)
duke@435 317 }
duke@435 318
duke@435 319 void do_MemRegion(MemRegion mr);
duke@435 320
duke@435 321 void set_min_done(HeapWord* min_done) {
duke@435 322 _min_done = min_done;
duke@435 323 }
duke@435 324 #ifndef PRODUCT
duke@435 325 void set_last_bottom(HeapWord* last_bottom) {
duke@435 326 _last_bottom = last_bottom;
duke@435 327 }
duke@435 328 #endif
duke@435 329 };
duke@435 330
duke@435 331 // A structure to represent a point at which objects are being copied
duke@435 332 // during compaction.
duke@435 333 class CompactPoint : public StackObj {
duke@435 334 public:
duke@435 335 Generation* gen;
duke@435 336 CompactibleSpace* space;
duke@435 337 HeapWord* threshold;
duke@435 338 CompactPoint(Generation* _gen, CompactibleSpace* _space,
duke@435 339 HeapWord* _threshold) :
duke@435 340 gen(_gen), space(_space), threshold(_threshold) {}
duke@435 341 };
duke@435 342
duke@435 343
duke@435 344 // A space that supports compaction operations. This is usually, but not
duke@435 345 // necessarily, a space that is normally contiguous. But, for example, a
duke@435 346 // free-list-based space whose normal collection is a mark-sweep without
duke@435 347 // compaction could still support compaction in full GC's.
duke@435 348
duke@435 349 class CompactibleSpace: public Space {
duke@435 350 friend class VMStructs;
duke@435 351 friend class CompactibleFreeListSpace;
duke@435 352 friend class CompactingPermGenGen;
duke@435 353 friend class CMSPermGenGen;
duke@435 354 private:
duke@435 355 HeapWord* _compaction_top;
duke@435 356 CompactibleSpace* _next_compaction_space;
duke@435 357
duke@435 358 public:
jmasa@698 359 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
duke@435 360
duke@435 361 // Used temporarily during a compaction phase to hold the value
duke@435 362 // top should have when compaction is complete.
duke@435 363 HeapWord* compaction_top() const { return _compaction_top; }
duke@435 364
duke@435 365 void set_compaction_top(HeapWord* value) {
duke@435 366 assert(value == NULL || (value >= bottom() && value <= end()),
duke@435 367 "should point inside space");
duke@435 368 _compaction_top = value;
duke@435 369 }
duke@435 370
duke@435 371 // Perform operations on the space needed after a compaction
duke@435 372 // has been performed.
duke@435 373 virtual void reset_after_compaction() {}
duke@435 374
duke@435 375 // Returns the next space (in the current generation) to be compacted in
duke@435 376 // the global compaction order. Also is used to select the next
duke@435 377 // space into which to compact.
duke@435 378
duke@435 379 virtual CompactibleSpace* next_compaction_space() const {
duke@435 380 return _next_compaction_space;
duke@435 381 }
duke@435 382
duke@435 383 void set_next_compaction_space(CompactibleSpace* csp) {
duke@435 384 _next_compaction_space = csp;
duke@435 385 }
duke@435 386
duke@435 387 // MarkSweep support phase2
duke@435 388
duke@435 389 // Start the process of compaction of the current space: compute
duke@435 390 // post-compaction addresses, and insert forwarding pointers. The fields
duke@435 391 // "cp->gen" and "cp->compaction_space" are the generation and space into
duke@435 392 // which we are currently compacting. This call updates "cp" as necessary,
duke@435 393 // and leaves the "compaction_top" of the final value of
duke@435 394 // "cp->compaction_space" up-to-date. Offset tables may be updated in
duke@435 395 // this phase as if the final copy had occurred; if so, "cp->threshold"
duke@435 396 // indicates when the next such action should be taken.
duke@435 397 virtual void prepare_for_compaction(CompactPoint* cp);
duke@435 398 // MarkSweep support phase3
duke@435 399 virtual void adjust_pointers();
duke@435 400 // MarkSweep support phase4
duke@435 401 virtual void compact();
duke@435 402
duke@435 403 // The maximum percentage of objects that can be dead in the compacted
duke@435 404 // live part of a compacted space ("deadwood" support.)
duke@435 405 virtual int allowed_dead_ratio() const { return 0; };
duke@435 406
duke@435 407 // Some contiguous spaces may maintain some data structures that should
duke@435 408 // be updated whenever an allocation crosses a boundary. This function
duke@435 409 // returns the first such boundary.
duke@435 410 // (The default implementation returns the end of the space, so the
duke@435 411 // boundary is never crossed.)
duke@435 412 virtual HeapWord* initialize_threshold() { return end(); }
duke@435 413
duke@435 414 // "q" is an object of the given "size" that should be forwarded;
duke@435 415 // "cp" names the generation ("gen") and containing "this" (which must
duke@435 416 // also equal "cp->space"). "compact_top" is where in "this" the
duke@435 417 // next object should be forwarded to. If there is room in "this" for
duke@435 418 // the object, insert an appropriate forwarding pointer in "q".
duke@435 419 // If not, go to the next compaction space (there must
duke@435 420 // be one, since compaction must succeed -- we go to the first space of
duke@435 421 // the previous generation if necessary, updating "cp"), reset compact_top
duke@435 422 // and then forward. In either case, returns the new value of "compact_top".
duke@435 423 // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
duke@435 424 // function of the then-current compaction space, and updates "cp->threshold
duke@435 425 // accordingly".
duke@435 426 virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
duke@435 427 HeapWord* compact_top);
duke@435 428
duke@435 429 // Return a size with adjusments as required of the space.
duke@435 430 virtual size_t adjust_object_size_v(size_t size) const { return size; }
duke@435 431
duke@435 432 protected:
duke@435 433 // Used during compaction.
duke@435 434 HeapWord* _first_dead;
duke@435 435 HeapWord* _end_of_live;
duke@435 436
duke@435 437 // Minimum size of a free block.
duke@435 438 virtual size_t minimum_free_block_size() const = 0;
duke@435 439
duke@435 440 // This the function is invoked when an allocation of an object covering
duke@435 441 // "start" to "end occurs crosses the threshold; returns the next
duke@435 442 // threshold. (The default implementation does nothing.)
duke@435 443 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 444 return end();
duke@435 445 }
duke@435 446
duke@435 447 // Requires "allowed_deadspace_words > 0", that "q" is the start of a
duke@435 448 // free block of the given "word_len", and that "q", were it an object,
duke@435 449 // would not move if forwared. If the size allows, fill the free
duke@435 450 // block with an object, to prevent excessive compaction. Returns "true"
duke@435 451 // iff the free region was made deadspace, and modifies
duke@435 452 // "allowed_deadspace_words" to reflect the number of available deadspace
duke@435 453 // words remaining after this operation.
duke@435 454 bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
duke@435 455 size_t word_len);
duke@435 456 };
duke@435 457
duke@435 458 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
duke@435 459 /* Compute the new addresses for the live objects and store it in the mark \
duke@435 460 * Used by universe::mark_sweep_phase2() \
duke@435 461 */ \
duke@435 462 HeapWord* compact_top; /* This is where we are currently compacting to. */ \
duke@435 463 \
duke@435 464 /* We're sure to be here before any objects are compacted into this \
duke@435 465 * space, so this is a good time to initialize this: \
duke@435 466 */ \
duke@435 467 set_compaction_top(bottom()); \
duke@435 468 \
duke@435 469 if (cp->space == NULL) { \
duke@435 470 assert(cp->gen != NULL, "need a generation"); \
duke@435 471 assert(cp->threshold == NULL, "just checking"); \
duke@435 472 assert(cp->gen->first_compaction_space() == this, "just checking"); \
duke@435 473 cp->space = cp->gen->first_compaction_space(); \
duke@435 474 compact_top = cp->space->bottom(); \
duke@435 475 cp->space->set_compaction_top(compact_top); \
duke@435 476 cp->threshold = cp->space->initialize_threshold(); \
duke@435 477 } else { \
duke@435 478 compact_top = cp->space->compaction_top(); \
duke@435 479 } \
duke@435 480 \
duke@435 481 /* We allow some amount of garbage towards the bottom of the space, so \
duke@435 482 * we don't start compacting before there is a significant gain to be made.\
duke@435 483 * Occasionally, we want to ensure a full compaction, which is determined \
duke@435 484 * by the MarkSweepAlwaysCompactCount parameter. \
duke@435 485 */ \
duke@435 486 int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
duke@435 487 bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
duke@435 488 \
duke@435 489 size_t allowed_deadspace = 0; \
duke@435 490 if (skip_dead) { \
duke@435 491 int ratio = allowed_dead_ratio(); \
duke@435 492 allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
duke@435 493 } \
duke@435 494 \
duke@435 495 HeapWord* q = bottom(); \
duke@435 496 HeapWord* t = scan_limit(); \
duke@435 497 \
duke@435 498 HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
duke@435 499 live object. */ \
duke@435 500 HeapWord* first_dead = end();/* The first dead object. */ \
duke@435 501 LiveRange* liveRange = NULL; /* The current live range, recorded in the \
duke@435 502 first header of preceding free area. */ \
duke@435 503 _first_dead = first_dead; \
duke@435 504 \
duke@435 505 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 506 \
duke@435 507 while (q < t) { \
duke@435 508 assert(!block_is_obj(q) || \
duke@435 509 oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
duke@435 510 oop(q)->mark()->has_bias_pattern(), \
duke@435 511 "these are the only valid states during a mark sweep"); \
duke@435 512 if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
duke@435 513 /* prefetch beyond q */ \
duke@435 514 Prefetch::write(q, interval); \
duke@435 515 /* size_t size = oop(q)->size(); changing this for cms for perm gen */\
coleenp@548 516 size_t size = block_size(q); \
duke@435 517 compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
duke@435 518 q += size; \
duke@435 519 end_of_live = q; \
duke@435 520 } else { \
duke@435 521 /* run over all the contiguous dead objects */ \
duke@435 522 HeapWord* end = q; \
duke@435 523 do { \
duke@435 524 /* prefetch beyond end */ \
duke@435 525 Prefetch::write(end, interval); \
duke@435 526 end += block_size(end); \
duke@435 527 } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
duke@435 528 \
duke@435 529 /* see if we might want to pretend this object is alive so that \
duke@435 530 * we don't have to compact quite as often. \
duke@435 531 */ \
duke@435 532 if (allowed_deadspace > 0 && q == compact_top) { \
duke@435 533 size_t sz = pointer_delta(end, q); \
duke@435 534 if (insert_deadspace(allowed_deadspace, q, sz)) { \
duke@435 535 compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
duke@435 536 q = end; \
duke@435 537 end_of_live = end; \
duke@435 538 continue; \
duke@435 539 } \
duke@435 540 } \
duke@435 541 \
duke@435 542 /* otherwise, it really is a free region. */ \
duke@435 543 \
duke@435 544 /* for the previous LiveRange, record the end of the live objects. */ \
duke@435 545 if (liveRange) { \
duke@435 546 liveRange->set_end(q); \
duke@435 547 } \
duke@435 548 \
duke@435 549 /* record the current LiveRange object. \
duke@435 550 * liveRange->start() is overlaid on the mark word. \
duke@435 551 */ \
duke@435 552 liveRange = (LiveRange*)q; \
duke@435 553 liveRange->set_start(end); \
duke@435 554 liveRange->set_end(end); \
duke@435 555 \
duke@435 556 /* see if this is the first dead region. */ \
duke@435 557 if (q < first_dead) { \
duke@435 558 first_dead = q; \
duke@435 559 } \
duke@435 560 \
duke@435 561 /* move on to the next object */ \
duke@435 562 q = end; \
duke@435 563 } \
duke@435 564 } \
duke@435 565 \
duke@435 566 assert(q == t, "just checking"); \
duke@435 567 if (liveRange != NULL) { \
duke@435 568 liveRange->set_end(q); \
duke@435 569 } \
duke@435 570 _end_of_live = end_of_live; \
duke@435 571 if (end_of_live < first_dead) { \
duke@435 572 first_dead = end_of_live; \
duke@435 573 } \
duke@435 574 _first_dead = first_dead; \
duke@435 575 \
duke@435 576 /* save the compaction_top of the compaction space. */ \
duke@435 577 cp->space->set_compaction_top(compact_top); \
duke@435 578 }
duke@435 579
coleenp@548 580 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
coleenp@548 581 /* adjust all the interior pointers to point at the new locations of objects \
coleenp@548 582 * Used by MarkSweep::mark_sweep_phase3() */ \
duke@435 583 \
coleenp@548 584 HeapWord* q = bottom(); \
coleenp@548 585 HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
duke@435 586 \
coleenp@548 587 assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
duke@435 588 \
coleenp@548 589 if (q < t && _first_dead > q && \
duke@435 590 !oop(q)->is_gc_marked()) { \
duke@435 591 /* we have a chunk of the space which hasn't moved and we've \
duke@435 592 * reinitialized the mark word during the previous pass, so we can't \
coleenp@548 593 * use is_gc_marked for the traversal. */ \
duke@435 594 HeapWord* end = _first_dead; \
duke@435 595 \
coleenp@548 596 while (q < end) { \
coleenp@548 597 /* I originally tried to conjoin "block_start(q) == q" to the \
coleenp@548 598 * assertion below, but that doesn't work, because you can't \
coleenp@548 599 * accurately traverse previous objects to get to the current one \
coleenp@548 600 * after their pointers (including pointers into permGen) have been \
coleenp@548 601 * updated, until the actual compaction is done. dld, 4/00 */ \
coleenp@548 602 assert(block_is_obj(q), \
coleenp@548 603 "should be at block boundaries, and should be looking at objs"); \
duke@435 604 \
coleenp@548 605 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
duke@435 606 \
coleenp@548 607 /* point all the oops to the new location */ \
coleenp@548 608 size_t size = oop(q)->adjust_pointers(); \
coleenp@548 609 size = adjust_obj_size(size); \
duke@435 610 \
coleenp@548 611 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
coleenp@548 612 \
coleenp@548 613 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
coleenp@548 614 \
coleenp@548 615 q += size; \
coleenp@548 616 } \
duke@435 617 \
coleenp@548 618 if (_first_dead == t) { \
coleenp@548 619 q = t; \
coleenp@548 620 } else { \
coleenp@548 621 /* $$$ This is funky. Using this to read the previously written \
coleenp@548 622 * LiveRange. See also use below. */ \
duke@435 623 q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
coleenp@548 624 } \
coleenp@548 625 } \
duke@435 626 \
duke@435 627 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 628 \
coleenp@548 629 debug_only(HeapWord* prev_q = NULL); \
coleenp@548 630 while (q < t) { \
coleenp@548 631 /* prefetch beyond q */ \
duke@435 632 Prefetch::write(q, interval); \
coleenp@548 633 if (oop(q)->is_gc_marked()) { \
coleenp@548 634 /* q is alive */ \
coleenp@548 635 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
coleenp@548 636 /* point all the oops to the new location */ \
coleenp@548 637 size_t size = oop(q)->adjust_pointers(); \
coleenp@548 638 size = adjust_obj_size(size); \
coleenp@548 639 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
coleenp@548 640 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
coleenp@548 641 debug_only(prev_q = q); \
duke@435 642 q += size; \
coleenp@548 643 } else { \
coleenp@548 644 /* q is not a live object, so its mark should point at the next \
coleenp@548 645 * live object */ \
coleenp@548 646 debug_only(prev_q = q); \
coleenp@548 647 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
coleenp@548 648 assert(q > prev_q, "we should be moving forward through memory"); \
coleenp@548 649 } \
coleenp@548 650 } \
duke@435 651 \
coleenp@548 652 assert(q == t, "just checking"); \
duke@435 653 }
duke@435 654
coleenp@548 655 #define SCAN_AND_COMPACT(obj_size) { \
duke@435 656 /* Copy all live objects to their new location \
coleenp@548 657 * Used by MarkSweep::mark_sweep_phase4() */ \
duke@435 658 \
coleenp@548 659 HeapWord* q = bottom(); \
coleenp@548 660 HeapWord* const t = _end_of_live; \
coleenp@548 661 debug_only(HeapWord* prev_q = NULL); \
duke@435 662 \
coleenp@548 663 if (q < t && _first_dead > q && \
duke@435 664 !oop(q)->is_gc_marked()) { \
coleenp@548 665 debug_only( \
coleenp@548 666 /* we have a chunk of the space which hasn't moved and we've reinitialized \
coleenp@548 667 * the mark word during the previous pass, so we can't use is_gc_marked for \
coleenp@548 668 * the traversal. */ \
coleenp@548 669 HeapWord* const end = _first_dead; \
coleenp@548 670 \
coleenp@548 671 while (q < end) { \
coleenp@548 672 size_t size = obj_size(q); \
coleenp@548 673 assert(!oop(q)->is_gc_marked(), \
coleenp@548 674 "should be unmarked (special dense prefix handling)"); \
coleenp@548 675 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q)); \
coleenp@548 676 debug_only(prev_q = q); \
coleenp@548 677 q += size; \
coleenp@548 678 } \
coleenp@548 679 ) /* debug_only */ \
coleenp@548 680 \
coleenp@548 681 if (_first_dead == t) { \
coleenp@548 682 q = t; \
coleenp@548 683 } else { \
coleenp@548 684 /* $$$ Funky */ \
coleenp@548 685 q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
coleenp@548 686 } \
coleenp@548 687 } \
duke@435 688 \
coleenp@548 689 const intx scan_interval = PrefetchScanIntervalInBytes; \
coleenp@548 690 const intx copy_interval = PrefetchCopyIntervalInBytes; \
coleenp@548 691 while (q < t) { \
coleenp@548 692 if (!oop(q)->is_gc_marked()) { \
coleenp@548 693 /* mark is pointer to next marked oop */ \
coleenp@548 694 debug_only(prev_q = q); \
coleenp@548 695 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
coleenp@548 696 assert(q > prev_q, "we should be moving forward through memory"); \
coleenp@548 697 } else { \
coleenp@548 698 /* prefetch beyond q */ \
duke@435 699 Prefetch::read(q, scan_interval); \
duke@435 700 \
duke@435 701 /* size and destination */ \
duke@435 702 size_t size = obj_size(q); \
duke@435 703 HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
duke@435 704 \
coleenp@548 705 /* prefetch beyond compaction_top */ \
duke@435 706 Prefetch::write(compaction_top, copy_interval); \
duke@435 707 \
coleenp@548 708 /* copy object and reinit its mark */ \
coleenp@548 709 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, \
coleenp@548 710 compaction_top)); \
coleenp@548 711 assert(q != compaction_top, "everything in this pass should be moving"); \
coleenp@548 712 Copy::aligned_conjoint_words(q, compaction_top, size); \
coleenp@548 713 oop(compaction_top)->init_mark(); \
coleenp@548 714 assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
duke@435 715 \
coleenp@548 716 debug_only(prev_q = q); \
duke@435 717 q += size; \
coleenp@548 718 } \
coleenp@548 719 } \
duke@435 720 \
duke@435 721 /* Reset space after compaction is complete */ \
coleenp@548 722 reset_after_compaction(); \
duke@435 723 /* We do this clear, below, since it has overloaded meanings for some */ \
duke@435 724 /* space subtypes. For example, OffsetTableContigSpace's that were */ \
duke@435 725 /* compacted into will have had their offset table thresholds updated */ \
duke@435 726 /* continuously, but those that weren't need to have their thresholds */ \
duke@435 727 /* re-initialized. Also mangles unused area for debugging. */ \
duke@435 728 if (is_empty()) { \
jmasa@698 729 clear(SpaceDecorator::Mangle); \
duke@435 730 } else { \
duke@435 731 if (ZapUnusedHeapArea) mangle_unused_area(); \
duke@435 732 } \
duke@435 733 }
duke@435 734
jmasa@698 735 class GenSpaceMangler;
jmasa@698 736
duke@435 737 // A space in which the free area is contiguous. It therefore supports
duke@435 738 // faster allocation, and compaction.
duke@435 739 class ContiguousSpace: public CompactibleSpace {
duke@435 740 friend class OneContigSpaceCardGeneration;
duke@435 741 friend class VMStructs;
duke@435 742 protected:
duke@435 743 HeapWord* _top;
duke@435 744 HeapWord* _concurrent_iteration_safe_limit;
jmasa@698 745 // A helper for mangling the unused area of the space in debug builds.
jmasa@698 746 GenSpaceMangler* _mangler;
jmasa@698 747
jmasa@698 748 GenSpaceMangler* mangler() { return _mangler; }
duke@435 749
duke@435 750 // Allocation helpers (return NULL if full).
duke@435 751 inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 752 inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 753
duke@435 754 public:
jmasa@698 755
jmasa@698 756 ContiguousSpace();
jmasa@698 757 ~ContiguousSpace();
jmasa@698 758
jmasa@698 759 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
duke@435 760
duke@435 761 // Accessors
duke@435 762 HeapWord* top() const { return _top; }
duke@435 763 void set_top(HeapWord* value) { _top = value; }
duke@435 764
duke@435 765 void set_saved_mark() { _saved_mark_word = top(); }
duke@435 766 void reset_saved_mark() { _saved_mark_word = bottom(); }
duke@435 767
jmasa@698 768 virtual void clear(bool mangle_space);
duke@435 769
duke@435 770 WaterMark bottom_mark() { return WaterMark(this, bottom()); }
duke@435 771 WaterMark top_mark() { return WaterMark(this, top()); }
duke@435 772 WaterMark saved_mark() { return WaterMark(this, saved_mark_word()); }
duke@435 773 bool saved_mark_at_top() const { return saved_mark_word() == top(); }
duke@435 774
jmasa@698 775 // In debug mode mangle (write it with a particular bit
jmasa@698 776 // pattern) the unused part of a space.
jmasa@698 777
jmasa@698 778 // Used to save the an address in a space for later use during mangling.
jmasa@698 779 void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
jmasa@698 780 // Used to save the space's current top for later use during mangling.
jmasa@698 781 void set_top_for_allocations() PRODUCT_RETURN;
jmasa@698 782
jmasa@698 783 // Mangle regions in the space from the current top up to the
jmasa@698 784 // previously mangled part of the space.
jmasa@698 785 void mangle_unused_area() PRODUCT_RETURN;
jmasa@698 786 // Mangle [top, end)
jmasa@698 787 void mangle_unused_area_complete() PRODUCT_RETURN;
jmasa@698 788 // Mangle the given MemRegion.
jmasa@698 789 void mangle_region(MemRegion mr) PRODUCT_RETURN;
jmasa@698 790
jmasa@698 791 // Do some sparse checking on the area that should have been mangled.
jmasa@698 792 void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
jmasa@698 793 // Check the complete area that should have been mangled.
jmasa@698 794 // This code may be NULL depending on the macro DEBUG_MANGLING.
jmasa@698 795 void check_mangled_unused_area_complete() PRODUCT_RETURN;
duke@435 796
duke@435 797 // Size computations: sizes in bytes.
duke@435 798 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 799 size_t used() const { return byte_size(bottom(), top()); }
duke@435 800 size_t free() const { return byte_size(top(), end()); }
duke@435 801
duke@435 802 // Override from space.
duke@435 803 bool is_in(const void* p) const;
duke@435 804
duke@435 805 virtual bool is_free_block(const HeapWord* p) const;
duke@435 806
duke@435 807 // In a contiguous space we have a more obvious bound on what parts
duke@435 808 // contain objects.
duke@435 809 MemRegion used_region() const { return MemRegion(bottom(), top()); }
duke@435 810
duke@435 811 MemRegion used_region_at_save_marks() const {
duke@435 812 return MemRegion(bottom(), saved_mark_word());
duke@435 813 }
duke@435 814
duke@435 815 // Allocation (return NULL if full)
duke@435 816 virtual HeapWord* allocate(size_t word_size);
duke@435 817 virtual HeapWord* par_allocate(size_t word_size);
duke@435 818
duke@435 819 virtual bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 820 return (HeapWord*)obj >= saved_mark_word();
duke@435 821 }
duke@435 822
duke@435 823 // Iteration
duke@435 824 void oop_iterate(OopClosure* cl);
duke@435 825 void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 826 void object_iterate(ObjectClosure* blk);
duke@435 827 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 828 // iterates on objects up to the safe limit
duke@435 829 HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 830 inline HeapWord* concurrent_iteration_safe_limit();
duke@435 831 // changes the safe limit, all objects from bottom() to the new
duke@435 832 // limit should be properly initialized
duke@435 833 inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
duke@435 834
duke@435 835 #ifndef SERIALGC
duke@435 836 // In support of parallel oop_iterate.
duke@435 837 #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 838 void par_oop_iterate(MemRegion mr, OopClosureType* blk);
duke@435 839
duke@435 840 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
duke@435 841 #undef ContigSpace_PAR_OOP_ITERATE_DECL
duke@435 842 #endif // SERIALGC
duke@435 843
duke@435 844 // Compaction support
duke@435 845 virtual void reset_after_compaction() {
duke@435 846 assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
duke@435 847 set_top(compaction_top());
duke@435 848 // set new iteration safe limit
duke@435 849 set_concurrent_iteration_safe_limit(compaction_top());
duke@435 850 }
duke@435 851 virtual size_t minimum_free_block_size() const { return 0; }
duke@435 852
duke@435 853 // Override.
duke@435 854 DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 855 CardTableModRefBS::PrecisionStyle precision,
duke@435 856 HeapWord* boundary = NULL);
duke@435 857
duke@435 858 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 859 // starting with the _saved_mark_word, which was noted during a generation's
duke@435 860 // save_marks and is required to denote the head of an object.
duke@435 861 // Fields in objects allocated by applications of the closure
duke@435 862 // *are* included in the iteration.
duke@435 863 // Updates _saved_mark_word to point to just after the last object
duke@435 864 // iterated over.
duke@435 865 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 866 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 867
duke@435 868 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 869 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
duke@435 870
duke@435 871 // Same as object_iterate, but starting from "mark", which is required
duke@435 872 // to denote the start of an object. Objects allocated by
duke@435 873 // applications of the closure *are* included in the iteration.
duke@435 874 virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
duke@435 875
duke@435 876 // Very inefficient implementation.
duke@435 877 virtual HeapWord* block_start(const void* p) const;
duke@435 878 size_t block_size(const HeapWord* p) const;
duke@435 879 // If a block is in the allocated area, it is an object.
duke@435 880 bool block_is_obj(const HeapWord* p) const { return p < top(); }
duke@435 881
duke@435 882 // Addresses for inlined allocation
duke@435 883 HeapWord** top_addr() { return &_top; }
duke@435 884 HeapWord** end_addr() { return &_end; }
duke@435 885
duke@435 886 // Overrides for more efficient compaction support.
duke@435 887 void prepare_for_compaction(CompactPoint* cp);
duke@435 888
duke@435 889 // PrintHeapAtGC support.
duke@435 890 virtual void print_on(outputStream* st) const;
duke@435 891
duke@435 892 // Checked dynamic downcasts.
duke@435 893 virtual ContiguousSpace* toContiguousSpace() {
duke@435 894 return this;
duke@435 895 }
duke@435 896
duke@435 897 // Debugging
duke@435 898 virtual void verify(bool allow_dirty) const;
duke@435 899
duke@435 900 // Used to increase collection frequency. "factor" of 0 means entire
duke@435 901 // space.
duke@435 902 void allocate_temporary_filler(int factor);
duke@435 903
duke@435 904 };
duke@435 905
duke@435 906
duke@435 907 // A dirty card to oop closure that does filtering.
duke@435 908 // It knows how to filter out objects that are outside of the _boundary.
duke@435 909 class Filtering_DCTOC : public DirtyCardToOopClosure {
duke@435 910 protected:
duke@435 911 // Override.
duke@435 912 void walk_mem_region(MemRegion mr,
duke@435 913 HeapWord* bottom, HeapWord* top);
duke@435 914
duke@435 915 // Walk the given memory region, from bottom to top, applying
duke@435 916 // the given oop closure to (possibly) all objects found. The
duke@435 917 // given oop closure may or may not be the same as the oop
duke@435 918 // closure with which this closure was created, as it may
duke@435 919 // be a filtering closure which makes use of the _boundary.
duke@435 920 // We offer two signatures, so the FilteringClosure static type is
duke@435 921 // apparent.
duke@435 922 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 923 HeapWord* bottom, HeapWord* top,
duke@435 924 OopClosure* cl) = 0;
duke@435 925 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 926 HeapWord* bottom, HeapWord* top,
duke@435 927 FilteringClosure* cl) = 0;
duke@435 928
duke@435 929 public:
duke@435 930 Filtering_DCTOC(Space* sp, OopClosure* cl,
duke@435 931 CardTableModRefBS::PrecisionStyle precision,
duke@435 932 HeapWord* boundary) :
duke@435 933 DirtyCardToOopClosure(sp, cl, precision, boundary) {}
duke@435 934 };
duke@435 935
duke@435 936 // A dirty card to oop closure for contiguous spaces
duke@435 937 // (ContiguousSpace and sub-classes).
duke@435 938 // It is a FilteringClosure, as defined above, and it knows:
duke@435 939 //
duke@435 940 // 1. That the actual top of any area in a memory region
duke@435 941 // contained by the space is bounded by the end of the contiguous
duke@435 942 // region of the space.
duke@435 943 // 2. That the space is really made up of objects and not just
duke@435 944 // blocks.
duke@435 945
duke@435 946 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
duke@435 947 protected:
duke@435 948 // Overrides.
duke@435 949 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 950
duke@435 951 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 952 HeapWord* bottom, HeapWord* top,
duke@435 953 OopClosure* cl);
duke@435 954 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 955 HeapWord* bottom, HeapWord* top,
duke@435 956 FilteringClosure* cl);
duke@435 957
duke@435 958 public:
duke@435 959 ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
duke@435 960 CardTableModRefBS::PrecisionStyle precision,
duke@435 961 HeapWord* boundary) :
duke@435 962 Filtering_DCTOC(sp, cl, precision, boundary)
duke@435 963 {}
duke@435 964 };
duke@435 965
duke@435 966
duke@435 967 // Class EdenSpace describes eden-space in new generation.
duke@435 968
duke@435 969 class DefNewGeneration;
duke@435 970
duke@435 971 class EdenSpace : public ContiguousSpace {
duke@435 972 friend class VMStructs;
duke@435 973 private:
duke@435 974 DefNewGeneration* _gen;
duke@435 975
duke@435 976 // _soft_end is used as a soft limit on allocation. As soft limits are
duke@435 977 // reached, the slow-path allocation code can invoke other actions and then
duke@435 978 // adjust _soft_end up to a new soft limit or to end().
duke@435 979 HeapWord* _soft_end;
duke@435 980
duke@435 981 public:
duke@435 982 EdenSpace(DefNewGeneration* gen) : _gen(gen) { _soft_end = NULL; }
duke@435 983
duke@435 984 // Get/set just the 'soft' limit.
duke@435 985 HeapWord* soft_end() { return _soft_end; }
duke@435 986 HeapWord** soft_end_addr() { return &_soft_end; }
duke@435 987 void set_soft_end(HeapWord* value) { _soft_end = value; }
duke@435 988
duke@435 989 // Override.
jmasa@698 990 void clear(bool mangle_space);
duke@435 991
duke@435 992 // Set both the 'hard' and 'soft' limits (_end and _soft_end).
duke@435 993 void set_end(HeapWord* value) {
duke@435 994 set_soft_end(value);
duke@435 995 ContiguousSpace::set_end(value);
duke@435 996 }
duke@435 997
duke@435 998 // Allocation (return NULL if full)
duke@435 999 HeapWord* allocate(size_t word_size);
duke@435 1000 HeapWord* par_allocate(size_t word_size);
duke@435 1001 };
duke@435 1002
duke@435 1003 // Class ConcEdenSpace extends EdenSpace for the sake of safe
duke@435 1004 // allocation while soft-end is being modified concurrently
duke@435 1005
duke@435 1006 class ConcEdenSpace : public EdenSpace {
duke@435 1007 public:
duke@435 1008 ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
duke@435 1009
duke@435 1010 // Allocation (return NULL if full)
duke@435 1011 HeapWord* par_allocate(size_t word_size);
duke@435 1012 };
duke@435 1013
duke@435 1014
duke@435 1015 // A ContigSpace that Supports an efficient "block_start" operation via
duke@435 1016 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
duke@435 1017 // other spaces.) This is the abstract base class for old generation
duke@435 1018 // (tenured, perm) spaces.
duke@435 1019
duke@435 1020 class OffsetTableContigSpace: public ContiguousSpace {
duke@435 1021 friend class VMStructs;
duke@435 1022 protected:
duke@435 1023 BlockOffsetArrayContigSpace _offsets;
duke@435 1024 Mutex _par_alloc_lock;
duke@435 1025
duke@435 1026 public:
duke@435 1027 // Constructor
duke@435 1028 OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1029 MemRegion mr);
duke@435 1030
duke@435 1031 void set_bottom(HeapWord* value);
duke@435 1032 void set_end(HeapWord* value);
duke@435 1033
jmasa@698 1034 void clear(bool mangle_space);
duke@435 1035
duke@435 1036 inline HeapWord* block_start(const void* p) const;
duke@435 1037
duke@435 1038 // Add offset table update.
duke@435 1039 virtual inline HeapWord* allocate(size_t word_size);
duke@435 1040 inline HeapWord* par_allocate(size_t word_size);
duke@435 1041
duke@435 1042 // MarkSweep support phase3
duke@435 1043 virtual HeapWord* initialize_threshold();
duke@435 1044 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 1045
duke@435 1046 virtual void print_on(outputStream* st) const;
duke@435 1047
duke@435 1048 // Debugging
duke@435 1049 void verify(bool allow_dirty) const;
duke@435 1050
duke@435 1051 // Shared space support
duke@435 1052 void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
duke@435 1053 };
duke@435 1054
duke@435 1055
duke@435 1056 // Class TenuredSpace is used by TenuredGeneration
duke@435 1057
duke@435 1058 class TenuredSpace: public OffsetTableContigSpace {
duke@435 1059 friend class VMStructs;
duke@435 1060 protected:
duke@435 1061 // Mark sweep support
duke@435 1062 int allowed_dead_ratio() const;
duke@435 1063 public:
duke@435 1064 // Constructor
duke@435 1065 TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1066 MemRegion mr) :
duke@435 1067 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1068 };
duke@435 1069
duke@435 1070
duke@435 1071 // Class ContigPermSpace is used by CompactingPermGen
duke@435 1072
duke@435 1073 class ContigPermSpace: public OffsetTableContigSpace {
duke@435 1074 friend class VMStructs;
duke@435 1075 protected:
duke@435 1076 // Mark sweep support
duke@435 1077 int allowed_dead_ratio() const;
duke@435 1078 public:
duke@435 1079 // Constructor
duke@435 1080 ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
duke@435 1081 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1082 };

mercurial