src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Mon, 28 Jul 2008 15:30:23 -0700

author
jmasa
date
Mon, 28 Jul 2008 15:30:23 -0700
changeset 704
850fdf70db2b
parent 672
1fdb98a17101
parent 698
12eea04c8b06
child 808
06df86c2ec37
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parallelScavengeHeap.cpp.incl"
duke@435 27
duke@435 28 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
duke@435 29 PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
duke@435 30 PSPermGen* ParallelScavengeHeap::_perm_gen = NULL;
duke@435 31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
duke@435 32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
duke@435 33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
duke@435 34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
duke@435 35
duke@435 36 static void trace_gen_sizes(const char* const str,
duke@435 37 size_t pg_min, size_t pg_max,
duke@435 38 size_t og_min, size_t og_max,
duke@435 39 size_t yg_min, size_t yg_max)
duke@435 40 {
duke@435 41 if (TracePageSizes) {
duke@435 42 tty->print_cr("%s: " SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 43 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 44 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 45 SIZE_FORMAT,
duke@435 46 str, pg_min / K, pg_max / K,
duke@435 47 og_min / K, og_max / K,
duke@435 48 yg_min / K, yg_max / K,
duke@435 49 (pg_max + og_max + yg_max) / K);
duke@435 50 }
duke@435 51 }
duke@435 52
duke@435 53 jint ParallelScavengeHeap::initialize() {
duke@435 54 // Cannot be initialized until after the flags are parsed
duke@435 55 GenerationSizer flag_parser;
duke@435 56
duke@435 57 size_t yg_min_size = flag_parser.min_young_gen_size();
duke@435 58 size_t yg_max_size = flag_parser.max_young_gen_size();
duke@435 59 size_t og_min_size = flag_parser.min_old_gen_size();
duke@435 60 size_t og_max_size = flag_parser.max_old_gen_size();
duke@435 61 // Why isn't there a min_perm_gen_size()?
duke@435 62 size_t pg_min_size = flag_parser.perm_gen_size();
duke@435 63 size_t pg_max_size = flag_parser.max_perm_gen_size();
duke@435 64
duke@435 65 trace_gen_sizes("ps heap raw",
duke@435 66 pg_min_size, pg_max_size,
duke@435 67 og_min_size, og_max_size,
duke@435 68 yg_min_size, yg_max_size);
duke@435 69
duke@435 70 // The ReservedSpace ctor used below requires that the page size for the perm
duke@435 71 // gen is <= the page size for the rest of the heap (young + old gens).
duke@435 72 const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
duke@435 73 yg_max_size + og_max_size,
duke@435 74 8);
duke@435 75 const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
duke@435 76 pg_max_size, 16),
duke@435 77 og_page_sz);
duke@435 78
duke@435 79 const size_t pg_align = set_alignment(_perm_gen_alignment, pg_page_sz);
duke@435 80 const size_t og_align = set_alignment(_old_gen_alignment, og_page_sz);
duke@435 81 const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
duke@435 82
duke@435 83 // Update sizes to reflect the selected page size(s).
duke@435 84 //
duke@435 85 // NEEDS_CLEANUP. The default TwoGenerationCollectorPolicy uses NewRatio; it
duke@435 86 // should check UseAdaptiveSizePolicy. Changes from generationSizer could
duke@435 87 // move to the common code.
duke@435 88 yg_min_size = align_size_up(yg_min_size, yg_align);
duke@435 89 yg_max_size = align_size_up(yg_max_size, yg_align);
duke@435 90 size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
duke@435 91 yg_cur_size = MAX2(yg_cur_size, yg_min_size);
duke@435 92
duke@435 93 og_min_size = align_size_up(og_min_size, og_align);
duke@435 94 og_max_size = align_size_up(og_max_size, og_align);
duke@435 95 size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
duke@435 96 og_cur_size = MAX2(og_cur_size, og_min_size);
duke@435 97
duke@435 98 pg_min_size = align_size_up(pg_min_size, pg_align);
duke@435 99 pg_max_size = align_size_up(pg_max_size, pg_align);
duke@435 100 size_t pg_cur_size = pg_min_size;
duke@435 101
duke@435 102 trace_gen_sizes("ps heap rnd",
duke@435 103 pg_min_size, pg_max_size,
duke@435 104 og_min_size, og_max_size,
duke@435 105 yg_min_size, yg_max_size);
duke@435 106
duke@435 107 // The main part of the heap (old gen + young gen) can often use a larger page
duke@435 108 // size than is needed or wanted for the perm gen. Use the "compound
duke@435 109 // alignment" ReservedSpace ctor to avoid having to use the same page size for
duke@435 110 // all gens.
coleenp@672 111 ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
coleenp@672 112 og_align);
duke@435 113 os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
duke@435 114 heap_rs.base(), pg_max_size);
duke@435 115 os::trace_page_sizes("ps main", og_min_size + yg_min_size,
duke@435 116 og_max_size + yg_max_size, og_page_sz,
duke@435 117 heap_rs.base() + pg_max_size,
duke@435 118 heap_rs.size() - pg_max_size);
duke@435 119 if (!heap_rs.is_reserved()) {
duke@435 120 vm_shutdown_during_initialization(
duke@435 121 "Could not reserve enough space for object heap");
duke@435 122 return JNI_ENOMEM;
duke@435 123 }
duke@435 124
duke@435 125 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 126 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 127
duke@435 128 CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
duke@435 129 _barrier_set = barrier_set;
duke@435 130 oopDesc::set_bs(_barrier_set);
duke@435 131 if (_barrier_set == NULL) {
duke@435 132 vm_shutdown_during_initialization(
duke@435 133 "Could not reserve enough space for barrier set");
duke@435 134 return JNI_ENOMEM;
duke@435 135 }
duke@435 136
duke@435 137 // Initial young gen size is 4 Mb
duke@435 138 //
duke@435 139 // XXX - what about flag_parser.young_gen_size()?
duke@435 140 const size_t init_young_size = align_size_up(4 * M, yg_align);
duke@435 141 yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
duke@435 142
duke@435 143 // Split the reserved space into perm gen and the main heap (everything else).
duke@435 144 // The main heap uses a different alignment.
duke@435 145 ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
duke@435 146 ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
duke@435 147
duke@435 148 // Make up the generations
duke@435 149 // Calculate the maximum size that a generation can grow. This
duke@435 150 // includes growth into the other generation. Note that the
duke@435 151 // parameter _max_gen_size is kept as the maximum
duke@435 152 // size of the generation as the boundaries currently stand.
duke@435 153 // _max_gen_size is still used as that value.
duke@435 154 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 155 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 156
duke@435 157 _gens = new AdjoiningGenerations(main_rs,
duke@435 158 og_cur_size,
duke@435 159 og_min_size,
duke@435 160 og_max_size,
duke@435 161 yg_cur_size,
duke@435 162 yg_min_size,
duke@435 163 yg_max_size,
duke@435 164 yg_align);
duke@435 165
duke@435 166 _old_gen = _gens->old_gen();
duke@435 167 _young_gen = _gens->young_gen();
duke@435 168
duke@435 169 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
duke@435 170 const size_t old_capacity = _old_gen->capacity_in_bytes();
duke@435 171 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
duke@435 172 _size_policy =
duke@435 173 new PSAdaptiveSizePolicy(eden_capacity,
duke@435 174 initial_promo_size,
duke@435 175 young_gen()->to_space()->capacity_in_bytes(),
jmasa@448 176 intra_heap_alignment(),
duke@435 177 max_gc_pause_sec,
duke@435 178 max_gc_minor_pause_sec,
duke@435 179 GCTimeRatio
duke@435 180 );
duke@435 181
duke@435 182 _perm_gen = new PSPermGen(perm_rs,
duke@435 183 pg_align,
duke@435 184 pg_cur_size,
duke@435 185 pg_cur_size,
duke@435 186 pg_max_size,
duke@435 187 "perm", 2);
duke@435 188
duke@435 189 assert(!UseAdaptiveGCBoundary ||
duke@435 190 (old_gen()->virtual_space()->high_boundary() ==
duke@435 191 young_gen()->virtual_space()->low_boundary()),
duke@435 192 "Boundaries must meet");
duke@435 193 // initialize the policy counters - 2 collectors, 3 generations
duke@435 194 _gc_policy_counters =
duke@435 195 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
duke@435 196 _psh = this;
duke@435 197
duke@435 198 // Set up the GCTaskManager
duke@435 199 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
duke@435 200
duke@435 201 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
duke@435 202 return JNI_ENOMEM;
duke@435 203 }
duke@435 204
duke@435 205 return JNI_OK;
duke@435 206 }
duke@435 207
duke@435 208 void ParallelScavengeHeap::post_initialize() {
duke@435 209 // Need to init the tenuring threshold
duke@435 210 PSScavenge::initialize();
duke@435 211 if (UseParallelOldGC) {
duke@435 212 PSParallelCompact::post_initialize();
duke@435 213 if (VerifyParallelOldWithMarkSweep) {
duke@435 214 // Will be used for verification of par old.
duke@435 215 PSMarkSweep::initialize();
duke@435 216 }
duke@435 217 } else {
duke@435 218 PSMarkSweep::initialize();
duke@435 219 }
duke@435 220 PSPromotionManager::initialize();
duke@435 221 }
duke@435 222
duke@435 223 void ParallelScavengeHeap::update_counters() {
duke@435 224 young_gen()->update_counters();
duke@435 225 old_gen()->update_counters();
duke@435 226 perm_gen()->update_counters();
duke@435 227 }
duke@435 228
duke@435 229 size_t ParallelScavengeHeap::capacity() const {
duke@435 230 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
duke@435 231 return value;
duke@435 232 }
duke@435 233
duke@435 234 size_t ParallelScavengeHeap::used() const {
duke@435 235 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
duke@435 236 return value;
duke@435 237 }
duke@435 238
duke@435 239 bool ParallelScavengeHeap::is_maximal_no_gc() const {
duke@435 240 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
duke@435 241 }
duke@435 242
duke@435 243
duke@435 244 size_t ParallelScavengeHeap::permanent_capacity() const {
duke@435 245 return perm_gen()->capacity_in_bytes();
duke@435 246 }
duke@435 247
duke@435 248 size_t ParallelScavengeHeap::permanent_used() const {
duke@435 249 return perm_gen()->used_in_bytes();
duke@435 250 }
duke@435 251
duke@435 252 size_t ParallelScavengeHeap::max_capacity() const {
duke@435 253 size_t estimated = reserved_region().byte_size();
duke@435 254 estimated -= perm_gen()->reserved().byte_size();
duke@435 255 if (UseAdaptiveSizePolicy) {
duke@435 256 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
duke@435 257 } else {
duke@435 258 estimated -= young_gen()->to_space()->capacity_in_bytes();
duke@435 259 }
duke@435 260 return MAX2(estimated, capacity());
duke@435 261 }
duke@435 262
duke@435 263 bool ParallelScavengeHeap::is_in(const void* p) const {
duke@435 264 if (young_gen()->is_in(p)) {
duke@435 265 return true;
duke@435 266 }
duke@435 267
duke@435 268 if (old_gen()->is_in(p)) {
duke@435 269 return true;
duke@435 270 }
duke@435 271
duke@435 272 if (perm_gen()->is_in(p)) {
duke@435 273 return true;
duke@435 274 }
duke@435 275
duke@435 276 return false;
duke@435 277 }
duke@435 278
duke@435 279 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
duke@435 280 if (young_gen()->is_in_reserved(p)) {
duke@435 281 return true;
duke@435 282 }
duke@435 283
duke@435 284 if (old_gen()->is_in_reserved(p)) {
duke@435 285 return true;
duke@435 286 }
duke@435 287
duke@435 288 if (perm_gen()->is_in_reserved(p)) {
duke@435 289 return true;
duke@435 290 }
duke@435 291
duke@435 292 return false;
duke@435 293 }
duke@435 294
duke@435 295 // Static method
duke@435 296 bool ParallelScavengeHeap::is_in_young(oop* p) {
duke@435 297 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 298 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
duke@435 299 "Must be ParallelScavengeHeap");
duke@435 300
duke@435 301 PSYoungGen* young_gen = heap->young_gen();
duke@435 302
duke@435 303 if (young_gen->is_in_reserved(p)) {
duke@435 304 return true;
duke@435 305 }
duke@435 306
duke@435 307 return false;
duke@435 308 }
duke@435 309
duke@435 310 // Static method
duke@435 311 bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
duke@435 312 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 313 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
duke@435 314 "Must be ParallelScavengeHeap");
duke@435 315
duke@435 316 PSOldGen* old_gen = heap->old_gen();
duke@435 317 PSPermGen* perm_gen = heap->perm_gen();
duke@435 318
duke@435 319 if (old_gen->is_in_reserved(p)) {
duke@435 320 return true;
duke@435 321 }
duke@435 322
duke@435 323 if (perm_gen->is_in_reserved(p)) {
duke@435 324 return true;
duke@435 325 }
duke@435 326
duke@435 327 return false;
duke@435 328 }
duke@435 329
duke@435 330 // There are two levels of allocation policy here.
duke@435 331 //
duke@435 332 // When an allocation request fails, the requesting thread must invoke a VM
duke@435 333 // operation, transfer control to the VM thread, and await the results of a
duke@435 334 // garbage collection. That is quite expensive, and we should avoid doing it
duke@435 335 // multiple times if possible.
duke@435 336 //
duke@435 337 // To accomplish this, we have a basic allocation policy, and also a
duke@435 338 // failed allocation policy.
duke@435 339 //
duke@435 340 // The basic allocation policy controls how you allocate memory without
duke@435 341 // attempting garbage collection. It is okay to grab locks and
duke@435 342 // expand the heap, if that can be done without coming to a safepoint.
duke@435 343 // It is likely that the basic allocation policy will not be very
duke@435 344 // aggressive.
duke@435 345 //
duke@435 346 // The failed allocation policy is invoked from the VM thread after
duke@435 347 // the basic allocation policy is unable to satisfy a mem_allocate
duke@435 348 // request. This policy needs to cover the entire range of collection,
duke@435 349 // heap expansion, and out-of-memory conditions. It should make every
duke@435 350 // attempt to allocate the requested memory.
duke@435 351
duke@435 352 // Basic allocation policy. Should never be called at a safepoint, or
duke@435 353 // from the VM thread.
duke@435 354 //
duke@435 355 // This method must handle cases where many mem_allocate requests fail
duke@435 356 // simultaneously. When that happens, only one VM operation will succeed,
duke@435 357 // and the rest will not be executed. For that reason, this method loops
duke@435 358 // during failed allocation attempts. If the java heap becomes exhausted,
duke@435 359 // we rely on the size_policy object to force a bail out.
duke@435 360 HeapWord* ParallelScavengeHeap::mem_allocate(
duke@435 361 size_t size,
duke@435 362 bool is_noref,
duke@435 363 bool is_tlab,
duke@435 364 bool* gc_overhead_limit_was_exceeded) {
duke@435 365 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 366 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 367 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 368
duke@435 369 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 370
duke@435 371 uint loop_count = 0;
duke@435 372 uint gc_count = 0;
duke@435 373
duke@435 374 while (result == NULL) {
duke@435 375 // We don't want to have multiple collections for a single filled generation.
duke@435 376 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 377 // the count has changed, does not do a new collection.
duke@435 378 //
duke@435 379 // The collection count must be read only while holding the heap lock. VM
duke@435 380 // operations also hold the heap lock during collections. There is a lock
duke@435 381 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 382 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 383 // the collection count has already changed. To prevent duplicate collections,
duke@435 384 // The policy MUST attempt allocations during the same period it reads the
duke@435 385 // total_collections() value!
duke@435 386 {
duke@435 387 MutexLocker ml(Heap_lock);
duke@435 388 gc_count = Universe::heap()->total_collections();
duke@435 389
duke@435 390 result = young_gen()->allocate(size, is_tlab);
duke@435 391
duke@435 392 // (1) If the requested object is too large to easily fit in the
duke@435 393 // young_gen, or
duke@435 394 // (2) If GC is locked out via GCLocker, young gen is full and
duke@435 395 // the need for a GC already signalled to GCLocker (done
duke@435 396 // at a safepoint),
duke@435 397 // ... then, rather than force a safepoint and (a potentially futile)
duke@435 398 // collection (attempt) for each allocation, try allocation directly
duke@435 399 // in old_gen. For case (2) above, we may in the future allow
duke@435 400 // TLAB allocation directly in the old gen.
duke@435 401 if (result != NULL) {
duke@435 402 return result;
duke@435 403 }
duke@435 404 if (!is_tlab &&
duke@435 405 size >= (young_gen()->eden_space()->capacity_in_words() / 2)) {
duke@435 406 result = old_gen()->allocate(size, is_tlab);
duke@435 407 if (result != NULL) {
duke@435 408 return result;
duke@435 409 }
duke@435 410 }
duke@435 411 if (GC_locker::is_active_and_needs_gc()) {
duke@435 412 // GC is locked out. If this is a TLAB allocation,
duke@435 413 // return NULL; the requestor will retry allocation
duke@435 414 // of an idividual object at a time.
duke@435 415 if (is_tlab) {
duke@435 416 return NULL;
duke@435 417 }
duke@435 418
duke@435 419 // If this thread is not in a jni critical section, we stall
duke@435 420 // the requestor until the critical section has cleared and
duke@435 421 // GC allowed. When the critical section clears, a GC is
duke@435 422 // initiated by the last thread exiting the critical section; so
duke@435 423 // we retry the allocation sequence from the beginning of the loop,
duke@435 424 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 425 JavaThread* jthr = JavaThread::current();
duke@435 426 if (!jthr->in_critical()) {
duke@435 427 MutexUnlocker mul(Heap_lock);
duke@435 428 GC_locker::stall_until_clear();
duke@435 429 continue;
duke@435 430 } else {
duke@435 431 if (CheckJNICalls) {
duke@435 432 fatal("Possible deadlock due to allocating while"
duke@435 433 " in jni critical section");
duke@435 434 }
duke@435 435 return NULL;
duke@435 436 }
duke@435 437 }
duke@435 438 }
duke@435 439
duke@435 440 if (result == NULL) {
duke@435 441
duke@435 442 // Exit the loop if if the gc time limit has been exceeded.
duke@435 443 // The allocation must have failed above (result must be NULL),
duke@435 444 // and the most recent collection must have exceeded the
duke@435 445 // gc time limit. Exit the loop so that an out-of-memory
duke@435 446 // will be thrown (returning a NULL will do that), but
duke@435 447 // clear gc_time_limit_exceeded so that the next collection
duke@435 448 // will succeeded if the applications decides to handle the
duke@435 449 // out-of-memory and tries to go on.
duke@435 450 *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
duke@435 451 if (size_policy()->gc_time_limit_exceeded()) {
duke@435 452 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 453 if (PrintGCDetails && Verbose) {
duke@435 454 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
duke@435 455 "return NULL because gc_time_limit_exceeded is set");
duke@435 456 }
duke@435 457 return NULL;
duke@435 458 }
duke@435 459
duke@435 460 // Generate a VM operation
duke@435 461 VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
duke@435 462 VMThread::execute(&op);
duke@435 463
duke@435 464 // Did the VM operation execute? If so, return the result directly.
duke@435 465 // This prevents us from looping until time out on requests that can
duke@435 466 // not be satisfied.
duke@435 467 if (op.prologue_succeeded()) {
duke@435 468 assert(Universe::heap()->is_in_or_null(op.result()),
duke@435 469 "result not in heap");
duke@435 470
duke@435 471 // If GC was locked out during VM operation then retry allocation
duke@435 472 // and/or stall as necessary.
duke@435 473 if (op.gc_locked()) {
duke@435 474 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
duke@435 475 continue; // retry and/or stall as necessary
duke@435 476 }
duke@435 477 // If a NULL result is being returned, an out-of-memory
duke@435 478 // will be thrown now. Clear the gc_time_limit_exceeded
duke@435 479 // flag to avoid the following situation.
duke@435 480 // gc_time_limit_exceeded is set during a collection
duke@435 481 // the collection fails to return enough space and an OOM is thrown
duke@435 482 // the next GC is skipped because the gc_time_limit_exceeded
duke@435 483 // flag is set and another OOM is thrown
duke@435 484 if (op.result() == NULL) {
duke@435 485 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 486 }
duke@435 487 return op.result();
duke@435 488 }
duke@435 489 }
duke@435 490
duke@435 491 // The policy object will prevent us from looping forever. If the
duke@435 492 // time spent in gc crosses a threshold, we will bail out.
duke@435 493 loop_count++;
duke@435 494 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
duke@435 495 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 496 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
duke@435 497 " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
duke@435 498 }
duke@435 499 }
duke@435 500
duke@435 501 return result;
duke@435 502 }
duke@435 503
duke@435 504 // Failed allocation policy. Must be called from the VM thread, and
duke@435 505 // only at a safepoint! Note that this method has policy for allocation
duke@435 506 // flow, and NOT collection policy. So we do not check for gc collection
duke@435 507 // time over limit here, that is the responsibility of the heap specific
duke@435 508 // collection methods. This method decides where to attempt allocations,
duke@435 509 // and when to attempt collections, but no collection specific policy.
duke@435 510 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
duke@435 511 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 512 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 513 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 514 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 515
duke@435 516 size_t mark_sweep_invocation_count = total_invocations();
duke@435 517
duke@435 518 // We assume (and assert!) that an allocation at this point will fail
duke@435 519 // unless we collect.
duke@435 520
duke@435 521 // First level allocation failure, scavenge and allocate in young gen.
duke@435 522 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 523 PSScavenge::invoke();
duke@435 524 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 525
duke@435 526 // Second level allocation failure.
duke@435 527 // Mark sweep and allocate in young generation.
duke@435 528 if (result == NULL) {
duke@435 529 // There is some chance the scavenge method decided to invoke mark_sweep.
duke@435 530 // Don't mark sweep twice if so.
duke@435 531 if (mark_sweep_invocation_count == total_invocations()) {
duke@435 532 invoke_full_gc(false);
duke@435 533 result = young_gen()->allocate(size, is_tlab);
duke@435 534 }
duke@435 535 }
duke@435 536
duke@435 537 // Third level allocation failure.
duke@435 538 // After mark sweep and young generation allocation failure,
duke@435 539 // allocate in old generation.
duke@435 540 if (result == NULL && !is_tlab) {
duke@435 541 result = old_gen()->allocate(size, is_tlab);
duke@435 542 }
duke@435 543
duke@435 544 // Fourth level allocation failure. We're running out of memory.
duke@435 545 // More complete mark sweep and allocate in young generation.
duke@435 546 if (result == NULL) {
duke@435 547 invoke_full_gc(true);
duke@435 548 result = young_gen()->allocate(size, is_tlab);
duke@435 549 }
duke@435 550
duke@435 551 // Fifth level allocation failure.
duke@435 552 // After more complete mark sweep, allocate in old generation.
duke@435 553 if (result == NULL && !is_tlab) {
duke@435 554 result = old_gen()->allocate(size, is_tlab);
duke@435 555 }
duke@435 556
duke@435 557 return result;
duke@435 558 }
duke@435 559
duke@435 560 //
duke@435 561 // This is the policy loop for allocating in the permanent generation.
duke@435 562 // If the initial allocation fails, we create a vm operation which will
duke@435 563 // cause a collection.
duke@435 564 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
duke@435 565 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 566 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 567 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 568
duke@435 569 HeapWord* result;
duke@435 570
duke@435 571 uint loop_count = 0;
duke@435 572 uint gc_count = 0;
duke@435 573 uint full_gc_count = 0;
duke@435 574
duke@435 575 do {
duke@435 576 // We don't want to have multiple collections for a single filled generation.
duke@435 577 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 578 // the count has changed, does not do a new collection.
duke@435 579 //
duke@435 580 // The collection count must be read only while holding the heap lock. VM
duke@435 581 // operations also hold the heap lock during collections. There is a lock
duke@435 582 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 583 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 584 // the collection count has already changed. To prevent duplicate collections,
duke@435 585 // The policy MUST attempt allocations during the same period it reads the
duke@435 586 // total_collections() value!
duke@435 587 {
duke@435 588 MutexLocker ml(Heap_lock);
duke@435 589 gc_count = Universe::heap()->total_collections();
duke@435 590 full_gc_count = Universe::heap()->total_full_collections();
duke@435 591
duke@435 592 result = perm_gen()->allocate_permanent(size);
apetrusenko@574 593
apetrusenko@574 594 if (result != NULL) {
apetrusenko@574 595 return result;
apetrusenko@574 596 }
apetrusenko@574 597
apetrusenko@574 598 if (GC_locker::is_active_and_needs_gc()) {
apetrusenko@574 599 // If this thread is not in a jni critical section, we stall
apetrusenko@574 600 // the requestor until the critical section has cleared and
apetrusenko@574 601 // GC allowed. When the critical section clears, a GC is
apetrusenko@574 602 // initiated by the last thread exiting the critical section; so
apetrusenko@574 603 // we retry the allocation sequence from the beginning of the loop,
apetrusenko@574 604 // rather than causing more, now probably unnecessary, GC attempts.
apetrusenko@574 605 JavaThread* jthr = JavaThread::current();
apetrusenko@574 606 if (!jthr->in_critical()) {
apetrusenko@574 607 MutexUnlocker mul(Heap_lock);
apetrusenko@574 608 GC_locker::stall_until_clear();
apetrusenko@574 609 continue;
apetrusenko@574 610 } else {
apetrusenko@574 611 if (CheckJNICalls) {
apetrusenko@574 612 fatal("Possible deadlock due to allocating while"
apetrusenko@574 613 " in jni critical section");
apetrusenko@574 614 }
apetrusenko@574 615 return NULL;
apetrusenko@574 616 }
apetrusenko@574 617 }
duke@435 618 }
duke@435 619
duke@435 620 if (result == NULL) {
duke@435 621
duke@435 622 // Exit the loop if the gc time limit has been exceeded.
duke@435 623 // The allocation must have failed above (result must be NULL),
duke@435 624 // and the most recent collection must have exceeded the
duke@435 625 // gc time limit. Exit the loop so that an out-of-memory
duke@435 626 // will be thrown (returning a NULL will do that), but
duke@435 627 // clear gc_time_limit_exceeded so that the next collection
duke@435 628 // will succeeded if the applications decides to handle the
duke@435 629 // out-of-memory and tries to go on.
duke@435 630 if (size_policy()->gc_time_limit_exceeded()) {
duke@435 631 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 632 if (PrintGCDetails && Verbose) {
duke@435 633 gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
duke@435 634 "return NULL because gc_time_limit_exceeded is set");
duke@435 635 }
duke@435 636 assert(result == NULL, "Allocation did not fail");
duke@435 637 return NULL;
duke@435 638 }
duke@435 639
duke@435 640 // Generate a VM operation
duke@435 641 VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
duke@435 642 VMThread::execute(&op);
duke@435 643
duke@435 644 // Did the VM operation execute? If so, return the result directly.
duke@435 645 // This prevents us from looping until time out on requests that can
duke@435 646 // not be satisfied.
duke@435 647 if (op.prologue_succeeded()) {
duke@435 648 assert(Universe::heap()->is_in_permanent_or_null(op.result()),
duke@435 649 "result not in heap");
apetrusenko@574 650 // If GC was locked out during VM operation then retry allocation
apetrusenko@574 651 // and/or stall as necessary.
apetrusenko@574 652 if (op.gc_locked()) {
apetrusenko@574 653 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
apetrusenko@574 654 continue; // retry and/or stall as necessary
apetrusenko@574 655 }
duke@435 656 // If a NULL results is being returned, an out-of-memory
duke@435 657 // will be thrown now. Clear the gc_time_limit_exceeded
duke@435 658 // flag to avoid the following situation.
duke@435 659 // gc_time_limit_exceeded is set during a collection
duke@435 660 // the collection fails to return enough space and an OOM is thrown
duke@435 661 // the next GC is skipped because the gc_time_limit_exceeded
duke@435 662 // flag is set and another OOM is thrown
duke@435 663 if (op.result() == NULL) {
duke@435 664 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 665 }
duke@435 666 return op.result();
duke@435 667 }
duke@435 668 }
duke@435 669
duke@435 670 // The policy object will prevent us from looping forever. If the
duke@435 671 // time spent in gc crosses a threshold, we will bail out.
duke@435 672 loop_count++;
duke@435 673 if ((QueuedAllocationWarningCount > 0) &&
duke@435 674 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 675 warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
duke@435 676 " size=%d", loop_count, size);
duke@435 677 }
duke@435 678 } while (result == NULL);
duke@435 679
duke@435 680 return result;
duke@435 681 }
duke@435 682
duke@435 683 //
duke@435 684 // This is the policy code for permanent allocations which have failed
duke@435 685 // and require a collection. Note that just as in failed_mem_allocate,
duke@435 686 // we do not set collection policy, only where & when to allocate and
duke@435 687 // collect.
duke@435 688 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
duke@435 689 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 690 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 691 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 692 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 693 assert(size > perm_gen()->free_in_words(), "Allocation should fail");
duke@435 694
duke@435 695 // We assume (and assert!) that an allocation at this point will fail
duke@435 696 // unless we collect.
duke@435 697
duke@435 698 // First level allocation failure. Mark-sweep and allocate in perm gen.
duke@435 699 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 700 invoke_full_gc(false);
duke@435 701 HeapWord* result = perm_gen()->allocate_permanent(size);
duke@435 702
duke@435 703 // Second level allocation failure. We're running out of memory.
duke@435 704 if (result == NULL) {
duke@435 705 invoke_full_gc(true);
duke@435 706 result = perm_gen()->allocate_permanent(size);
duke@435 707 }
duke@435 708
duke@435 709 return result;
duke@435 710 }
duke@435 711
duke@435 712 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
duke@435 713 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 714 young_gen()->eden_space()->ensure_parsability();
duke@435 715 }
duke@435 716
duke@435 717 size_t ParallelScavengeHeap::unsafe_max_alloc() {
duke@435 718 return young_gen()->eden_space()->free_in_bytes();
duke@435 719 }
duke@435 720
duke@435 721 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
duke@435 722 return young_gen()->eden_space()->tlab_capacity(thr);
duke@435 723 }
duke@435 724
duke@435 725 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 726 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
duke@435 727 }
duke@435 728
duke@435 729 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
duke@435 730 return young_gen()->allocate(size, true);
duke@435 731 }
duke@435 732
duke@435 733 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
duke@435 734 CollectedHeap::fill_all_tlabs(retire);
duke@435 735 }
duke@435 736
duke@435 737 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
duke@435 738 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 739 }
duke@435 740
duke@435 741 void ParallelScavengeHeap::resize_all_tlabs() {
duke@435 742 CollectedHeap::resize_all_tlabs();
duke@435 743 }
duke@435 744
duke@435 745 // This method is used by System.gc() and JVMTI.
duke@435 746 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
duke@435 747 assert(!Heap_lock->owned_by_self(),
duke@435 748 "this thread should not own the Heap_lock");
duke@435 749
duke@435 750 unsigned int gc_count = 0;
duke@435 751 unsigned int full_gc_count = 0;
duke@435 752 {
duke@435 753 MutexLocker ml(Heap_lock);
duke@435 754 // This value is guarded by the Heap_lock
duke@435 755 gc_count = Universe::heap()->total_collections();
duke@435 756 full_gc_count = Universe::heap()->total_full_collections();
duke@435 757 }
duke@435 758
duke@435 759 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
duke@435 760 VMThread::execute(&op);
duke@435 761 }
duke@435 762
duke@435 763 // This interface assumes that it's being called by the
duke@435 764 // vm thread. It collects the heap assuming that the
duke@435 765 // heap lock is already held and that we are executing in
duke@435 766 // the context of the vm thread.
duke@435 767 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
duke@435 768 assert(Thread::current()->is_VM_thread(), "Precondition#1");
duke@435 769 assert(Heap_lock->is_locked(), "Precondition#2");
duke@435 770 GCCauseSetter gcs(this, cause);
duke@435 771 switch (cause) {
duke@435 772 case GCCause::_heap_inspection:
duke@435 773 case GCCause::_heap_dump: {
duke@435 774 HandleMark hm;
duke@435 775 invoke_full_gc(false);
duke@435 776 break;
duke@435 777 }
duke@435 778 default: // XXX FIX ME
duke@435 779 ShouldNotReachHere();
duke@435 780 }
duke@435 781 }
duke@435 782
duke@435 783
duke@435 784 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
duke@435 785 Unimplemented();
duke@435 786 }
duke@435 787
duke@435 788 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
duke@435 789 young_gen()->object_iterate(cl);
duke@435 790 old_gen()->object_iterate(cl);
duke@435 791 perm_gen()->object_iterate(cl);
duke@435 792 }
duke@435 793
duke@435 794 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
duke@435 795 Unimplemented();
duke@435 796 }
duke@435 797
duke@435 798 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
duke@435 799 perm_gen()->object_iterate(cl);
duke@435 800 }
duke@435 801
duke@435 802 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
duke@435 803 if (young_gen()->is_in_reserved(addr)) {
duke@435 804 assert(young_gen()->is_in(addr),
duke@435 805 "addr should be in allocated part of young gen");
duke@435 806 Unimplemented();
duke@435 807 } else if (old_gen()->is_in_reserved(addr)) {
duke@435 808 assert(old_gen()->is_in(addr),
duke@435 809 "addr should be in allocated part of old gen");
duke@435 810 return old_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 811 } else if (perm_gen()->is_in_reserved(addr)) {
duke@435 812 assert(perm_gen()->is_in(addr),
duke@435 813 "addr should be in allocated part of perm gen");
duke@435 814 return perm_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 815 }
duke@435 816 return 0;
duke@435 817 }
duke@435 818
duke@435 819 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
duke@435 820 return oop(addr)->size();
duke@435 821 }
duke@435 822
duke@435 823 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
duke@435 824 return block_start(addr) == addr;
duke@435 825 }
duke@435 826
duke@435 827 jlong ParallelScavengeHeap::millis_since_last_gc() {
duke@435 828 return UseParallelOldGC ?
duke@435 829 PSParallelCompact::millis_since_last_gc() :
duke@435 830 PSMarkSweep::millis_since_last_gc();
duke@435 831 }
duke@435 832
duke@435 833 void ParallelScavengeHeap::prepare_for_verify() {
duke@435 834 ensure_parsability(false); // no need to retire TLABs for verification
duke@435 835 }
duke@435 836
duke@435 837 void ParallelScavengeHeap::print() const { print_on(tty); }
duke@435 838
duke@435 839 void ParallelScavengeHeap::print_on(outputStream* st) const {
duke@435 840 young_gen()->print_on(st);
duke@435 841 old_gen()->print_on(st);
duke@435 842 perm_gen()->print_on(st);
duke@435 843 }
duke@435 844
duke@435 845 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 846 PSScavenge::gc_task_manager()->threads_do(tc);
duke@435 847 }
duke@435 848
duke@435 849 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
duke@435 850 PSScavenge::gc_task_manager()->print_threads_on(st);
duke@435 851 }
duke@435 852
duke@435 853 void ParallelScavengeHeap::print_tracing_info() const {
duke@435 854 if (TraceGen0Time) {
duke@435 855 double time = PSScavenge::accumulated_time()->seconds();
duke@435 856 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
duke@435 857 }
duke@435 858 if (TraceGen1Time) {
duke@435 859 double time = PSMarkSweep::accumulated_time()->seconds();
duke@435 860 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864
duke@435 865 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent) {
duke@435 866 // Why do we need the total_collections()-filter below?
duke@435 867 if (total_collections() > 0) {
duke@435 868 if (!silent) {
duke@435 869 gclog_or_tty->print("permanent ");
duke@435 870 }
duke@435 871 perm_gen()->verify(allow_dirty);
duke@435 872
duke@435 873 if (!silent) {
duke@435 874 gclog_or_tty->print("tenured ");
duke@435 875 }
duke@435 876 old_gen()->verify(allow_dirty);
duke@435 877
duke@435 878 if (!silent) {
duke@435 879 gclog_or_tty->print("eden ");
duke@435 880 }
duke@435 881 young_gen()->verify(allow_dirty);
duke@435 882 }
duke@435 883 if (!silent) {
duke@435 884 gclog_or_tty->print("ref_proc ");
duke@435 885 }
duke@435 886 ReferenceProcessor::verify();
duke@435 887 }
duke@435 888
duke@435 889 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
duke@435 890 if (PrintGCDetails && Verbose) {
duke@435 891 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 892 "->" SIZE_FORMAT
duke@435 893 "(" SIZE_FORMAT ")",
duke@435 894 prev_used, used(), capacity());
duke@435 895 } else {
duke@435 896 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 897 "->" SIZE_FORMAT "K"
duke@435 898 "(" SIZE_FORMAT "K)",
duke@435 899 prev_used / K, used() / K, capacity() / K);
duke@435 900 }
duke@435 901 }
duke@435 902
duke@435 903 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
duke@435 904 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
duke@435 905 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
duke@435 906 return _psh;
duke@435 907 }
duke@435 908
duke@435 909 // Before delegating the resize to the young generation,
duke@435 910 // the reserved space for the young and old generations
duke@435 911 // may be changed to accomodate the desired resize.
duke@435 912 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
duke@435 913 size_t survivor_size) {
duke@435 914 if (UseAdaptiveGCBoundary) {
duke@435 915 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 916 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 917 return; // The generation changed size already.
duke@435 918 }
duke@435 919 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
duke@435 920 }
duke@435 921
duke@435 922 // Delegate the resize to the generation.
duke@435 923 _young_gen->resize(eden_size, survivor_size);
duke@435 924 }
duke@435 925
duke@435 926 // Before delegating the resize to the old generation,
duke@435 927 // the reserved space for the young and old generations
duke@435 928 // may be changed to accomodate the desired resize.
duke@435 929 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
duke@435 930 if (UseAdaptiveGCBoundary) {
duke@435 931 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 932 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 933 return; // The generation changed size already.
duke@435 934 }
duke@435 935 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
duke@435 936 }
duke@435 937
duke@435 938 // Delegate the resize to the generation.
duke@435 939 _old_gen->resize(desired_free_space);
duke@435 940 }
jmasa@698 941
jmasa@698 942 #ifndef PRODUCT
jmasa@698 943 void ParallelScavengeHeap::record_gen_tops_before_GC() {
jmasa@698 944 if (ZapUnusedHeapArea) {
jmasa@698 945 young_gen()->record_spaces_top();
jmasa@698 946 old_gen()->record_spaces_top();
jmasa@698 947 perm_gen()->record_spaces_top();
jmasa@698 948 }
jmasa@698 949 }
jmasa@698 950
jmasa@698 951 void ParallelScavengeHeap::gen_mangle_unused_area() {
jmasa@698 952 if (ZapUnusedHeapArea) {
jmasa@698 953 young_gen()->eden_space()->mangle_unused_area();
jmasa@698 954 young_gen()->to_space()->mangle_unused_area();
jmasa@698 955 young_gen()->from_space()->mangle_unused_area();
jmasa@698 956 old_gen()->object_space()->mangle_unused_area();
jmasa@698 957 perm_gen()->object_space()->mangle_unused_area();
jmasa@698 958 }
jmasa@698 959 }
jmasa@698 960 #endif

mercurial