src/share/vm/opto/subnode.cpp

Thu, 05 Feb 2009 11:42:10 -0800

author
never
date
Thu, 05 Feb 2009 11:42:10 -0800
changeset 979
82a980778b92
parent 835
cc80376deb0c
child 1103
90a66aa50514
permissions
-rw-r--r--

6793828: G1: invariant: queues are empty when activated
Reviewed-by: jrose, kvn

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_subnode.cpp.incl"
duke@435 31 #include "math.h"
duke@435 32
duke@435 33 //=============================================================================
duke@435 34 //------------------------------Identity---------------------------------------
duke@435 35 // If right input is a constant 0, return the left input.
duke@435 36 Node *SubNode::Identity( PhaseTransform *phase ) {
duke@435 37 assert(in(1) != this, "Must already have called Value");
duke@435 38 assert(in(2) != this, "Must already have called Value");
duke@435 39
duke@435 40 // Remove double negation
duke@435 41 const Type *zero = add_id();
duke@435 42 if( phase->type( in(1) )->higher_equal( zero ) &&
duke@435 43 in(2)->Opcode() == Opcode() &&
duke@435 44 phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
duke@435 45 return in(2)->in(2);
duke@435 46 }
duke@435 47
never@647 48 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
duke@435 49 if( in(1)->Opcode() == Op_AddI ) {
duke@435 50 if( phase->eqv(in(1)->in(2),in(2)) )
duke@435 51 return in(1)->in(1);
never@647 52 if (phase->eqv(in(1)->in(1),in(2)))
never@647 53 return in(1)->in(2);
never@647 54
duke@435 55 // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
duke@435 56 // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
duke@435 57 // are originally used, although the optimizer sometimes jiggers things).
duke@435 58 // This folding through an O2 removes a loop-exit use of a loop-varying
duke@435 59 // value and generally lowers register pressure in and around the loop.
duke@435 60 if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
duke@435 61 phase->eqv(in(1)->in(2)->in(1),in(2)) )
duke@435 62 return in(1)->in(1);
duke@435 63 }
duke@435 64
duke@435 65 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
duke@435 66 }
duke@435 67
duke@435 68 //------------------------------Value------------------------------------------
duke@435 69 // A subtract node differences it's two inputs.
duke@435 70 const Type *SubNode::Value( PhaseTransform *phase ) const {
duke@435 71 const Node* in1 = in(1);
duke@435 72 const Node* in2 = in(2);
duke@435 73 // Either input is TOP ==> the result is TOP
duke@435 74 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 75 if( t1 == Type::TOP ) return Type::TOP;
duke@435 76 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 77 if( t2 == Type::TOP ) return Type::TOP;
duke@435 78
duke@435 79 // Not correct for SubFnode and AddFNode (must check for infinity)
duke@435 80 // Equal? Subtract is zero
duke@435 81 if (phase->eqv_uncast(in1, in2)) return add_id();
duke@435 82
duke@435 83 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 84 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
duke@435 85 return bottom_type();
duke@435 86
duke@435 87 return sub(t1,t2); // Local flavor of type subtraction
duke@435 88
duke@435 89 }
duke@435 90
duke@435 91 //=============================================================================
duke@435 92
duke@435 93 //------------------------------Helper function--------------------------------
duke@435 94 static bool ok_to_convert(Node* inc, Node* iv) {
duke@435 95 // Do not collapse (x+c0)-y if "+" is a loop increment, because the
duke@435 96 // "-" is loop invariant and collapsing extends the live-range of "x"
duke@435 97 // to overlap with the "+", forcing another register to be used in
duke@435 98 // the loop.
duke@435 99 // This test will be clearer with '&&' (apply DeMorgan's rule)
duke@435 100 // but I like the early cutouts that happen here.
duke@435 101 const PhiNode *phi;
duke@435 102 if( ( !inc->in(1)->is_Phi() ||
duke@435 103 !(phi=inc->in(1)->as_Phi()) ||
duke@435 104 phi->is_copy() ||
duke@435 105 !phi->region()->is_CountedLoop() ||
duke@435 106 inc != phi->region()->as_CountedLoop()->incr() )
duke@435 107 &&
duke@435 108 // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
duke@435 109 // because "x" maybe invariant.
duke@435 110 ( !iv->is_loop_iv() )
duke@435 111 ) {
duke@435 112 return true;
duke@435 113 } else {
duke@435 114 return false;
duke@435 115 }
duke@435 116 }
duke@435 117 //------------------------------Ideal------------------------------------------
duke@435 118 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 119 Node *in1 = in(1);
duke@435 120 Node *in2 = in(2);
duke@435 121 uint op1 = in1->Opcode();
duke@435 122 uint op2 = in2->Opcode();
duke@435 123
duke@435 124 #ifdef ASSERT
duke@435 125 // Check for dead loop
duke@435 126 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 127 ( op1 == Op_AddI || op1 == Op_SubI ) &&
duke@435 128 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 129 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 130 assert(false, "dead loop in SubINode::Ideal");
duke@435 131 #endif
duke@435 132
duke@435 133 const Type *t2 = phase->type( in2 );
duke@435 134 if( t2 == Type::TOP ) return NULL;
duke@435 135 // Convert "x-c0" into "x+ -c0".
duke@435 136 if( t2->base() == Type::Int ){ // Might be bottom or top...
duke@435 137 const TypeInt *i = t2->is_int();
duke@435 138 if( i->is_con() )
duke@435 139 return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
duke@435 140 }
duke@435 141
duke@435 142 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 143 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 144 // if "y" is a loop induction variable.
duke@435 145 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
duke@435 146 const Type *tadd = phase->type( in1->in(2) );
duke@435 147 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 148 Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
duke@435 149 return new (phase->C, 3) AddINode( sub2, in1->in(2) );
duke@435 150 }
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 155 // Need the same check as in above optimization but reversed.
duke@435 156 if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
duke@435 157 Node* in21 = in2->in(1);
duke@435 158 Node* in22 = in2->in(2);
duke@435 159 const TypeInt* tcon = phase->type(in22)->isa_int();
duke@435 160 if (tcon != NULL && tcon->is_con()) {
duke@435 161 Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
duke@435 162 Node* neg_c0 = phase->intcon(- tcon->get_con());
duke@435 163 return new (phase->C, 3) AddINode(sub2, neg_c0);
duke@435 164 }
duke@435 165 }
duke@435 166
duke@435 167 const Type *t1 = phase->type( in1 );
duke@435 168 if( t1 == Type::TOP ) return NULL;
duke@435 169
duke@435 170 #ifdef ASSERT
duke@435 171 // Check for dead loop
duke@435 172 if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
duke@435 173 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 174 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 175 assert(false, "dead loop in SubINode::Ideal");
duke@435 176 #endif
duke@435 177
duke@435 178 // Convert "x - (x+y)" into "-y"
duke@435 179 if( op2 == Op_AddI &&
duke@435 180 phase->eqv( in1, in2->in(1) ) )
duke@435 181 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
duke@435 182 // Convert "(x-y) - x" into "-y"
duke@435 183 if( op1 == Op_SubI &&
duke@435 184 phase->eqv( in1->in(1), in2 ) )
duke@435 185 return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
duke@435 186 // Convert "x - (y+x)" into "-y"
duke@435 187 if( op2 == Op_AddI &&
duke@435 188 phase->eqv( in1, in2->in(2) ) )
duke@435 189 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
duke@435 190
duke@435 191 // Convert "0 - (x-y)" into "y-x"
duke@435 192 if( t1 == TypeInt::ZERO && op2 == Op_SubI )
duke@435 193 return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
duke@435 194
duke@435 195 // Convert "0 - (x+con)" into "-con-x"
duke@435 196 jint con;
duke@435 197 if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
duke@435 198 (con = in2->in(2)->find_int_con(0)) != 0 )
duke@435 199 return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
duke@435 200
duke@435 201 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 202 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
duke@435 203 return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
duke@435 204
duke@435 205 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 206 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
duke@435 207 return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
duke@435 208
kvn@835 209 // Convert "(A+X) - (X+B)" into "A - B"
kvn@835 210 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
kvn@835 211 return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
kvn@835 212
kvn@835 213 // Convert "(X+A) - (B+X)" into "A - B"
kvn@835 214 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
kvn@835 215 return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
kvn@835 216
duke@435 217 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
duke@435 218 // nicer to optimize than subtract.
duke@435 219 if( op2 == Op_SubI && in2->outcnt() == 1) {
duke@435 220 Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
duke@435 221 return new (phase->C, 3) SubINode( add1, in2->in(1) );
duke@435 222 }
duke@435 223
duke@435 224 return NULL;
duke@435 225 }
duke@435 226
duke@435 227 //------------------------------sub--------------------------------------------
duke@435 228 // A subtract node differences it's two inputs.
duke@435 229 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 230 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 231 const TypeInt *r1 = t2->is_int();
duke@435 232 int32 lo = r0->_lo - r1->_hi;
duke@435 233 int32 hi = r0->_hi - r1->_lo;
duke@435 234
duke@435 235 // We next check for 32-bit overflow.
duke@435 236 // If that happens, we just assume all integers are possible.
duke@435 237 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 238 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 239 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 240 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 241 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 242 else // Overflow; assume all integers
duke@435 243 return TypeInt::INT;
duke@435 244 }
duke@435 245
duke@435 246 //=============================================================================
duke@435 247 //------------------------------Ideal------------------------------------------
duke@435 248 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 249 Node *in1 = in(1);
duke@435 250 Node *in2 = in(2);
duke@435 251 uint op1 = in1->Opcode();
duke@435 252 uint op2 = in2->Opcode();
duke@435 253
duke@435 254 #ifdef ASSERT
duke@435 255 // Check for dead loop
duke@435 256 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 257 ( op1 == Op_AddL || op1 == Op_SubL ) &&
duke@435 258 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 259 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 260 assert(false, "dead loop in SubLNode::Ideal");
duke@435 261 #endif
duke@435 262
duke@435 263 if( phase->type( in2 ) == Type::TOP ) return NULL;
duke@435 264 const TypeLong *i = phase->type( in2 )->isa_long();
duke@435 265 // Convert "x-c0" into "x+ -c0".
duke@435 266 if( i && // Might be bottom or top...
duke@435 267 i->is_con() )
duke@435 268 return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
duke@435 269
duke@435 270 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 271 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 272 // if "y" is a loop induction variable.
duke@435 273 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
duke@435 274 Node *in11 = in1->in(1);
duke@435 275 const Type *tadd = phase->type( in1->in(2) );
duke@435 276 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 277 Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
duke@435 278 return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
duke@435 279 }
duke@435 280 }
duke@435 281
duke@435 282 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 283 // Need the same check as in above optimization but reversed.
duke@435 284 if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
duke@435 285 Node* in21 = in2->in(1);
duke@435 286 Node* in22 = in2->in(2);
duke@435 287 const TypeLong* tcon = phase->type(in22)->isa_long();
duke@435 288 if (tcon != NULL && tcon->is_con()) {
duke@435 289 Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
duke@435 290 Node* neg_c0 = phase->longcon(- tcon->get_con());
duke@435 291 return new (phase->C, 3) AddLNode(sub2, neg_c0);
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 const Type *t1 = phase->type( in1 );
duke@435 296 if( t1 == Type::TOP ) return NULL;
duke@435 297
duke@435 298 #ifdef ASSERT
duke@435 299 // Check for dead loop
duke@435 300 if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
duke@435 301 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 302 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 303 assert(false, "dead loop in SubLNode::Ideal");
duke@435 304 #endif
duke@435 305
duke@435 306 // Convert "x - (x+y)" into "-y"
duke@435 307 if( op2 == Op_AddL &&
duke@435 308 phase->eqv( in1, in2->in(1) ) )
duke@435 309 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
duke@435 310 // Convert "x - (y+x)" into "-y"
duke@435 311 if( op2 == Op_AddL &&
duke@435 312 phase->eqv( in1, in2->in(2) ) )
duke@435 313 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
duke@435 314
duke@435 315 // Convert "0 - (x-y)" into "y-x"
duke@435 316 if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
duke@435 317 return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
duke@435 318
duke@435 319 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 320 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
duke@435 321 return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
duke@435 322
duke@435 323 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 324 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
duke@435 325 return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
duke@435 326
duke@435 327 // Convert "A-(B-C)" into (A+C)-B"
duke@435 328 if( op2 == Op_SubL && in2->outcnt() == 1) {
duke@435 329 Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
duke@435 330 return new (phase->C, 3) SubLNode( add1, in2->in(1) );
duke@435 331 }
duke@435 332
duke@435 333 return NULL;
duke@435 334 }
duke@435 335
duke@435 336 //------------------------------sub--------------------------------------------
duke@435 337 // A subtract node differences it's two inputs.
duke@435 338 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 339 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 340 const TypeLong *r1 = t2->is_long();
duke@435 341 jlong lo = r0->_lo - r1->_hi;
duke@435 342 jlong hi = r0->_hi - r1->_lo;
duke@435 343
duke@435 344 // We next check for 32-bit overflow.
duke@435 345 // If that happens, we just assume all integers are possible.
duke@435 346 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 347 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 348 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 349 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 350 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 351 else // Overflow; assume all integers
duke@435 352 return TypeLong::LONG;
duke@435 353 }
duke@435 354
duke@435 355 //=============================================================================
duke@435 356 //------------------------------Value------------------------------------------
duke@435 357 // A subtract node differences its two inputs.
duke@435 358 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
duke@435 359 const Node* in1 = in(1);
duke@435 360 const Node* in2 = in(2);
duke@435 361 // Either input is TOP ==> the result is TOP
duke@435 362 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 363 if( t1 == Type::TOP ) return Type::TOP;
duke@435 364 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 365 if( t2 == Type::TOP ) return Type::TOP;
duke@435 366
duke@435 367 // if both operands are infinity of same sign, the result is NaN; do
duke@435 368 // not replace with zero
duke@435 369 if( (t1->is_finite() && t2->is_finite()) ) {
duke@435 370 if( phase->eqv(in1, in2) ) return add_id();
duke@435 371 }
duke@435 372
duke@435 373 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 374 const Type *bot = bottom_type();
duke@435 375 if( (t1 == bot) || (t2 == bot) ||
duke@435 376 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 377 return bot;
duke@435 378
duke@435 379 return sub(t1,t2); // Local flavor of type subtraction
duke@435 380 }
duke@435 381
duke@435 382
duke@435 383 //=============================================================================
duke@435 384 //------------------------------Ideal------------------------------------------
duke@435 385 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 386 const Type *t2 = phase->type( in(2) );
duke@435 387 // Convert "x-c0" into "x+ -c0".
duke@435 388 if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
duke@435 389 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
duke@435 390 }
duke@435 391
duke@435 392 // Not associative because of boundary conditions (infinity)
duke@435 393 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 394 // Convert "x - (x+y)" into "-y"
duke@435 395 if( in(2)->is_Add() &&
duke@435 396 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 397 return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
duke@435 398 }
duke@435 399
duke@435 400 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
duke@435 401 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
duke@435 402 //if( phase->type(in(1)) == TypeF::ZERO )
duke@435 403 //return new (phase->C, 2) NegFNode(in(2));
duke@435 404
duke@435 405 return NULL;
duke@435 406 }
duke@435 407
duke@435 408 //------------------------------sub--------------------------------------------
duke@435 409 // A subtract node differences its two inputs.
duke@435 410 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 411 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 412 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
duke@435 413 return TypeF::make( t1->getf() - t2->getf() );
duke@435 414 }
duke@435 415 else if( g_isnan(t1->getf()) ) {
duke@435 416 return t1;
duke@435 417 }
duke@435 418 else if( g_isnan(t2->getf()) ) {
duke@435 419 return t2;
duke@435 420 }
duke@435 421 else {
duke@435 422 return Type::FLOAT;
duke@435 423 }
duke@435 424 }
duke@435 425
duke@435 426 //=============================================================================
duke@435 427 //------------------------------Ideal------------------------------------------
duke@435 428 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 429 const Type *t2 = phase->type( in(2) );
duke@435 430 // Convert "x-c0" into "x+ -c0".
duke@435 431 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
duke@435 432 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
duke@435 433 }
duke@435 434
duke@435 435 // Not associative because of boundary conditions (infinity)
duke@435 436 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 437 // Convert "x - (x+y)" into "-y"
duke@435 438 if( in(2)->is_Add() &&
duke@435 439 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 440 return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
duke@435 441 }
duke@435 442
duke@435 443 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
duke@435 444 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
duke@435 445 //if( phase->type(in(1)) == TypeD::ZERO )
duke@435 446 //return new (phase->C, 2) NegDNode(in(2));
duke@435 447
duke@435 448 return NULL;
duke@435 449 }
duke@435 450
duke@435 451 //------------------------------sub--------------------------------------------
duke@435 452 // A subtract node differences its two inputs.
duke@435 453 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 454 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 455 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
duke@435 456 return TypeD::make( t1->getd() - t2->getd() );
duke@435 457 }
duke@435 458 else if( g_isnan(t1->getd()) ) {
duke@435 459 return t1;
duke@435 460 }
duke@435 461 else if( g_isnan(t2->getd()) ) {
duke@435 462 return t2;
duke@435 463 }
duke@435 464 else {
duke@435 465 return Type::DOUBLE;
duke@435 466 }
duke@435 467 }
duke@435 468
duke@435 469 //=============================================================================
duke@435 470 //------------------------------Idealize---------------------------------------
duke@435 471 // Unlike SubNodes, compare must still flatten return value to the
duke@435 472 // range -1, 0, 1.
duke@435 473 // And optimizations like those for (X + Y) - X fail if overflow happens.
duke@435 474 Node *CmpNode::Identity( PhaseTransform *phase ) {
duke@435 475 return this;
duke@435 476 }
duke@435 477
duke@435 478 //=============================================================================
duke@435 479 //------------------------------cmp--------------------------------------------
duke@435 480 // Simplify a CmpI (compare 2 integers) node, based on local information.
duke@435 481 // If both inputs are constants, compare them.
duke@435 482 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 483 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 484 const TypeInt *r1 = t2->is_int();
duke@435 485
duke@435 486 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 487 return TypeInt::CC_LT;
duke@435 488 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 489 return TypeInt::CC_GT;
duke@435 490
duke@435 491 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 492 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 493 return TypeInt::CC_EQ; // Equal results.
duke@435 494 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 495 return TypeInt::CC_LE;
duke@435 496 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 497 return TypeInt::CC_GE;
duke@435 498 return TypeInt::CC; // else use worst case results
duke@435 499 }
duke@435 500
duke@435 501 // Simplify a CmpU (compare 2 integers) node, based on local information.
duke@435 502 // If both inputs are constants, compare them.
duke@435 503 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 504 assert(!t1->isa_ptr(), "obsolete usage of CmpU");
duke@435 505
duke@435 506 // comparing two unsigned ints
duke@435 507 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 508 const TypeInt *r1 = t2->is_int();
duke@435 509
duke@435 510 // Current installed version
duke@435 511 // Compare ranges for non-overlap
duke@435 512 juint lo0 = r0->_lo;
duke@435 513 juint hi0 = r0->_hi;
duke@435 514 juint lo1 = r1->_lo;
duke@435 515 juint hi1 = r1->_hi;
duke@435 516
duke@435 517 // If either one has both negative and positive values,
duke@435 518 // it therefore contains both 0 and -1, and since [0..-1] is the
duke@435 519 // full unsigned range, the type must act as an unsigned bottom.
duke@435 520 bool bot0 = ((jint)(lo0 ^ hi0) < 0);
duke@435 521 bool bot1 = ((jint)(lo1 ^ hi1) < 0);
duke@435 522
duke@435 523 if (bot0 || bot1) {
duke@435 524 // All unsigned values are LE -1 and GE 0.
duke@435 525 if (lo0 == 0 && hi0 == 0) {
duke@435 526 return TypeInt::CC_LE; // 0 <= bot
duke@435 527 } else if (lo1 == 0 && hi1 == 0) {
duke@435 528 return TypeInt::CC_GE; // bot >= 0
duke@435 529 }
duke@435 530 } else {
duke@435 531 // We can use ranges of the form [lo..hi] if signs are the same.
duke@435 532 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
duke@435 533 // results are reversed, '-' > '+' for unsigned compare
duke@435 534 if (hi0 < lo1) {
duke@435 535 return TypeInt::CC_LT; // smaller
duke@435 536 } else if (lo0 > hi1) {
duke@435 537 return TypeInt::CC_GT; // greater
duke@435 538 } else if (hi0 == lo1 && lo0 == hi1) {
duke@435 539 return TypeInt::CC_EQ; // Equal results
duke@435 540 } else if (lo0 >= hi1) {
duke@435 541 return TypeInt::CC_GE;
duke@435 542 } else if (hi0 <= lo1) {
duke@435 543 // Check for special case in Hashtable::get. (See below.)
duke@435 544 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 545 in(1)->Opcode() == Op_ModI &&
duke@435 546 in(1)->in(2) == in(2) )
duke@435 547 return TypeInt::CC_LT;
duke@435 548 return TypeInt::CC_LE;
duke@435 549 }
duke@435 550 }
duke@435 551 // Check for special case in Hashtable::get - the hash index is
duke@435 552 // mod'ed to the table size so the following range check is useless.
duke@435 553 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
duke@435 554 // to be positive.
duke@435 555 // (This is a gross hack, since the sub method never
duke@435 556 // looks at the structure of the node in any other case.)
duke@435 557 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 558 in(1)->Opcode() == Op_ModI &&
duke@435 559 in(1)->in(2)->uncast() == in(2)->uncast())
duke@435 560 return TypeInt::CC_LT;
duke@435 561 return TypeInt::CC; // else use worst case results
duke@435 562 }
duke@435 563
duke@435 564 //------------------------------Idealize---------------------------------------
duke@435 565 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 566 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
duke@435 567 switch (in(1)->Opcode()) {
duke@435 568 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
duke@435 569 return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
duke@435 570 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
duke@435 571 return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
duke@435 572 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
duke@435 573 return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
duke@435 574 //case Op_SubI:
duke@435 575 // If (x - y) cannot overflow, then ((x - y) <?> 0)
duke@435 576 // can be turned into (x <?> y).
duke@435 577 // This is handled (with more general cases) by Ideal_sub_algebra.
duke@435 578 }
duke@435 579 }
duke@435 580 return NULL; // No change
duke@435 581 }
duke@435 582
duke@435 583
duke@435 584 //=============================================================================
duke@435 585 // Simplify a CmpL (compare 2 longs ) node, based on local information.
duke@435 586 // If both inputs are constants, compare them.
duke@435 587 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 588 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 589 const TypeLong *r1 = t2->is_long();
duke@435 590
duke@435 591 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 592 return TypeInt::CC_LT;
duke@435 593 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 594 return TypeInt::CC_GT;
duke@435 595
duke@435 596 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 597 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 598 return TypeInt::CC_EQ; // Equal results.
duke@435 599 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 600 return TypeInt::CC_LE;
duke@435 601 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 602 return TypeInt::CC_GE;
duke@435 603 return TypeInt::CC; // else use worst case results
duke@435 604 }
duke@435 605
duke@435 606 //=============================================================================
duke@435 607 //------------------------------sub--------------------------------------------
duke@435 608 // Simplify an CmpP (compare 2 pointers) node, based on local information.
duke@435 609 // If both inputs are constants, compare them.
duke@435 610 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 611 const TypePtr *r0 = t1->is_ptr(); // Handy access
duke@435 612 const TypePtr *r1 = t2->is_ptr();
duke@435 613
duke@435 614 // Undefined inputs makes for an undefined result
duke@435 615 if( TypePtr::above_centerline(r0->_ptr) ||
duke@435 616 TypePtr::above_centerline(r1->_ptr) )
duke@435 617 return Type::TOP;
duke@435 618
duke@435 619 if (r0 == r1 && r0->singleton()) {
duke@435 620 // Equal pointer constants (klasses, nulls, etc.)
duke@435 621 return TypeInt::CC_EQ;
duke@435 622 }
duke@435 623
duke@435 624 // See if it is 2 unrelated classes.
duke@435 625 const TypeOopPtr* p0 = r0->isa_oopptr();
duke@435 626 const TypeOopPtr* p1 = r1->isa_oopptr();
duke@435 627 if (p0 && p1) {
kvn@468 628 Node* in1 = in(1)->uncast();
kvn@468 629 Node* in2 = in(2)->uncast();
kvn@468 630 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
kvn@468 631 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
kvn@468 632 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
kvn@468 633 return TypeInt::CC_GT; // different pointers
kvn@468 634 }
duke@435 635 ciKlass* klass0 = p0->klass();
duke@435 636 bool xklass0 = p0->klass_is_exact();
duke@435 637 ciKlass* klass1 = p1->klass();
duke@435 638 bool xklass1 = p1->klass_is_exact();
duke@435 639 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
duke@435 640 if (klass0 && klass1 &&
duke@435 641 kps != 1 && // both or neither are klass pointers
duke@435 642 !klass0->is_interface() && // do not trust interfaces
duke@435 643 !klass1->is_interface()) {
rasbold@731 644 bool unrelated_classes = false;
duke@435 645 // See if neither subclasses the other, or if the class on top
rasbold@731 646 // is precise. In either of these cases, the compare is known
rasbold@731 647 // to fail if at least one of the pointers is provably not null.
duke@435 648 if (klass0->equals(klass1) || // if types are unequal but klasses are
duke@435 649 !klass0->is_java_klass() || // types not part of Java language?
duke@435 650 !klass1->is_java_klass()) { // types not part of Java language?
duke@435 651 // Do nothing; we know nothing for imprecise types
duke@435 652 } else if (klass0->is_subtype_of(klass1)) {
rasbold@731 653 // If klass1's type is PRECISE, then classes are unrelated.
rasbold@731 654 unrelated_classes = xklass1;
duke@435 655 } else if (klass1->is_subtype_of(klass0)) {
rasbold@731 656 // If klass0's type is PRECISE, then classes are unrelated.
rasbold@731 657 unrelated_classes = xklass0;
duke@435 658 } else { // Neither subtypes the other
rasbold@731 659 unrelated_classes = true;
rasbold@731 660 }
rasbold@731 661 if (unrelated_classes) {
rasbold@731 662 // The oops classes are known to be unrelated. If the joined PTRs of
rasbold@731 663 // two oops is not Null and not Bottom, then we are sure that one
rasbold@731 664 // of the two oops is non-null, and the comparison will always fail.
rasbold@731 665 TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
rasbold@731 666 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
rasbold@731 667 return TypeInt::CC_GT;
rasbold@731 668 }
duke@435 669 }
duke@435 670 }
duke@435 671 }
duke@435 672
duke@435 673 // Known constants can be compared exactly
duke@435 674 // Null can be distinguished from any NotNull pointers
duke@435 675 // Unknown inputs makes an unknown result
duke@435 676 if( r0->singleton() ) {
duke@435 677 intptr_t bits0 = r0->get_con();
duke@435 678 if( r1->singleton() )
duke@435 679 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
duke@435 680 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 681 } else if( r1->singleton() ) {
duke@435 682 intptr_t bits1 = r1->get_con();
duke@435 683 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 684 } else
duke@435 685 return TypeInt::CC;
duke@435 686 }
duke@435 687
duke@435 688 //------------------------------Ideal------------------------------------------
duke@435 689 // Check for the case of comparing an unknown klass loaded from the primary
duke@435 690 // super-type array vs a known klass with no subtypes. This amounts to
duke@435 691 // checking to see an unknown klass subtypes a known klass with no subtypes;
duke@435 692 // this only happens on an exact match. We can shorten this test by 1 load.
duke@435 693 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 694 // Constant pointer on right?
duke@435 695 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
duke@435 696 if (t2 == NULL || !t2->klass_is_exact())
duke@435 697 return NULL;
duke@435 698 // Get the constant klass we are comparing to.
duke@435 699 ciKlass* superklass = t2->klass();
duke@435 700
duke@435 701 // Now check for LoadKlass on left.
duke@435 702 Node* ldk1 = in(1);
kvn@728 703 if (ldk1->is_DecodeN()) {
kvn@728 704 ldk1 = ldk1->in(1);
kvn@728 705 if (ldk1->Opcode() != Op_LoadNKlass )
kvn@728 706 return NULL;
kvn@728 707 } else if (ldk1->Opcode() != Op_LoadKlass )
duke@435 708 return NULL;
duke@435 709 // Take apart the address of the LoadKlass:
duke@435 710 Node* adr1 = ldk1->in(MemNode::Address);
duke@435 711 intptr_t con2 = 0;
duke@435 712 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
duke@435 713 if (ldk2 == NULL)
duke@435 714 return NULL;
duke@435 715 if (con2 == oopDesc::klass_offset_in_bytes()) {
duke@435 716 // We are inspecting an object's concrete class.
duke@435 717 // Short-circuit the check if the query is abstract.
duke@435 718 if (superklass->is_interface() ||
duke@435 719 superklass->is_abstract()) {
duke@435 720 // Make it come out always false:
duke@435 721 this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
duke@435 722 return this;
duke@435 723 }
duke@435 724 }
duke@435 725
duke@435 726 // Check for a LoadKlass from primary supertype array.
duke@435 727 // Any nested loadklass from loadklass+con must be from the p.s. array.
kvn@728 728 if (ldk2->is_DecodeN()) {
kvn@728 729 // Keep ldk2 as DecodeN since it could be used in CmpP below.
kvn@728 730 if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
kvn@728 731 return NULL;
kvn@728 732 } else if (ldk2->Opcode() != Op_LoadKlass)
duke@435 733 return NULL;
duke@435 734
duke@435 735 // Verify that we understand the situation
duke@435 736 if (con2 != (intptr_t) superklass->super_check_offset())
duke@435 737 return NULL; // Might be element-klass loading from array klass
duke@435 738
duke@435 739 // If 'superklass' has no subklasses and is not an interface, then we are
duke@435 740 // assured that the only input which will pass the type check is
duke@435 741 // 'superklass' itself.
duke@435 742 //
duke@435 743 // We could be more liberal here, and allow the optimization on interfaces
duke@435 744 // which have a single implementor. This would require us to increase the
duke@435 745 // expressiveness of the add_dependency() mechanism.
duke@435 746 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
duke@435 747
duke@435 748 // Object arrays must have their base element have no subtypes
duke@435 749 while (superklass->is_obj_array_klass()) {
duke@435 750 ciType* elem = superklass->as_obj_array_klass()->element_type();
duke@435 751 superklass = elem->as_klass();
duke@435 752 }
duke@435 753 if (superklass->is_instance_klass()) {
duke@435 754 ciInstanceKlass* ik = superklass->as_instance_klass();
duke@435 755 if (ik->has_subklass() || ik->is_interface()) return NULL;
duke@435 756 // Add a dependency if there is a chance that a subclass will be added later.
duke@435 757 if (!ik->is_final()) {
duke@435 758 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 759 }
duke@435 760 }
duke@435 761
duke@435 762 // Bypass the dependent load, and compare directly
duke@435 763 this->set_req(1,ldk2);
duke@435 764
duke@435 765 return this;
duke@435 766 }
duke@435 767
duke@435 768 //=============================================================================
coleenp@548 769 //------------------------------sub--------------------------------------------
coleenp@548 770 // Simplify an CmpN (compare 2 pointers) node, based on local information.
coleenp@548 771 // If both inputs are constants, compare them.
coleenp@548 772 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
kvn@656 773 const TypePtr *r0 = t1->make_ptr(); // Handy access
kvn@656 774 const TypePtr *r1 = t2->make_ptr();
coleenp@548 775
coleenp@548 776 // Undefined inputs makes for an undefined result
coleenp@548 777 if( TypePtr::above_centerline(r0->_ptr) ||
coleenp@548 778 TypePtr::above_centerline(r1->_ptr) )
coleenp@548 779 return Type::TOP;
coleenp@548 780
coleenp@548 781 if (r0 == r1 && r0->singleton()) {
coleenp@548 782 // Equal pointer constants (klasses, nulls, etc.)
coleenp@548 783 return TypeInt::CC_EQ;
coleenp@548 784 }
coleenp@548 785
coleenp@548 786 // See if it is 2 unrelated classes.
coleenp@548 787 const TypeOopPtr* p0 = r0->isa_oopptr();
coleenp@548 788 const TypeOopPtr* p1 = r1->isa_oopptr();
coleenp@548 789 if (p0 && p1) {
coleenp@548 790 ciKlass* klass0 = p0->klass();
coleenp@548 791 bool xklass0 = p0->klass_is_exact();
coleenp@548 792 ciKlass* klass1 = p1->klass();
coleenp@548 793 bool xklass1 = p1->klass_is_exact();
coleenp@548 794 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
coleenp@548 795 if (klass0 && klass1 &&
coleenp@548 796 kps != 1 && // both or neither are klass pointers
coleenp@548 797 !klass0->is_interface() && // do not trust interfaces
coleenp@548 798 !klass1->is_interface()) {
rasbold@731 799 bool unrelated_classes = false;
coleenp@548 800 // See if neither subclasses the other, or if the class on top
rasbold@731 801 // is precise. In either of these cases, the compare is known
rasbold@731 802 // to fail if at least one of the pointers is provably not null.
coleenp@548 803 if (klass0->equals(klass1) || // if types are unequal but klasses are
coleenp@548 804 !klass0->is_java_klass() || // types not part of Java language?
coleenp@548 805 !klass1->is_java_klass()) { // types not part of Java language?
coleenp@548 806 // Do nothing; we know nothing for imprecise types
coleenp@548 807 } else if (klass0->is_subtype_of(klass1)) {
rasbold@731 808 // If klass1's type is PRECISE, then classes are unrelated.
rasbold@731 809 unrelated_classes = xklass1;
coleenp@548 810 } else if (klass1->is_subtype_of(klass0)) {
rasbold@731 811 // If klass0's type is PRECISE, then classes are unrelated.
rasbold@731 812 unrelated_classes = xklass0;
coleenp@548 813 } else { // Neither subtypes the other
rasbold@731 814 unrelated_classes = true;
rasbold@731 815 }
rasbold@731 816 if (unrelated_classes) {
rasbold@731 817 // The oops classes are known to be unrelated. If the joined PTRs of
rasbold@731 818 // two oops is not Null and not Bottom, then we are sure that one
rasbold@731 819 // of the two oops is non-null, and the comparison will always fail.
rasbold@731 820 TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
rasbold@731 821 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
rasbold@731 822 return TypeInt::CC_GT;
rasbold@731 823 }
coleenp@548 824 }
coleenp@548 825 }
coleenp@548 826 }
coleenp@548 827
coleenp@548 828 // Known constants can be compared exactly
coleenp@548 829 // Null can be distinguished from any NotNull pointers
coleenp@548 830 // Unknown inputs makes an unknown result
coleenp@548 831 if( r0->singleton() ) {
coleenp@548 832 intptr_t bits0 = r0->get_con();
coleenp@548 833 if( r1->singleton() )
coleenp@548 834 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
coleenp@548 835 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 836 } else if( r1->singleton() ) {
coleenp@548 837 intptr_t bits1 = r1->get_con();
coleenp@548 838 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 839 } else
coleenp@548 840 return TypeInt::CC;
coleenp@548 841 }
coleenp@548 842
coleenp@548 843 //------------------------------Ideal------------------------------------------
coleenp@548 844 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
coleenp@548 845 return NULL;
coleenp@548 846 }
coleenp@548 847
coleenp@548 848 //=============================================================================
duke@435 849 //------------------------------Value------------------------------------------
duke@435 850 // Simplify an CmpF (compare 2 floats ) node, based on local information.
duke@435 851 // If both inputs are constants, compare them.
duke@435 852 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
duke@435 853 const Node* in1 = in(1);
duke@435 854 const Node* in2 = in(2);
duke@435 855 // Either input is TOP ==> the result is TOP
duke@435 856 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 857 if( t1 == Type::TOP ) return Type::TOP;
duke@435 858 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 859 if( t2 == Type::TOP ) return Type::TOP;
duke@435 860
duke@435 861 // Not constants? Don't know squat - even if they are the same
duke@435 862 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 863 const TypeF *tf1 = t1->isa_float_constant();
duke@435 864 const TypeF *tf2 = t2->isa_float_constant();
duke@435 865 if( !tf1 || !tf2 ) return TypeInt::CC;
duke@435 866
duke@435 867 // This implements the Java bytecode fcmpl, so unordered returns -1.
duke@435 868 if( tf1->is_nan() || tf2->is_nan() )
duke@435 869 return TypeInt::CC_LT;
duke@435 870
duke@435 871 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
duke@435 872 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
duke@435 873 assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
duke@435 874 return TypeInt::CC_EQ;
duke@435 875 }
duke@435 876
duke@435 877
duke@435 878 //=============================================================================
duke@435 879 //------------------------------Value------------------------------------------
duke@435 880 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
duke@435 881 // If both inputs are constants, compare them.
duke@435 882 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
duke@435 883 const Node* in1 = in(1);
duke@435 884 const Node* in2 = in(2);
duke@435 885 // Either input is TOP ==> the result is TOP
duke@435 886 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 887 if( t1 == Type::TOP ) return Type::TOP;
duke@435 888 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 889 if( t2 == Type::TOP ) return Type::TOP;
duke@435 890
duke@435 891 // Not constants? Don't know squat - even if they are the same
duke@435 892 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 893 const TypeD *td1 = t1->isa_double_constant();
duke@435 894 const TypeD *td2 = t2->isa_double_constant();
duke@435 895 if( !td1 || !td2 ) return TypeInt::CC;
duke@435 896
duke@435 897 // This implements the Java bytecode dcmpl, so unordered returns -1.
duke@435 898 if( td1->is_nan() || td2->is_nan() )
duke@435 899 return TypeInt::CC_LT;
duke@435 900
duke@435 901 if( td1->_d < td2->_d ) return TypeInt::CC_LT;
duke@435 902 if( td1->_d > td2->_d ) return TypeInt::CC_GT;
duke@435 903 assert( td1->_d == td2->_d, "do not understand FP behavior" );
duke@435 904 return TypeInt::CC_EQ;
duke@435 905 }
duke@435 906
duke@435 907 //------------------------------Ideal------------------------------------------
duke@435 908 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 909 // Check if we can change this to a CmpF and remove a ConvD2F operation.
duke@435 910 // Change (CMPD (F2D (float)) (ConD value))
duke@435 911 // To (CMPF (float) (ConF value))
duke@435 912 // Valid when 'value' does not lose precision as a float.
duke@435 913 // Benefits: eliminates conversion, does not require 24-bit mode
duke@435 914
duke@435 915 // NaNs prevent commuting operands. This transform works regardless of the
duke@435 916 // order of ConD and ConvF2D inputs by preserving the original order.
duke@435 917 int idx_f2d = 1; // ConvF2D on left side?
duke@435 918 if( in(idx_f2d)->Opcode() != Op_ConvF2D )
duke@435 919 idx_f2d = 2; // No, swap to check for reversed args
duke@435 920 int idx_con = 3-idx_f2d; // Check for the constant on other input
duke@435 921
duke@435 922 if( ConvertCmpD2CmpF &&
duke@435 923 in(idx_f2d)->Opcode() == Op_ConvF2D &&
duke@435 924 in(idx_con)->Opcode() == Op_ConD ) {
duke@435 925 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
duke@435 926 double t2_value_as_double = t2->_d;
duke@435 927 float t2_value_as_float = (float)t2_value_as_double;
duke@435 928 if( t2_value_as_double == (double)t2_value_as_float ) {
duke@435 929 // Test value can be represented as a float
duke@435 930 // Eliminate the conversion to double and create new comparison
duke@435 931 Node *new_in1 = in(idx_f2d)->in(1);
duke@435 932 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
duke@435 933 if( idx_f2d != 1 ) { // Must flip args to match original order
duke@435 934 Node *tmp = new_in1;
duke@435 935 new_in1 = new_in2;
duke@435 936 new_in2 = tmp;
duke@435 937 }
duke@435 938 CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
duke@435 939 ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
duke@435 940 : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
duke@435 941 return new_cmp; // Changed to CmpFNode
duke@435 942 }
duke@435 943 // Testing value required the precision of a double
duke@435 944 }
duke@435 945 return NULL; // No change
duke@435 946 }
duke@435 947
duke@435 948
duke@435 949 //=============================================================================
duke@435 950 //------------------------------cc2logical-------------------------------------
duke@435 951 // Convert a condition code type to a logical type
duke@435 952 const Type *BoolTest::cc2logical( const Type *CC ) const {
duke@435 953 if( CC == Type::TOP ) return Type::TOP;
duke@435 954 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
duke@435 955 const TypeInt *ti = CC->is_int();
duke@435 956 if( ti->is_con() ) { // Only 1 kind of condition codes set?
duke@435 957 // Match low order 2 bits
duke@435 958 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
duke@435 959 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
duke@435 960 return TypeInt::make(tmp); // Boolean result
duke@435 961 }
duke@435 962
duke@435 963 if( CC == TypeInt::CC_GE ) {
duke@435 964 if( _test == ge ) return TypeInt::ONE;
duke@435 965 if( _test == lt ) return TypeInt::ZERO;
duke@435 966 }
duke@435 967 if( CC == TypeInt::CC_LE ) {
duke@435 968 if( _test == le ) return TypeInt::ONE;
duke@435 969 if( _test == gt ) return TypeInt::ZERO;
duke@435 970 }
duke@435 971
duke@435 972 return TypeInt::BOOL;
duke@435 973 }
duke@435 974
duke@435 975 //------------------------------dump_spec-------------------------------------
duke@435 976 // Print special per-node info
duke@435 977 #ifndef PRODUCT
duke@435 978 void BoolTest::dump_on(outputStream *st) const {
duke@435 979 const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
duke@435 980 st->print(msg[_test]);
duke@435 981 }
duke@435 982 #endif
duke@435 983
duke@435 984 //=============================================================================
duke@435 985 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
duke@435 986 uint BoolNode::size_of() const { return sizeof(BoolNode); }
duke@435 987
duke@435 988 //------------------------------operator==-------------------------------------
duke@435 989 uint BoolNode::cmp( const Node &n ) const {
duke@435 990 const BoolNode *b = (const BoolNode *)&n; // Cast up
duke@435 991 return (_test._test == b->_test._test);
duke@435 992 }
duke@435 993
duke@435 994 //------------------------------clone_cmp--------------------------------------
duke@435 995 // Clone a compare/bool tree
duke@435 996 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
duke@435 997 Node *ncmp = cmp->clone();
duke@435 998 ncmp->set_req(1,cmp1);
duke@435 999 ncmp->set_req(2,cmp2);
duke@435 1000 ncmp = gvn->transform( ncmp );
duke@435 1001 return new (gvn->C, 2) BoolNode( ncmp, test );
duke@435 1002 }
duke@435 1003
duke@435 1004 //-------------------------------make_predicate--------------------------------
duke@435 1005 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
duke@435 1006 if (test_value->is_Con()) return test_value;
duke@435 1007 if (test_value->is_Bool()) return test_value;
duke@435 1008 Compile* C = phase->C;
duke@435 1009 if (test_value->is_CMove() &&
duke@435 1010 test_value->in(CMoveNode::Condition)->is_Bool()) {
duke@435 1011 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
duke@435 1012 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
duke@435 1013 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
duke@435 1014 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
duke@435 1015 return bol;
duke@435 1016 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
duke@435 1017 return phase->transform( bol->negate(phase) );
duke@435 1018 }
duke@435 1019 // Else fall through. The CMove gets in the way of the test.
duke@435 1020 // It should be the case that make_predicate(bol->as_int_value()) == bol.
duke@435 1021 }
duke@435 1022 Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
duke@435 1023 cmp = phase->transform(cmp);
duke@435 1024 Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
duke@435 1025 return phase->transform(bol);
duke@435 1026 }
duke@435 1027
duke@435 1028 //--------------------------------as_int_value---------------------------------
duke@435 1029 Node* BoolNode::as_int_value(PhaseGVN* phase) {
duke@435 1030 // Inverse to make_predicate. The CMove probably boils down to a Conv2B.
duke@435 1031 Node* cmov = CMoveNode::make(phase->C, NULL, this,
duke@435 1032 phase->intcon(0), phase->intcon(1),
duke@435 1033 TypeInt::BOOL);
duke@435 1034 return phase->transform(cmov);
duke@435 1035 }
duke@435 1036
duke@435 1037 //----------------------------------negate-------------------------------------
duke@435 1038 BoolNode* BoolNode::negate(PhaseGVN* phase) {
duke@435 1039 Compile* C = phase->C;
duke@435 1040 return new (C, 2) BoolNode(in(1), _test.negate());
duke@435 1041 }
duke@435 1042
duke@435 1043
duke@435 1044 //------------------------------Ideal------------------------------------------
duke@435 1045 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1046 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
duke@435 1047 // This moves the constant to the right. Helps value-numbering.
duke@435 1048 Node *cmp = in(1);
duke@435 1049 if( !cmp->is_Sub() ) return NULL;
duke@435 1050 int cop = cmp->Opcode();
duke@435 1051 if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
duke@435 1052 Node *cmp1 = cmp->in(1);
duke@435 1053 Node *cmp2 = cmp->in(2);
duke@435 1054 if( !cmp1 ) return NULL;
duke@435 1055
duke@435 1056 // Constant on left?
duke@435 1057 Node *con = cmp1;
duke@435 1058 uint op2 = cmp2->Opcode();
duke@435 1059 // Move constants to the right of compare's to canonicalize.
duke@435 1060 // Do not muck with Opaque1 nodes, as this indicates a loop
duke@435 1061 // guard that cannot change shape.
duke@435 1062 if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
duke@435 1063 // Because of NaN's, CmpD and CmpF are not commutative
duke@435 1064 cop != Op_CmpD && cop != Op_CmpF &&
duke@435 1065 // Protect against swapping inputs to a compare when it is used by a
duke@435 1066 // counted loop exit, which requires maintaining the loop-limit as in(2)
duke@435 1067 !is_counted_loop_exit_test() ) {
duke@435 1068 // Ok, commute the constant to the right of the cmp node.
duke@435 1069 // Clone the Node, getting a new Node of the same class
duke@435 1070 cmp = cmp->clone();
duke@435 1071 // Swap inputs to the clone
duke@435 1072 cmp->swap_edges(1, 2);
duke@435 1073 cmp = phase->transform( cmp );
duke@435 1074 return new (phase->C, 2) BoolNode( cmp, _test.commute() );
duke@435 1075 }
duke@435 1076
duke@435 1077 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
duke@435 1078 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the
duke@435 1079 // test instead.
duke@435 1080 int cmp1_op = cmp1->Opcode();
duke@435 1081 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
duke@435 1082 if (cmp2_type == NULL) return NULL;
duke@435 1083 Node* j_xor = cmp1;
duke@435 1084 if( cmp2_type == TypeInt::ZERO &&
duke@435 1085 cmp1_op == Op_XorI &&
duke@435 1086 j_xor->in(1) != j_xor && // An xor of itself is dead
duke@435 1087 phase->type( j_xor->in(2) ) == TypeInt::ONE &&
duke@435 1088 (_test._test == BoolTest::eq ||
duke@435 1089 _test._test == BoolTest::ne) ) {
duke@435 1090 Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
duke@435 1091 return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
duke@435 1092 }
duke@435 1093
duke@435 1094 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
duke@435 1095 // This is a standard idiom for branching on a boolean value.
duke@435 1096 Node *c2b = cmp1;
duke@435 1097 if( cmp2_type == TypeInt::ZERO &&
duke@435 1098 cmp1_op == Op_Conv2B &&
duke@435 1099 (_test._test == BoolTest::eq ||
duke@435 1100 _test._test == BoolTest::ne) ) {
duke@435 1101 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
duke@435 1102 ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
duke@435 1103 : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
duke@435 1104 );
duke@435 1105 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1106 }
duke@435 1107
duke@435 1108 // Comparing a SubI against a zero is equal to comparing the SubI
duke@435 1109 // arguments directly. This only works for eq and ne comparisons
duke@435 1110 // due to possible integer overflow.
duke@435 1111 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
duke@435 1112 (cop == Op_CmpI) &&
duke@435 1113 (cmp1->Opcode() == Op_SubI) &&
duke@435 1114 ( cmp2_type == TypeInt::ZERO ) ) {
duke@435 1115 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
duke@435 1116 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1117 }
duke@435 1118
duke@435 1119 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
duke@435 1120 // most general case because negating 0x80000000 does nothing. Needed for
duke@435 1121 // the CmpF3/SubI/CmpI idiom.
duke@435 1122 if( cop == Op_CmpI &&
duke@435 1123 cmp1->Opcode() == Op_SubI &&
duke@435 1124 cmp2_type == TypeInt::ZERO &&
duke@435 1125 phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
duke@435 1126 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
duke@435 1127 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
duke@435 1128 return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
duke@435 1129 }
duke@435 1130
duke@435 1131 // The transformation below is not valid for either signed or unsigned
duke@435 1132 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
duke@435 1133 // This transformation can be resurrected when we are able to
duke@435 1134 // make inferences about the range of values being subtracted from
duke@435 1135 // (or added to) relative to the wraparound point.
duke@435 1136 //
duke@435 1137 // // Remove +/-1's if possible.
duke@435 1138 // // "X <= Y-1" becomes "X < Y"
duke@435 1139 // // "X+1 <= Y" becomes "X < Y"
duke@435 1140 // // "X < Y+1" becomes "X <= Y"
duke@435 1141 // // "X-1 < Y" becomes "X <= Y"
duke@435 1142 // // Do not this to compares off of the counted-loop-end. These guys are
duke@435 1143 // // checking the trip counter and they want to use the post-incremented
duke@435 1144 // // counter. If they use the PRE-incremented counter, then the counter has
duke@435 1145 // // to be incremented in a private block on a loop backedge.
duke@435 1146 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
duke@435 1147 // return NULL;
duke@435 1148 // #ifndef PRODUCT
duke@435 1149 // // Do not do this in a wash GVN pass during verification.
duke@435 1150 // // Gets triggered by too many simple optimizations to be bothered with
duke@435 1151 // // re-trying it again and again.
duke@435 1152 // if( !phase->allow_progress() ) return NULL;
duke@435 1153 // #endif
duke@435 1154 // // Not valid for unsigned compare because of corner cases in involving zero.
duke@435 1155 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
duke@435 1156 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
duke@435 1157 // // "0 <=u Y" is always true).
duke@435 1158 // if( cmp->Opcode() == Op_CmpU ) return NULL;
duke@435 1159 // int cmp2_op = cmp2->Opcode();
duke@435 1160 // if( _test._test == BoolTest::le ) {
duke@435 1161 // if( cmp1_op == Op_AddI &&
duke@435 1162 // phase->type( cmp1->in(2) ) == TypeInt::ONE )
duke@435 1163 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
duke@435 1164 // else if( cmp2_op == Op_AddI &&
duke@435 1165 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
duke@435 1166 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
duke@435 1167 // } else if( _test._test == BoolTest::lt ) {
duke@435 1168 // if( cmp1_op == Op_AddI &&
duke@435 1169 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
duke@435 1170 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
duke@435 1171 // else if( cmp2_op == Op_AddI &&
duke@435 1172 // phase->type( cmp2->in(2) ) == TypeInt::ONE )
duke@435 1173 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
duke@435 1174 // }
duke@435 1175
duke@435 1176 return NULL;
duke@435 1177 }
duke@435 1178
duke@435 1179 //------------------------------Value------------------------------------------
duke@435 1180 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
duke@435 1181 // based on local information. If the input is constant, do it.
duke@435 1182 const Type *BoolNode::Value( PhaseTransform *phase ) const {
duke@435 1183 return _test.cc2logical( phase->type( in(1) ) );
duke@435 1184 }
duke@435 1185
duke@435 1186 //------------------------------dump_spec--------------------------------------
duke@435 1187 // Dump special per-node info
duke@435 1188 #ifndef PRODUCT
duke@435 1189 void BoolNode::dump_spec(outputStream *st) const {
duke@435 1190 st->print("[");
duke@435 1191 _test.dump_on(st);
duke@435 1192 st->print("]");
duke@435 1193 }
duke@435 1194 #endif
duke@435 1195
duke@435 1196 //------------------------------is_counted_loop_exit_test--------------------------------------
duke@435 1197 // Returns true if node is used by a counted loop node.
duke@435 1198 bool BoolNode::is_counted_loop_exit_test() {
duke@435 1199 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
duke@435 1200 Node* use = fast_out(i);
duke@435 1201 if (use->is_CountedLoopEnd()) {
duke@435 1202 return true;
duke@435 1203 }
duke@435 1204 }
duke@435 1205 return false;
duke@435 1206 }
duke@435 1207
duke@435 1208 //=============================================================================
duke@435 1209 //------------------------------NegNode----------------------------------------
duke@435 1210 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1211 if( in(1)->Opcode() == Op_SubF )
duke@435 1212 return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
duke@435 1213 return NULL;
duke@435 1214 }
duke@435 1215
duke@435 1216 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1217 if( in(1)->Opcode() == Op_SubD )
duke@435 1218 return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
duke@435 1219 return NULL;
duke@435 1220 }
duke@435 1221
duke@435 1222
duke@435 1223 //=============================================================================
duke@435 1224 //------------------------------Value------------------------------------------
duke@435 1225 // Compute sqrt
duke@435 1226 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
duke@435 1227 const Type *t1 = phase->type( in(1) );
duke@435 1228 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1229 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1230 double d = t1->getd();
duke@435 1231 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1232 return TypeD::make( sqrt( d ) );
duke@435 1233 }
duke@435 1234
duke@435 1235 //=============================================================================
duke@435 1236 //------------------------------Value------------------------------------------
duke@435 1237 // Compute cos
duke@435 1238 const Type *CosDNode::Value( PhaseTransform *phase ) const {
duke@435 1239 const Type *t1 = phase->type( in(1) );
duke@435 1240 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1241 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1242 double d = t1->getd();
duke@435 1243 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1244 return TypeD::make( SharedRuntime::dcos( d ) );
duke@435 1245 }
duke@435 1246
duke@435 1247 //=============================================================================
duke@435 1248 //------------------------------Value------------------------------------------
duke@435 1249 // Compute sin
duke@435 1250 const Type *SinDNode::Value( PhaseTransform *phase ) const {
duke@435 1251 const Type *t1 = phase->type( in(1) );
duke@435 1252 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1253 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1254 double d = t1->getd();
duke@435 1255 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1256 return TypeD::make( SharedRuntime::dsin( d ) );
duke@435 1257 }
duke@435 1258
duke@435 1259 //=============================================================================
duke@435 1260 //------------------------------Value------------------------------------------
duke@435 1261 // Compute tan
duke@435 1262 const Type *TanDNode::Value( PhaseTransform *phase ) const {
duke@435 1263 const Type *t1 = phase->type( in(1) );
duke@435 1264 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1265 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1266 double d = t1->getd();
duke@435 1267 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1268 return TypeD::make( SharedRuntime::dtan( d ) );
duke@435 1269 }
duke@435 1270
duke@435 1271 //=============================================================================
duke@435 1272 //------------------------------Value------------------------------------------
duke@435 1273 // Compute log
duke@435 1274 const Type *LogDNode::Value( PhaseTransform *phase ) const {
duke@435 1275 const Type *t1 = phase->type( in(1) );
duke@435 1276 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1277 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1278 double d = t1->getd();
duke@435 1279 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1280 return TypeD::make( SharedRuntime::dlog( d ) );
duke@435 1281 }
duke@435 1282
duke@435 1283 //=============================================================================
duke@435 1284 //------------------------------Value------------------------------------------
duke@435 1285 // Compute log10
duke@435 1286 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
duke@435 1287 const Type *t1 = phase->type( in(1) );
duke@435 1288 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1289 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1290 double d = t1->getd();
duke@435 1291 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1292 return TypeD::make( SharedRuntime::dlog10( d ) );
duke@435 1293 }
duke@435 1294
duke@435 1295 //=============================================================================
duke@435 1296 //------------------------------Value------------------------------------------
duke@435 1297 // Compute exp
duke@435 1298 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
duke@435 1299 const Type *t1 = phase->type( in(1) );
duke@435 1300 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1301 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1302 double d = t1->getd();
duke@435 1303 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1304 return TypeD::make( SharedRuntime::dexp( d ) );
duke@435 1305 }
duke@435 1306
duke@435 1307
duke@435 1308 //=============================================================================
duke@435 1309 //------------------------------Value------------------------------------------
duke@435 1310 // Compute pow
duke@435 1311 const Type *PowDNode::Value( PhaseTransform *phase ) const {
duke@435 1312 const Type *t1 = phase->type( in(1) );
duke@435 1313 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1314 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1315 const Type *t2 = phase->type( in(2) );
duke@435 1316 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1317 if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1318 double d1 = t1->getd();
duke@435 1319 double d2 = t2->getd();
duke@435 1320 if( d1 < 0.0 ) return Type::DOUBLE;
duke@435 1321 if( d2 < 0.0 ) return Type::DOUBLE;
duke@435 1322 return TypeD::make( SharedRuntime::dpow( d1, d2 ) );
duke@435 1323 }

mercurial