src/share/vm/runtime/os.cpp

Wed, 01 Dec 2010 18:26:32 -0500

author
ikrylov
date
Wed, 01 Dec 2010 18:26:32 -0500
changeset 2322
828eafbd85cc
parent 2314
f95d63e2154a
child 2497
3582bf76420e
permissions
-rw-r--r--

6348631: remove the use of the HPI library from Hotspot
Summary: move functions from hpi library to hotspot, communicate with licensees and open source community, check jdk for dependency, file CCC request
Reviewed-by: coleenp, acorn, dsamersoff

duke@435 1 /*
never@2262 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/classLoader.hpp"
stefank@2314 27 #include "classfile/javaClasses.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "classfile/vmSymbols.hpp"
stefank@2314 30 #include "code/icBuffer.hpp"
stefank@2314 31 #include "code/vtableStubs.hpp"
stefank@2314 32 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 33 #include "interpreter/interpreter.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "oops/oop.inline.hpp"
stefank@2314 36 #include "prims/jvm.h"
stefank@2314 37 #include "prims/jvm_misc.hpp"
stefank@2314 38 #include "prims/privilegedStack.hpp"
stefank@2314 39 #include "runtime/arguments.hpp"
stefank@2314 40 #include "runtime/frame.inline.hpp"
stefank@2314 41 #include "runtime/interfaceSupport.hpp"
stefank@2314 42 #include "runtime/java.hpp"
stefank@2314 43 #include "runtime/javaCalls.hpp"
stefank@2314 44 #include "runtime/mutexLocker.hpp"
stefank@2314 45 #include "runtime/os.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "services/attachListener.hpp"
stefank@2314 48 #include "services/threadService.hpp"
stefank@2314 49 #include "utilities/defaultStream.hpp"
stefank@2314 50 #include "utilities/events.hpp"
stefank@2314 51 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 52 # include "os_linux.inline.hpp"
stefank@2314 53 # include "thread_linux.inline.hpp"
stefank@2314 54 #endif
stefank@2314 55 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 56 # include "os_solaris.inline.hpp"
stefank@2314 57 # include "thread_solaris.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 60 # include "os_windows.inline.hpp"
stefank@2314 61 # include "thread_windows.inline.hpp"
stefank@2314 62 #endif
duke@435 63
duke@435 64 # include <signal.h>
duke@435 65
duke@435 66 OSThread* os::_starting_thread = NULL;
duke@435 67 address os::_polling_page = NULL;
duke@435 68 volatile int32_t* os::_mem_serialize_page = NULL;
duke@435 69 uintptr_t os::_serialize_page_mask = 0;
duke@435 70 long os::_rand_seed = 1;
duke@435 71 int os::_processor_count = 0;
duke@435 72 size_t os::_page_sizes[os::page_sizes_max];
duke@435 73
duke@435 74 #ifndef PRODUCT
duke@435 75 int os::num_mallocs = 0; // # of calls to malloc/realloc
duke@435 76 size_t os::alloc_bytes = 0; // # of bytes allocated
duke@435 77 int os::num_frees = 0; // # of calls to free
duke@435 78 #endif
duke@435 79
duke@435 80 // Fill in buffer with current local time as an ISO-8601 string.
duke@435 81 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
duke@435 82 // Returns buffer, or NULL if it failed.
duke@435 83 // This would mostly be a call to
duke@435 84 // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
duke@435 85 // except that on Windows the %z behaves badly, so we do it ourselves.
duke@435 86 // Also, people wanted milliseconds on there,
duke@435 87 // and strftime doesn't do milliseconds.
duke@435 88 char* os::iso8601_time(char* buffer, size_t buffer_length) {
duke@435 89 // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
duke@435 90 // 1 2
duke@435 91 // 12345678901234567890123456789
duke@435 92 static const char* iso8601_format =
duke@435 93 "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
duke@435 94 static const size_t needed_buffer = 29;
duke@435 95
duke@435 96 // Sanity check the arguments
duke@435 97 if (buffer == NULL) {
duke@435 98 assert(false, "NULL buffer");
duke@435 99 return NULL;
duke@435 100 }
duke@435 101 if (buffer_length < needed_buffer) {
duke@435 102 assert(false, "buffer_length too small");
duke@435 103 return NULL;
duke@435 104 }
duke@435 105 // Get the current time
sbohne@496 106 jlong milliseconds_since_19700101 = javaTimeMillis();
duke@435 107 const int milliseconds_per_microsecond = 1000;
duke@435 108 const time_t seconds_since_19700101 =
duke@435 109 milliseconds_since_19700101 / milliseconds_per_microsecond;
duke@435 110 const int milliseconds_after_second =
duke@435 111 milliseconds_since_19700101 % milliseconds_per_microsecond;
duke@435 112 // Convert the time value to a tm and timezone variable
ysr@983 113 struct tm time_struct;
ysr@983 114 if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
ysr@983 115 assert(false, "Failed localtime_pd");
duke@435 116 return NULL;
duke@435 117 }
duke@435 118 const time_t zone = timezone;
duke@435 119
duke@435 120 // If daylight savings time is in effect,
duke@435 121 // we are 1 hour East of our time zone
duke@435 122 const time_t seconds_per_minute = 60;
duke@435 123 const time_t minutes_per_hour = 60;
duke@435 124 const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
duke@435 125 time_t UTC_to_local = zone;
duke@435 126 if (time_struct.tm_isdst > 0) {
duke@435 127 UTC_to_local = UTC_to_local - seconds_per_hour;
duke@435 128 }
duke@435 129 // Compute the time zone offset.
ysr@983 130 // localtime_pd() sets timezone to the difference (in seconds)
duke@435 131 // between UTC and and local time.
duke@435 132 // ISO 8601 says we need the difference between local time and UTC,
ysr@983 133 // we change the sign of the localtime_pd() result.
duke@435 134 const time_t local_to_UTC = -(UTC_to_local);
duke@435 135 // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
duke@435 136 char sign_local_to_UTC = '+';
duke@435 137 time_t abs_local_to_UTC = local_to_UTC;
duke@435 138 if (local_to_UTC < 0) {
duke@435 139 sign_local_to_UTC = '-';
duke@435 140 abs_local_to_UTC = -(abs_local_to_UTC);
duke@435 141 }
duke@435 142 // Convert time zone offset seconds to hours and minutes.
duke@435 143 const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
duke@435 144 const time_t zone_min =
duke@435 145 ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
duke@435 146
duke@435 147 // Print an ISO 8601 date and time stamp into the buffer
duke@435 148 const int year = 1900 + time_struct.tm_year;
duke@435 149 const int month = 1 + time_struct.tm_mon;
duke@435 150 const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
duke@435 151 year,
duke@435 152 month,
duke@435 153 time_struct.tm_mday,
duke@435 154 time_struct.tm_hour,
duke@435 155 time_struct.tm_min,
duke@435 156 time_struct.tm_sec,
duke@435 157 milliseconds_after_second,
duke@435 158 sign_local_to_UTC,
duke@435 159 zone_hours,
duke@435 160 zone_min);
duke@435 161 if (printed == 0) {
duke@435 162 assert(false, "Failed jio_printf");
duke@435 163 return NULL;
duke@435 164 }
duke@435 165 return buffer;
duke@435 166 }
duke@435 167
duke@435 168 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
duke@435 169 #ifdef ASSERT
duke@435 170 if (!(!thread->is_Java_thread() ||
duke@435 171 Thread::current() == thread ||
duke@435 172 Threads_lock->owned_by_self()
duke@435 173 || thread->is_Compiler_thread()
duke@435 174 )) {
duke@435 175 assert(false, "possibility of dangling Thread pointer");
duke@435 176 }
duke@435 177 #endif
duke@435 178
duke@435 179 if (p >= MinPriority && p <= MaxPriority) {
duke@435 180 int priority = java_to_os_priority[p];
duke@435 181 return set_native_priority(thread, priority);
duke@435 182 } else {
duke@435 183 assert(false, "Should not happen");
duke@435 184 return OS_ERR;
duke@435 185 }
duke@435 186 }
duke@435 187
duke@435 188
duke@435 189 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
duke@435 190 int p;
duke@435 191 int os_prio;
duke@435 192 OSReturn ret = get_native_priority(thread, &os_prio);
duke@435 193 if (ret != OS_OK) return ret;
duke@435 194
duke@435 195 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
duke@435 196 priority = (ThreadPriority)p;
duke@435 197 return OS_OK;
duke@435 198 }
duke@435 199
duke@435 200
duke@435 201 // --------------------- sun.misc.Signal (optional) ---------------------
duke@435 202
duke@435 203
duke@435 204 // SIGBREAK is sent by the keyboard to query the VM state
duke@435 205 #ifndef SIGBREAK
duke@435 206 #define SIGBREAK SIGQUIT
duke@435 207 #endif
duke@435 208
duke@435 209 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
duke@435 210
duke@435 211
duke@435 212 static void signal_thread_entry(JavaThread* thread, TRAPS) {
duke@435 213 os::set_priority(thread, NearMaxPriority);
duke@435 214 while (true) {
duke@435 215 int sig;
duke@435 216 {
duke@435 217 // FIXME : Currently we have not decieded what should be the status
duke@435 218 // for this java thread blocked here. Once we decide about
duke@435 219 // that we should fix this.
duke@435 220 sig = os::signal_wait();
duke@435 221 }
duke@435 222 if (sig == os::sigexitnum_pd()) {
duke@435 223 // Terminate the signal thread
duke@435 224 return;
duke@435 225 }
duke@435 226
duke@435 227 switch (sig) {
duke@435 228 case SIGBREAK: {
duke@435 229 // Check if the signal is a trigger to start the Attach Listener - in that
duke@435 230 // case don't print stack traces.
duke@435 231 if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
duke@435 232 continue;
duke@435 233 }
duke@435 234 // Print stack traces
duke@435 235 // Any SIGBREAK operations added here should make sure to flush
duke@435 236 // the output stream (e.g. tty->flush()) after output. See 4803766.
duke@435 237 // Each module also prints an extra carriage return after its output.
duke@435 238 VM_PrintThreads op;
duke@435 239 VMThread::execute(&op);
duke@435 240 VM_PrintJNI jni_op;
duke@435 241 VMThread::execute(&jni_op);
duke@435 242 VM_FindDeadlocks op1(tty);
duke@435 243 VMThread::execute(&op1);
duke@435 244 Universe::print_heap_at_SIGBREAK();
duke@435 245 if (PrintClassHistogram) {
ysr@1050 246 VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
ysr@1050 247 true /* need_prologue */);
duke@435 248 VMThread::execute(&op1);
duke@435 249 }
duke@435 250 if (JvmtiExport::should_post_data_dump()) {
duke@435 251 JvmtiExport::post_data_dump();
duke@435 252 }
duke@435 253 break;
duke@435 254 }
duke@435 255 default: {
duke@435 256 // Dispatch the signal to java
duke@435 257 HandleMark hm(THREAD);
duke@435 258 klassOop k = SystemDictionary::resolve_or_null(vmSymbolHandles::sun_misc_Signal(), THREAD);
duke@435 259 KlassHandle klass (THREAD, k);
duke@435 260 if (klass.not_null()) {
duke@435 261 JavaValue result(T_VOID);
duke@435 262 JavaCallArguments args;
duke@435 263 args.push_int(sig);
duke@435 264 JavaCalls::call_static(
duke@435 265 &result,
duke@435 266 klass,
duke@435 267 vmSymbolHandles::dispatch_name(),
duke@435 268 vmSymbolHandles::int_void_signature(),
duke@435 269 &args,
duke@435 270 THREAD
duke@435 271 );
duke@435 272 }
duke@435 273 if (HAS_PENDING_EXCEPTION) {
duke@435 274 // tty is initialized early so we don't expect it to be null, but
duke@435 275 // if it is we can't risk doing an initialization that might
duke@435 276 // trigger additional out-of-memory conditions
duke@435 277 if (tty != NULL) {
duke@435 278 char klass_name[256];
duke@435 279 char tmp_sig_name[16];
duke@435 280 const char* sig_name = "UNKNOWN";
duke@435 281 instanceKlass::cast(PENDING_EXCEPTION->klass())->
duke@435 282 name()->as_klass_external_name(klass_name, 256);
duke@435 283 if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
duke@435 284 sig_name = tmp_sig_name;
duke@435 285 warning("Exception %s occurred dispatching signal %s to handler"
duke@435 286 "- the VM may need to be forcibly terminated",
duke@435 287 klass_name, sig_name );
duke@435 288 }
duke@435 289 CLEAR_PENDING_EXCEPTION;
duke@435 290 }
duke@435 291 }
duke@435 292 }
duke@435 293 }
duke@435 294 }
duke@435 295
duke@435 296
duke@435 297 void os::signal_init() {
duke@435 298 if (!ReduceSignalUsage) {
duke@435 299 // Setup JavaThread for processing signals
duke@435 300 EXCEPTION_MARK;
duke@435 301 klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
duke@435 302 instanceKlassHandle klass (THREAD, k);
duke@435 303 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
duke@435 304
duke@435 305 const char thread_name[] = "Signal Dispatcher";
duke@435 306 Handle string = java_lang_String::create_from_str(thread_name, CHECK);
duke@435 307
duke@435 308 // Initialize thread_oop to put it into the system threadGroup
duke@435 309 Handle thread_group (THREAD, Universe::system_thread_group());
duke@435 310 JavaValue result(T_VOID);
duke@435 311 JavaCalls::call_special(&result, thread_oop,
duke@435 312 klass,
duke@435 313 vmSymbolHandles::object_initializer_name(),
duke@435 314 vmSymbolHandles::threadgroup_string_void_signature(),
duke@435 315 thread_group,
duke@435 316 string,
duke@435 317 CHECK);
duke@435 318
never@1577 319 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
duke@435 320 JavaCalls::call_special(&result,
duke@435 321 thread_group,
duke@435 322 group,
duke@435 323 vmSymbolHandles::add_method_name(),
duke@435 324 vmSymbolHandles::thread_void_signature(),
duke@435 325 thread_oop, // ARG 1
duke@435 326 CHECK);
duke@435 327
duke@435 328 os::signal_init_pd();
duke@435 329
duke@435 330 { MutexLocker mu(Threads_lock);
duke@435 331 JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
duke@435 332
duke@435 333 // At this point it may be possible that no osthread was created for the
duke@435 334 // JavaThread due to lack of memory. We would have to throw an exception
duke@435 335 // in that case. However, since this must work and we do not allow
duke@435 336 // exceptions anyway, check and abort if this fails.
duke@435 337 if (signal_thread == NULL || signal_thread->osthread() == NULL) {
duke@435 338 vm_exit_during_initialization("java.lang.OutOfMemoryError",
duke@435 339 "unable to create new native thread");
duke@435 340 }
duke@435 341
duke@435 342 java_lang_Thread::set_thread(thread_oop(), signal_thread);
duke@435 343 java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
duke@435 344 java_lang_Thread::set_daemon(thread_oop());
duke@435 345
duke@435 346 signal_thread->set_threadObj(thread_oop());
duke@435 347 Threads::add(signal_thread);
duke@435 348 Thread::start(signal_thread);
duke@435 349 }
duke@435 350 // Handle ^BREAK
duke@435 351 os::signal(SIGBREAK, os::user_handler());
duke@435 352 }
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 void os::terminate_signal_thread() {
duke@435 357 if (!ReduceSignalUsage)
duke@435 358 signal_notify(sigexitnum_pd());
duke@435 359 }
duke@435 360
duke@435 361
duke@435 362 // --------------------- loading libraries ---------------------
duke@435 363
duke@435 364 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
duke@435 365 extern struct JavaVM_ main_vm;
duke@435 366
duke@435 367 static void* _native_java_library = NULL;
duke@435 368
duke@435 369 void* os::native_java_library() {
duke@435 370 if (_native_java_library == NULL) {
duke@435 371 char buffer[JVM_MAXPATHLEN];
duke@435 372 char ebuf[1024];
duke@435 373
kamg@677 374 // Try to load verify dll first. In 1.3 java dll depends on it and is not
kamg@677 375 // always able to find it when the loading executable is outside the JDK.
duke@435 376 // In order to keep working with 1.2 we ignore any loading errors.
kamg@677 377 dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
kamg@677 378 dll_load(buffer, ebuf, sizeof(ebuf));
duke@435 379
duke@435 380 // Load java dll
kamg@677 381 dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
kamg@677 382 _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
duke@435 383 if (_native_java_library == NULL) {
duke@435 384 vm_exit_during_initialization("Unable to load native library", ebuf);
duke@435 385 }
kamg@677 386 }
kamg@677 387 static jboolean onLoaded = JNI_FALSE;
kamg@677 388 if (onLoaded) {
kamg@677 389 // We may have to wait to fire OnLoad until TLS is initialized.
kamg@677 390 if (ThreadLocalStorage::is_initialized()) {
kamg@677 391 // The JNI_OnLoad handling is normally done by method load in
kamg@677 392 // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
kamg@677 393 // explicitly so we have to check for JNI_OnLoad as well
kamg@677 394 const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
kamg@677 395 JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
kamg@677 396 JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
kamg@677 397 if (JNI_OnLoad != NULL) {
kamg@677 398 JavaThread* thread = JavaThread::current();
kamg@677 399 ThreadToNativeFromVM ttn(thread);
kamg@677 400 HandleMark hm(thread);
kamg@677 401 jint ver = (*JNI_OnLoad)(&main_vm, NULL);
kamg@677 402 onLoaded = JNI_TRUE;
kamg@677 403 if (!Threads::is_supported_jni_version_including_1_1(ver)) {
kamg@677 404 vm_exit_during_initialization("Unsupported JNI version");
kamg@677 405 }
duke@435 406 }
duke@435 407 }
duke@435 408 }
duke@435 409 return _native_java_library;
duke@435 410 }
duke@435 411
duke@435 412 // --------------------- heap allocation utilities ---------------------
duke@435 413
duke@435 414 char *os::strdup(const char *str) {
duke@435 415 size_t size = strlen(str);
duke@435 416 char *dup_str = (char *)malloc(size + 1);
duke@435 417 if (dup_str == NULL) return NULL;
duke@435 418 strcpy(dup_str, str);
duke@435 419 return dup_str;
duke@435 420 }
duke@435 421
duke@435 422
duke@435 423
duke@435 424 #ifdef ASSERT
duke@435 425 #define space_before (MallocCushion + sizeof(double))
duke@435 426 #define space_after MallocCushion
duke@435 427 #define size_addr_from_base(p) (size_t*)(p + space_before - sizeof(size_t))
duke@435 428 #define size_addr_from_obj(p) ((size_t*)p - 1)
duke@435 429 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
duke@435 430 // NB: cannot be debug variable, because these aren't set from the command line until
duke@435 431 // *after* the first few allocs already happened
duke@435 432 #define MallocCushion 16
duke@435 433 #else
duke@435 434 #define space_before 0
duke@435 435 #define space_after 0
duke@435 436 #define size_addr_from_base(p) should not use w/o ASSERT
duke@435 437 #define size_addr_from_obj(p) should not use w/o ASSERT
duke@435 438 #define MallocCushion 0
duke@435 439 #endif
duke@435 440 #define paranoid 0 /* only set to 1 if you suspect checking code has bug */
duke@435 441
duke@435 442 #ifdef ASSERT
duke@435 443 inline size_t get_size(void* obj) {
duke@435 444 size_t size = *size_addr_from_obj(obj);
jcoomes@1845 445 if (size < 0) {
jcoomes@1845 446 fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
jcoomes@1845 447 SIZE_FORMAT ")", obj, size));
jcoomes@1845 448 }
duke@435 449 return size;
duke@435 450 }
duke@435 451
duke@435 452 u_char* find_cushion_backwards(u_char* start) {
duke@435 453 u_char* p = start;
duke@435 454 while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
duke@435 455 p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
duke@435 456 // ok, we have four consecutive marker bytes; find start
duke@435 457 u_char* q = p - 4;
duke@435 458 while (*q == badResourceValue) q--;
duke@435 459 return q + 1;
duke@435 460 }
duke@435 461
duke@435 462 u_char* find_cushion_forwards(u_char* start) {
duke@435 463 u_char* p = start;
duke@435 464 while (p[0] != badResourceValue || p[1] != badResourceValue ||
duke@435 465 p[2] != badResourceValue || p[3] != badResourceValue) p++;
duke@435 466 // ok, we have four consecutive marker bytes; find end of cushion
duke@435 467 u_char* q = p + 4;
duke@435 468 while (*q == badResourceValue) q++;
duke@435 469 return q - MallocCushion;
duke@435 470 }
duke@435 471
duke@435 472 void print_neighbor_blocks(void* ptr) {
duke@435 473 // find block allocated before ptr (not entirely crash-proof)
duke@435 474 if (MallocCushion < 4) {
duke@435 475 tty->print_cr("### cannot find previous block (MallocCushion < 4)");
duke@435 476 return;
duke@435 477 }
duke@435 478 u_char* start_of_this_block = (u_char*)ptr - space_before;
duke@435 479 u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
duke@435 480 // look for cushion in front of prev. block
duke@435 481 u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
duke@435 482 ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
duke@435 483 u_char* obj = start_of_prev_block + space_before;
duke@435 484 if (size <= 0 ) {
duke@435 485 // start is bad; mayhave been confused by OS data inbetween objects
duke@435 486 // search one more backwards
duke@435 487 start_of_prev_block = find_cushion_backwards(start_of_prev_block);
duke@435 488 size = *size_addr_from_base(start_of_prev_block);
duke@435 489 obj = start_of_prev_block + space_before;
duke@435 490 }
duke@435 491
duke@435 492 if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
duke@435 493 tty->print_cr("### previous object: %p (%ld bytes)", obj, size);
duke@435 494 } else {
duke@435 495 tty->print_cr("### previous object (not sure if correct): %p (%ld bytes)", obj, size);
duke@435 496 }
duke@435 497
duke@435 498 // now find successor block
duke@435 499 u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
duke@435 500 start_of_next_block = find_cushion_forwards(start_of_next_block);
duke@435 501 u_char* next_obj = start_of_next_block + space_before;
duke@435 502 ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
duke@435 503 if (start_of_next_block[0] == badResourceValue &&
duke@435 504 start_of_next_block[1] == badResourceValue &&
duke@435 505 start_of_next_block[2] == badResourceValue &&
duke@435 506 start_of_next_block[3] == badResourceValue) {
duke@435 507 tty->print_cr("### next object: %p (%ld bytes)", next_obj, next_size);
duke@435 508 } else {
duke@435 509 tty->print_cr("### next object (not sure if correct): %p (%ld bytes)", next_obj, next_size);
duke@435 510 }
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 void report_heap_error(void* memblock, void* bad, const char* where) {
duke@435 515 tty->print_cr("## nof_mallocs = %d, nof_frees = %d", os::num_mallocs, os::num_frees);
duke@435 516 tty->print_cr("## memory stomp: byte at %p %s object %p", bad, where, memblock);
duke@435 517 print_neighbor_blocks(memblock);
duke@435 518 fatal("memory stomping error");
duke@435 519 }
duke@435 520
duke@435 521 void verify_block(void* memblock) {
duke@435 522 size_t size = get_size(memblock);
duke@435 523 if (MallocCushion) {
duke@435 524 u_char* ptr = (u_char*)memblock - space_before;
duke@435 525 for (int i = 0; i < MallocCushion; i++) {
duke@435 526 if (ptr[i] != badResourceValue) {
duke@435 527 report_heap_error(memblock, ptr+i, "in front of");
duke@435 528 }
duke@435 529 }
duke@435 530 u_char* end = (u_char*)memblock + size + space_after;
duke@435 531 for (int j = -MallocCushion; j < 0; j++) {
duke@435 532 if (end[j] != badResourceValue) {
duke@435 533 report_heap_error(memblock, end+j, "after");
duke@435 534 }
duke@435 535 }
duke@435 536 }
duke@435 537 }
duke@435 538 #endif
duke@435 539
duke@435 540 void* os::malloc(size_t size) {
duke@435 541 NOT_PRODUCT(num_mallocs++);
duke@435 542 NOT_PRODUCT(alloc_bytes += size);
duke@435 543
duke@435 544 if (size == 0) {
duke@435 545 // return a valid pointer if size is zero
duke@435 546 // if NULL is returned the calling functions assume out of memory.
duke@435 547 size = 1;
duke@435 548 }
duke@435 549
duke@435 550 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 551 u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
duke@435 552 #ifdef ASSERT
duke@435 553 if (ptr == NULL) return NULL;
duke@435 554 if (MallocCushion) {
duke@435 555 for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
duke@435 556 u_char* end = ptr + space_before + size;
duke@435 557 for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
duke@435 558 for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
duke@435 559 }
duke@435 560 // put size just before data
duke@435 561 *size_addr_from_base(ptr) = size;
duke@435 562 #endif
duke@435 563 u_char* memblock = ptr + space_before;
duke@435 564 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
duke@435 565 tty->print_cr("os::malloc caught, %lu bytes --> %p", size, memblock);
duke@435 566 breakpoint();
duke@435 567 }
duke@435 568 debug_only(if (paranoid) verify_block(memblock));
duke@435 569 if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc %lu bytes --> %p", size, memblock);
duke@435 570 return memblock;
duke@435 571 }
duke@435 572
duke@435 573
duke@435 574 void* os::realloc(void *memblock, size_t size) {
duke@435 575 NOT_PRODUCT(num_mallocs++);
duke@435 576 NOT_PRODUCT(alloc_bytes += size);
duke@435 577 #ifndef ASSERT
duke@435 578 return ::realloc(memblock, size);
duke@435 579 #else
duke@435 580 if (memblock == NULL) {
duke@435 581 return os::malloc(size);
duke@435 582 }
duke@435 583 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
duke@435 584 tty->print_cr("os::realloc caught %p", memblock);
duke@435 585 breakpoint();
duke@435 586 }
duke@435 587 verify_block(memblock);
duke@435 588 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 589 if (size == 0) return NULL;
duke@435 590 // always move the block
duke@435 591 void* ptr = malloc(size);
duke@435 592 if (PrintMalloc) tty->print_cr("os::remalloc %lu bytes, %p --> %p", size, memblock, ptr);
duke@435 593 // Copy to new memory if malloc didn't fail
duke@435 594 if ( ptr != NULL ) {
duke@435 595 memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
duke@435 596 if (paranoid) verify_block(ptr);
duke@435 597 if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
duke@435 598 tty->print_cr("os::realloc caught, %lu bytes --> %p", size, ptr);
duke@435 599 breakpoint();
duke@435 600 }
duke@435 601 free(memblock);
duke@435 602 }
duke@435 603 return ptr;
duke@435 604 #endif
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 void os::free(void *memblock) {
duke@435 609 NOT_PRODUCT(num_frees++);
duke@435 610 #ifdef ASSERT
duke@435 611 if (memblock == NULL) return;
duke@435 612 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
duke@435 613 if (tty != NULL) tty->print_cr("os::free caught %p", memblock);
duke@435 614 breakpoint();
duke@435 615 }
duke@435 616 verify_block(memblock);
duke@435 617 if (PrintMalloc && tty != NULL)
duke@435 618 // tty->print_cr("os::free %p", memblock);
duke@435 619 fprintf(stderr, "os::free %p\n", memblock);
duke@435 620 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
duke@435 621 // Added by detlefs.
duke@435 622 if (MallocCushion) {
duke@435 623 u_char* ptr = (u_char*)memblock - space_before;
duke@435 624 for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
duke@435 625 guarantee(*p == badResourceValue,
duke@435 626 "Thing freed should be malloc result.");
duke@435 627 *p = (u_char)freeBlockPad;
duke@435 628 }
duke@435 629 size_t size = get_size(memblock);
duke@435 630 u_char* end = ptr + space_before + size;
duke@435 631 for (u_char* q = end; q < end + MallocCushion; q++) {
duke@435 632 guarantee(*q == badResourceValue,
duke@435 633 "Thing freed should be malloc result.");
duke@435 634 *q = (u_char)freeBlockPad;
duke@435 635 }
duke@435 636 }
duke@435 637 #endif
duke@435 638 ::free((char*)memblock - space_before);
duke@435 639 }
duke@435 640
duke@435 641 void os::init_random(long initval) {
duke@435 642 _rand_seed = initval;
duke@435 643 }
duke@435 644
duke@435 645
duke@435 646 long os::random() {
duke@435 647 /* standard, well-known linear congruential random generator with
duke@435 648 * next_rand = (16807*seed) mod (2**31-1)
duke@435 649 * see
duke@435 650 * (1) "Random Number Generators: Good Ones Are Hard to Find",
duke@435 651 * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
duke@435 652 * (2) "Two Fast Implementations of the 'Minimal Standard' Random
duke@435 653 * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
duke@435 654 */
duke@435 655 const long a = 16807;
duke@435 656 const unsigned long m = 2147483647;
duke@435 657 const long q = m / a; assert(q == 127773, "weird math");
duke@435 658 const long r = m % a; assert(r == 2836, "weird math");
duke@435 659
duke@435 660 // compute az=2^31p+q
duke@435 661 unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
duke@435 662 unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
duke@435 663 lo += (hi & 0x7FFF) << 16;
duke@435 664
duke@435 665 // if q overflowed, ignore the overflow and increment q
duke@435 666 if (lo > m) {
duke@435 667 lo &= m;
duke@435 668 ++lo;
duke@435 669 }
duke@435 670 lo += hi >> 15;
duke@435 671
duke@435 672 // if (p+q) overflowed, ignore the overflow and increment (p+q)
duke@435 673 if (lo > m) {
duke@435 674 lo &= m;
duke@435 675 ++lo;
duke@435 676 }
duke@435 677 return (_rand_seed = lo);
duke@435 678 }
duke@435 679
duke@435 680 // The INITIALIZED state is distinguished from the SUSPENDED state because the
duke@435 681 // conditions in which a thread is first started are different from those in which
duke@435 682 // a suspension is resumed. These differences make it hard for us to apply the
duke@435 683 // tougher checks when starting threads that we want to do when resuming them.
duke@435 684 // However, when start_thread is called as a result of Thread.start, on a Java
duke@435 685 // thread, the operation is synchronized on the Java Thread object. So there
duke@435 686 // cannot be a race to start the thread and hence for the thread to exit while
duke@435 687 // we are working on it. Non-Java threads that start Java threads either have
duke@435 688 // to do so in a context in which races are impossible, or should do appropriate
duke@435 689 // locking.
duke@435 690
duke@435 691 void os::start_thread(Thread* thread) {
duke@435 692 // guard suspend/resume
duke@435 693 MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
duke@435 694 OSThread* osthread = thread->osthread();
duke@435 695 osthread->set_state(RUNNABLE);
duke@435 696 pd_start_thread(thread);
duke@435 697 }
duke@435 698
duke@435 699 //---------------------------------------------------------------------------
duke@435 700 // Helper functions for fatal error handler
duke@435 701
duke@435 702 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
duke@435 703 assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
duke@435 704
duke@435 705 int cols = 0;
duke@435 706 int cols_per_line = 0;
duke@435 707 switch (unitsize) {
duke@435 708 case 1: cols_per_line = 16; break;
duke@435 709 case 2: cols_per_line = 8; break;
duke@435 710 case 4: cols_per_line = 4; break;
duke@435 711 case 8: cols_per_line = 2; break;
duke@435 712 default: return;
duke@435 713 }
duke@435 714
duke@435 715 address p = start;
duke@435 716 st->print(PTR_FORMAT ": ", start);
duke@435 717 while (p < end) {
duke@435 718 switch (unitsize) {
duke@435 719 case 1: st->print("%02x", *(u1*)p); break;
duke@435 720 case 2: st->print("%04x", *(u2*)p); break;
duke@435 721 case 4: st->print("%08x", *(u4*)p); break;
duke@435 722 case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
duke@435 723 }
duke@435 724 p += unitsize;
duke@435 725 cols++;
duke@435 726 if (cols >= cols_per_line && p < end) {
duke@435 727 cols = 0;
duke@435 728 st->cr();
duke@435 729 st->print(PTR_FORMAT ": ", p);
duke@435 730 } else {
duke@435 731 st->print(" ");
duke@435 732 }
duke@435 733 }
duke@435 734 st->cr();
duke@435 735 }
duke@435 736
duke@435 737 void os::print_environment_variables(outputStream* st, const char** env_list,
duke@435 738 char* buffer, int len) {
duke@435 739 if (env_list) {
duke@435 740 st->print_cr("Environment Variables:");
duke@435 741
duke@435 742 for (int i = 0; env_list[i] != NULL; i++) {
duke@435 743 if (getenv(env_list[i], buffer, len)) {
duke@435 744 st->print(env_list[i]);
duke@435 745 st->print("=");
duke@435 746 st->print_cr(buffer);
duke@435 747 }
duke@435 748 }
duke@435 749 }
duke@435 750 }
duke@435 751
duke@435 752 void os::print_cpu_info(outputStream* st) {
duke@435 753 // cpu
duke@435 754 st->print("CPU:");
duke@435 755 st->print("total %d", os::processor_count());
duke@435 756 // It's not safe to query number of active processors after crash
duke@435 757 // st->print("(active %d)", os::active_processor_count());
duke@435 758 st->print(" %s", VM_Version::cpu_features());
duke@435 759 st->cr();
duke@435 760 }
duke@435 761
duke@435 762 void os::print_date_and_time(outputStream *st) {
duke@435 763 time_t tloc;
duke@435 764 (void)time(&tloc);
duke@435 765 st->print("time: %s", ctime(&tloc)); // ctime adds newline.
duke@435 766
duke@435 767 double t = os::elapsedTime();
duke@435 768 // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
duke@435 769 // Linux. Must be a bug in glibc ? Workaround is to round "t" to int
duke@435 770 // before printf. We lost some precision, but who cares?
duke@435 771 st->print_cr("elapsed time: %d seconds", (int)t);
duke@435 772 }
duke@435 773
bobv@2036 774 // moved from debug.cpp (used to be find()) but still called from there
never@2262 775 // The verbose parameter is only set by the debug code in one case
never@2262 776 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
bobv@2036 777 address addr = (address)x;
bobv@2036 778 CodeBlob* b = CodeCache::find_blob_unsafe(addr);
bobv@2036 779 if (b != NULL) {
bobv@2036 780 if (b->is_buffer_blob()) {
bobv@2036 781 // the interpreter is generated into a buffer blob
bobv@2036 782 InterpreterCodelet* i = Interpreter::codelet_containing(addr);
bobv@2036 783 if (i != NULL) {
never@2262 784 st->print_cr(INTPTR_FORMAT " is an Interpreter codelet", addr);
bobv@2036 785 i->print_on(st);
bobv@2036 786 return;
bobv@2036 787 }
bobv@2036 788 if (Interpreter::contains(addr)) {
bobv@2036 789 st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
bobv@2036 790 " (not bytecode specific)", addr);
bobv@2036 791 return;
bobv@2036 792 }
bobv@2036 793 //
bobv@2036 794 if (AdapterHandlerLibrary::contains(b)) {
never@2262 795 st->print_cr(INTPTR_FORMAT " is an AdapterHandler", addr);
bobv@2036 796 AdapterHandlerLibrary::print_handler_on(st, b);
bobv@2036 797 }
bobv@2036 798 // the stubroutines are generated into a buffer blob
bobv@2036 799 StubCodeDesc* d = StubCodeDesc::desc_for(addr);
bobv@2036 800 if (d != NULL) {
bobv@2036 801 d->print_on(st);
never@2262 802 if (verbose) st->cr();
bobv@2036 803 return;
bobv@2036 804 }
bobv@2036 805 if (StubRoutines::contains(addr)) {
bobv@2036 806 st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
bobv@2036 807 "stub routine", addr);
bobv@2036 808 return;
bobv@2036 809 }
bobv@2036 810 // the InlineCacheBuffer is using stubs generated into a buffer blob
bobv@2036 811 if (InlineCacheBuffer::contains(addr)) {
bobv@2036 812 st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
bobv@2036 813 return;
bobv@2036 814 }
bobv@2036 815 VtableStub* v = VtableStubs::stub_containing(addr);
bobv@2036 816 if (v != NULL) {
bobv@2036 817 v->print_on(st);
bobv@2036 818 return;
bobv@2036 819 }
bobv@2036 820 }
never@2262 821 if (verbose && b->is_nmethod()) {
bobv@2036 822 ResourceMark rm;
bobv@2036 823 st->print("%#p: Compiled ", addr);
bobv@2036 824 ((nmethod*)b)->method()->print_value_on(st);
bobv@2036 825 st->print(" = (CodeBlob*)" INTPTR_FORMAT, b);
bobv@2036 826 st->cr();
bobv@2036 827 return;
bobv@2036 828 }
never@2262 829 st->print(INTPTR_FORMAT " ", b);
bobv@2036 830 if ( b->is_nmethod()) {
bobv@2036 831 if (b->is_zombie()) {
never@2262 832 st->print_cr("is zombie nmethod");
bobv@2036 833 } else if (b->is_not_entrant()) {
never@2262 834 st->print_cr("is non-entrant nmethod");
bobv@2036 835 }
bobv@2036 836 }
bobv@2036 837 b->print_on(st);
bobv@2036 838 return;
bobv@2036 839 }
bobv@2036 840
bobv@2036 841 if (Universe::heap()->is_in(addr)) {
bobv@2036 842 HeapWord* p = Universe::heap()->block_start(addr);
bobv@2036 843 bool print = false;
bobv@2036 844 // If we couldn't find it it just may mean that heap wasn't parseable
bobv@2036 845 // See if we were just given an oop directly
bobv@2036 846 if (p != NULL && Universe::heap()->block_is_obj(p)) {
bobv@2036 847 print = true;
bobv@2036 848 } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
bobv@2036 849 p = (HeapWord*) addr;
bobv@2036 850 print = true;
bobv@2036 851 }
bobv@2036 852 if (print) {
never@2262 853 st->print_cr(INTPTR_FORMAT " is an oop", addr);
bobv@2036 854 oop(p)->print_on(st);
bobv@2036 855 if (p != (HeapWord*)x && oop(p)->is_constMethod() &&
bobv@2036 856 constMethodOop(p)->contains(addr)) {
bobv@2036 857 Thread *thread = Thread::current();
bobv@2036 858 HandleMark hm(thread);
bobv@2036 859 methodHandle mh (thread, constMethodOop(p)->method());
bobv@2036 860 if (!mh->is_native()) {
bobv@2036 861 st->print_cr("bci_from(%p) = %d; print_codes():",
bobv@2036 862 addr, mh->bci_from(address(x)));
bobv@2036 863 mh->print_codes_on(st);
bobv@2036 864 }
bobv@2036 865 }
bobv@2036 866 return;
bobv@2036 867 }
bobv@2036 868 } else {
bobv@2036 869 if (Universe::heap()->is_in_reserved(addr)) {
bobv@2036 870 st->print_cr(INTPTR_FORMAT " is an unallocated location "
bobv@2036 871 "in the heap", addr);
bobv@2036 872 return;
bobv@2036 873 }
bobv@2036 874 }
bobv@2036 875 if (JNIHandles::is_global_handle((jobject) addr)) {
bobv@2036 876 st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
bobv@2036 877 return;
bobv@2036 878 }
bobv@2036 879 if (JNIHandles::is_weak_global_handle((jobject) addr)) {
bobv@2036 880 st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
bobv@2036 881 return;
bobv@2036 882 }
bobv@2036 883 #ifndef PRODUCT
bobv@2036 884 // we don't keep the block list in product mode
bobv@2036 885 if (JNIHandleBlock::any_contains((jobject) addr)) {
bobv@2036 886 st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
bobv@2036 887 return;
bobv@2036 888 }
bobv@2036 889 #endif
bobv@2036 890
bobv@2036 891 for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
bobv@2036 892 // Check for privilege stack
bobv@2036 893 if (thread->privileged_stack_top() != NULL &&
bobv@2036 894 thread->privileged_stack_top()->contains(addr)) {
bobv@2036 895 st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
bobv@2036 896 "for thread: " INTPTR_FORMAT, addr, thread);
never@2262 897 if (verbose) thread->print_on(st);
bobv@2036 898 return;
bobv@2036 899 }
bobv@2036 900 // If the addr is a java thread print information about that.
bobv@2036 901 if (addr == (address)thread) {
never@2262 902 if (verbose) {
never@2262 903 thread->print_on(st);
never@2262 904 } else {
never@2262 905 st->print_cr(INTPTR_FORMAT " is a thread", addr);
never@2262 906 }
bobv@2036 907 return;
bobv@2036 908 }
bobv@2036 909 // If the addr is in the stack region for this thread then report that
bobv@2036 910 // and print thread info
bobv@2036 911 if (thread->stack_base() >= addr &&
bobv@2036 912 addr > (thread->stack_base() - thread->stack_size())) {
bobv@2036 913 st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
bobv@2036 914 INTPTR_FORMAT, addr, thread);
never@2262 915 if (verbose) thread->print_on(st);
bobv@2036 916 return;
bobv@2036 917 }
bobv@2036 918
bobv@2036 919 }
bobv@2036 920 // Try an OS specific find
bobv@2036 921 if (os::find(addr, st)) {
bobv@2036 922 return;
bobv@2036 923 }
bobv@2036 924
never@2262 925 st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
bobv@2036 926 }
duke@435 927
duke@435 928 // Looks like all platforms except IA64 can use the same function to check
duke@435 929 // if C stack is walkable beyond current frame. The check for fp() is not
duke@435 930 // necessary on Sparc, but it's harmless.
duke@435 931 bool os::is_first_C_frame(frame* fr) {
duke@435 932 #ifdef IA64
duke@435 933 // In order to walk native frames on Itanium, we need to access the unwind
duke@435 934 // table, which is inside ELF. We don't want to parse ELF after fatal error,
duke@435 935 // so return true for IA64. If we need to support C stack walking on IA64,
duke@435 936 // this function needs to be moved to CPU specific files, as fp() on IA64
duke@435 937 // is register stack, which grows towards higher memory address.
duke@435 938 return true;
duke@435 939 #endif
duke@435 940
duke@435 941 // Load up sp, fp, sender sp and sender fp, check for reasonable values.
duke@435 942 // Check usp first, because if that's bad the other accessors may fault
duke@435 943 // on some architectures. Ditto ufp second, etc.
duke@435 944 uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
duke@435 945 // sp on amd can be 32 bit aligned.
duke@435 946 uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
duke@435 947
duke@435 948 uintptr_t usp = (uintptr_t)fr->sp();
duke@435 949 if ((usp & sp_align_mask) != 0) return true;
duke@435 950
duke@435 951 uintptr_t ufp = (uintptr_t)fr->fp();
duke@435 952 if ((ufp & fp_align_mask) != 0) return true;
duke@435 953
duke@435 954 uintptr_t old_sp = (uintptr_t)fr->sender_sp();
duke@435 955 if ((old_sp & sp_align_mask) != 0) return true;
duke@435 956 if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
duke@435 957
duke@435 958 uintptr_t old_fp = (uintptr_t)fr->link();
duke@435 959 if ((old_fp & fp_align_mask) != 0) return true;
duke@435 960 if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
duke@435 961
duke@435 962 // stack grows downwards; if old_fp is below current fp or if the stack
duke@435 963 // frame is too large, either the stack is corrupted or fp is not saved
duke@435 964 // on stack (i.e. on x86, ebp may be used as general register). The stack
duke@435 965 // is not walkable beyond current frame.
duke@435 966 if (old_fp < ufp) return true;
duke@435 967 if (old_fp - ufp > 64 * K) return true;
duke@435 968
duke@435 969 return false;
duke@435 970 }
duke@435 971
duke@435 972 #ifdef ASSERT
duke@435 973 extern "C" void test_random() {
duke@435 974 const double m = 2147483647;
duke@435 975 double mean = 0.0, variance = 0.0, t;
duke@435 976 long reps = 10000;
duke@435 977 unsigned long seed = 1;
duke@435 978
duke@435 979 tty->print_cr("seed %ld for %ld repeats...", seed, reps);
duke@435 980 os::init_random(seed);
duke@435 981 long num;
duke@435 982 for (int k = 0; k < reps; k++) {
duke@435 983 num = os::random();
duke@435 984 double u = (double)num / m;
duke@435 985 assert(u >= 0.0 && u <= 1.0, "bad random number!");
duke@435 986
duke@435 987 // calculate mean and variance of the random sequence
duke@435 988 mean += u;
duke@435 989 variance += (u*u);
duke@435 990 }
duke@435 991 mean /= reps;
duke@435 992 variance /= (reps - 1);
duke@435 993
duke@435 994 assert(num == 1043618065, "bad seed");
duke@435 995 tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
duke@435 996 tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
duke@435 997 const double eps = 0.0001;
duke@435 998 t = fabsd(mean - 0.5018);
duke@435 999 assert(t < eps, "bad mean");
duke@435 1000 t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
duke@435 1001 assert(t < eps, "bad variance");
duke@435 1002 }
duke@435 1003 #endif
duke@435 1004
duke@435 1005
duke@435 1006 // Set up the boot classpath.
duke@435 1007
duke@435 1008 char* os::format_boot_path(const char* format_string,
duke@435 1009 const char* home,
duke@435 1010 int home_len,
duke@435 1011 char fileSep,
duke@435 1012 char pathSep) {
duke@435 1013 assert((fileSep == '/' && pathSep == ':') ||
duke@435 1014 (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
duke@435 1015
duke@435 1016 // Scan the format string to determine the length of the actual
duke@435 1017 // boot classpath, and handle platform dependencies as well.
duke@435 1018 int formatted_path_len = 0;
duke@435 1019 const char* p;
duke@435 1020 for (p = format_string; *p != 0; ++p) {
duke@435 1021 if (*p == '%') formatted_path_len += home_len - 1;
duke@435 1022 ++formatted_path_len;
duke@435 1023 }
duke@435 1024
duke@435 1025 char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
duke@435 1026 if (formatted_path == NULL) {
duke@435 1027 return NULL;
duke@435 1028 }
duke@435 1029
duke@435 1030 // Create boot classpath from format, substituting separator chars and
duke@435 1031 // java home directory.
duke@435 1032 char* q = formatted_path;
duke@435 1033 for (p = format_string; *p != 0; ++p) {
duke@435 1034 switch (*p) {
duke@435 1035 case '%':
duke@435 1036 strcpy(q, home);
duke@435 1037 q += home_len;
duke@435 1038 break;
duke@435 1039 case '/':
duke@435 1040 *q++ = fileSep;
duke@435 1041 break;
duke@435 1042 case ':':
duke@435 1043 *q++ = pathSep;
duke@435 1044 break;
duke@435 1045 default:
duke@435 1046 *q++ = *p;
duke@435 1047 }
duke@435 1048 }
duke@435 1049 *q = '\0';
duke@435 1050
duke@435 1051 assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
duke@435 1052 return formatted_path;
duke@435 1053 }
duke@435 1054
duke@435 1055
duke@435 1056 bool os::set_boot_path(char fileSep, char pathSep) {
duke@435 1057 const char* home = Arguments::get_java_home();
duke@435 1058 int home_len = (int)strlen(home);
duke@435 1059
duke@435 1060 static const char* meta_index_dir_format = "%/lib/";
duke@435 1061 static const char* meta_index_format = "%/lib/meta-index";
duke@435 1062 char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
duke@435 1063 if (meta_index == NULL) return false;
duke@435 1064 char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
duke@435 1065 if (meta_index_dir == NULL) return false;
duke@435 1066 Arguments::set_meta_index_path(meta_index, meta_index_dir);
duke@435 1067
duke@435 1068 // Any modification to the JAR-file list, for the boot classpath must be
duke@435 1069 // aligned with install/install/make/common/Pack.gmk. Note: boot class
duke@435 1070 // path class JARs, are stripped for StackMapTable to reduce download size.
duke@435 1071 static const char classpath_format[] =
duke@435 1072 "%/lib/resources.jar:"
duke@435 1073 "%/lib/rt.jar:"
duke@435 1074 "%/lib/sunrsasign.jar:"
duke@435 1075 "%/lib/jsse.jar:"
duke@435 1076 "%/lib/jce.jar:"
duke@435 1077 "%/lib/charsets.jar:"
mchung@1997 1078
mchung@1997 1079 // ## TEMPORARY hack to keep the legacy launcher working when
mchung@1997 1080 // ## only the boot module is installed (cf. j.l.ClassLoader)
mchung@1997 1081 "%/lib/modules/jdk.boot.jar:"
mchung@1997 1082
duke@435 1083 "%/classes";
duke@435 1084 char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
duke@435 1085 if (sysclasspath == NULL) return false;
duke@435 1086 Arguments::set_sysclasspath(sysclasspath);
duke@435 1087
duke@435 1088 return true;
duke@435 1089 }
duke@435 1090
phh@1126 1091 /*
phh@1126 1092 * Splits a path, based on its separator, the number of
phh@1126 1093 * elements is returned back in n.
phh@1126 1094 * It is the callers responsibility to:
phh@1126 1095 * a> check the value of n, and n may be 0.
phh@1126 1096 * b> ignore any empty path elements
phh@1126 1097 * c> free up the data.
phh@1126 1098 */
phh@1126 1099 char** os::split_path(const char* path, int* n) {
phh@1126 1100 *n = 0;
phh@1126 1101 if (path == NULL || strlen(path) == 0) {
phh@1126 1102 return NULL;
phh@1126 1103 }
phh@1126 1104 const char psepchar = *os::path_separator();
phh@1126 1105 char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1);
phh@1126 1106 if (inpath == NULL) {
phh@1126 1107 return NULL;
phh@1126 1108 }
phh@1126 1109 strncpy(inpath, path, strlen(path));
phh@1126 1110 int count = 1;
phh@1126 1111 char* p = strchr(inpath, psepchar);
phh@1126 1112 // Get a count of elements to allocate memory
phh@1126 1113 while (p != NULL) {
phh@1126 1114 count++;
phh@1126 1115 p++;
phh@1126 1116 p = strchr(p, psepchar);
phh@1126 1117 }
phh@1126 1118 char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count);
phh@1126 1119 if (opath == NULL) {
phh@1126 1120 return NULL;
phh@1126 1121 }
phh@1126 1122
phh@1126 1123 // do the actual splitting
phh@1126 1124 p = inpath;
phh@1126 1125 for (int i = 0 ; i < count ; i++) {
phh@1126 1126 size_t len = strcspn(p, os::path_separator());
phh@1126 1127 if (len > JVM_MAXPATHLEN) {
phh@1126 1128 return NULL;
phh@1126 1129 }
phh@1126 1130 // allocate the string and add terminator storage
phh@1126 1131 char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1);
phh@1126 1132 if (s == NULL) {
phh@1126 1133 return NULL;
phh@1126 1134 }
phh@1126 1135 strncpy(s, p, len);
phh@1126 1136 s[len] = '\0';
phh@1126 1137 opath[i] = s;
phh@1126 1138 p += len + 1;
phh@1126 1139 }
phh@1126 1140 FREE_C_HEAP_ARRAY(char, inpath);
phh@1126 1141 *n = count;
phh@1126 1142 return opath;
phh@1126 1143 }
phh@1126 1144
duke@435 1145 void os::set_memory_serialize_page(address page) {
duke@435 1146 int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 1147 _mem_serialize_page = (volatile int32_t *)page;
duke@435 1148 // We initialize the serialization page shift count here
duke@435 1149 // We assume a cache line size of 64 bytes
duke@435 1150 assert(SerializePageShiftCount == count,
duke@435 1151 "thread size changed, fix SerializePageShiftCount constant");
duke@435 1152 set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
duke@435 1153 }
duke@435 1154
xlu@490 1155 static volatile intptr_t SerializePageLock = 0;
xlu@490 1156
duke@435 1157 // This method is called from signal handler when SIGSEGV occurs while the current
duke@435 1158 // thread tries to store to the "read-only" memory serialize page during state
duke@435 1159 // transition.
duke@435 1160 void os::block_on_serialize_page_trap() {
duke@435 1161 if (TraceSafepoint) {
duke@435 1162 tty->print_cr("Block until the serialize page permission restored");
duke@435 1163 }
xlu@490 1164 // When VMThread is holding the SerializePageLock during modifying the
duke@435 1165 // access permission of the memory serialize page, the following call
duke@435 1166 // will block until the permission of that page is restored to rw.
duke@435 1167 // Generally, it is unsafe to manipulate locks in signal handlers, but in
duke@435 1168 // this case, it's OK as the signal is synchronous and we know precisely when
xlu@490 1169 // it can occur.
xlu@490 1170 Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
xlu@490 1171 Thread::muxRelease(&SerializePageLock);
duke@435 1172 }
duke@435 1173
duke@435 1174 // Serialize all thread state variables
duke@435 1175 void os::serialize_thread_states() {
duke@435 1176 // On some platforms such as Solaris & Linux, the time duration of the page
duke@435 1177 // permission restoration is observed to be much longer than expected due to
duke@435 1178 // scheduler starvation problem etc. To avoid the long synchronization
xlu@490 1179 // time and expensive page trap spinning, 'SerializePageLock' is used to block
xlu@490 1180 // the mutator thread if such case is encountered. See bug 6546278 for details.
xlu@490 1181 Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
coleenp@672 1182 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1183 os::vm_page_size(), MEM_PROT_READ);
coleenp@912 1184 os::protect_memory((char *)os::get_memory_serialize_page(),
coleenp@912 1185 os::vm_page_size(), MEM_PROT_RW);
xlu@490 1186 Thread::muxRelease(&SerializePageLock);
duke@435 1187 }
duke@435 1188
duke@435 1189 // Returns true if the current stack pointer is above the stack shadow
duke@435 1190 // pages, false otherwise.
duke@435 1191
duke@435 1192 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
duke@435 1193 assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
duke@435 1194 address sp = current_stack_pointer();
duke@435 1195 // Check if we have StackShadowPages above the yellow zone. This parameter
twisti@1040 1196 // is dependent on the depth of the maximum VM call stack possible from
duke@435 1197 // the handler for stack overflow. 'instanceof' in the stack overflow
duke@435 1198 // handler or a println uses at least 8k stack of VM and native code
duke@435 1199 // respectively.
duke@435 1200 const int framesize_in_bytes =
duke@435 1201 Interpreter::size_top_interpreter_activation(method()) * wordSize;
duke@435 1202 int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
duke@435 1203 * vm_page_size()) + framesize_in_bytes;
duke@435 1204 // The very lower end of the stack
duke@435 1205 address stack_limit = thread->stack_base() - thread->stack_size();
duke@435 1206 return (sp > (stack_limit + reserved_area));
duke@435 1207 }
duke@435 1208
duke@435 1209 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
duke@435 1210 uint min_pages)
duke@435 1211 {
duke@435 1212 assert(min_pages > 0, "sanity");
duke@435 1213 if (UseLargePages) {
duke@435 1214 const size_t max_page_size = region_max_size / min_pages;
duke@435 1215
duke@435 1216 for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
duke@435 1217 const size_t sz = _page_sizes[i];
duke@435 1218 const size_t mask = sz - 1;
duke@435 1219 if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
duke@435 1220 // The largest page size with no fragmentation.
duke@435 1221 return sz;
duke@435 1222 }
duke@435 1223
duke@435 1224 if (sz <= max_page_size) {
duke@435 1225 // The largest page size that satisfies the min_pages requirement.
duke@435 1226 return sz;
duke@435 1227 }
duke@435 1228 }
duke@435 1229 }
duke@435 1230
duke@435 1231 return vm_page_size();
duke@435 1232 }
duke@435 1233
duke@435 1234 #ifndef PRODUCT
duke@435 1235 void os::trace_page_sizes(const char* str, const size_t region_min_size,
duke@435 1236 const size_t region_max_size, const size_t page_size,
duke@435 1237 const char* base, const size_t size)
duke@435 1238 {
duke@435 1239 if (TracePageSizes) {
duke@435 1240 tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT
duke@435 1241 " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
duke@435 1242 " size=" SIZE_FORMAT,
duke@435 1243 str, region_min_size, region_max_size,
duke@435 1244 page_size, base, size);
duke@435 1245 }
duke@435 1246 }
duke@435 1247 #endif // #ifndef PRODUCT
duke@435 1248
duke@435 1249 // This is the working definition of a server class machine:
duke@435 1250 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
duke@435 1251 // because the graphics memory (?) sometimes masks physical memory.
duke@435 1252 // If you want to change the definition of a server class machine
duke@435 1253 // on some OS or platform, e.g., >=4GB on Windohs platforms,
duke@435 1254 // then you'll have to parameterize this method based on that state,
duke@435 1255 // as was done for logical processors here, or replicate and
duke@435 1256 // specialize this method for each platform. (Or fix os to have
duke@435 1257 // some inheritance structure and use subclassing. Sigh.)
duke@435 1258 // If you want some platform to always or never behave as a server
duke@435 1259 // class machine, change the setting of AlwaysActAsServerClassMachine
duke@435 1260 // and NeverActAsServerClassMachine in globals*.hpp.
duke@435 1261 bool os::is_server_class_machine() {
duke@435 1262 // First check for the early returns
duke@435 1263 if (NeverActAsServerClassMachine) {
duke@435 1264 return false;
duke@435 1265 }
duke@435 1266 if (AlwaysActAsServerClassMachine) {
duke@435 1267 return true;
duke@435 1268 }
duke@435 1269 // Then actually look at the machine
duke@435 1270 bool result = false;
duke@435 1271 const unsigned int server_processors = 2;
duke@435 1272 const julong server_memory = 2UL * G;
duke@435 1273 // We seem not to get our full complement of memory.
duke@435 1274 // We allow some part (1/8?) of the memory to be "missing",
duke@435 1275 // based on the sizes of DIMMs, and maybe graphics cards.
duke@435 1276 const julong missing_memory = 256UL * M;
duke@435 1277
duke@435 1278 /* Is this a server class machine? */
duke@435 1279 if ((os::active_processor_count() >= (int)server_processors) &&
duke@435 1280 (os::physical_memory() >= (server_memory - missing_memory))) {
duke@435 1281 const unsigned int logical_processors =
duke@435 1282 VM_Version::logical_processors_per_package();
duke@435 1283 if (logical_processors > 1) {
duke@435 1284 const unsigned int physical_packages =
duke@435 1285 os::active_processor_count() / logical_processors;
duke@435 1286 if (physical_packages > server_processors) {
duke@435 1287 result = true;
duke@435 1288 }
duke@435 1289 } else {
duke@435 1290 result = true;
duke@435 1291 }
duke@435 1292 }
duke@435 1293 return result;
duke@435 1294 }

mercurial