src/share/vm/opto/mulnode.cpp

Thu, 14 Feb 2019 14:31:32 +0100

author
neliasso
date
Thu, 14 Feb 2019 14:31:32 +0100
changeset 9741
7e0a4478e80f
parent 9619
71bd8f8ad1fb
child 9637
eef07cd490d4
permissions
-rw-r--r--

8087128: C2: Disallow definition split on MachCopySpill nodes
Reviewed-by: kvn

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/memnode.hpp"
stefank@2314 30 #include "opto/mulnode.hpp"
stefank@2314 31 #include "opto/phaseX.hpp"
stefank@2314 32 #include "opto/subnode.hpp"
stefank@2314 33
duke@435 34 // Portions of code courtesy of Clifford Click
duke@435 35
duke@435 36
duke@435 37 //=============================================================================
duke@435 38 //------------------------------hash-------------------------------------------
duke@435 39 // Hash function over MulNodes. Needs to be commutative; i.e., I swap
duke@435 40 // (commute) inputs to MulNodes willy-nilly so the hash function must return
duke@435 41 // the same value in the presence of edge swapping.
duke@435 42 uint MulNode::hash() const {
duke@435 43 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
duke@435 44 }
duke@435 45
duke@435 46 //------------------------------Identity---------------------------------------
duke@435 47 // Multiplying a one preserves the other argument
duke@435 48 Node *MulNode::Identity( PhaseTransform *phase ) {
duke@435 49 register const Type *one = mul_id(); // The multiplicative identity
duke@435 50 if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
duke@435 51 if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
duke@435 52
duke@435 53 return this;
duke@435 54 }
duke@435 55
duke@435 56 //------------------------------Ideal------------------------------------------
duke@435 57 // We also canonicalize the Node, moving constants to the right input,
duke@435 58 // and flatten expressions (so that 1+x+2 becomes x+3).
duke@435 59 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 60 const Type *t1 = phase->type( in(1) );
duke@435 61 const Type *t2 = phase->type( in(2) );
duke@435 62 Node *progress = NULL; // Progress flag
duke@435 63 // We are OK if right is a constant, or right is a load and
duke@435 64 // left is a non-constant.
duke@435 65 if( !(t2->singleton() ||
duke@435 66 (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
duke@435 67 if( t1->singleton() || // Left input is a constant?
duke@435 68 // Otherwise, sort inputs (commutativity) to help value numbering.
duke@435 69 (in(1)->_idx > in(2)->_idx) ) {
duke@435 70 swap_edges(1, 2);
duke@435 71 const Type *t = t1;
duke@435 72 t1 = t2;
duke@435 73 t2 = t;
duke@435 74 progress = this; // Made progress
duke@435 75 }
duke@435 76 }
duke@435 77
duke@435 78 // If the right input is a constant, and the left input is a product of a
duke@435 79 // constant, flatten the expression tree.
duke@435 80 uint op = Opcode();
duke@435 81 if( t2->singleton() && // Right input is a constant?
duke@435 82 op != Op_MulF && // Float & double cannot reassociate
duke@435 83 op != Op_MulD ) {
duke@435 84 if( t2 == Type::TOP ) return NULL;
duke@435 85 Node *mul1 = in(1);
duke@435 86 #ifdef ASSERT
duke@435 87 // Check for dead loop
duke@435 88 int op1 = mul1->Opcode();
duke@435 89 if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
duke@435 90 ( op1 == mul_opcode() || op1 == add_opcode() ) &&
duke@435 91 ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
duke@435 92 phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
duke@435 93 assert(false, "dead loop in MulNode::Ideal");
duke@435 94 #endif
duke@435 95
duke@435 96 if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply?
duke@435 97 // Mul of a constant?
duke@435 98 const Type *t12 = phase->type( mul1->in(2) );
duke@435 99 if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
duke@435 100 // Compute new constant; check for overflow
kvn@3040 101 const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
duke@435 102 if( tcon01->singleton() ) {
duke@435 103 // The Mul of the flattened expression
duke@435 104 set_req(1, mul1->in(1));
duke@435 105 set_req(2, phase->makecon( tcon01 ));
duke@435 106 t2 = tcon01;
duke@435 107 progress = this; // Made progress
duke@435 108 }
duke@435 109 }
duke@435 110 }
duke@435 111 // If the right input is a constant, and the left input is an add of a
duke@435 112 // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
duke@435 113 const Node *add1 = in(1);
duke@435 114 if( add1->Opcode() == add_opcode() ) { // Left input is an add?
duke@435 115 // Add of a constant?
duke@435 116 const Type *t12 = phase->type( add1->in(2) );
duke@435 117 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
duke@435 118 assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
duke@435 119 // Compute new constant; check for overflow
duke@435 120 const Type *tcon01 = mul_ring(t2,t12);
duke@435 121 if( tcon01->singleton() ) {
duke@435 122
duke@435 123 // Convert (X+con1)*con0 into X*con0
duke@435 124 Node *mul = clone(); // mul = ()*con0
duke@435 125 mul->set_req(1,add1->in(1)); // mul = X*con0
duke@435 126 mul = phase->transform(mul);
duke@435 127
duke@435 128 Node *add2 = add1->clone();
duke@435 129 add2->set_req(1, mul); // X*con0 + con0*con1
duke@435 130 add2->set_req(2, phase->makecon(tcon01) );
duke@435 131 progress = add2;
duke@435 132 }
duke@435 133 }
duke@435 134 } // End of is left input an add
duke@435 135 } // End of is right input a Mul
duke@435 136
duke@435 137 return progress;
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------Value-----------------------------------------
duke@435 141 const Type *MulNode::Value( PhaseTransform *phase ) const {
duke@435 142 const Type *t1 = phase->type( in(1) );
duke@435 143 const Type *t2 = phase->type( in(2) );
duke@435 144 // Either input is TOP ==> the result is TOP
duke@435 145 if( t1 == Type::TOP ) return Type::TOP;
duke@435 146 if( t2 == Type::TOP ) return Type::TOP;
duke@435 147
duke@435 148 // Either input is ZERO ==> the result is ZERO.
duke@435 149 // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
duke@435 150 int op = Opcode();
duke@435 151 if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
duke@435 152 const Type *zero = add_id(); // The multiplicative zero
duke@435 153 if( t1->higher_equal( zero ) ) return zero;
duke@435 154 if( t2->higher_equal( zero ) ) return zero;
duke@435 155 }
duke@435 156
duke@435 157 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 158 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
duke@435 159 return bottom_type();
duke@435 160
rasbold@839 161 #if defined(IA32)
rasbold@839 162 // Can't trust native compilers to properly fold strict double
rasbold@839 163 // multiplication with round-to-zero on this platform.
rasbold@839 164 if (op == Op_MulD && phase->C->method()->is_strict()) {
rasbold@839 165 return TypeD::DOUBLE;
rasbold@839 166 }
rasbold@839 167 #endif
rasbold@839 168
duke@435 169 return mul_ring(t1,t2); // Local flavor of type multiplication
duke@435 170 }
duke@435 171
duke@435 172 //=============================================================================
duke@435 173 //------------------------------Ideal------------------------------------------
duke@435 174 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
duke@435 175 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 176 // Swap constant to right
duke@435 177 jint con;
duke@435 178 if ((con = in(1)->find_int_con(0)) != 0) {
duke@435 179 swap_edges(1, 2);
duke@435 180 // Finish rest of method to use info in 'con'
duke@435 181 } else if ((con = in(2)->find_int_con(0)) == 0) {
duke@435 182 return MulNode::Ideal(phase, can_reshape);
duke@435 183 }
duke@435 184
duke@435 185 // Now we have a constant Node on the right and the constant in con
roland@9613 186 if (con == 0) return NULL; // By zero is handled by Value call
roland@9613 187 if (con == 1) return NULL; // By one is handled by Identity call
duke@435 188
duke@435 189 // Check for negative constant; if so negate the final result
duke@435 190 bool sign_flip = false;
roland@9613 191
roland@9613 192 unsigned int abs_con = uabs(con);
roland@9613 193 if (abs_con != (unsigned int)con) {
duke@435 194 sign_flip = true;
duke@435 195 }
duke@435 196
duke@435 197 // Get low bit; check for being the only bit
duke@435 198 Node *res = NULL;
roland@9613 199 unsigned int bit1 = abs_con & (0-abs_con); // Extract low bit
roland@9613 200 if (bit1 == abs_con) { // Found a power of 2?
roland@9614 201 res = new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1)));
duke@435 202 } else {
duke@435 203
duke@435 204 // Check for constant with 2 bits set
roland@9613 205 unsigned int bit2 = abs_con-bit1;
roland@9613 206 bit2 = bit2 & (0-bit2); // Extract 2nd bit
roland@9613 207 if (bit2 + bit1 == abs_con) { // Found all bits in con?
roland@9614 208 Node *n1 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1))));
roland@9614 209 Node *n2 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit2))));
roland@9613 210 res = new (phase->C) AddINode(n2, n1);
duke@435 211
roland@9613 212 } else if (is_power_of_2(abs_con+1)) {
duke@435 213 // Sleezy: power-of-2 -1. Next time be generic.
roland@9613 214 unsigned int temp = abs_con + 1;
roland@9614 215 Node *n1 = phase->transform(new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(temp))));
roland@9613 216 res = new (phase->C) SubINode(n1, in(1));
duke@435 217 } else {
duke@435 218 return MulNode::Ideal(phase, can_reshape);
duke@435 219 }
duke@435 220 }
duke@435 221
roland@9613 222 if (sign_flip) { // Need to negate result?
duke@435 223 res = phase->transform(res);// Transform, before making the zero con
kvn@4115 224 res = new (phase->C) SubINode(phase->intcon(0),res);
duke@435 225 }
duke@435 226
duke@435 227 return res; // Return final result
duke@435 228 }
duke@435 229
duke@435 230 //------------------------------mul_ring---------------------------------------
duke@435 231 // Compute the product type of two integer ranges into this node.
duke@435 232 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 233 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 234 const TypeInt *r1 = t1->is_int();
duke@435 235
duke@435 236 // Fetch endpoints of all ranges
duke@435 237 int32 lo0 = r0->_lo;
duke@435 238 double a = (double)lo0;
duke@435 239 int32 hi0 = r0->_hi;
duke@435 240 double b = (double)hi0;
duke@435 241 int32 lo1 = r1->_lo;
duke@435 242 double c = (double)lo1;
duke@435 243 int32 hi1 = r1->_hi;
duke@435 244 double d = (double)hi1;
duke@435 245
duke@435 246 // Compute all endpoints & check for overflow
aph@9610 247 int32 A = java_multiply(lo0, lo1);
duke@435 248 if( (double)A != a*c ) return TypeInt::INT; // Overflow?
aph@9610 249 int32 B = java_multiply(lo0, hi1);
duke@435 250 if( (double)B != a*d ) return TypeInt::INT; // Overflow?
aph@9610 251 int32 C = java_multiply(hi0, lo1);
duke@435 252 if( (double)C != b*c ) return TypeInt::INT; // Overflow?
aph@9610 253 int32 D = java_multiply(hi0, hi1);
duke@435 254 if( (double)D != b*d ) return TypeInt::INT; // Overflow?
duke@435 255
duke@435 256 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
duke@435 257 else { lo0 = B; hi0 = A; }
duke@435 258 if( C < D ) {
duke@435 259 if( C < lo0 ) lo0 = C;
duke@435 260 if( D > hi0 ) hi0 = D;
duke@435 261 } else {
duke@435 262 if( D < lo0 ) lo0 = D;
duke@435 263 if( C > hi0 ) hi0 = C;
duke@435 264 }
duke@435 265 return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 //=============================================================================
duke@435 270 //------------------------------Ideal------------------------------------------
duke@435 271 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
duke@435 272 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 273 // Swap constant to right
duke@435 274 jlong con;
duke@435 275 if ((con = in(1)->find_long_con(0)) != 0) {
duke@435 276 swap_edges(1, 2);
duke@435 277 // Finish rest of method to use info in 'con'
duke@435 278 } else if ((con = in(2)->find_long_con(0)) == 0) {
duke@435 279 return MulNode::Ideal(phase, can_reshape);
duke@435 280 }
duke@435 281
duke@435 282 // Now we have a constant Node on the right and the constant in con
roland@9613 283 if (con == CONST64(0)) return NULL; // By zero is handled by Value call
roland@9613 284 if (con == CONST64(1)) return NULL; // By one is handled by Identity call
duke@435 285
duke@435 286 // Check for negative constant; if so negate the final result
duke@435 287 bool sign_flip = false;
roland@9619 288 julong abs_con = uabs(con);
roland@9619 289 if (abs_con != (julong)con) {
duke@435 290 sign_flip = true;
duke@435 291 }
duke@435 292
duke@435 293 // Get low bit; check for being the only bit
duke@435 294 Node *res = NULL;
roland@9619 295 julong bit1 = abs_con & (0-abs_con); // Extract low bit
roland@9613 296 if (bit1 == abs_con) { // Found a power of 2?
roland@9613 297 res = new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1)));
duke@435 298 } else {
duke@435 299
duke@435 300 // Check for constant with 2 bits set
roland@9619 301 julong bit2 = abs_con-bit1;
roland@9613 302 bit2 = bit2 & (0-bit2); // Extract 2nd bit
roland@9613 303 if (bit2 + bit1 == abs_con) { // Found all bits in con?
roland@9613 304 Node *n1 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1))));
roland@9613 305 Node *n2 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit2))));
roland@9613 306 res = new (phase->C) AddLNode(n2, n1);
duke@435 307
roland@9613 308 } else if (is_power_of_2_long(abs_con+1)) {
duke@435 309 // Sleezy: power-of-2 -1. Next time be generic.
roland@9619 310 julong temp = abs_con + 1;
roland@9613 311 Node *n1 = phase->transform( new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(temp))));
roland@9613 312 res = new (phase->C) SubLNode(n1, in(1));
duke@435 313 } else {
duke@435 314 return MulNode::Ideal(phase, can_reshape);
duke@435 315 }
duke@435 316 }
duke@435 317
roland@9613 318 if (sign_flip) { // Need to negate result?
duke@435 319 res = phase->transform(res);// Transform, before making the zero con
kvn@4115 320 res = new (phase->C) SubLNode(phase->longcon(0),res);
duke@435 321 }
duke@435 322
duke@435 323 return res; // Return final result
duke@435 324 }
duke@435 325
duke@435 326 //------------------------------mul_ring---------------------------------------
duke@435 327 // Compute the product type of two integer ranges into this node.
duke@435 328 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 329 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 330 const TypeLong *r1 = t1->is_long();
duke@435 331
duke@435 332 // Fetch endpoints of all ranges
duke@435 333 jlong lo0 = r0->_lo;
duke@435 334 double a = (double)lo0;
duke@435 335 jlong hi0 = r0->_hi;
duke@435 336 double b = (double)hi0;
duke@435 337 jlong lo1 = r1->_lo;
duke@435 338 double c = (double)lo1;
duke@435 339 jlong hi1 = r1->_hi;
duke@435 340 double d = (double)hi1;
duke@435 341
duke@435 342 // Compute all endpoints & check for overflow
aph@9610 343 jlong A = java_multiply(lo0, lo1);
duke@435 344 if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
aph@9610 345 jlong B = java_multiply(lo0, hi1);
duke@435 346 if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
aph@9610 347 jlong C = java_multiply(hi0, lo1);
duke@435 348 if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
aph@9610 349 jlong D = java_multiply(hi0, hi1);
duke@435 350 if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
duke@435 351
duke@435 352 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
duke@435 353 else { lo0 = B; hi0 = A; }
duke@435 354 if( C < D ) {
duke@435 355 if( C < lo0 ) lo0 = C;
duke@435 356 if( D > hi0 ) hi0 = D;
duke@435 357 } else {
duke@435 358 if( D < lo0 ) lo0 = D;
duke@435 359 if( C > hi0 ) hi0 = C;
duke@435 360 }
duke@435 361 return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
duke@435 362 }
duke@435 363
duke@435 364 //=============================================================================
duke@435 365 //------------------------------mul_ring---------------------------------------
duke@435 366 // Compute the product type of two double ranges into this node.
duke@435 367 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 368 if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
duke@435 369 return TypeF::make( t0->getf() * t1->getf() );
duke@435 370 }
duke@435 371
duke@435 372 //=============================================================================
duke@435 373 //------------------------------mul_ring---------------------------------------
duke@435 374 // Compute the product type of two double ranges into this node.
duke@435 375 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
duke@435 376 if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
rasbold@839 377 // We must be multiplying 2 double constants.
duke@435 378 return TypeD::make( t0->getd() * t1->getd() );
duke@435 379 }
duke@435 380
duke@435 381 //=============================================================================
rasbold@580 382 //------------------------------Value------------------------------------------
rasbold@580 383 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
rasbold@580 384 // Either input is TOP ==> the result is TOP
rasbold@580 385 const Type *t1 = phase->type( in(1) );
rasbold@580 386 const Type *t2 = phase->type( in(2) );
rasbold@580 387 if( t1 == Type::TOP ) return Type::TOP;
rasbold@580 388 if( t2 == Type::TOP ) return Type::TOP;
rasbold@580 389
rasbold@580 390 // Either input is BOTTOM ==> the result is the local BOTTOM
rasbold@580 391 const Type *bot = bottom_type();
rasbold@580 392 if( (t1 == bot) || (t2 == bot) ||
rasbold@580 393 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
rasbold@580 394 return bot;
rasbold@580 395
rasbold@580 396 // It is not worth trying to constant fold this stuff!
rasbold@580 397 return TypeLong::LONG;
rasbold@580 398 }
rasbold@580 399
rasbold@580 400 //=============================================================================
duke@435 401 //------------------------------mul_ring---------------------------------------
duke@435 402 // Supplied function returns the product of the inputs IN THE CURRENT RING.
duke@435 403 // For the logical operations the ring's MUL is really a logical AND function.
duke@435 404 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 405 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 406 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
duke@435 407 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 408 const TypeInt *r1 = t1->is_int();
duke@435 409 int widen = MAX2(r0->_widen,r1->_widen);
duke@435 410
duke@435 411 // If either input is a constant, might be able to trim cases
duke@435 412 if( !r0->is_con() && !r1->is_con() )
duke@435 413 return TypeInt::INT; // No constants to be had
duke@435 414
duke@435 415 // Both constants? Return bits
duke@435 416 if( r0->is_con() && r1->is_con() )
duke@435 417 return TypeInt::make( r0->get_con() & r1->get_con() );
duke@435 418
duke@435 419 if( r0->is_con() && r0->get_con() > 0 )
duke@435 420 return TypeInt::make(0, r0->get_con(), widen);
duke@435 421
duke@435 422 if( r1->is_con() && r1->get_con() > 0 )
duke@435 423 return TypeInt::make(0, r1->get_con(), widen);
duke@435 424
duke@435 425 if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
duke@435 426 return TypeInt::BOOL;
duke@435 427 }
duke@435 428
duke@435 429 return TypeInt::INT; // No constants to be had
duke@435 430 }
duke@435 431
duke@435 432 //------------------------------Identity---------------------------------------
duke@435 433 // Masking off the high bits of an unsigned load is not required
duke@435 434 Node *AndINode::Identity( PhaseTransform *phase ) {
duke@435 435
duke@435 436 // x & x => x
duke@435 437 if (phase->eqv(in(1), in(2))) return in(1);
duke@435 438
twisti@1259 439 Node* in1 = in(1);
twisti@1259 440 uint op = in1->Opcode();
twisti@1259 441 const TypeInt* t2 = phase->type(in(2))->isa_int();
twisti@1259 442 if (t2 && t2->is_con()) {
duke@435 443 int con = t2->get_con();
duke@435 444 // Masking off high bits which are always zero is useless.
duke@435 445 const TypeInt* t1 = phase->type( in(1) )->isa_int();
duke@435 446 if (t1 != NULL && t1->_lo >= 0) {
roland@9614 447 jint t1_support = right_n_bits(1 + log2_jint(t1->_hi));
duke@435 448 if ((t1_support & con) == t1_support)
twisti@1259 449 return in1;
duke@435 450 }
duke@435 451 // Masking off the high bits of a unsigned-shift-right is not
duke@435 452 // needed either.
twisti@1259 453 if (op == Op_URShiftI) {
twisti@1259 454 const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
twisti@1259 455 if (t12 && t12->is_con()) { // Shift is by a constant
twisti@994 456 int shift = t12->get_con();
twisti@994 457 shift &= BitsPerJavaInteger - 1; // semantics of Java shifts
twisti@994 458 int mask = max_juint >> shift;
twisti@1259 459 if ((mask & con) == mask) // If AND is useless, skip it
twisti@1259 460 return in1;
duke@435 461 }
duke@435 462 }
duke@435 463 }
duke@435 464 return MulNode::Identity(phase);
duke@435 465 }
duke@435 466
duke@435 467 //------------------------------Ideal------------------------------------------
duke@435 468 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 469 // Special case constant AND mask
duke@435 470 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 471 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
duke@435 472 const int mask = t2->get_con();
duke@435 473 Node *load = in(1);
duke@435 474 uint lop = load->Opcode();
duke@435 475
duke@435 476 // Masking bits off of a Character? Hi bits are already zero.
twisti@993 477 if( lop == Op_LoadUS &&
duke@435 478 (mask & 0xFFFF0000) ) // Can we make a smaller mask?
kvn@4115 479 return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF));
duke@435 480
duke@435 481 // Masking bits off of a Short? Loading a Character does some masking
vlivanov@4202 482 if (can_reshape &&
vlivanov@4202 483 load->outcnt() == 1 && load->unique_out() == this) {
vlivanov@4202 484 if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
vlivanov@4202 485 Node *ldus = new (phase->C) LoadUSNode(load->in(MemNode::Control),
vlivanov@4202 486 load->in(MemNode::Memory),
vlivanov@4202 487 load->in(MemNode::Address),
goetz@6479 488 load->adr_type(),
goetz@6479 489 TypeInt::CHAR, MemNode::unordered);
vlivanov@4202 490 ldus = phase->transform(ldus);
vlivanov@4202 491 return new (phase->C) AndINode(ldus, phase->intcon(mask & 0xFFFF));
vlivanov@4202 492 }
duke@435 493
vlivanov@4202 494 // Masking sign bits off of a Byte? Do an unsigned byte load plus
vlivanov@4202 495 // an and.
vlivanov@4202 496 if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
vlivanov@4202 497 Node* ldub = new (phase->C) LoadUBNode(load->in(MemNode::Control),
vlivanov@4202 498 load->in(MemNode::Memory),
vlivanov@4202 499 load->in(MemNode::Address),
goetz@6479 500 load->adr_type(),
goetz@6479 501 TypeInt::UBYTE, MemNode::unordered);
vlivanov@4202 502 ldub = phase->transform(ldub);
vlivanov@4202 503 return new (phase->C) AndINode(ldub, phase->intcon(mask));
vlivanov@4202 504 }
duke@435 505 }
duke@435 506
duke@435 507 // Masking off sign bits? Dont make them!
duke@435 508 if( lop == Op_RShiftI ) {
duke@435 509 const TypeInt *t12 = phase->type(load->in(2))->isa_int();
duke@435 510 if( t12 && t12->is_con() ) { // Shift is by a constant
duke@435 511 int shift = t12->get_con();
duke@435 512 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 513 const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
duke@435 514 // If the AND'ing of the 2 masks has no bits, then only original shifted
duke@435 515 // bits survive. NO sign-extension bits survive the maskings.
duke@435 516 if( (sign_bits_mask & mask) == 0 ) {
duke@435 517 // Use zero-fill shift instead
kvn@4115 518 Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2)));
kvn@4115 519 return new (phase->C) AndINode( zshift, in(2) );
duke@435 520 }
duke@435 521 }
duke@435 522 }
duke@435 523
duke@435 524 // Check for 'negate/and-1', a pattern emitted when someone asks for
duke@435 525 // 'mod 2'. Negate leaves the low order bit unchanged (think: complement
duke@435 526 // plus 1) and the mask is of the low order bit. Skip the negate.
duke@435 527 if( lop == Op_SubI && mask == 1 && load->in(1) &&
duke@435 528 phase->type(load->in(1)) == TypeInt::ZERO )
kvn@4115 529 return new (phase->C) AndINode( load->in(2), in(2) );
duke@435 530
duke@435 531 return MulNode::Ideal(phase, can_reshape);
duke@435 532 }
duke@435 533
duke@435 534 //=============================================================================
duke@435 535 //------------------------------mul_ring---------------------------------------
duke@435 536 // Supplied function returns the product of the inputs IN THE CURRENT RING.
duke@435 537 // For the logical operations the ring's MUL is really a logical AND function.
duke@435 538 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 539 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 540 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
duke@435 541 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 542 const TypeLong *r1 = t1->is_long();
duke@435 543 int widen = MAX2(r0->_widen,r1->_widen);
duke@435 544
duke@435 545 // If either input is a constant, might be able to trim cases
duke@435 546 if( !r0->is_con() && !r1->is_con() )
duke@435 547 return TypeLong::LONG; // No constants to be had
duke@435 548
duke@435 549 // Both constants? Return bits
duke@435 550 if( r0->is_con() && r1->is_con() )
duke@435 551 return TypeLong::make( r0->get_con() & r1->get_con() );
duke@435 552
duke@435 553 if( r0->is_con() && r0->get_con() > 0 )
duke@435 554 return TypeLong::make(CONST64(0), r0->get_con(), widen);
duke@435 555
duke@435 556 if( r1->is_con() && r1->get_con() > 0 )
duke@435 557 return TypeLong::make(CONST64(0), r1->get_con(), widen);
duke@435 558
duke@435 559 return TypeLong::LONG; // No constants to be had
duke@435 560 }
duke@435 561
duke@435 562 //------------------------------Identity---------------------------------------
duke@435 563 // Masking off the high bits of an unsigned load is not required
duke@435 564 Node *AndLNode::Identity( PhaseTransform *phase ) {
duke@435 565
duke@435 566 // x & x => x
duke@435 567 if (phase->eqv(in(1), in(2))) return in(1);
duke@435 568
duke@435 569 Node *usr = in(1);
duke@435 570 const TypeLong *t2 = phase->type( in(2) )->isa_long();
duke@435 571 if( t2 && t2->is_con() ) {
duke@435 572 jlong con = t2->get_con();
duke@435 573 // Masking off high bits which are always zero is useless.
duke@435 574 const TypeLong* t1 = phase->type( in(1) )->isa_long();
duke@435 575 if (t1 != NULL && t1->_lo >= 0) {
aph@9610 576 int bit_count = log2_long(t1->_hi) + 1;
aph@9610 577 jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
duke@435 578 if ((t1_support & con) == t1_support)
duke@435 579 return usr;
duke@435 580 }
duke@435 581 uint lop = usr->Opcode();
duke@435 582 // Masking off the high bits of a unsigned-shift-right is not
duke@435 583 // needed either.
duke@435 584 if( lop == Op_URShiftL ) {
duke@435 585 const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
twisti@994 586 if( t12 && t12->is_con() ) { // Shift is by a constant
twisti@994 587 int shift = t12->get_con();
twisti@994 588 shift &= BitsPerJavaLong - 1; // semantics of Java shifts
twisti@994 589 jlong mask = max_julong >> shift;
duke@435 590 if( (mask&con) == mask ) // If AND is useless, skip it
duke@435 591 return usr;
duke@435 592 }
duke@435 593 }
duke@435 594 }
duke@435 595 return MulNode::Identity(phase);
duke@435 596 }
duke@435 597
duke@435 598 //------------------------------Ideal------------------------------------------
duke@435 599 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 600 // Special case constant AND mask
duke@435 601 const TypeLong *t2 = phase->type( in(2) )->isa_long();
duke@435 602 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
duke@435 603 const jlong mask = t2->get_con();
duke@435 604
twisti@1059 605 Node* in1 = in(1);
twisti@1059 606 uint op = in1->Opcode();
twisti@1059 607
twisti@1259 608 // Are we masking a long that was converted from an int with a mask
twisti@1332 609 // that fits in 32-bits? Commute them and use an AndINode. Don't
twisti@1332 610 // convert masks which would cause a sign extension of the integer
twisti@1332 611 // value. This check includes UI2L masks (0x00000000FFFFFFFF) which
twisti@1332 612 // would be optimized away later in Identity.
twisti@1332 613 if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
kvn@4115 614 Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask));
twisti@1332 615 andi = phase->transform(andi);
kvn@4115 616 return new (phase->C) ConvI2LNode(andi);
twisti@1259 617 }
twisti@1259 618
duke@435 619 // Masking off sign bits? Dont make them!
twisti@1059 620 if (op == Op_RShiftL) {
twisti@1259 621 const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
duke@435 622 if( t12 && t12->is_con() ) { // Shift is by a constant
duke@435 623 int shift = t12->get_con();
twisti@994 624 shift &= BitsPerJavaLong - 1; // semantics of Java shifts
twisti@994 625 const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
duke@435 626 // If the AND'ing of the 2 masks has no bits, then only original shifted
duke@435 627 // bits survive. NO sign-extension bits survive the maskings.
duke@435 628 if( (sign_bits_mask & mask) == 0 ) {
duke@435 629 // Use zero-fill shift instead
kvn@4115 630 Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2)));
kvn@4115 631 return new (phase->C) AndLNode(zshift, in(2));
duke@435 632 }
duke@435 633 }
duke@435 634 }
duke@435 635
duke@435 636 return MulNode::Ideal(phase, can_reshape);
duke@435 637 }
duke@435 638
duke@435 639 //=============================================================================
duke@435 640 //------------------------------Identity---------------------------------------
duke@435 641 Node *LShiftINode::Identity( PhaseTransform *phase ) {
duke@435 642 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 643 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
duke@435 644 }
duke@435 645
duke@435 646 //------------------------------Ideal------------------------------------------
duke@435 647 // If the right input is a constant, and the left input is an add of a
duke@435 648 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
duke@435 649 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 650 const Type *t = phase->type( in(2) );
duke@435 651 if( t == Type::TOP ) return NULL; // Right input is dead
duke@435 652 const TypeInt *t2 = t->isa_int();
duke@435 653 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 654 const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count
duke@435 655
duke@435 656 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 657
duke@435 658 // Left input is an add of a constant?
duke@435 659 Node *add1 = in(1);
duke@435 660 int add1_op = add1->Opcode();
duke@435 661 if( add1_op == Op_AddI ) { // Left input is an add?
duke@435 662 assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
duke@435 663 const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
duke@435 664 if( t12 && t12->is_con() ){ // Left input is an add of a con?
duke@435 665 // Transform is legal, but check for profit. Avoid breaking 'i2s'
duke@435 666 // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
duke@435 667 if( con < 16 ) {
duke@435 668 // Compute X << con0
kvn@4115 669 Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) );
duke@435 670 // Compute X<<con0 + (con1<<con0)
kvn@4115 671 return new (phase->C) AddINode( lsh, phase->intcon(t12->get_con() << con));
duke@435 672 }
duke@435 673 }
duke@435 674 }
duke@435 675
duke@435 676 // Check for "(x>>c0)<<c0" which just masks off low bits
duke@435 677 if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
duke@435 678 add1->in(2) == in(2) )
duke@435 679 // Convert to "(x & -(1<<c0))"
kvn@4115 680 return new (phase->C) AndINode(add1->in(1),phase->intcon( -(1<<con)));
duke@435 681
duke@435 682 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
duke@435 683 if( add1_op == Op_AndI ) {
duke@435 684 Node *add2 = add1->in(1);
duke@435 685 int add2_op = add2->Opcode();
duke@435 686 if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
duke@435 687 add2->in(2) == in(2) ) {
duke@435 688 // Convert to "(x & (Y<<c0))"
kvn@4115 689 Node *y_sh = phase->transform( new (phase->C) LShiftINode( add1->in(2), in(2) ) );
kvn@4115 690 return new (phase->C) AndINode( add2->in(1), y_sh );
duke@435 691 }
duke@435 692 }
duke@435 693
duke@435 694 // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
duke@435 695 // before shifting them away.
duke@435 696 const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
duke@435 697 if( add1_op == Op_AndI &&
duke@435 698 phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
kvn@4115 699 return new (phase->C) LShiftINode( add1->in(1), in(2) );
duke@435 700
duke@435 701 return NULL;
duke@435 702 }
duke@435 703
duke@435 704 //------------------------------Value------------------------------------------
duke@435 705 // A LShiftINode shifts its input2 left by input1 amount.
duke@435 706 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
duke@435 707 const Type *t1 = phase->type( in(1) );
duke@435 708 const Type *t2 = phase->type( in(2) );
duke@435 709 // Either input is TOP ==> the result is TOP
duke@435 710 if( t1 == Type::TOP ) return Type::TOP;
duke@435 711 if( t2 == Type::TOP ) return Type::TOP;
duke@435 712
duke@435 713 // Left input is ZERO ==> the result is ZERO.
duke@435 714 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 715 // Shift by zero does nothing
duke@435 716 if( t2 == TypeInt::ZERO ) return t1;
duke@435 717
duke@435 718 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 719 if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
duke@435 720 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 721 return TypeInt::INT;
duke@435 722
duke@435 723 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 724 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 725
duke@435 726 if (!r2->is_con())
duke@435 727 return TypeInt::INT;
duke@435 728
duke@435 729 uint shift = r2->get_con();
duke@435 730 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 731 // Shift by a multiple of 32 does nothing:
duke@435 732 if (shift == 0) return t1;
duke@435 733
duke@435 734 // If the shift is a constant, shift the bounds of the type,
duke@435 735 // unless this could lead to an overflow.
duke@435 736 if (!r1->is_con()) {
duke@435 737 jint lo = r1->_lo, hi = r1->_hi;
duke@435 738 if (((lo << shift) >> shift) == lo &&
duke@435 739 ((hi << shift) >> shift) == hi) {
duke@435 740 // No overflow. The range shifts up cleanly.
duke@435 741 return TypeInt::make((jint)lo << (jint)shift,
duke@435 742 (jint)hi << (jint)shift,
duke@435 743 MAX2(r1->_widen,r2->_widen));
duke@435 744 }
duke@435 745 return TypeInt::INT;
duke@435 746 }
duke@435 747
duke@435 748 return TypeInt::make( (jint)r1->get_con() << (jint)shift );
duke@435 749 }
duke@435 750
duke@435 751 //=============================================================================
duke@435 752 //------------------------------Identity---------------------------------------
duke@435 753 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 754 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 755 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 756 }
duke@435 757
duke@435 758 //------------------------------Ideal------------------------------------------
duke@435 759 // If the right input is a constant, and the left input is an add of a
duke@435 760 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
duke@435 761 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 762 const Type *t = phase->type( in(2) );
duke@435 763 if( t == Type::TOP ) return NULL; // Right input is dead
duke@435 764 const TypeInt *t2 = t->isa_int();
duke@435 765 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 766 const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count
duke@435 767
duke@435 768 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 769
duke@435 770 // Left input is an add of a constant?
duke@435 771 Node *add1 = in(1);
duke@435 772 int add1_op = add1->Opcode();
duke@435 773 if( add1_op == Op_AddL ) { // Left input is an add?
duke@435 774 // Avoid dead data cycles from dead loops
duke@435 775 assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
duke@435 776 const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
duke@435 777 if( t12 && t12->is_con() ){ // Left input is an add of a con?
duke@435 778 // Compute X << con0
kvn@4115 779 Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) );
duke@435 780 // Compute X<<con0 + (con1<<con0)
kvn@4115 781 return new (phase->C) AddLNode( lsh, phase->longcon(t12->get_con() << con));
duke@435 782 }
duke@435 783 }
duke@435 784
duke@435 785 // Check for "(x>>c0)<<c0" which just masks off low bits
duke@435 786 if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
duke@435 787 add1->in(2) == in(2) )
duke@435 788 // Convert to "(x & -(1<<c0))"
kvn@4115 789 return new (phase->C) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
duke@435 790
duke@435 791 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
duke@435 792 if( add1_op == Op_AndL ) {
duke@435 793 Node *add2 = add1->in(1);
duke@435 794 int add2_op = add2->Opcode();
duke@435 795 if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
duke@435 796 add2->in(2) == in(2) ) {
duke@435 797 // Convert to "(x & (Y<<c0))"
kvn@4115 798 Node *y_sh = phase->transform( new (phase->C) LShiftLNode( add1->in(2), in(2) ) );
kvn@4115 799 return new (phase->C) AndLNode( add2->in(1), y_sh );
duke@435 800 }
duke@435 801 }
duke@435 802
duke@435 803 // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
duke@435 804 // before shifting them away.
aph@9610 805 const jlong bits_mask = jlong(max_julong >> con);
duke@435 806 if( add1_op == Op_AndL &&
duke@435 807 phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
kvn@4115 808 return new (phase->C) LShiftLNode( add1->in(1), in(2) );
duke@435 809
duke@435 810 return NULL;
duke@435 811 }
duke@435 812
duke@435 813 //------------------------------Value------------------------------------------
duke@435 814 // A LShiftLNode shifts its input2 left by input1 amount.
duke@435 815 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 816 const Type *t1 = phase->type( in(1) );
duke@435 817 const Type *t2 = phase->type( in(2) );
duke@435 818 // Either input is TOP ==> the result is TOP
duke@435 819 if( t1 == Type::TOP ) return Type::TOP;
duke@435 820 if( t2 == Type::TOP ) return Type::TOP;
duke@435 821
duke@435 822 // Left input is ZERO ==> the result is ZERO.
duke@435 823 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 824 // Shift by zero does nothing
duke@435 825 if( t2 == TypeInt::ZERO ) return t1;
duke@435 826
duke@435 827 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 828 if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
duke@435 829 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 830 return TypeLong::LONG;
duke@435 831
duke@435 832 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 833 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 834
duke@435 835 if (!r2->is_con())
duke@435 836 return TypeLong::LONG;
duke@435 837
duke@435 838 uint shift = r2->get_con();
twisti@994 839 shift &= BitsPerJavaLong - 1; // semantics of Java shifts
duke@435 840 // Shift by a multiple of 64 does nothing:
duke@435 841 if (shift == 0) return t1;
duke@435 842
duke@435 843 // If the shift is a constant, shift the bounds of the type,
duke@435 844 // unless this could lead to an overflow.
duke@435 845 if (!r1->is_con()) {
duke@435 846 jlong lo = r1->_lo, hi = r1->_hi;
duke@435 847 if (((lo << shift) >> shift) == lo &&
duke@435 848 ((hi << shift) >> shift) == hi) {
duke@435 849 // No overflow. The range shifts up cleanly.
duke@435 850 return TypeLong::make((jlong)lo << (jint)shift,
duke@435 851 (jlong)hi << (jint)shift,
duke@435 852 MAX2(r1->_widen,r2->_widen));
duke@435 853 }
duke@435 854 return TypeLong::LONG;
duke@435 855 }
duke@435 856
duke@435 857 return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
duke@435 858 }
duke@435 859
duke@435 860 //=============================================================================
duke@435 861 //------------------------------Identity---------------------------------------
duke@435 862 Node *RShiftINode::Identity( PhaseTransform *phase ) {
duke@435 863 const TypeInt *t2 = phase->type(in(2))->isa_int();
duke@435 864 if( !t2 ) return this;
duke@435 865 if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
duke@435 866 return in(1);
duke@435 867
duke@435 868 // Check for useless sign-masking
duke@435 869 if( in(1)->Opcode() == Op_LShiftI &&
duke@435 870 in(1)->req() == 3 &&
duke@435 871 in(1)->in(2) == in(2) &&
duke@435 872 t2->is_con() ) {
duke@435 873 uint shift = t2->get_con();
duke@435 874 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 875 // Compute masks for which this shifting doesn't change
duke@435 876 int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
duke@435 877 int hi = ~lo; // 00007FFF
duke@435 878 const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
duke@435 879 if( !t11 ) return this;
duke@435 880 // Does actual value fit inside of mask?
duke@435 881 if( lo <= t11->_lo && t11->_hi <= hi )
duke@435 882 return in(1)->in(1); // Then shifting is a nop
duke@435 883 }
duke@435 884
duke@435 885 return this;
duke@435 886 }
duke@435 887
duke@435 888 //------------------------------Ideal------------------------------------------
duke@435 889 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 890 // Inputs may be TOP if they are dead.
duke@435 891 const TypeInt *t1 = phase->type( in(1) )->isa_int();
duke@435 892 if( !t1 ) return NULL; // Left input is an integer
duke@435 893 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 894 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 895 const TypeInt *t3; // type of in(1).in(2)
duke@435 896 int shift = t2->get_con();
duke@435 897 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 898
duke@435 899 if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count
duke@435 900
duke@435 901 // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
duke@435 902 // Such expressions arise normally from shift chains like (byte)(x >> 24).
duke@435 903 const Node *mask = in(1);
duke@435 904 if( mask->Opcode() == Op_AndI &&
duke@435 905 (t3 = phase->type(mask->in(2))->isa_int()) &&
duke@435 906 t3->is_con() ) {
duke@435 907 Node *x = mask->in(1);
duke@435 908 jint maskbits = t3->get_con();
duke@435 909 // Convert to "(x >> shift) & (mask >> shift)"
kvn@4115 910 Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) );
kvn@4115 911 return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
duke@435 912 }
duke@435 913
duke@435 914 // Check for "(short[i] <<16)>>16" which simply sign-extends
duke@435 915 const Node *shl = in(1);
duke@435 916 if( shl->Opcode() != Op_LShiftI ) return NULL;
duke@435 917
duke@435 918 if( shift == 16 &&
duke@435 919 (t3 = phase->type(shl->in(2))->isa_int()) &&
duke@435 920 t3->is_con(16) ) {
duke@435 921 Node *ld = shl->in(1);
duke@435 922 if( ld->Opcode() == Op_LoadS ) {
duke@435 923 // Sign extension is just useless here. Return a RShiftI of zero instead
duke@435 924 // returning 'ld' directly. We cannot return an old Node directly as
duke@435 925 // that is the job of 'Identity' calls and Identity calls only work on
duke@435 926 // direct inputs ('ld' is an extra Node removed from 'this'). The
duke@435 927 // combined optimization requires Identity only return direct inputs.
duke@435 928 set_req(1, ld);
duke@435 929 set_req(2, phase->intcon(0));
duke@435 930 return this;
duke@435 931 }
vlivanov@4202 932 else if( can_reshape &&
vlivanov@4202 933 ld->Opcode() == Op_LoadUS &&
vlivanov@4202 934 ld->outcnt() == 1 && ld->unique_out() == shl)
duke@435 935 // Replace zero-extension-load with sign-extension-load
kvn@4115 936 return new (phase->C) LoadSNode( ld->in(MemNode::Control),
goetz@6479 937 ld->in(MemNode::Memory),
goetz@6479 938 ld->in(MemNode::Address),
goetz@6479 939 ld->adr_type(), TypeInt::SHORT,
goetz@6479 940 MemNode::unordered);
duke@435 941 }
duke@435 942
duke@435 943 // Check for "(byte[i] <<24)>>24" which simply sign-extends
duke@435 944 if( shift == 24 &&
duke@435 945 (t3 = phase->type(shl->in(2))->isa_int()) &&
duke@435 946 t3->is_con(24) ) {
duke@435 947 Node *ld = shl->in(1);
duke@435 948 if( ld->Opcode() == Op_LoadB ) {
duke@435 949 // Sign extension is just useless here
duke@435 950 set_req(1, ld);
duke@435 951 set_req(2, phase->intcon(0));
duke@435 952 return this;
duke@435 953 }
duke@435 954 }
duke@435 955
duke@435 956 return NULL;
duke@435 957 }
duke@435 958
duke@435 959 //------------------------------Value------------------------------------------
duke@435 960 // A RShiftINode shifts its input2 right by input1 amount.
duke@435 961 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
duke@435 962 const Type *t1 = phase->type( in(1) );
duke@435 963 const Type *t2 = phase->type( in(2) );
duke@435 964 // Either input is TOP ==> the result is TOP
duke@435 965 if( t1 == Type::TOP ) return Type::TOP;
duke@435 966 if( t2 == Type::TOP ) return Type::TOP;
duke@435 967
duke@435 968 // Left input is ZERO ==> the result is ZERO.
duke@435 969 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 970 // Shift by zero does nothing
duke@435 971 if( t2 == TypeInt::ZERO ) return t1;
duke@435 972
duke@435 973 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 974 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 975 return TypeInt::INT;
duke@435 976
duke@435 977 if (t2 == TypeInt::INT)
duke@435 978 return TypeInt::INT;
duke@435 979
duke@435 980 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 981 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 982
duke@435 983 // If the shift is a constant, just shift the bounds of the type.
duke@435 984 // For example, if the shift is 31, we just propagate sign bits.
duke@435 985 if (r2->is_con()) {
duke@435 986 uint shift = r2->get_con();
duke@435 987 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 988 // Shift by a multiple of 32 does nothing:
duke@435 989 if (shift == 0) return t1;
duke@435 990 // Calculate reasonably aggressive bounds for the result.
duke@435 991 // This is necessary if we are to correctly type things
duke@435 992 // like (x<<24>>24) == ((byte)x).
duke@435 993 jint lo = (jint)r1->_lo >> (jint)shift;
duke@435 994 jint hi = (jint)r1->_hi >> (jint)shift;
duke@435 995 assert(lo <= hi, "must have valid bounds");
duke@435 996 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 997 #ifdef ASSERT
duke@435 998 // Make sure we get the sign-capture idiom correct.
duke@435 999 if (shift == BitsPerJavaInteger-1) {
duke@435 1000 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0");
duke@435 1001 if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
duke@435 1002 }
duke@435 1003 #endif
duke@435 1004 return ti;
duke@435 1005 }
duke@435 1006
duke@435 1007 if( !r1->is_con() || !r2->is_con() )
duke@435 1008 return TypeInt::INT;
duke@435 1009
duke@435 1010 // Signed shift right
duke@435 1011 return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
duke@435 1012 }
duke@435 1013
duke@435 1014 //=============================================================================
duke@435 1015 //------------------------------Identity---------------------------------------
duke@435 1016 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 1017 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 1018 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 1019 }
duke@435 1020
duke@435 1021 //------------------------------Value------------------------------------------
duke@435 1022 // A RShiftLNode shifts its input2 right by input1 amount.
duke@435 1023 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 1024 const Type *t1 = phase->type( in(1) );
duke@435 1025 const Type *t2 = phase->type( in(2) );
duke@435 1026 // Either input is TOP ==> the result is TOP
duke@435 1027 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1028 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1029
duke@435 1030 // Left input is ZERO ==> the result is ZERO.
duke@435 1031 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1032 // Shift by zero does nothing
duke@435 1033 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1034
duke@435 1035 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1036 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1037 return TypeLong::LONG;
duke@435 1038
duke@435 1039 if (t2 == TypeInt::INT)
duke@435 1040 return TypeLong::LONG;
duke@435 1041
duke@435 1042 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 1043 const TypeInt *r2 = t2->is_int (); // Handy access
duke@435 1044
duke@435 1045 // If the shift is a constant, just shift the bounds of the type.
duke@435 1046 // For example, if the shift is 63, we just propagate sign bits.
duke@435 1047 if (r2->is_con()) {
duke@435 1048 uint shift = r2->get_con();
duke@435 1049 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
duke@435 1050 // Shift by a multiple of 64 does nothing:
duke@435 1051 if (shift == 0) return t1;
duke@435 1052 // Calculate reasonably aggressive bounds for the result.
duke@435 1053 // This is necessary if we are to correctly type things
duke@435 1054 // like (x<<24>>24) == ((byte)x).
duke@435 1055 jlong lo = (jlong)r1->_lo >> (jlong)shift;
duke@435 1056 jlong hi = (jlong)r1->_hi >> (jlong)shift;
duke@435 1057 assert(lo <= hi, "must have valid bounds");
duke@435 1058 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1059 #ifdef ASSERT
duke@435 1060 // Make sure we get the sign-capture idiom correct.
duke@435 1061 if (shift == (2*BitsPerJavaInteger)-1) {
duke@435 1062 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0");
duke@435 1063 if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
duke@435 1064 }
duke@435 1065 #endif
duke@435 1066 return tl;
duke@435 1067 }
duke@435 1068
duke@435 1069 return TypeLong::LONG; // Give up
duke@435 1070 }
duke@435 1071
duke@435 1072 //=============================================================================
duke@435 1073 //------------------------------Identity---------------------------------------
duke@435 1074 Node *URShiftINode::Identity( PhaseTransform *phase ) {
duke@435 1075 const TypeInt *ti = phase->type( in(2) )->isa_int();
duke@435 1076 if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
duke@435 1077
duke@435 1078 // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
duke@435 1079 // Happens during new-array length computation.
duke@435 1080 // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
duke@435 1081 Node *add = in(1);
duke@435 1082 if( add->Opcode() == Op_AddI ) {
duke@435 1083 const TypeInt *t2 = phase->type(add->in(2))->isa_int();
duke@435 1084 if( t2 && t2->is_con(wordSize - 1) &&
duke@435 1085 add->in(1)->Opcode() == Op_LShiftI ) {
duke@435 1086 // Check that shift_counts are LogBytesPerWord
duke@435 1087 Node *lshift_count = add->in(1)->in(2);
duke@435 1088 const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
duke@435 1089 if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
duke@435 1090 t_lshift_count == phase->type(in(2)) ) {
duke@435 1091 Node *x = add->in(1)->in(1);
duke@435 1092 const TypeInt *t_x = phase->type(x)->isa_int();
duke@435 1093 if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
duke@435 1094 return x;
duke@435 1095 }
duke@435 1096 }
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100 return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
duke@435 1101 }
duke@435 1102
duke@435 1103 //------------------------------Ideal------------------------------------------
duke@435 1104 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1105 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 1106 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 1107 const int con = t2->get_con() & 31; // Shift count is always masked
duke@435 1108 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
duke@435 1109 // We'll be wanting the right-shift amount as a mask of that many bits
duke@435 1110 const int mask = right_n_bits(BitsPerJavaInteger - con);
duke@435 1111
duke@435 1112 int in1_op = in(1)->Opcode();
duke@435 1113
duke@435 1114 // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
duke@435 1115 if( in1_op == Op_URShiftI ) {
duke@435 1116 const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
duke@435 1117 if( t12 && t12->is_con() ) { // Right input is a constant
duke@435 1118 assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
duke@435 1119 const int con2 = t12->get_con() & 31; // Shift count is always masked
duke@435 1120 const int con3 = con+con2;
duke@435 1121 if( con3 < 32 ) // Only merge shifts if total is < 32
kvn@4115 1122 return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) );
duke@435 1123 }
duke@435 1124 }
duke@435 1125
duke@435 1126 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
duke@435 1127 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
duke@435 1128 // If Q is "X << z" the rounding is useless. Look for patterns like
duke@435 1129 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
duke@435 1130 Node *add = in(1);
duke@435 1131 if( in1_op == Op_AddI ) {
duke@435 1132 Node *lshl = add->in(1);
duke@435 1133 if( lshl->Opcode() == Op_LShiftI &&
duke@435 1134 phase->type(lshl->in(2)) == t2 ) {
kvn@4115 1135 Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) );
kvn@4115 1136 Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) );
kvn@4115 1137 return new (phase->C) AndINode( sum, phase->intcon(mask) );
duke@435 1138 }
duke@435 1139 }
duke@435 1140
duke@435 1141 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
duke@435 1142 // This shortens the mask. Also, if we are extracting a high byte and
duke@435 1143 // storing it to a buffer, the mask will be removed completely.
duke@435 1144 Node *andi = in(1);
duke@435 1145 if( in1_op == Op_AndI ) {
duke@435 1146 const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
duke@435 1147 if( t3 && t3->is_con() ) { // Right input is a constant
duke@435 1148 jint mask2 = t3->get_con();
duke@435 1149 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
kvn@4115 1150 Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) );
kvn@4115 1151 return new (phase->C) AndINode(newshr, phase->intcon(mask2));
duke@435 1152 // The negative values are easier to materialize than positive ones.
duke@435 1153 // A typical case from address arithmetic is ((x & ~15) >> 4).
duke@435 1154 // It's better to change that to ((x >> 4) & ~0) versus
duke@435 1155 // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64.
duke@435 1156 }
duke@435 1157 }
duke@435 1158
duke@435 1159 // Check for "(X << z ) >>> z" which simply zero-extends
duke@435 1160 Node *shl = in(1);
duke@435 1161 if( in1_op == Op_LShiftI &&
duke@435 1162 phase->type(shl->in(2)) == t2 )
kvn@4115 1163 return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) );
duke@435 1164
duke@435 1165 return NULL;
duke@435 1166 }
duke@435 1167
duke@435 1168 //------------------------------Value------------------------------------------
duke@435 1169 // A URShiftINode shifts its input2 right by input1 amount.
duke@435 1170 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
duke@435 1171 // (This is a near clone of RShiftINode::Value.)
duke@435 1172 const Type *t1 = phase->type( in(1) );
duke@435 1173 const Type *t2 = phase->type( in(2) );
duke@435 1174 // Either input is TOP ==> the result is TOP
duke@435 1175 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1176 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1177
duke@435 1178 // Left input is ZERO ==> the result is ZERO.
duke@435 1179 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 1180 // Shift by zero does nothing
duke@435 1181 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1182
duke@435 1183 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1184 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1185 return TypeInt::INT;
duke@435 1186
duke@435 1187 if (t2 == TypeInt::INT)
duke@435 1188 return TypeInt::INT;
duke@435 1189
duke@435 1190 const TypeInt *r1 = t1->is_int(); // Handy access
duke@435 1191 const TypeInt *r2 = t2->is_int(); // Handy access
duke@435 1192
duke@435 1193 if (r2->is_con()) {
duke@435 1194 uint shift = r2->get_con();
duke@435 1195 shift &= BitsPerJavaInteger-1; // semantics of Java shifts
duke@435 1196 // Shift by a multiple of 32 does nothing:
duke@435 1197 if (shift == 0) return t1;
duke@435 1198 // Calculate reasonably aggressive bounds for the result.
duke@435 1199 jint lo = (juint)r1->_lo >> (juint)shift;
duke@435 1200 jint hi = (juint)r1->_hi >> (juint)shift;
duke@435 1201 if (r1->_hi >= 0 && r1->_lo < 0) {
duke@435 1202 // If the type has both negative and positive values,
duke@435 1203 // there are two separate sub-domains to worry about:
duke@435 1204 // The positive half and the negative half.
duke@435 1205 jint neg_lo = lo;
duke@435 1206 jint neg_hi = (juint)-1 >> (juint)shift;
duke@435 1207 jint pos_lo = (juint) 0 >> (juint)shift;
duke@435 1208 jint pos_hi = hi;
duke@435 1209 lo = MIN2(neg_lo, pos_lo); // == 0
duke@435 1210 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
duke@435 1211 }
duke@435 1212 assert(lo <= hi, "must have valid bounds");
duke@435 1213 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1214 #ifdef ASSERT
duke@435 1215 // Make sure we get the sign-capture idiom correct.
duke@435 1216 if (shift == BitsPerJavaInteger-1) {
duke@435 1217 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
duke@435 1218 if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1");
duke@435 1219 }
duke@435 1220 #endif
duke@435 1221 return ti;
duke@435 1222 }
duke@435 1223
duke@435 1224 //
duke@435 1225 // Do not support shifted oops in info for GC
duke@435 1226 //
duke@435 1227 // else if( t1->base() == Type::InstPtr ) {
duke@435 1228 //
duke@435 1229 // const TypeInstPtr *o = t1->is_instptr();
duke@435 1230 // if( t1->singleton() )
duke@435 1231 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
duke@435 1232 // }
duke@435 1233 // else if( t1->base() == Type::KlassPtr ) {
duke@435 1234 // const TypeKlassPtr *o = t1->is_klassptr();
duke@435 1235 // if( t1->singleton() )
duke@435 1236 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
duke@435 1237 // }
duke@435 1238
duke@435 1239 return TypeInt::INT;
duke@435 1240 }
duke@435 1241
duke@435 1242 //=============================================================================
duke@435 1243 //------------------------------Identity---------------------------------------
duke@435 1244 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
duke@435 1245 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
duke@435 1246 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
duke@435 1247 }
duke@435 1248
duke@435 1249 //------------------------------Ideal------------------------------------------
duke@435 1250 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1251 const TypeInt *t2 = phase->type( in(2) )->isa_int();
duke@435 1252 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
duke@435 1253 const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
duke@435 1254 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
duke@435 1255 // note: mask computation below does not work for 0 shift count
duke@435 1256 // We'll be wanting the right-shift amount as a mask of that many bits
aph@9610 1257 const jlong mask = jlong(max_julong >> con);
duke@435 1258
duke@435 1259 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
duke@435 1260 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
duke@435 1261 // If Q is "X << z" the rounding is useless. Look for patterns like
duke@435 1262 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask.
duke@435 1263 Node *add = in(1);
duke@435 1264 if( add->Opcode() == Op_AddL ) {
duke@435 1265 Node *lshl = add->in(1);
duke@435 1266 if( lshl->Opcode() == Op_LShiftL &&
duke@435 1267 phase->type(lshl->in(2)) == t2 ) {
kvn@4115 1268 Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) );
kvn@4115 1269 Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) );
kvn@4115 1270 return new (phase->C) AndLNode( sum, phase->longcon(mask) );
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z)
duke@435 1275 // This shortens the mask. Also, if we are extracting a high byte and
duke@435 1276 // storing it to a buffer, the mask will be removed completely.
duke@435 1277 Node *andi = in(1);
duke@435 1278 if( andi->Opcode() == Op_AndL ) {
duke@435 1279 const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
duke@435 1280 if( t3 && t3->is_con() ) { // Right input is a constant
duke@435 1281 jlong mask2 = t3->get_con();
duke@435 1282 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help)
kvn@4115 1283 Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) );
kvn@4115 1284 return new (phase->C) AndLNode(newshr, phase->longcon(mask2));
duke@435 1285 }
duke@435 1286 }
duke@435 1287
duke@435 1288 // Check for "(X << z ) >>> z" which simply zero-extends
duke@435 1289 Node *shl = in(1);
duke@435 1290 if( shl->Opcode() == Op_LShiftL &&
duke@435 1291 phase->type(shl->in(2)) == t2 )
kvn@4115 1292 return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) );
duke@435 1293
duke@435 1294 return NULL;
duke@435 1295 }
duke@435 1296
duke@435 1297 //------------------------------Value------------------------------------------
duke@435 1298 // A URShiftINode shifts its input2 right by input1 amount.
duke@435 1299 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
duke@435 1300 // (This is a near clone of RShiftLNode::Value.)
duke@435 1301 const Type *t1 = phase->type( in(1) );
duke@435 1302 const Type *t2 = phase->type( in(2) );
duke@435 1303 // Either input is TOP ==> the result is TOP
duke@435 1304 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1305 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1306
duke@435 1307 // Left input is ZERO ==> the result is ZERO.
duke@435 1308 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1309 // Shift by zero does nothing
duke@435 1310 if( t2 == TypeInt::ZERO ) return t1;
duke@435 1311
duke@435 1312 // Either input is BOTTOM ==> the result is BOTTOM
duke@435 1313 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
duke@435 1314 return TypeLong::LONG;
duke@435 1315
duke@435 1316 if (t2 == TypeInt::INT)
duke@435 1317 return TypeLong::LONG;
duke@435 1318
duke@435 1319 const TypeLong *r1 = t1->is_long(); // Handy access
duke@435 1320 const TypeInt *r2 = t2->is_int (); // Handy access
duke@435 1321
duke@435 1322 if (r2->is_con()) {
duke@435 1323 uint shift = r2->get_con();
twisti@994 1324 shift &= BitsPerJavaLong - 1; // semantics of Java shifts
duke@435 1325 // Shift by a multiple of 64 does nothing:
duke@435 1326 if (shift == 0) return t1;
duke@435 1327 // Calculate reasonably aggressive bounds for the result.
duke@435 1328 jlong lo = (julong)r1->_lo >> (juint)shift;
duke@435 1329 jlong hi = (julong)r1->_hi >> (juint)shift;
duke@435 1330 if (r1->_hi >= 0 && r1->_lo < 0) {
duke@435 1331 // If the type has both negative and positive values,
duke@435 1332 // there are two separate sub-domains to worry about:
duke@435 1333 // The positive half and the negative half.
duke@435 1334 jlong neg_lo = lo;
duke@435 1335 jlong neg_hi = (julong)-1 >> (juint)shift;
duke@435 1336 jlong pos_lo = (julong) 0 >> (juint)shift;
duke@435 1337 jlong pos_hi = hi;
duke@435 1338 //lo = MIN2(neg_lo, pos_lo); // == 0
duke@435 1339 lo = neg_lo < pos_lo ? neg_lo : pos_lo;
duke@435 1340 //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift;
duke@435 1341 hi = neg_hi > pos_hi ? neg_hi : pos_hi;
duke@435 1342 }
duke@435 1343 assert(lo <= hi, "must have valid bounds");
duke@435 1344 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
duke@435 1345 #ifdef ASSERT
duke@435 1346 // Make sure we get the sign-capture idiom correct.
twisti@994 1347 if (shift == BitsPerJavaLong - 1) {
duke@435 1348 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
duke@435 1349 if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1");
duke@435 1350 }
duke@435 1351 #endif
duke@435 1352 return tl;
duke@435 1353 }
duke@435 1354
duke@435 1355 return TypeLong::LONG; // Give up
duke@435 1356 }

mercurial