src/share/vm/opto/coalesce.cpp

Thu, 14 Feb 2019 14:31:32 +0100

author
neliasso
date
Thu, 14 Feb 2019 14:31:32 +0100
changeset 9741
7e0a4478e80f
parent 9514
d853bac073f8
child 9572
624a0741915c
permissions
-rw-r--r--

8087128: C2: Disallow definition split on MachCopySpill nodes
Reviewed-by: kvn

duke@435 1 /*
drchase@5285 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
roland@9514 28 #include "opto/c2compiler.hpp"
stefank@2314 29 #include "opto/cfgnode.hpp"
stefank@2314 30 #include "opto/chaitin.hpp"
stefank@2314 31 #include "opto/coalesce.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/indexSet.hpp"
stefank@2314 34 #include "opto/machnode.hpp"
stefank@2314 35 #include "opto/matcher.hpp"
stefank@2314 36 #include "opto/regmask.hpp"
duke@435 37
duke@435 38 #ifndef PRODUCT
neliasso@4949 39 void PhaseCoalesce::dump(Node *n) const {
duke@435 40 // Being a const function means I cannot use 'Find'
neliasso@4949 41 uint r = _phc._lrg_map.find(n);
duke@435 42 tty->print("L%d/N%d ",r,n->_idx);
duke@435 43 }
duke@435 44
duke@435 45 void PhaseCoalesce::dump() const {
duke@435 46 // I know I have a block layout now, so I can print blocks in a loop
adlertz@5539 47 for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
duke@435 48 uint j;
adlertz@5539 49 Block* b = _phc._cfg.get_block(i);
duke@435 50 // Print a nice block header
duke@435 51 tty->print("B%d: ",b->_pre_order);
duke@435 52 for( j=1; j<b->num_preds(); j++ )
adlertz@5509 53 tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
duke@435 54 tty->print("-> ");
duke@435 55 for( j=0; j<b->_num_succs; j++ )
duke@435 56 tty->print("B%d ",b->_succs[j]->_pre_order);
duke@435 57 tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
adlertz@5635 58 uint cnt = b->number_of_nodes();
duke@435 59 for( j=0; j<cnt; j++ ) {
adlertz@5635 60 Node *n = b->get_node(j);
duke@435 61 dump( n );
duke@435 62 tty->print("\t%s\t",n->Name());
duke@435 63
duke@435 64 // Dump the inputs
duke@435 65 uint k; // Exit value of loop
duke@435 66 for( k=0; k<n->req(); k++ ) // For all required inputs
duke@435 67 if( n->in(k) ) dump( n->in(k) );
duke@435 68 else tty->print("_ ");
duke@435 69 int any_prec = 0;
duke@435 70 for( ; k<n->len(); k++ ) // For all precedence inputs
duke@435 71 if( n->in(k) ) {
duke@435 72 if( !any_prec++ ) tty->print(" |");
duke@435 73 dump( n->in(k) );
duke@435 74 }
duke@435 75
duke@435 76 // Dump node-specific info
duke@435 77 n->dump_spec(tty);
duke@435 78 tty->print("\n");
duke@435 79
duke@435 80 }
duke@435 81 tty->print("\n");
duke@435 82 }
duke@435 83 }
duke@435 84 #endif
duke@435 85
duke@435 86 // Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
neliasso@4949 87 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
neliasso@4949 88 uint lr1 = _phc._lrg_map.find(n1);
neliasso@4949 89 uint lr2 = _phc._lrg_map.find(n2);
duke@435 90 if( lr1 != lr2 && // Different live ranges already AND
duke@435 91 !_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere
duke@435 92 LRG *lrg1 = &_phc.lrgs(lr1);
duke@435 93 LRG *lrg2 = &_phc.lrgs(lr2);
duke@435 94 // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
duke@435 95
duke@435 96 // Now, why is int->oop OK? We end up declaring a raw-pointer as an oop
duke@435 97 // and in general that's a bad thing. However, int->oop conversions only
duke@435 98 // happen at GC points, so the lifetime of the misclassified raw-pointer
duke@435 99 // is from the CheckCastPP (that converts it to an oop) backwards up
duke@435 100 // through a merge point and into the slow-path call, and around the
duke@435 101 // diamond up to the heap-top check and back down into the slow-path call.
duke@435 102 // The misclassified raw pointer is NOT live across the slow-path call,
duke@435 103 // and so does not appear in any GC info, so the fact that it is
duke@435 104 // misclassified is OK.
duke@435 105
duke@435 106 if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
duke@435 107 // Compatible final mask
duke@435 108 lrg1->mask().overlap( lrg2->mask() ) ) {
duke@435 109 // Merge larger into smaller.
duke@435 110 if( lr1 > lr2 ) {
duke@435 111 uint tmp = lr1; lr1 = lr2; lr2 = tmp;
duke@435 112 Node *n = n1; n1 = n2; n2 = n;
duke@435 113 LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
duke@435 114 }
duke@435 115 // Union lr2 into lr1
duke@435 116 _phc.Union( n1, n2 );
duke@435 117 if (lrg1->_maxfreq < lrg2->_maxfreq)
duke@435 118 lrg1->_maxfreq = lrg2->_maxfreq;
duke@435 119 // Merge in the IFG
duke@435 120 _phc._ifg->Union( lr1, lr2 );
duke@435 121 // Combine register restrictions
duke@435 122 lrg1->AND(lrg2->mask());
duke@435 123 }
duke@435 124 }
duke@435 125 }
duke@435 126
duke@435 127 // Copy coalescing
adlertz@5539 128 void PhaseCoalesce::coalesce_driver() {
duke@435 129 verify();
duke@435 130 // Coalesce from high frequency to low
adlertz@5539 131 for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
adlertz@5539 132 coalesce(_phc._blks[i]);
adlertz@5539 133 }
duke@435 134 }
duke@435 135
duke@435 136 // I am inserting copies to come out of SSA form. In the general case, I am
duke@435 137 // doing a parallel renaming. I'm in the Named world now, so I can't do a
duke@435 138 // general parallel renaming. All the copies now use "names" (live-ranges)
duke@435 139 // to carry values instead of the explicit use-def chains. Suppose I need to
duke@435 140 // insert 2 copies into the same block. They copy L161->L128 and L128->L132.
duke@435 141 // If I insert them in the wrong order then L128 will get clobbered before it
duke@435 142 // can get used by the second copy. This cannot happen in the SSA model;
duke@435 143 // direct use-def chains get me the right value. It DOES happen in the named
duke@435 144 // model so I have to handle the reordering of copies.
duke@435 145 //
duke@435 146 // In general, I need to topo-sort the placed copies to avoid conflicts.
duke@435 147 // Its possible to have a closed cycle of copies (e.g., recirculating the same
duke@435 148 // values around a loop). In this case I need a temp to break the cycle.
duke@435 149 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
duke@435 150
duke@435 151 // Scan backwards for the locations of the last use of the dst_name.
duke@435 152 // I am about to clobber the dst_name, so the copy must be inserted
duke@435 153 // after the last use. Last use is really first-use on a backwards scan.
duke@435 154 uint i = b->end_idx()-1;
neliasso@4949 155 while(1) {
adlertz@5635 156 Node *n = b->get_node(i);
duke@435 157 // Check for end of virtual copies; this is also the end of the
duke@435 158 // parallel renaming effort.
neliasso@4949 159 if (n->_idx < _unique) {
neliasso@4949 160 break;
neliasso@4949 161 }
duke@435 162 uint idx = n->is_Copy();
kvn@3040 163 assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
neliasso@4949 164 if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
neliasso@4949 165 break;
neliasso@4949 166 }
duke@435 167 i--;
duke@435 168 }
duke@435 169 uint last_use_idx = i;
duke@435 170
duke@435 171 // Also search for any kill of src_name that exits the block.
duke@435 172 // Since the copy uses src_name, I have to come before any kill.
duke@435 173 uint kill_src_idx = b->end_idx();
duke@435 174 // There can be only 1 kill that exits any block and that is
duke@435 175 // the last kill. Thus it is the first kill on a backwards scan.
duke@435 176 i = b->end_idx()-1;
neliasso@4949 177 while (1) {
adlertz@5635 178 Node *n = b->get_node(i);
duke@435 179 // Check for end of virtual copies; this is also the end of the
duke@435 180 // parallel renaming effort.
neliasso@4949 181 if (n->_idx < _unique) {
neliasso@4949 182 break;
neliasso@4949 183 }
kvn@3040 184 assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
neliasso@4949 185 if (_phc._lrg_map.find(n) == src_name) {
duke@435 186 kill_src_idx = i;
duke@435 187 break;
duke@435 188 }
duke@435 189 i--;
duke@435 190 }
duke@435 191 // Need a temp? Last use of dst comes after the kill of src?
neliasso@4949 192 if (last_use_idx >= kill_src_idx) {
duke@435 193 // Need to break a cycle with a temp
duke@435 194 uint idx = copy->is_Copy();
duke@435 195 Node *tmp = copy->clone();
neliasso@4949 196 uint max_lrg_id = _phc._lrg_map.max_lrg_id();
neliasso@4949 197 _phc.new_lrg(tmp, max_lrg_id);
neliasso@4949 198 _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
neliasso@4949 199
duke@435 200 // Insert new temp between copy and source
duke@435 201 tmp ->set_req(idx,copy->in(idx));
duke@435 202 copy->set_req(idx,tmp);
duke@435 203 // Save source in temp early, before source is killed
adlertz@5635 204 b->insert_node(tmp, kill_src_idx);
adlertz@5509 205 _phc._cfg.map_node_to_block(tmp, b);
duke@435 206 last_use_idx++;
duke@435 207 }
duke@435 208
duke@435 209 // Insert just after last use
adlertz@5635 210 b->insert_node(copy, last_use_idx + 1);
duke@435 211 }
duke@435 212
duke@435 213 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
duke@435 214 // We do LRGs compressing and fix a liveout data only here since the other
duke@435 215 // place in Split() is guarded by the assert which we never hit.
neliasso@4949 216 _phc._lrg_map.compress_uf_map_for_nodes();
duke@435 217 // Fix block's liveout data for compressed live ranges.
neliasso@4949 218 for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
neliasso@4949 219 uint compressed_lrg = _phc._lrg_map.find(lrg);
neliasso@4949 220 if (lrg != compressed_lrg) {
adlertz@5539 221 for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
adlertz@5539 222 IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
neliasso@4949 223 if (liveout->member(lrg)) {
duke@435 224 liveout->remove(lrg);
duke@435 225 liveout->insert(compressed_lrg);
duke@435 226 }
duke@435 227 }
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231 // All new nodes added are actual copies to replace virtual copies.
duke@435 232 // Nodes with index less than '_unique' are original, non-virtual Nodes.
duke@435 233 _unique = C->unique();
duke@435 234
adlertz@5539 235 for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
drchase@5285 236 C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
drchase@5285 237 if (C->failing()) return;
adlertz@5539 238 Block *b = _phc._cfg.get_block(i);
duke@435 239 uint cnt = b->num_preds(); // Number of inputs to the Phi
duke@435 240
adlertz@5635 241 for( uint l = 1; l<b->number_of_nodes(); l++ ) {
adlertz@5635 242 Node *n = b->get_node(l);
duke@435 243
duke@435 244 // Do not use removed-copies, use copied value instead
duke@435 245 uint ncnt = n->req();
duke@435 246 for( uint k = 1; k<ncnt; k++ ) {
duke@435 247 Node *copy = n->in(k);
duke@435 248 uint cidx = copy->is_Copy();
duke@435 249 if( cidx ) {
duke@435 250 Node *def = copy->in(cidx);
neliasso@4949 251 if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
neliasso@4949 252 n->set_req(k, def);
neliasso@4949 253 }
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 // Remove any explicit copies that get coalesced.
duke@435 258 uint cidx = n->is_Copy();
duke@435 259 if( cidx ) {
duke@435 260 Node *def = n->in(cidx);
neliasso@4949 261 if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
duke@435 262 n->replace_by(def);
duke@435 263 n->set_req(cidx,NULL);
adlertz@5635 264 b->remove_node(l);
duke@435 265 l--;
duke@435 266 continue;
duke@435 267 }
duke@435 268 }
duke@435 269
neliasso@4949 270 if (n->is_Phi()) {
duke@435 271 // Get the chosen name for the Phi
neliasso@4949 272 uint phi_name = _phc._lrg_map.find(n);
duke@435 273 // Ignore the pre-allocated specials
neliasso@4949 274 if (!phi_name) {
neliasso@4949 275 continue;
neliasso@4949 276 }
duke@435 277 // Check for mismatch inputs to Phi
neliasso@4949 278 for (uint j = 1; j < cnt; j++) {
duke@435 279 Node *m = n->in(j);
neliasso@4949 280 uint src_name = _phc._lrg_map.find(m);
neliasso@4949 281 if (src_name != phi_name) {
adlertz@5509 282 Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
duke@435 283 Node *copy;
duke@435 284 assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
iveresov@7295 285 // Rematerialize constants instead of copying them.
iveresov@7295 286 // We do this only for immediate constants, we avoid constant table loads
iveresov@7295 287 // because that will unsafely extend the live range of the constant table base.
iveresov@7295 288 if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
iveresov@7295 289 m->as_Mach()->rematerialize()) {
duke@435 290 copy = m->clone();
duke@435 291 // Insert the copy in the predecessor basic block
duke@435 292 pred->add_inst(copy);
duke@435 293 // Copy any flags as well
neliasso@4949 294 _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
duke@435 295 } else {
thartmann@9513 296 int ireg = m->ideal_reg();
thartmann@9513 297 if (ireg == 0 || ireg == Op_RegFlags) {
roland@9514 298 if (C->subsume_loads()) {
roland@9514 299 C->record_failure(C2Compiler::retry_no_subsuming_loads());
roland@9514 300 } else {
roland@9514 301 assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
roland@9514 302 m->_idx, m->Name(), ireg));
roland@9514 303 C->record_method_not_compilable("attempted to spill a non-spillable item");
roland@9514 304 }
thartmann@9513 305 return;
thartmann@9513 306 }
thartmann@9513 307 const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
neliasso@4949 308 copy = new (C) MachSpillCopyNode(m, *rm, *rm);
duke@435 309 // Find a good place to insert. Kinda tricky, use a subroutine
duke@435 310 insert_copy_with_overlap(pred,copy,phi_name,src_name);
duke@435 311 }
duke@435 312 // Insert the copy in the use-def chain
neliasso@4949 313 n->set_req(j, copy);
adlertz@5509 314 _phc._cfg.map_node_to_block(copy, pred);
duke@435 315 // Extend ("register allocate") the names array for the copy.
neliasso@4949 316 _phc._lrg_map.extend(copy->_idx, phi_name);
duke@435 317 } // End of if Phi names do not match
duke@435 318 } // End of for all inputs to Phi
duke@435 319 } else { // End of if Phi
duke@435 320
duke@435 321 // Now check for 2-address instructions
duke@435 322 uint idx;
duke@435 323 if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
duke@435 324 // Get the chosen name for the Node
neliasso@4949 325 uint name = _phc._lrg_map.find(n);
neliasso@4949 326 assert (name, "no 2-address specials");
duke@435 327 // Check for name mis-match on the 2-address input
duke@435 328 Node *m = n->in(idx);
neliasso@4949 329 if (_phc._lrg_map.find(m) != name) {
duke@435 330 Node *copy;
duke@435 331 assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
duke@435 332 // At this point it is unsafe to extend live ranges (6550579).
duke@435 333 // Rematerialize only constants as we do for Phi above.
iveresov@7295 334 if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
iveresov@7295 335 m->as_Mach()->rematerialize()) {
duke@435 336 copy = m->clone();
duke@435 337 // Insert the copy in the basic block, just before us
adlertz@5635 338 b->insert_node(copy, l++);
kvn@5543 339 l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
duke@435 340 } else {
thartmann@9513 341 int ireg = m->ideal_reg();
thartmann@9513 342 if (ireg == 0 || ireg == Op_RegFlags) {
thartmann@9513 343 assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
thartmann@9513 344 m->_idx, m->Name(), ireg));
thartmann@9513 345 C->record_method_not_compilable("attempted to spill a non-spillable item");
thartmann@9513 346 return;
thartmann@9513 347 }
thartmann@9513 348 const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
neliasso@4949 349 copy = new (C) MachSpillCopyNode(m, *rm, *rm);
duke@435 350 // Insert the copy in the basic block, just before us
adlertz@5635 351 b->insert_node(copy, l++);
duke@435 352 }
duke@435 353 // Insert the copy in the use-def chain
neliasso@4949 354 n->set_req(idx, copy);
duke@435 355 // Extend ("register allocate") the names array for the copy.
neliasso@4949 356 _phc._lrg_map.extend(copy->_idx, name);
adlertz@5509 357 _phc._cfg.map_node_to_block(copy, b);
duke@435 358 }
duke@435 359
duke@435 360 } // End of is two-adr
duke@435 361
duke@435 362 // Insert a copy at a debug use for a lrg which has high frequency
adlertz@5639 363 if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
duke@435 364 // Walk the debug inputs to the node and check for lrg freq
duke@435 365 JVMState* jvms = n->jvms();
duke@435 366 uint debug_start = jvms ? jvms->debug_start() : 999999;
duke@435 367 uint debug_end = jvms ? jvms->debug_end() : 999999;
duke@435 368 for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
duke@435 369 // Do not split monitors; they are only needed for debug table
duke@435 370 // entries and need no code.
neliasso@4949 371 if (jvms->is_monitor_use(inpidx)) {
neliasso@4949 372 continue;
neliasso@4949 373 }
duke@435 374 Node *inp = n->in(inpidx);
neliasso@4949 375 uint nidx = _phc._lrg_map.live_range_id(inp);
duke@435 376 LRG &lrg = lrgs(nidx);
duke@435 377
duke@435 378 // If this lrg has a high frequency use/def
kvn@1108 379 if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
duke@435 380 // If the live range is also live out of this block (like it
duke@435 381 // would be for a fast/slow idiom), the normal spill mechanism
duke@435 382 // does an excellent job. If it is not live out of this block
duke@435 383 // (like it would be for debug info to uncommon trap) splitting
duke@435 384 // the live range now allows a better allocation in the high
duke@435 385 // frequency blocks.
duke@435 386 // Build_IFG_virtual has converted the live sets to
duke@435 387 // live-IN info, not live-OUT info.
duke@435 388 uint k;
duke@435 389 for( k=0; k < b->_num_succs; k++ )
duke@435 390 if( _phc._live->live(b->_succs[k])->member( nidx ) )
duke@435 391 break; // Live in to some successor block?
duke@435 392 if( k < b->_num_succs )
duke@435 393 continue; // Live out; do not pre-split
duke@435 394 // Split the lrg at this use
thartmann@9513 395 int ireg = inp->ideal_reg();
thartmann@9513 396 if (ireg == 0 || ireg == Op_RegFlags) {
thartmann@9513 397 assert(false, err_msg("attempted to spill a non-spillable item: %d: %s, ireg = %d",
thartmann@9513 398 inp->_idx, inp->Name(), ireg));
thartmann@9513 399 C->record_method_not_compilable("attempted to spill a non-spillable item");
thartmann@9513 400 return;
thartmann@9513 401 }
thartmann@9513 402 const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
duke@435 403 Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
duke@435 404 // Insert the copy in the use-def chain
duke@435 405 n->set_req(inpidx, copy );
duke@435 406 // Insert the copy in the basic block, just before us
adlertz@5635 407 b->insert_node(copy, l++);
duke@435 408 // Extend ("register allocate") the names array for the copy.
neliasso@4949 409 uint max_lrg_id = _phc._lrg_map.max_lrg_id();
neliasso@4949 410 _phc.new_lrg(copy, max_lrg_id);
neliasso@4949 411 _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
adlertz@5509 412 _phc._cfg.map_node_to_block(copy, b);
duke@435 413 //tty->print_cr("Split a debug use in Aggressive Coalesce");
duke@435 414 } // End of if high frequency use/def
duke@435 415 } // End of for all debug inputs
duke@435 416 } // End of if low frequency safepoint
duke@435 417
duke@435 418 } // End of if Phi
duke@435 419
duke@435 420 } // End of for all instructions
duke@435 421 } // End of for all blocks
duke@435 422 }
duke@435 423
adlertz@5539 424
duke@435 425 // Aggressive (but pessimistic) copy coalescing of a single block
duke@435 426
duke@435 427 // The following coalesce pass represents a single round of aggressive
duke@435 428 // pessimistic coalesce. "Aggressive" means no attempt to preserve
duke@435 429 // colorability when coalescing. This occasionally means more spills, but
duke@435 430 // it also means fewer rounds of coalescing for better code - and that means
duke@435 431 // faster compiles.
duke@435 432
duke@435 433 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
duke@435 434 // reaching for the least fixed point to boot). This is typically solved
duke@435 435 // with a few more rounds of coalescing, but the compiler must run fast. We
duke@435 436 // could optimistically coalescing everything touching PhiNodes together
duke@435 437 // into one big live range, then check for self-interference. Everywhere
duke@435 438 // the live range interferes with self it would have to be split. Finding
duke@435 439 // the right split points can be done with some heuristics (based on
duke@435 440 // expected frequency of edges in the live range). In short, it's a real
duke@435 441 // research problem and the timeline is too short to allow such research.
duke@435 442 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
duke@435 443 // in another pass, (3) per each self-conflict, split, (4) split by finding
duke@435 444 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
duke@435 445 // according to the GCM algorithm (or just exec freq on CFG edges).
duke@435 446
duke@435 447 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
duke@435 448 // Copies are still "virtual" - meaning we have not made them explicitly
duke@435 449 // copies. Instead, Phi functions of successor blocks have mis-matched
duke@435 450 // live-ranges. If I fail to coalesce, I'll have to insert a copy to line
duke@435 451 // up the live-ranges. Check for Phis in successor blocks.
duke@435 452 uint i;
duke@435 453 for( i=0; i<b->_num_succs; i++ ) {
duke@435 454 Block *bs = b->_succs[i];
duke@435 455 // Find index of 'b' in 'bs' predecessors
duke@435 456 uint j=1;
adlertz@5509 457 while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
adlertz@5509 458 j++;
adlertz@5509 459 }
adlertz@5509 460
duke@435 461 // Visit all the Phis in successor block
adlertz@5635 462 for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
adlertz@5635 463 Node *n = bs->get_node(k);
duke@435 464 if( !n->is_Phi() ) break;
duke@435 465 combine_these_two( n, n->in(j) );
duke@435 466 }
duke@435 467 } // End of for all successor blocks
duke@435 468
duke@435 469
duke@435 470 // Check _this_ block for 2-address instructions and copies.
duke@435 471 uint cnt = b->end_idx();
duke@435 472 for( i = 1; i<cnt; i++ ) {
adlertz@5635 473 Node *n = b->get_node(i);
duke@435 474 uint idx;
duke@435 475 // 2-address instructions have a virtual Copy matching their input
duke@435 476 // to their output
neliasso@4949 477 if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
duke@435 478 MachNode *mach = n->as_Mach();
neliasso@4949 479 combine_these_two(mach, mach->in(idx));
duke@435 480 }
duke@435 481 } // End of for all instructions in block
duke@435 482 }
duke@435 483
neliasso@4949 484 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
neliasso@4949 485 _ulr.initialize(_phc._lrg_map.max_lrg_id());
duke@435 486 }
duke@435 487
duke@435 488 void PhaseConservativeCoalesce::verify() {
duke@435 489 #ifdef ASSERT
duke@435 490 _phc.set_was_low();
duke@435 491 #endif
duke@435 492 }
duke@435 493
duke@435 494 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
duke@435 495 // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
duke@435 496 // union-find tree
duke@435 497 _phc.Union( lr1_node, lr2_node );
duke@435 498
duke@435 499 // Single-def live range ONLY if both live ranges are single-def.
duke@435 500 // If both are single def, then src_def powers one live range
duke@435 501 // and def_copy powers the other. After merging, src_def powers
duke@435 502 // the combined live range.
never@730 503 lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
never@730 504 lrgs(lr2).is_multidef() )
duke@435 505 ? NodeSentinel : src_def;
duke@435 506 lrgs(lr2)._def = NULL; // No def for lrg 2
duke@435 507 lrgs(lr2).Clear(); // Force empty mask for LRG 2
duke@435 508 //lrgs(lr2)._size = 0; // Live-range 2 goes dead
duke@435 509 lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
duke@435 510 lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info
duke@435 511
duke@435 512 if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
duke@435 513 lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
duke@435 514
duke@435 515 // Copy original value instead. Intermediate copies go dead, and
duke@435 516 // the dst_copy becomes useless.
duke@435 517 int didx = dst_copy->is_Copy();
duke@435 518 dst_copy->set_req( didx, src_def );
duke@435 519 // Add copy to free list
duke@435 520 // _phc.free_spillcopy(b->_nodes[bindex]);
adlertz@5635 521 assert( b->get_node(bindex) == dst_copy, "" );
duke@435 522 dst_copy->replace_by( dst_copy->in(didx) );
duke@435 523 dst_copy->set_req( didx, NULL);
adlertz@5635 524 b->remove_node(bindex);
duke@435 525 if( bindex < b->_ihrp_index ) b->_ihrp_index--;
duke@435 526 if( bindex < b->_fhrp_index ) b->_fhrp_index--;
duke@435 527
duke@435 528 // Stretched lr1; add it to liveness of intermediate blocks
adlertz@5509 529 Block *b2 = _phc._cfg.get_block_for_node(src_copy);
duke@435 530 while( b != b2 ) {
adlertz@5509 531 b = _phc._cfg.get_block_for_node(b->pred(1));
duke@435 532 _phc._live->live(b)->insert(lr1);
duke@435 533 }
duke@435 534 }
duke@435 535
duke@435 536 // Factored code from copy_copy that computes extra interferences from
duke@435 537 // lengthening a live range by double-coalescing.
duke@435 538 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
duke@435 539
duke@435 540 assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
duke@435 541 assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
duke@435 542 Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
duke@435 543 Block *b2 = b;
duke@435 544 uint bindex2 = bindex;
duke@435 545 while( 1 ) {
duke@435 546 // Find previous instruction
duke@435 547 bindex2--; // Chain backwards 1 instruction
duke@435 548 while( bindex2 == 0 ) { // At block start, find prior block
duke@435 549 assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
adlertz@5509 550 b2 = _phc._cfg.get_block_for_node(b2->pred(1));
duke@435 551 bindex2 = b2->end_idx()-1;
duke@435 552 }
duke@435 553 // Get prior instruction
adlertz@5635 554 assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
adlertz@5635 555 Node *x = b2->get_node(bindex2);
duke@435 556 if( x == prev_copy ) { // Previous copy in copy chain?
duke@435 557 if( prev_copy == src_copy)// Found end of chain and all interferences
duke@435 558 break; // So break out of loop
duke@435 559 // Else work back one in copy chain
duke@435 560 prev_copy = prev_copy->in(prev_copy->is_Copy());
duke@435 561 } else { // Else collect interferences
neliasso@4949 562 uint lidx = _phc._lrg_map.find(x);
duke@435 563 // Found another def of live-range being stretched?
neliasso@4949 564 if(lidx == lr1) {
neliasso@4949 565 return max_juint;
neliasso@4949 566 }
neliasso@4949 567 if(lidx == lr2) {
neliasso@4949 568 return max_juint;
neliasso@4949 569 }
duke@435 570
duke@435 571 // If we attempt to coalesce across a bound def
duke@435 572 if( lrgs(lidx).is_bound() ) {
duke@435 573 // Do not let the coalesced LRG expect to get the bound color
duke@435 574 rm.SUBTRACT( lrgs(lidx).mask() );
duke@435 575 // Recompute rm_size
duke@435 576 rm_size = rm.Size();
duke@435 577 //if( rm._flags ) rm_size += 1000000;
duke@435 578 if( reg_degree >= rm_size ) return max_juint;
duke@435 579 }
duke@435 580 if( rm.overlap(lrgs(lidx).mask()) ) {
duke@435 581 // Insert lidx into union LRG; returns TRUE if actually inserted
duke@435 582 if( _ulr.insert(lidx) ) {
duke@435 583 // Infinite-stack neighbors do not alter colorability, as they
duke@435 584 // can always color to some other color.
duke@435 585 if( !lrgs(lidx).mask().is_AllStack() ) {
duke@435 586 // If this coalesce will make any new neighbor uncolorable,
duke@435 587 // do not coalesce.
duke@435 588 if( lrgs(lidx).just_lo_degree() )
duke@435 589 return max_juint;
duke@435 590 // Bump our degree
duke@435 591 if( ++reg_degree >= rm_size )
duke@435 592 return max_juint;
duke@435 593 } // End of if not infinite-stack neighbor
duke@435 594 } // End of if actually inserted
duke@435 595 } // End of if live range overlaps
twisti@1040 596 } // End of else collect interferences for 1 node
twisti@1040 597 } // End of while forever, scan back for interferences
duke@435 598 return reg_degree;
duke@435 599 }
duke@435 600
duke@435 601 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
duke@435 602 // Some original neighbors of lr1 might have gone away
duke@435 603 // because the constrained register mask prevented them.
duke@435 604 // Remove lr1 from such neighbors.
duke@435 605 IndexSetIterator one(n_lr1);
duke@435 606 uint neighbor;
duke@435 607 LRG &lrg1 = lrgs(lr1);
duke@435 608 while ((neighbor = one.next()) != 0)
duke@435 609 if( !_ulr.member(neighbor) )
duke@435 610 if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
duke@435 611 lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
duke@435 612
duke@435 613
duke@435 614 // lr2 is now called (coalesced into) lr1.
duke@435 615 // Remove lr2 from the IFG.
duke@435 616 IndexSetIterator two(n_lr2);
duke@435 617 LRG &lrg2 = lrgs(lr2);
duke@435 618 while ((neighbor = two.next()) != 0)
duke@435 619 if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
duke@435 620 lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
duke@435 621
duke@435 622 // Some neighbors of intermediate copies now interfere with the
duke@435 623 // combined live range.
duke@435 624 IndexSetIterator three(&_ulr);
duke@435 625 while ((neighbor = three.next()) != 0)
duke@435 626 if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
duke@435 627 lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
duke@435 628 }
duke@435 629
duke@435 630 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
duke@435 631 // Tag copy bias here
duke@435 632 if( !ifg->lrgs(lr1)._copy_bias )
duke@435 633 ifg->lrgs(lr1)._copy_bias = lr2;
duke@435 634 if( !ifg->lrgs(lr2)._copy_bias )
duke@435 635 ifg->lrgs(lr2)._copy_bias = lr1;
duke@435 636 }
duke@435 637
duke@435 638 // See if I can coalesce a series of multiple copies together. I need the
duke@435 639 // final dest copy and the original src copy. They can be the same Node.
duke@435 640 // Compute the compatible register masks.
neliasso@4949 641 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
duke@435 642
neliasso@4949 643 if (!dst_copy->is_SpillCopy()) {
neliasso@4949 644 return false;
neliasso@4949 645 }
neliasso@4949 646 if (!src_copy->is_SpillCopy()) {
neliasso@4949 647 return false;
neliasso@4949 648 }
duke@435 649 Node *src_def = src_copy->in(src_copy->is_Copy());
neliasso@4949 650 uint lr1 = _phc._lrg_map.find(dst_copy);
neliasso@4949 651 uint lr2 = _phc._lrg_map.find(src_def);
duke@435 652
duke@435 653 // Same live ranges already?
neliasso@4949 654 if (lr1 == lr2) {
neliasso@4949 655 return false;
neliasso@4949 656 }
duke@435 657
duke@435 658 // Interfere?
neliasso@4949 659 if (_phc._ifg->test_edge_sq(lr1, lr2)) {
neliasso@4949 660 return false;
neliasso@4949 661 }
duke@435 662
duke@435 663 // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
neliasso@4949 664 if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
duke@435 665 return false;
neliasso@4949 666 }
duke@435 667
duke@435 668 // Coalescing between an aligned live range and a mis-aligned live range?
duke@435 669 // No, no! Alignment changes how we count degree.
neliasso@4949 670 if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
duke@435 671 return false;
neliasso@4949 672 }
duke@435 673
duke@435 674 // Sort; use smaller live-range number
duke@435 675 Node *lr1_node = dst_copy;
duke@435 676 Node *lr2_node = src_def;
neliasso@4949 677 if (lr1 > lr2) {
duke@435 678 uint tmp = lr1; lr1 = lr2; lr2 = tmp;
duke@435 679 lr1_node = src_def; lr2_node = dst_copy;
duke@435 680 }
duke@435 681
duke@435 682 // Check for compatibility of the 2 live ranges by
duke@435 683 // intersecting their allowed register sets.
duke@435 684 RegMask rm = lrgs(lr1).mask();
duke@435 685 rm.AND(lrgs(lr2).mask());
duke@435 686 // Number of bits free
duke@435 687 uint rm_size = rm.Size();
duke@435 688
never@2085 689 if (UseFPUForSpilling && rm.is_AllStack() ) {
never@2085 690 // Don't coalesce when frequency difference is large
adlertz@5509 691 Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
adlertz@5509 692 Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
never@2085 693 if (src_def_b->_freq > 10*dst_b->_freq )
never@2085 694 return false;
never@2085 695 }
never@2085 696
duke@435 697 // If we can use any stack slot, then effective size is infinite
duke@435 698 if( rm.is_AllStack() ) rm_size += 1000000;
duke@435 699 // Incompatible masks, no way to coalesce
duke@435 700 if( rm_size == 0 ) return false;
duke@435 701
duke@435 702 // Another early bail-out test is when we are double-coalescing and the
twisti@1040 703 // 2 copies are separated by some control flow.
duke@435 704 if( dst_copy != src_copy ) {
adlertz@5509 705 Block *src_b = _phc._cfg.get_block_for_node(src_copy);
duke@435 706 Block *b2 = b;
duke@435 707 while( b2 != src_b ) {
duke@435 708 if( b2->num_preds() > 2 ){// Found merge-point
duke@435 709 _phc._lost_opp_cflow_coalesce++;
duke@435 710 // extra record_bias commented out because Chris believes it is not
duke@435 711 // productive. Since we can record only 1 bias, we want to choose one
duke@435 712 // that stands a chance of working and this one probably does not.
duke@435 713 //record_bias( _phc._lrgs, lr1, lr2 );
duke@435 714 return false; // To hard to find all interferences
duke@435 715 }
adlertz@5509 716 b2 = _phc._cfg.get_block_for_node(b2->pred(1));
duke@435 717 }
duke@435 718 }
duke@435 719
duke@435 720 // Union the two interference sets together into '_ulr'
duke@435 721 uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
duke@435 722
duke@435 723 if( reg_degree >= rm_size ) {
duke@435 724 record_bias( _phc._ifg, lr1, lr2 );
duke@435 725 return false;
duke@435 726 }
duke@435 727
duke@435 728 // Now I need to compute all the interferences between dst_copy and
duke@435 729 // src_copy. I'm not willing visit the entire interference graph, so
duke@435 730 // I limit my search to things in dst_copy's block or in a straight
duke@435 731 // line of previous blocks. I give up at merge points or when I get
duke@435 732 // more interferences than my degree. I can stop when I find src_copy.
duke@435 733 if( dst_copy != src_copy ) {
duke@435 734 reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
duke@435 735 if( reg_degree == max_juint ) {
duke@435 736 record_bias( _phc._ifg, lr1, lr2 );
duke@435 737 return false;
duke@435 738 }
duke@435 739 } // End of if dst_copy & src_copy are different
duke@435 740
duke@435 741
duke@435 742 // ---- THE COMBINED LRG IS COLORABLE ----
duke@435 743
duke@435 744 // YEAH - Now coalesce this copy away
duke@435 745 assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" );
duke@435 746
duke@435 747 IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
duke@435 748 IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
duke@435 749
duke@435 750 // Update the interference graph
duke@435 751 update_ifg(lr1, lr2, n_lr1, n_lr2);
duke@435 752
duke@435 753 _ulr.remove(lr1);
duke@435 754
duke@435 755 // Uncomment the following code to trace Coalescing in great detail.
duke@435 756 //
duke@435 757 //if (false) {
duke@435 758 // tty->cr();
duke@435 759 // tty->print_cr("#######################################");
duke@435 760 // tty->print_cr("union %d and %d", lr1, lr2);
duke@435 761 // n_lr1->dump();
duke@435 762 // n_lr2->dump();
duke@435 763 // tty->print_cr("resulting set is");
duke@435 764 // _ulr.dump();
duke@435 765 //}
duke@435 766
duke@435 767 // Replace n_lr1 with the new combined live range. _ulr will use
duke@435 768 // n_lr1's old memory on the next iteration. n_lr2 is cleared to
duke@435 769 // send its internal memory to the free list.
duke@435 770 _ulr.swap(n_lr1);
duke@435 771 _ulr.clear();
duke@435 772 n_lr2->clear();
duke@435 773
duke@435 774 lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
duke@435 775 lrgs(lr2).set_degree( 0 );
duke@435 776
duke@435 777 // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
duke@435 778 // union-find tree
duke@435 779 union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
duke@435 780 // Combine register restrictions
duke@435 781 lrgs(lr1).set_mask(rm);
duke@435 782 lrgs(lr1).compute_set_mask_size();
duke@435 783 lrgs(lr1)._cost += lrgs(lr2)._cost;
duke@435 784 lrgs(lr1)._area += lrgs(lr2)._area;
duke@435 785
duke@435 786 // While its uncommon to successfully coalesce live ranges that started out
duke@435 787 // being not-lo-degree, it can happen. In any case the combined coalesced
duke@435 788 // live range better Simplify nicely.
duke@435 789 lrgs(lr1)._was_lo = 1;
duke@435 790
duke@435 791 // kinda expensive to do all the time
duke@435 792 //tty->print_cr("warning: slow verify happening");
duke@435 793 //_phc._ifg->verify( &_phc );
duke@435 794 return true;
duke@435 795 }
duke@435 796
duke@435 797 // Conservative (but pessimistic) copy coalescing of a single block
duke@435 798 void PhaseConservativeCoalesce::coalesce( Block *b ) {
duke@435 799 // Bail out on infrequent blocks
adlertz@5639 800 if (_phc._cfg.is_uncommon(b)) {
duke@435 801 return;
adlertz@5509 802 }
duke@435 803 // Check this block for copies.
duke@435 804 for( uint i = 1; i<b->end_idx(); i++ ) {
duke@435 805 // Check for actual copies on inputs. Coalesce a copy into its
duke@435 806 // input if use and copy's input are compatible.
adlertz@5635 807 Node *copy1 = b->get_node(i);
duke@435 808 uint idx1 = copy1->is_Copy();
duke@435 809 if( !idx1 ) continue; // Not a copy
duke@435 810
duke@435 811 if( copy_copy(copy1,copy1,b,i) ) {
duke@435 812 i--; // Retry, same location in block
duke@435 813 PhaseChaitin::_conserv_coalesce++; // Collect stats on success
duke@435 814 continue;
duke@435 815 }
duke@435 816 }
duke@435 817 }

mercurial