src/cpu/sparc/vm/assembler_sparc.hpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7027
b20a35eae442
parent 6876
710a3c8b516e
child 9806
758c07667682
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
aoqi@0 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
aoqi@0 27
aoqi@0 28 #include "asm/register.hpp"
aoqi@0 29
aoqi@0 30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
aoqi@0 31 // level; i.e., what you write
aoqi@0 32 // is what you get. The Assembler is generating code into a CodeBuffer.
aoqi@0 33
aoqi@0 34 class Assembler : public AbstractAssembler {
aoqi@0 35 friend class AbstractAssembler;
aoqi@0 36 friend class AddressLiteral;
aoqi@0 37
aoqi@0 38 // code patchers need various routines like inv_wdisp()
aoqi@0 39 friend class NativeInstruction;
aoqi@0 40 friend class NativeGeneralJump;
aoqi@0 41 friend class Relocation;
aoqi@0 42 friend class Label;
aoqi@0 43
aoqi@0 44 public:
aoqi@0 45 // op carries format info; see page 62 & 267
aoqi@0 46
aoqi@0 47 enum ops {
aoqi@0 48 call_op = 1, // fmt 1
aoqi@0 49 branch_op = 0, // also sethi (fmt2)
aoqi@0 50 arith_op = 2, // fmt 3, arith & misc
aoqi@0 51 ldst_op = 3 // fmt 3, load/store
aoqi@0 52 };
aoqi@0 53
aoqi@0 54 enum op2s {
aoqi@0 55 bpr_op2 = 3,
aoqi@0 56 fb_op2 = 6,
aoqi@0 57 fbp_op2 = 5,
aoqi@0 58 br_op2 = 2,
aoqi@0 59 bp_op2 = 1,
aoqi@0 60 sethi_op2 = 4
aoqi@0 61 };
aoqi@0 62
aoqi@0 63 enum op3s {
aoqi@0 64 // selected op3s
aoqi@0 65 add_op3 = 0x00,
aoqi@0 66 and_op3 = 0x01,
aoqi@0 67 or_op3 = 0x02,
aoqi@0 68 xor_op3 = 0x03,
aoqi@0 69 sub_op3 = 0x04,
aoqi@0 70 andn_op3 = 0x05,
aoqi@0 71 orn_op3 = 0x06,
aoqi@0 72 xnor_op3 = 0x07,
aoqi@0 73 addc_op3 = 0x08,
aoqi@0 74 mulx_op3 = 0x09,
aoqi@0 75 umul_op3 = 0x0a,
aoqi@0 76 smul_op3 = 0x0b,
aoqi@0 77 subc_op3 = 0x0c,
aoqi@0 78 udivx_op3 = 0x0d,
aoqi@0 79 udiv_op3 = 0x0e,
aoqi@0 80 sdiv_op3 = 0x0f,
aoqi@0 81
aoqi@0 82 addcc_op3 = 0x10,
aoqi@0 83 andcc_op3 = 0x11,
aoqi@0 84 orcc_op3 = 0x12,
aoqi@0 85 xorcc_op3 = 0x13,
aoqi@0 86 subcc_op3 = 0x14,
aoqi@0 87 andncc_op3 = 0x15,
aoqi@0 88 orncc_op3 = 0x16,
aoqi@0 89 xnorcc_op3 = 0x17,
aoqi@0 90 addccc_op3 = 0x18,
aoqi@0 91 aes4_op3 = 0x19,
aoqi@0 92 umulcc_op3 = 0x1a,
aoqi@0 93 smulcc_op3 = 0x1b,
aoqi@0 94 subccc_op3 = 0x1c,
aoqi@0 95 udivcc_op3 = 0x1e,
aoqi@0 96 sdivcc_op3 = 0x1f,
aoqi@0 97
aoqi@0 98 taddcc_op3 = 0x20,
aoqi@0 99 tsubcc_op3 = 0x21,
aoqi@0 100 taddcctv_op3 = 0x22,
aoqi@0 101 tsubcctv_op3 = 0x23,
aoqi@0 102 mulscc_op3 = 0x24,
aoqi@0 103 sll_op3 = 0x25,
aoqi@0 104 sllx_op3 = 0x25,
aoqi@0 105 srl_op3 = 0x26,
aoqi@0 106 srlx_op3 = 0x26,
aoqi@0 107 sra_op3 = 0x27,
aoqi@0 108 srax_op3 = 0x27,
aoqi@0 109 rdreg_op3 = 0x28,
aoqi@0 110 membar_op3 = 0x28,
aoqi@0 111
aoqi@0 112 flushw_op3 = 0x2b,
aoqi@0 113 movcc_op3 = 0x2c,
aoqi@0 114 sdivx_op3 = 0x2d,
aoqi@0 115 popc_op3 = 0x2e,
aoqi@0 116 movr_op3 = 0x2f,
aoqi@0 117
aoqi@0 118 sir_op3 = 0x30,
aoqi@0 119 wrreg_op3 = 0x30,
aoqi@0 120 saved_op3 = 0x31,
aoqi@0 121
aoqi@0 122 fpop1_op3 = 0x34,
aoqi@0 123 fpop2_op3 = 0x35,
aoqi@0 124 impdep1_op3 = 0x36,
aoqi@0 125 aes3_op3 = 0x36,
kvn@7027 126 sha_op3 = 0x36,
aoqi@0 127 alignaddr_op3 = 0x36,
aoqi@0 128 faligndata_op3 = 0x36,
aoqi@0 129 flog3_op3 = 0x36,
aoqi@0 130 edge_op3 = 0x36,
aoqi@0 131 fsrc_op3 = 0x36,
aoqi@0 132 impdep2_op3 = 0x37,
aoqi@0 133 stpartialf_op3 = 0x37,
aoqi@0 134 jmpl_op3 = 0x38,
aoqi@0 135 rett_op3 = 0x39,
aoqi@0 136 trap_op3 = 0x3a,
aoqi@0 137 flush_op3 = 0x3b,
aoqi@0 138 save_op3 = 0x3c,
aoqi@0 139 restore_op3 = 0x3d,
aoqi@0 140 done_op3 = 0x3e,
aoqi@0 141 retry_op3 = 0x3e,
aoqi@0 142
aoqi@0 143 lduw_op3 = 0x00,
aoqi@0 144 ldub_op3 = 0x01,
aoqi@0 145 lduh_op3 = 0x02,
aoqi@0 146 ldd_op3 = 0x03,
aoqi@0 147 stw_op3 = 0x04,
aoqi@0 148 stb_op3 = 0x05,
aoqi@0 149 sth_op3 = 0x06,
aoqi@0 150 std_op3 = 0x07,
aoqi@0 151 ldsw_op3 = 0x08,
aoqi@0 152 ldsb_op3 = 0x09,
aoqi@0 153 ldsh_op3 = 0x0a,
aoqi@0 154 ldx_op3 = 0x0b,
aoqi@0 155
aoqi@0 156 stx_op3 = 0x0e,
aoqi@0 157 swap_op3 = 0x0f,
aoqi@0 158
aoqi@0 159 stwa_op3 = 0x14,
aoqi@0 160 stxa_op3 = 0x1e,
aoqi@0 161
aoqi@0 162 ldf_op3 = 0x20,
aoqi@0 163 ldfsr_op3 = 0x21,
aoqi@0 164 ldqf_op3 = 0x22,
aoqi@0 165 lddf_op3 = 0x23,
aoqi@0 166 stf_op3 = 0x24,
aoqi@0 167 stfsr_op3 = 0x25,
aoqi@0 168 stqf_op3 = 0x26,
aoqi@0 169 stdf_op3 = 0x27,
aoqi@0 170
aoqi@0 171 prefetch_op3 = 0x2d,
aoqi@0 172
aoqi@0 173 casa_op3 = 0x3c,
aoqi@0 174 casxa_op3 = 0x3e,
aoqi@0 175
aoqi@0 176 mftoi_op3 = 0x36,
aoqi@0 177
aoqi@0 178 alt_bit_op3 = 0x10,
aoqi@0 179 cc_bit_op3 = 0x10
aoqi@0 180 };
aoqi@0 181
aoqi@0 182 enum opfs {
aoqi@0 183 // selected opfs
aoqi@0 184 edge8n_opf = 0x01,
aoqi@0 185
aoqi@0 186 fmovs_opf = 0x01,
aoqi@0 187 fmovd_opf = 0x02,
aoqi@0 188
aoqi@0 189 fnegs_opf = 0x05,
aoqi@0 190 fnegd_opf = 0x06,
aoqi@0 191
aoqi@0 192 alignaddr_opf = 0x18,
aoqi@0 193
aoqi@0 194 fadds_opf = 0x41,
aoqi@0 195 faddd_opf = 0x42,
aoqi@0 196 fsubs_opf = 0x45,
aoqi@0 197 fsubd_opf = 0x46,
aoqi@0 198
aoqi@0 199 faligndata_opf = 0x48,
aoqi@0 200
aoqi@0 201 fmuls_opf = 0x49,
aoqi@0 202 fmuld_opf = 0x4a,
aoqi@0 203 fdivs_opf = 0x4d,
aoqi@0 204 fdivd_opf = 0x4e,
aoqi@0 205
aoqi@0 206 fcmps_opf = 0x51,
aoqi@0 207 fcmpd_opf = 0x52,
aoqi@0 208
aoqi@0 209 fstox_opf = 0x81,
aoqi@0 210 fdtox_opf = 0x82,
aoqi@0 211 fxtos_opf = 0x84,
aoqi@0 212 fxtod_opf = 0x88,
aoqi@0 213 fitos_opf = 0xc4,
aoqi@0 214 fdtos_opf = 0xc6,
aoqi@0 215 fitod_opf = 0xc8,
aoqi@0 216 fstod_opf = 0xc9,
aoqi@0 217 fstoi_opf = 0xd1,
aoqi@0 218 fdtoi_opf = 0xd2,
aoqi@0 219
aoqi@0 220 mdtox_opf = 0x110,
aoqi@0 221 mstouw_opf = 0x111,
aoqi@0 222 mstosw_opf = 0x113,
aoqi@0 223 mxtod_opf = 0x118,
aoqi@0 224 mwtos_opf = 0x119,
aoqi@0 225
aoqi@0 226 aes_kexpand0_opf = 0x130,
kvn@7027 227 aes_kexpand2_opf = 0x131,
kvn@7027 228
kvn@7027 229 sha1_opf = 0x141,
kvn@7027 230 sha256_opf = 0x142,
kvn@7027 231 sha512_opf = 0x143
aoqi@0 232 };
aoqi@0 233
aoqi@0 234 enum op5s {
aoqi@0 235 aes_eround01_op5 = 0x00,
aoqi@0 236 aes_eround23_op5 = 0x01,
aoqi@0 237 aes_dround01_op5 = 0x02,
aoqi@0 238 aes_dround23_op5 = 0x03,
aoqi@0 239 aes_eround01_l_op5 = 0x04,
aoqi@0 240 aes_eround23_l_op5 = 0x05,
aoqi@0 241 aes_dround01_l_op5 = 0x06,
aoqi@0 242 aes_dround23_l_op5 = 0x07,
aoqi@0 243 aes_kexpand1_op5 = 0x08
aoqi@0 244 };
aoqi@0 245
aoqi@0 246 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
aoqi@0 247
aoqi@0 248 enum Condition {
aoqi@0 249 // for FBfcc & FBPfcc instruction
aoqi@0 250 f_never = 0,
aoqi@0 251 f_notEqual = 1,
aoqi@0 252 f_notZero = 1,
aoqi@0 253 f_lessOrGreater = 2,
aoqi@0 254 f_unorderedOrLess = 3,
aoqi@0 255 f_less = 4,
aoqi@0 256 f_unorderedOrGreater = 5,
aoqi@0 257 f_greater = 6,
aoqi@0 258 f_unordered = 7,
aoqi@0 259 f_always = 8,
aoqi@0 260 f_equal = 9,
aoqi@0 261 f_zero = 9,
aoqi@0 262 f_unorderedOrEqual = 10,
aoqi@0 263 f_greaterOrEqual = 11,
aoqi@0 264 f_unorderedOrGreaterOrEqual = 12,
aoqi@0 265 f_lessOrEqual = 13,
aoqi@0 266 f_unorderedOrLessOrEqual = 14,
aoqi@0 267 f_ordered = 15,
aoqi@0 268
aoqi@0 269 // V8 coproc, pp 123 v8 manual
aoqi@0 270
aoqi@0 271 cp_always = 8,
aoqi@0 272 cp_never = 0,
aoqi@0 273 cp_3 = 7,
aoqi@0 274 cp_2 = 6,
aoqi@0 275 cp_2or3 = 5,
aoqi@0 276 cp_1 = 4,
aoqi@0 277 cp_1or3 = 3,
aoqi@0 278 cp_1or2 = 2,
aoqi@0 279 cp_1or2or3 = 1,
aoqi@0 280 cp_0 = 9,
aoqi@0 281 cp_0or3 = 10,
aoqi@0 282 cp_0or2 = 11,
aoqi@0 283 cp_0or2or3 = 12,
aoqi@0 284 cp_0or1 = 13,
aoqi@0 285 cp_0or1or3 = 14,
aoqi@0 286 cp_0or1or2 = 15,
aoqi@0 287
aoqi@0 288
aoqi@0 289 // for integers
aoqi@0 290
aoqi@0 291 never = 0,
aoqi@0 292 equal = 1,
aoqi@0 293 zero = 1,
aoqi@0 294 lessEqual = 2,
aoqi@0 295 less = 3,
aoqi@0 296 lessEqualUnsigned = 4,
aoqi@0 297 lessUnsigned = 5,
aoqi@0 298 carrySet = 5,
aoqi@0 299 negative = 6,
aoqi@0 300 overflowSet = 7,
aoqi@0 301 always = 8,
aoqi@0 302 notEqual = 9,
aoqi@0 303 notZero = 9,
aoqi@0 304 greater = 10,
aoqi@0 305 greaterEqual = 11,
aoqi@0 306 greaterUnsigned = 12,
aoqi@0 307 greaterEqualUnsigned = 13,
aoqi@0 308 carryClear = 13,
aoqi@0 309 positive = 14,
aoqi@0 310 overflowClear = 15
aoqi@0 311 };
aoqi@0 312
aoqi@0 313 enum CC {
aoqi@0 314 icc = 0, xcc = 2,
aoqi@0 315 // ptr_cc is the correct condition code for a pointer or intptr_t:
aoqi@0 316 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
aoqi@0 317 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
aoqi@0 318 };
aoqi@0 319
aoqi@0 320 enum PrefetchFcn {
aoqi@0 321 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
aoqi@0 322 };
aoqi@0 323
aoqi@0 324 public:
aoqi@0 325 // Helper functions for groups of instructions
aoqi@0 326
aoqi@0 327 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
aoqi@0 328
aoqi@0 329 enum Membar_mask_bits { // page 184, v9
aoqi@0 330 StoreStore = 1 << 3,
aoqi@0 331 LoadStore = 1 << 2,
aoqi@0 332 StoreLoad = 1 << 1,
aoqi@0 333 LoadLoad = 1 << 0,
aoqi@0 334
aoqi@0 335 Sync = 1 << 6,
aoqi@0 336 MemIssue = 1 << 5,
aoqi@0 337 Lookaside = 1 << 4
aoqi@0 338 };
aoqi@0 339
aoqi@0 340 static bool is_in_wdisp_range(address a, address b, int nbits) {
aoqi@0 341 intptr_t d = intptr_t(b) - intptr_t(a);
aoqi@0 342 return is_simm(d, nbits + 2);
aoqi@0 343 }
aoqi@0 344
aoqi@0 345 address target_distance(Label& L) {
aoqi@0 346 // Assembler::target(L) should be called only when
aoqi@0 347 // a branch instruction is emitted since non-bound
aoqi@0 348 // labels record current pc() as a branch address.
aoqi@0 349 if (L.is_bound()) return target(L);
aoqi@0 350 // Return current address for non-bound labels.
aoqi@0 351 return pc();
aoqi@0 352 }
aoqi@0 353
aoqi@0 354 // test if label is in simm16 range in words (wdisp16).
aoqi@0 355 bool is_in_wdisp16_range(Label& L) {
aoqi@0 356 return is_in_wdisp_range(target_distance(L), pc(), 16);
aoqi@0 357 }
aoqi@0 358 // test if the distance between two addresses fits in simm30 range in words
aoqi@0 359 static bool is_in_wdisp30_range(address a, address b) {
aoqi@0 360 return is_in_wdisp_range(a, b, 30);
aoqi@0 361 }
aoqi@0 362
aoqi@0 363 enum ASIs { // page 72, v9
aoqi@0 364 ASI_PRIMARY = 0x80,
aoqi@0 365 ASI_PRIMARY_NOFAULT = 0x82,
aoqi@0 366 ASI_PRIMARY_LITTLE = 0x88,
aoqi@0 367 // 8x8-bit partial store
aoqi@0 368 ASI_PST8_PRIMARY = 0xC0,
aoqi@0 369 // Block initializing store
aoqi@0 370 ASI_ST_BLKINIT_PRIMARY = 0xE2,
aoqi@0 371 // Most-Recently-Used (MRU) BIS variant
aoqi@0 372 ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
aoqi@0 373 // add more from book as needed
aoqi@0 374 };
aoqi@0 375
aoqi@0 376 protected:
aoqi@0 377 // helpers
aoqi@0 378
aoqi@0 379 // x is supposed to fit in a field "nbits" wide
aoqi@0 380 // and be sign-extended. Check the range.
aoqi@0 381
aoqi@0 382 static void assert_signed_range(intptr_t x, int nbits) {
aoqi@0 383 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
aoqi@0 384 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
aoqi@0 385 }
aoqi@0 386
aoqi@0 387 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
aoqi@0 388 assert( (x & 3) == 0, "not word aligned");
aoqi@0 389 assert_signed_range(x, nbits + 2);
aoqi@0 390 }
aoqi@0 391
aoqi@0 392 static void assert_unsigned_const(int x, int nbits) {
aoqi@0 393 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
aoqi@0 394 }
aoqi@0 395
aoqi@0 396 // fields: note bits numbered from LSB = 0,
aoqi@0 397 // fields known by inclusive bit range
aoqi@0 398
aoqi@0 399 static int fmask(juint hi_bit, juint lo_bit) {
aoqi@0 400 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
aoqi@0 401 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
aoqi@0 402 }
aoqi@0 403
aoqi@0 404 // inverse of u_field
aoqi@0 405
aoqi@0 406 static int inv_u_field(int x, int hi_bit, int lo_bit) {
aoqi@0 407 juint r = juint(x) >> lo_bit;
aoqi@0 408 r &= fmask( hi_bit, lo_bit);
aoqi@0 409 return int(r);
aoqi@0 410 }
aoqi@0 411
aoqi@0 412
aoqi@0 413 // signed version: extract from field and sign-extend
aoqi@0 414
aoqi@0 415 static int inv_s_field(int x, int hi_bit, int lo_bit) {
aoqi@0 416 int sign_shift = 31 - hi_bit;
aoqi@0 417 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
aoqi@0 418 }
aoqi@0 419
aoqi@0 420 // given a field that ranges from hi_bit to lo_bit (inclusive,
aoqi@0 421 // LSB = 0), and an unsigned value for the field,
aoqi@0 422 // shift it into the field
aoqi@0 423
aoqi@0 424 #ifdef ASSERT
aoqi@0 425 static int u_field(int x, int hi_bit, int lo_bit) {
aoqi@0 426 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
aoqi@0 427 "value out of range");
aoqi@0 428 int r = x << lo_bit;
aoqi@0 429 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
aoqi@0 430 return r;
aoqi@0 431 }
aoqi@0 432 #else
aoqi@0 433 // make sure this is inlined as it will reduce code size significantly
aoqi@0 434 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
aoqi@0 435 #endif
aoqi@0 436
aoqi@0 437 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
aoqi@0 438 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
aoqi@0 439 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
aoqi@0 440 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
aoqi@0 441
aoqi@0 442 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
aoqi@0 443
aoqi@0 444 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
aoqi@0 445 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
aoqi@0 446 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
aoqi@0 447
aoqi@0 448 static int op( int x) { return u_field(x, 31, 30); }
aoqi@0 449 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
aoqi@0 450 static int fcn( int x) { return u_field(x, 29, 25); }
aoqi@0 451 static int op3( int x) { return u_field(x, 24, 19); }
aoqi@0 452 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
aoqi@0 453 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
aoqi@0 454 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
aoqi@0 455 static int cond( int x) { return u_field(x, 28, 25); }
aoqi@0 456 static int cond_mov( int x) { return u_field(x, 17, 14); }
aoqi@0 457 static int rcond( RCondition x) { return u_field(x, 12, 10); }
aoqi@0 458 static int op2( int x) { return u_field(x, 24, 22); }
aoqi@0 459 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
aoqi@0 460 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
aoqi@0 461 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
aoqi@0 462 static int imm_asi( int x) { return u_field(x, 12, 5); }
aoqi@0 463 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
aoqi@0 464 static int opf_low6( int w) { return u_field(w, 10, 5); }
aoqi@0 465 static int opf_low5( int w) { return u_field(w, 9, 5); }
aoqi@0 466 static int op5( int x) { return u_field(x, 8, 5); }
aoqi@0 467 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
aoqi@0 468 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
aoqi@0 469 static int opf( int x) { return u_field(x, 13, 5); }
aoqi@0 470
aoqi@0 471 static bool is_cbcond( int x ) {
aoqi@0 472 return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
aoqi@0 473 inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
aoqi@0 474 }
aoqi@0 475 static bool is_cxb( int x ) {
aoqi@0 476 assert(is_cbcond(x), "wrong instruction");
aoqi@0 477 return (x & (1<<21)) != 0;
aoqi@0 478 }
aoqi@0 479 static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
aoqi@0 480 static int inv_cond_cbcond(int x) {
aoqi@0 481 assert(is_cbcond(x), "wrong instruction");
aoqi@0 482 return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
aoqi@0 483 }
aoqi@0 484
aoqi@0 485 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
aoqi@0 486 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
aoqi@0 487
aoqi@0 488 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
aoqi@0 489 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
aoqi@0 490 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
aoqi@0 491 static int fs3(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13, 9); };
aoqi@0 492
aoqi@0 493 // some float instructions use this encoding on the op3 field
aoqi@0 494 static int alt_op3(int op, FloatRegisterImpl::Width w) {
aoqi@0 495 int r;
aoqi@0 496 switch(w) {
aoqi@0 497 case FloatRegisterImpl::S: r = op + 0; break;
aoqi@0 498 case FloatRegisterImpl::D: r = op + 3; break;
aoqi@0 499 case FloatRegisterImpl::Q: r = op + 2; break;
aoqi@0 500 default: ShouldNotReachHere(); break;
aoqi@0 501 }
aoqi@0 502 return op3(r);
aoqi@0 503 }
aoqi@0 504
aoqi@0 505
aoqi@0 506 // compute inverse of simm
aoqi@0 507 static int inv_simm(int x, int nbits) {
aoqi@0 508 return (int)(x << (32 - nbits)) >> (32 - nbits);
aoqi@0 509 }
aoqi@0 510
aoqi@0 511 static int inv_simm13( int x ) { return inv_simm(x, 13); }
aoqi@0 512
aoqi@0 513 // signed immediate, in low bits, nbits long
aoqi@0 514 static int simm(int x, int nbits) {
aoqi@0 515 assert_signed_range(x, nbits);
aoqi@0 516 return x & (( 1 << nbits ) - 1);
aoqi@0 517 }
aoqi@0 518
aoqi@0 519 // compute inverse of wdisp16
aoqi@0 520 static intptr_t inv_wdisp16(int x, intptr_t pos) {
aoqi@0 521 int lo = x & (( 1 << 14 ) - 1);
aoqi@0 522 int hi = (x >> 20) & 3;
aoqi@0 523 if (hi >= 2) hi |= ~1;
aoqi@0 524 return (((hi << 14) | lo) << 2) + pos;
aoqi@0 525 }
aoqi@0 526
aoqi@0 527 // word offset, 14 bits at LSend, 2 bits at B21, B20
aoqi@0 528 static int wdisp16(intptr_t x, intptr_t off) {
aoqi@0 529 intptr_t xx = x - off;
aoqi@0 530 assert_signed_word_disp_range(xx, 16);
aoqi@0 531 int r = (xx >> 2) & ((1 << 14) - 1)
aoqi@0 532 | ( ( (xx>>(2+14)) & 3 ) << 20 );
aoqi@0 533 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
aoqi@0 534 return r;
aoqi@0 535 }
aoqi@0 536
aoqi@0 537 // compute inverse of wdisp10
aoqi@0 538 static intptr_t inv_wdisp10(int x, intptr_t pos) {
aoqi@0 539 assert(is_cbcond(x), "wrong instruction");
aoqi@0 540 int lo = inv_u_field(x, 12, 5);
aoqi@0 541 int hi = (x >> 19) & 3;
aoqi@0 542 if (hi >= 2) hi |= ~1;
aoqi@0 543 return (((hi << 8) | lo) << 2) + pos;
aoqi@0 544 }
aoqi@0 545
aoqi@0 546 // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
aoqi@0 547 static int wdisp10(intptr_t x, intptr_t off) {
aoqi@0 548 assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
aoqi@0 549 intptr_t xx = x - off;
aoqi@0 550 assert_signed_word_disp_range(xx, 10);
aoqi@0 551 int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
aoqi@0 552 | ( ( (xx >> (2+8)) & 3 ) << 19 );
aoqi@0 553 // Have to fake cbcond instruction to pass assert in inv_wdisp10()
aoqi@0 554 assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
aoqi@0 555 return r;
aoqi@0 556 }
aoqi@0 557
aoqi@0 558 // word displacement in low-order nbits bits
aoqi@0 559
aoqi@0 560 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
aoqi@0 561 int pre_sign_extend = x & (( 1 << nbits ) - 1);
aoqi@0 562 int r = pre_sign_extend >= ( 1 << (nbits-1) )
aoqi@0 563 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
aoqi@0 564 : pre_sign_extend;
aoqi@0 565 return (r << 2) + pos;
aoqi@0 566 }
aoqi@0 567
aoqi@0 568 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
aoqi@0 569 intptr_t xx = x - off;
aoqi@0 570 assert_signed_word_disp_range(xx, nbits);
aoqi@0 571 int r = (xx >> 2) & (( 1 << nbits ) - 1);
aoqi@0 572 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
aoqi@0 573 return r;
aoqi@0 574 }
aoqi@0 575
aoqi@0 576
aoqi@0 577 // Extract the top 32 bits in a 64 bit word
aoqi@0 578 static int32_t hi32( int64_t x ) {
aoqi@0 579 int32_t r = int32_t( (uint64_t)x >> 32 );
aoqi@0 580 return r;
aoqi@0 581 }
aoqi@0 582
aoqi@0 583 // given a sethi instruction, extract the constant, left-justified
aoqi@0 584 static int inv_hi22( int x ) {
aoqi@0 585 return x << 10;
aoqi@0 586 }
aoqi@0 587
aoqi@0 588 // create an imm22 field, given a 32-bit left-justified constant
aoqi@0 589 static int hi22( int x ) {
aoqi@0 590 int r = int( juint(x) >> 10 );
aoqi@0 591 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
aoqi@0 592 return r;
aoqi@0 593 }
aoqi@0 594
aoqi@0 595 // create a low10 __value__ (not a field) for a given a 32-bit constant
aoqi@0 596 static int low10( int x ) {
aoqi@0 597 return x & ((1 << 10) - 1);
aoqi@0 598 }
aoqi@0 599
aoqi@0 600 // AES crypto instructions supported only on certain processors
aoqi@0 601 static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
aoqi@0 602
kvn@7027 603 // SHA crypto instructions supported only on certain processors
kvn@7027 604 static void sha1_only() { assert( VM_Version::has_sha1(), "This instruction only works on SPARC with SHA1"); }
kvn@7027 605 static void sha256_only() { assert( VM_Version::has_sha256(), "This instruction only works on SPARC with SHA256"); }
kvn@7027 606 static void sha512_only() { assert( VM_Version::has_sha512(), "This instruction only works on SPARC with SHA512"); }
kvn@7027 607
aoqi@0 608 // instruction only in VIS1
aoqi@0 609 static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
aoqi@0 610
aoqi@0 611 // instruction only in VIS2
aoqi@0 612 static void vis2_only() { assert( VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
aoqi@0 613
aoqi@0 614 // instruction only in VIS3
aoqi@0 615 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
aoqi@0 616
aoqi@0 617 // instruction only in v9
aoqi@0 618 static void v9_only() { } // do nothing
aoqi@0 619
aoqi@0 620 // instruction deprecated in v9
aoqi@0 621 static void v9_dep() { } // do nothing for now
aoqi@0 622
aoqi@0 623 // v8 has no CC field
aoqi@0 624 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
aoqi@0 625
aoqi@0 626 protected:
aoqi@0 627 // Simple delay-slot scheme:
aoqi@0 628 // In order to check the programmer, the assembler keeps track of deley slots.
aoqi@0 629 // It forbids CTIs in delay slots (conservative, but should be OK).
aoqi@0 630 // Also, when putting an instruction into a delay slot, you must say
aoqi@0 631 // asm->delayed()->add(...), in order to check that you don't omit
aoqi@0 632 // delay-slot instructions.
aoqi@0 633 // To implement this, we use a simple FSA
aoqi@0 634
aoqi@0 635 #ifdef ASSERT
aoqi@0 636 #define CHECK_DELAY
aoqi@0 637 #endif
aoqi@0 638 #ifdef CHECK_DELAY
aoqi@0 639 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
aoqi@0 640 #endif
aoqi@0 641
aoqi@0 642 public:
aoqi@0 643 // Tells assembler next instruction must NOT be in delay slot.
aoqi@0 644 // Use at start of multinstruction macros.
aoqi@0 645 void assert_not_delayed() {
aoqi@0 646 // This is a separate overloading to avoid creation of string constants
aoqi@0 647 // in non-asserted code--with some compilers this pollutes the object code.
aoqi@0 648 #ifdef CHECK_DELAY
aoqi@0 649 assert_not_delayed("next instruction should not be a delay slot");
aoqi@0 650 #endif
aoqi@0 651 }
aoqi@0 652 void assert_not_delayed(const char* msg) {
aoqi@0 653 #ifdef CHECK_DELAY
aoqi@0 654 assert(delay_state == no_delay, msg);
aoqi@0 655 #endif
aoqi@0 656 }
aoqi@0 657
aoqi@0 658 protected:
aoqi@0 659 // Insert a nop if the previous is cbcond
aoqi@0 660 void insert_nop_after_cbcond() {
aoqi@0 661 if (UseCBCond && cbcond_before()) {
aoqi@0 662 nop();
aoqi@0 663 }
aoqi@0 664 }
aoqi@0 665 // Delay slot helpers
aoqi@0 666 // cti is called when emitting control-transfer instruction,
aoqi@0 667 // BEFORE doing the emitting.
aoqi@0 668 // Only effective when assertion-checking is enabled.
aoqi@0 669 void cti() {
aoqi@0 670 // A cbcond instruction immediately followed by a CTI
aoqi@0 671 // instruction introduces pipeline stalls, we need to avoid that.
aoqi@0 672 no_cbcond_before();
aoqi@0 673 #ifdef CHECK_DELAY
aoqi@0 674 assert_not_delayed("cti should not be in delay slot");
aoqi@0 675 #endif
aoqi@0 676 }
aoqi@0 677
aoqi@0 678 // called when emitting cti with a delay slot, AFTER emitting
aoqi@0 679 void has_delay_slot() {
aoqi@0 680 #ifdef CHECK_DELAY
aoqi@0 681 assert_not_delayed("just checking");
aoqi@0 682 delay_state = at_delay_slot;
aoqi@0 683 #endif
aoqi@0 684 }
aoqi@0 685
aoqi@0 686 // cbcond instruction should not be generated one after an other
aoqi@0 687 bool cbcond_before() {
aoqi@0 688 if (offset() == 0) return false; // it is first instruction
aoqi@0 689 int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
aoqi@0 690 return is_cbcond(x);
aoqi@0 691 }
aoqi@0 692
aoqi@0 693 void no_cbcond_before() {
aoqi@0 694 assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
aoqi@0 695 }
aoqi@0 696 public:
aoqi@0 697
aoqi@0 698 bool use_cbcond(Label& L) {
aoqi@0 699 if (!UseCBCond || cbcond_before()) return false;
aoqi@0 700 intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
aoqi@0 701 assert( (x & 3) == 0, "not word aligned");
aoqi@0 702 return is_simm12(x);
aoqi@0 703 }
aoqi@0 704
aoqi@0 705 // Tells assembler you know that next instruction is delayed
aoqi@0 706 Assembler* delayed() {
aoqi@0 707 #ifdef CHECK_DELAY
aoqi@0 708 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
aoqi@0 709 delay_state = filling_delay_slot;
aoqi@0 710 #endif
aoqi@0 711 return this;
aoqi@0 712 }
aoqi@0 713
aoqi@0 714 void flush() {
aoqi@0 715 #ifdef CHECK_DELAY
aoqi@0 716 assert ( delay_state == no_delay, "ending code with a delay slot");
aoqi@0 717 #endif
aoqi@0 718 AbstractAssembler::flush();
aoqi@0 719 }
aoqi@0 720
aoqi@0 721 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
aoqi@0 722 inline void emit_data(int x) { emit_int32(x); }
aoqi@0 723 inline void emit_data(int, RelocationHolder const&);
aoqi@0 724 inline void emit_data(int, relocInfo::relocType rtype);
aoqi@0 725 // helper for above fcns
aoqi@0 726 inline void check_delay();
aoqi@0 727
aoqi@0 728
aoqi@0 729 public:
aoqi@0 730 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
aoqi@0 731
aoqi@0 732 // pp 135 (addc was addx in v8)
aoqi@0 733
aoqi@0 734 inline void add(Register s1, Register s2, Register d );
aoqi@0 735 inline void add(Register s1, int simm13a, Register d );
aoqi@0 736
aoqi@0 737 void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 738 void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 739 void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 740 void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 741 void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 742 void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 743
aoqi@0 744
aoqi@0 745 // 4-operand AES instructions
aoqi@0 746
aoqi@0 747 void aes_eround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 748 void aes_eround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 749 void aes_dround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 750 void aes_dround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 751 void aes_eround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 752 void aes_eround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 753 void aes_dround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 754 void aes_dround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 755 void aes_kexpand1( FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 756
aoqi@0 757
aoqi@0 758 // 3-operand AES instructions
aoqi@0 759
aoqi@0 760 void aes_kexpand0( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 761 void aes_kexpand2( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
aoqi@0 762
aoqi@0 763 // pp 136
aoqi@0 764
aoqi@0 765 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
aoqi@0 766 inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
aoqi@0 767
aoqi@0 768 // compare and branch
aoqi@0 769 inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
aoqi@0 770 inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
aoqi@0 771
aoqi@0 772 protected: // use MacroAssembler::br instead
aoqi@0 773
aoqi@0 774 // pp 138
aoqi@0 775
aoqi@0 776 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
aoqi@0 777 inline void fb( Condition c, bool a, Label& L );
aoqi@0 778
aoqi@0 779 // pp 141
aoqi@0 780
aoqi@0 781 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
aoqi@0 782 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
aoqi@0 783
aoqi@0 784 // pp 144
aoqi@0 785
aoqi@0 786 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
aoqi@0 787 inline void br( Condition c, bool a, Label& L );
aoqi@0 788
aoqi@0 789 // pp 146
aoqi@0 790
aoqi@0 791 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
aoqi@0 792 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
aoqi@0 793
aoqi@0 794 // pp 149
aoqi@0 795
aoqi@0 796 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
aoqi@0 797 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
aoqi@0 798
aoqi@0 799 public:
aoqi@0 800
aoqi@0 801 // pp 150
aoqi@0 802
aoqi@0 803 // These instructions compare the contents of s2 with the contents of
aoqi@0 804 // memory at address in s1. If the values are equal, the contents of memory
aoqi@0 805 // at address s1 is swapped with the data in d. If the values are not equal,
aoqi@0 806 // the the contents of memory at s1 is loaded into d, without the swap.
aoqi@0 807
aoqi@0 808 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
aoqi@0 809 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
aoqi@0 810
aoqi@0 811 // pp 152
aoqi@0 812
aoqi@0 813 void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
aoqi@0 814 void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 815 void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
aoqi@0 816 void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 817 void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
aoqi@0 818 void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 819 void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
aoqi@0 820 void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 821
aoqi@0 822 // pp 155
aoqi@0 823
aoqi@0 824 void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
aoqi@0 825 void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
aoqi@0 826
aoqi@0 827 // pp 156
aoqi@0 828
aoqi@0 829 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
aoqi@0 830 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
aoqi@0 831
aoqi@0 832 // pp 157
aoqi@0 833
aoqi@0 834 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
aoqi@0 835 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
aoqi@0 836
aoqi@0 837 // pp 159
aoqi@0 838
aoqi@0 839 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
aoqi@0 840 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
aoqi@0 841
aoqi@0 842 // pp 160
aoqi@0 843
aoqi@0 844 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
aoqi@0 845
aoqi@0 846 // pp 161
aoqi@0 847
aoqi@0 848 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
aoqi@0 849 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
aoqi@0 850
aoqi@0 851 // pp 162
aoqi@0 852
aoqi@0 853 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
aoqi@0 854
aoqi@0 855 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
aoqi@0 856
aoqi@0 857 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
aoqi@0 858
aoqi@0 859 // pp 163
aoqi@0 860
aoqi@0 861 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
aoqi@0 862 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
aoqi@0 863 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
aoqi@0 864
aoqi@0 865 // FXORs/FXORd instructions
aoqi@0 866
aoqi@0 867 void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
aoqi@0 868
aoqi@0 869 // pp 164
aoqi@0 870
aoqi@0 871 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
aoqi@0 872
aoqi@0 873 // pp 165
aoqi@0 874
aoqi@0 875 inline void flush( Register s1, Register s2 );
aoqi@0 876 inline void flush( Register s1, int simm13a);
aoqi@0 877
aoqi@0 878 // pp 167
aoqi@0 879
aoqi@0 880 void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
aoqi@0 881
aoqi@0 882 // pp 168
aoqi@0 883
aoqi@0 884 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
aoqi@0 885 // v8 unimp == illtrap(0)
aoqi@0 886
aoqi@0 887 // pp 169
aoqi@0 888
aoqi@0 889 void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
aoqi@0 890 void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
aoqi@0 891
aoqi@0 892 // pp 170
aoqi@0 893
aoqi@0 894 void jmpl( Register s1, Register s2, Register d );
aoqi@0 895 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
aoqi@0 896
aoqi@0 897 // 171
aoqi@0 898
aoqi@0 899 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
aoqi@0 900 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
aoqi@0 901
aoqi@0 902
aoqi@0 903 inline void ldfsr( Register s1, Register s2 );
aoqi@0 904 inline void ldfsr( Register s1, int simm13a);
aoqi@0 905 inline void ldxfsr( Register s1, Register s2 );
aoqi@0 906 inline void ldxfsr( Register s1, int simm13a);
aoqi@0 907
aoqi@0 908 // 173
aoqi@0 909
aoqi@0 910 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 911 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 912
aoqi@0 913 // pp 175, lduw is ld on v8
aoqi@0 914
aoqi@0 915 inline void ldsb( Register s1, Register s2, Register d );
aoqi@0 916 inline void ldsb( Register s1, int simm13a, Register d);
aoqi@0 917 inline void ldsh( Register s1, Register s2, Register d );
aoqi@0 918 inline void ldsh( Register s1, int simm13a, Register d);
aoqi@0 919 inline void ldsw( Register s1, Register s2, Register d );
aoqi@0 920 inline void ldsw( Register s1, int simm13a, Register d);
aoqi@0 921 inline void ldub( Register s1, Register s2, Register d );
aoqi@0 922 inline void ldub( Register s1, int simm13a, Register d);
aoqi@0 923 inline void lduh( Register s1, Register s2, Register d );
aoqi@0 924 inline void lduh( Register s1, int simm13a, Register d);
aoqi@0 925 inline void lduw( Register s1, Register s2, Register d );
aoqi@0 926 inline void lduw( Register s1, int simm13a, Register d);
aoqi@0 927 inline void ldx( Register s1, Register s2, Register d );
aoqi@0 928 inline void ldx( Register s1, int simm13a, Register d);
aoqi@0 929 inline void ldd( Register s1, Register s2, Register d );
aoqi@0 930 inline void ldd( Register s1, int simm13a, Register d);
aoqi@0 931
aoqi@0 932 // pp 177
aoqi@0 933
aoqi@0 934 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 935 void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 936 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 937 void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 938 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 939 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 940 void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 941 void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 942 void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 943 void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 944 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 945 void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 946 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 947 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 948
aoqi@0 949 // pp 181
aoqi@0 950
aoqi@0 951 void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 952 void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 953 void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 954 void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 955 void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 956 void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 957 void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 958 void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 959 void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 960 void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 961 void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 962 void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 963 void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 964 void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 965 void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 966 void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 967 void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 968 void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 969 void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 970 void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 971 void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 972 void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 973 void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 974 void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 975
aoqi@0 976 // pp 183
aoqi@0 977
aoqi@0 978 void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
aoqi@0 979
aoqi@0 980 // pp 185
aoqi@0 981
aoqi@0 982 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
aoqi@0 983
aoqi@0 984 // pp 189
aoqi@0 985
aoqi@0 986 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
aoqi@0 987
aoqi@0 988 // pp 191
aoqi@0 989
aoqi@0 990 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
aoqi@0 991 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
aoqi@0 992
aoqi@0 993 // pp 195
aoqi@0 994
aoqi@0 995 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
aoqi@0 996 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
aoqi@0 997
aoqi@0 998 // pp 196
aoqi@0 999
aoqi@0 1000 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1001 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1002 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1003 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1004 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1005 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1006
aoqi@0 1007 // pp 197
aoqi@0 1008
aoqi@0 1009 void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1010 void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1011 void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1012 void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1013 void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1014 void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1015 void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1016 void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1017
aoqi@0 1018 // pp 201
aoqi@0 1019
aoqi@0 1020 void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
aoqi@0 1021
aoqi@0 1022
aoqi@0 1023 // pp 202
aoqi@0 1024
aoqi@0 1025 void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
aoqi@0 1026 void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
aoqi@0 1027
aoqi@0 1028 // pp 203
aoqi@0 1029
aoqi@0 1030 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1031 void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
aoqi@0 1032
aoqi@0 1033 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1034 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1035
aoqi@0 1036 // pp 208
aoqi@0 1037
aoqi@0 1038 // not implementing read privileged register
aoqi@0 1039
aoqi@0 1040 inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
aoqi@0 1041 inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
aoqi@0 1042 inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
aoqi@0 1043 inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
aoqi@0 1044 inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
aoqi@0 1045 inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
aoqi@0 1046
aoqi@0 1047 // pp 213
aoqi@0 1048
aoqi@0 1049 inline void rett( Register s1, Register s2);
aoqi@0 1050 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
aoqi@0 1051
aoqi@0 1052 // pp 214
aoqi@0 1053
aoqi@0 1054 void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1055 void save( Register s1, int simm13a, Register d ) {
aoqi@0 1056 // make sure frame is at least large enough for the register save area
aoqi@0 1057 assert(-simm13a >= 16 * wordSize, "frame too small");
aoqi@0 1058 emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
aoqi@0 1059 }
aoqi@0 1060
aoqi@0 1061 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1062 void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1063
aoqi@0 1064 // pp 216
aoqi@0 1065
aoqi@0 1066 void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
aoqi@0 1067 void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
aoqi@0 1068
aoqi@0 1069 // pp 217
aoqi@0 1070
aoqi@0 1071 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
aoqi@0 1072 // pp 218
aoqi@0 1073
aoqi@0 1074 void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
aoqi@0 1075 void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
aoqi@0 1076 void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
aoqi@0 1077 void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
aoqi@0 1078 void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
aoqi@0 1079 void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
aoqi@0 1080
aoqi@0 1081 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
aoqi@0 1082 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
aoqi@0 1083 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
aoqi@0 1084 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
aoqi@0 1085 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
aoqi@0 1086 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
aoqi@0 1087
aoqi@0 1088 // pp 220
aoqi@0 1089
aoqi@0 1090 void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
aoqi@0 1091
aoqi@0 1092 // pp 221
aoqi@0 1093
aoqi@0 1094 void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
aoqi@0 1095
aoqi@0 1096 // pp 222
aoqi@0 1097
aoqi@0 1098 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
aoqi@0 1099 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
aoqi@0 1100
aoqi@0 1101 inline void stfsr( Register s1, Register s2 );
aoqi@0 1102 inline void stfsr( Register s1, int simm13a);
aoqi@0 1103 inline void stxfsr( Register s1, Register s2 );
aoqi@0 1104 inline void stxfsr( Register s1, int simm13a);
aoqi@0 1105
aoqi@0 1106 // pp 224
aoqi@0 1107
aoqi@0 1108 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1109 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1110
aoqi@0 1111 // p 226
aoqi@0 1112
aoqi@0 1113 inline void stb( Register d, Register s1, Register s2 );
aoqi@0 1114 inline void stb( Register d, Register s1, int simm13a);
aoqi@0 1115 inline void sth( Register d, Register s1, Register s2 );
aoqi@0 1116 inline void sth( Register d, Register s1, int simm13a);
aoqi@0 1117 inline void stw( Register d, Register s1, Register s2 );
aoqi@0 1118 inline void stw( Register d, Register s1, int simm13a);
aoqi@0 1119 inline void stx( Register d, Register s1, Register s2 );
aoqi@0 1120 inline void stx( Register d, Register s1, int simm13a);
aoqi@0 1121 inline void std( Register d, Register s1, Register s2 );
aoqi@0 1122 inline void std( Register d, Register s1, int simm13a);
aoqi@0 1123
aoqi@0 1124 // pp 177
aoqi@0 1125
aoqi@0 1126 void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1127 void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1128 void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1129 void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1130 void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1131 void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1132 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1133 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1134 void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1135 void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1136
aoqi@0 1137 // pp 230
aoqi@0 1138
aoqi@0 1139 void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1140 void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1141
aoqi@0 1142 void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1143 void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1144 void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1145 void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1146 void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
aoqi@0 1147 void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1148
aoqi@0 1149 // pp 231
aoqi@0 1150
aoqi@0 1151 inline void swap( Register s1, Register s2, Register d );
aoqi@0 1152 inline void swap( Register s1, int simm13a, Register d);
aoqi@0 1153
aoqi@0 1154 // pp 232
aoqi@0 1155
aoqi@0 1156 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
aoqi@0 1157 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1158
aoqi@0 1159 // pp 234, note op in book is wrong, see pp 268
aoqi@0 1160
aoqi@0 1161 void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1162 void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1163
aoqi@0 1164 // pp 235
aoqi@0 1165
aoqi@0 1166 void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
aoqi@0 1167 void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
aoqi@0 1168
aoqi@0 1169 // pp 237
aoqi@0 1170
aoqi@0 1171 void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
aoqi@0 1172 void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
aoqi@0 1173 // simple uncond. trap
aoqi@0 1174 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
aoqi@0 1175
aoqi@0 1176 // pp 239 omit write priv register for now
aoqi@0 1177
aoqi@0 1178 inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
aoqi@0 1179 inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
aoqi@0 1180 inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
aoqi@0 1181 rs1(s) |
aoqi@0 1182 op3(wrreg_op3) |
aoqi@0 1183 u_field(2, 29, 25) |
aoqi@0 1184 immed(true) |
aoqi@0 1185 simm(simm13a, 13)); }
aoqi@0 1186 inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
aoqi@0 1187 // wrasi(d, imm) stores (d xor imm) to asi
aoqi@0 1188 inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
aoqi@0 1189 u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
aoqi@0 1190 inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
aoqi@0 1191
aoqi@0 1192 // VIS1 instructions
aoqi@0 1193
aoqi@0 1194 void alignaddr( Register s1, Register s2, Register d ) { vis1_only(); emit_int32( op(arith_op) | rd(d) | op3(alignaddr_op3) | rs1(s1) | opf(alignaddr_opf) | rs2(s2)); }
aoqi@0 1195
aoqi@0 1196 void faligndata( FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(faligndata_op3) | fs1(s1, FloatRegisterImpl::D) | opf(faligndata_opf) | fs2(s2, FloatRegisterImpl::D)); }
aoqi@0 1197
aoqi@0 1198 void fsrc2( FloatRegisterImpl::Width w, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fsrc_op3) | opf(0x7A - w) | fs2(s2, w)); }
aoqi@0 1199
aoqi@0 1200 void stpartialf( Register s1, Register s2, FloatRegister d, int ia = -1 ) { vis1_only(); emit_int32( op(ldst_op) | fd(d, FloatRegisterImpl::D) | op3(stpartialf_op3) | rs1(s1) | imm_asi(ia) | rs2(s2)); }
aoqi@0 1201
aoqi@0 1202 // VIS2 instructions
aoqi@0 1203
aoqi@0 1204 void edge8n( Register s1, Register s2, Register d ) { vis2_only(); emit_int32( op(arith_op) | rd(d) | op3(edge_op3) | rs1(s1) | opf(edge8n_opf) | rs2(s2)); }
aoqi@0 1205
aoqi@0 1206 // VIS3 instructions
aoqi@0 1207
aoqi@0 1208 void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
aoqi@0 1209 void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
aoqi@0 1210 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
aoqi@0 1211
aoqi@0 1212 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
aoqi@0 1213 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
aoqi@0 1214
kvn@7027 1215 // Crypto SHA instructions
kvn@7027 1216
kvn@7027 1217 void sha1() { sha1_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha1_opf)); }
kvn@7027 1218 void sha256() { sha256_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha256_opf)); }
kvn@7027 1219 void sha512() { sha512_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha512_opf)); }
kvn@7027 1220
aoqi@0 1221 // Creation
aoqi@0 1222 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
aoqi@0 1223 #ifdef CHECK_DELAY
aoqi@0 1224 delay_state = no_delay;
aoqi@0 1225 #endif
aoqi@0 1226 }
aoqi@0 1227 };
aoqi@0 1228
aoqi@0 1229 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial