src/share/vm/runtime/advancedThresholdPolicy.cpp

Sun, 01 Jan 2012 11:17:59 -0500

author
phh
date
Sun, 01 Jan 2012 11:17:59 -0500
changeset 3378
7ab5f6318694
parent 3035
43f9d800f276
child 3385
abcceac2f7cd
permissions
-rw-r--r--

7125934: Add a fast unordered timestamp capability to Hotspot on x86/x64
Summary: Add rdtsc detection and inline generation.
Reviewed-by: kamg, dholmes
Contributed-by: karen.kinnear@oracle.com

iveresov@2630 1 /*
iveresov@2890 2 * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
iveresov@2890 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
iveresov@2890 4 *
iveresov@2890 5 * This code is free software; you can redistribute it and/or modify it
iveresov@2890 6 * under the terms of the GNU General Public License version 2 only, as
iveresov@2890 7 * published by the Free Software Foundation.
iveresov@2890 8 *
iveresov@2890 9 * This code is distributed in the hope that it will be useful, but WITHOUT
iveresov@2890 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
iveresov@2890 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
iveresov@2890 12 * version 2 for more details (a copy is included in the LICENSE file that
iveresov@2890 13 * accompanied this code).
iveresov@2890 14 *
iveresov@2890 15 * You should have received a copy of the GNU General Public License version
iveresov@2890 16 * 2 along with this work; if not, write to the Free Software Foundation,
iveresov@2890 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
iveresov@2890 18 *
iveresov@2890 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
iveresov@2890 20 * or visit www.oracle.com if you need additional information or have any
iveresov@2890 21 * questions.
iveresov@2890 22 *
iveresov@2890 23 */
iveresov@2630 24
iveresov@2630 25 #include "precompiled.hpp"
iveresov@2630 26 #include "runtime/advancedThresholdPolicy.hpp"
iveresov@2630 27 #include "runtime/simpleThresholdPolicy.inline.hpp"
iveresov@2630 28
iveresov@2630 29 #ifdef TIERED
iveresov@2630 30 // Print an event.
iveresov@2630 31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
iveresov@2630 32 int bci, CompLevel level) {
iveresov@2630 33 tty->print(" rate: ");
iveresov@2630 34 if (mh->prev_time() == 0) tty->print("n/a");
iveresov@2630 35 else tty->print("%f", mh->rate());
iveresov@2630 36
iveresov@2630 37 tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
iveresov@2630 38 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
iveresov@2630 39
iveresov@2630 40 }
iveresov@2630 41
iveresov@2630 42 void AdvancedThresholdPolicy::initialize() {
iveresov@2630 43 // Turn on ergonomic compiler count selection
iveresov@2630 44 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
iveresov@2630 45 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
iveresov@2630 46 }
iveresov@2630 47 int count = CICompilerCount;
iveresov@2630 48 if (CICompilerCountPerCPU) {
iveresov@2630 49 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
iveresov@2630 50 int log_cpu = log2_intptr(os::active_processor_count());
iveresov@2630 51 int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
iveresov@2630 52 count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
iveresov@2630 53 }
iveresov@2630 54
iveresov@2630 55 set_c1_count(MAX2(count / 3, 1));
iveresov@2630 56 set_c2_count(MAX2(count - count / 3, 1));
iveresov@2630 57
iveresov@2630 58 // Some inlining tuning
iveresov@2630 59 #ifdef X86
iveresov@2630 60 if (FLAG_IS_DEFAULT(InlineSmallCode)) {
iveresov@2630 61 FLAG_SET_DEFAULT(InlineSmallCode, 2000);
iveresov@2630 62 }
iveresov@2630 63 #endif
iveresov@2630 64
iveresov@2630 65 #ifdef SPARC
iveresov@2630 66 if (FLAG_IS_DEFAULT(InlineSmallCode)) {
iveresov@2630 67 FLAG_SET_DEFAULT(InlineSmallCode, 2500);
iveresov@2630 68 }
iveresov@2630 69 #endif
iveresov@2630 70
iveresov@2630 71
iveresov@2630 72 set_start_time(os::javaTimeMillis());
iveresov@2630 73 }
iveresov@2630 74
iveresov@2630 75 // update_rate() is called from select_task() while holding a compile queue lock.
iveresov@2630 76 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
iveresov@2630 77 if (is_old(m)) {
iveresov@2630 78 // We don't remove old methods from the queue,
iveresov@2630 79 // so we can just zero the rate.
iveresov@2630 80 m->set_rate(0);
iveresov@2630 81 return;
iveresov@2630 82 }
iveresov@2630 83
iveresov@2630 84 // We don't update the rate if we've just came out of a safepoint.
iveresov@2630 85 // delta_s is the time since last safepoint in milliseconds.
iveresov@2630 86 jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
iveresov@2630 87 jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
iveresov@2630 88 // How many events were there since the last time?
iveresov@2630 89 int event_count = m->invocation_count() + m->backedge_count();
iveresov@2630 90 int delta_e = event_count - m->prev_event_count();
iveresov@2630 91
iveresov@2630 92 // We should be running for at least 1ms.
iveresov@2630 93 if (delta_s >= TieredRateUpdateMinTime) {
iveresov@2630 94 // And we must've taken the previous point at least 1ms before.
iveresov@2630 95 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
iveresov@2630 96 m->set_prev_time(t);
iveresov@2630 97 m->set_prev_event_count(event_count);
iveresov@2630 98 m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
iveresov@2630 99 } else
iveresov@2630 100 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
iveresov@2630 101 // If nothing happened for 25ms, zero the rate. Don't modify prev values.
iveresov@2630 102 m->set_rate(0);
iveresov@2630 103 }
iveresov@2630 104 }
iveresov@2630 105 }
iveresov@2630 106
iveresov@2630 107 // Check if this method has been stale from a given number of milliseconds.
iveresov@2630 108 // See select_task().
iveresov@2630 109 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
iveresov@2630 110 jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
iveresov@2630 111 jlong delta_t = t - m->prev_time();
iveresov@2630 112 if (delta_t > timeout && delta_s > timeout) {
iveresov@2630 113 int event_count = m->invocation_count() + m->backedge_count();
iveresov@2630 114 int delta_e = event_count - m->prev_event_count();
iveresov@2630 115 // Return true if there were no events.
iveresov@2630 116 return delta_e == 0;
iveresov@2630 117 }
iveresov@2630 118 return false;
iveresov@2630 119 }
iveresov@2630 120
iveresov@2630 121 // We don't remove old methods from the compile queue even if they have
iveresov@2630 122 // very low activity. See select_task().
iveresov@2630 123 bool AdvancedThresholdPolicy::is_old(methodOop method) {
iveresov@2630 124 return method->invocation_count() > 50000 || method->backedge_count() > 500000;
iveresov@2630 125 }
iveresov@2630 126
iveresov@2630 127 double AdvancedThresholdPolicy::weight(methodOop method) {
iveresov@2630 128 return (method->rate() + 1) * ((method->invocation_count() + 1) * (method->backedge_count() + 1));
iveresov@2630 129 }
iveresov@2630 130
iveresov@2630 131 // Apply heuristics and return true if x should be compiled before y
iveresov@2630 132 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
iveresov@2630 133 if (x->highest_comp_level() > y->highest_comp_level()) {
iveresov@2630 134 // recompilation after deopt
iveresov@2630 135 return true;
iveresov@2630 136 } else
iveresov@2630 137 if (x->highest_comp_level() == y->highest_comp_level()) {
iveresov@2630 138 if (weight(x) > weight(y)) {
iveresov@2630 139 return true;
iveresov@2630 140 }
iveresov@2630 141 }
iveresov@2630 142 return false;
iveresov@2630 143 }
iveresov@2630 144
iveresov@2630 145 // Is method profiled enough?
iveresov@2630 146 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
iveresov@2630 147 methodDataOop mdo = method->method_data();
iveresov@2630 148 if (mdo != NULL) {
iveresov@2630 149 int i = mdo->invocation_count_delta();
iveresov@2630 150 int b = mdo->backedge_count_delta();
iveresov@2630 151 return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
iveresov@2630 152 }
iveresov@2630 153 return false;
iveresov@2630 154 }
iveresov@2630 155
iveresov@2630 156 // Called with the queue locked and with at least one element
iveresov@2630 157 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
iveresov@2630 158 CompileTask *max_task = NULL;
iveresov@2630 159 methodOop max_method;
iveresov@2630 160 jlong t = os::javaTimeMillis();
iveresov@2630 161 // Iterate through the queue and find a method with a maximum rate.
iveresov@2630 162 for (CompileTask* task = compile_queue->first(); task != NULL;) {
iveresov@2630 163 CompileTask* next_task = task->next();
iveresov@2630 164 methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
iveresov@2630 165 methodDataOop mdo = method->method_data();
iveresov@2630 166 update_rate(t, method);
iveresov@2630 167 if (max_task == NULL) {
iveresov@2630 168 max_task = task;
iveresov@2630 169 max_method = method;
iveresov@2630 170 } else {
iveresov@2630 171 // If a method has been stale for some time, remove it from the queue.
iveresov@2630 172 if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
iveresov@2630 173 if (PrintTieredEvents) {
iveresov@2988 174 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
iveresov@2630 175 }
iveresov@2630 176 CompileTaskWrapper ctw(task); // Frees the task
iveresov@2630 177 compile_queue->remove(task);
iveresov@2630 178 method->clear_queued_for_compilation();
iveresov@2630 179 task = next_task;
iveresov@2630 180 continue;
iveresov@2630 181 }
iveresov@2630 182
iveresov@2630 183 // Select a method with a higher rate
iveresov@2630 184 if (compare_methods(method, max_method)) {
iveresov@2630 185 max_task = task;
iveresov@2630 186 max_method = method;
iveresov@2630 187 }
iveresov@2630 188 }
iveresov@2630 189 task = next_task;
iveresov@2630 190 }
iveresov@2630 191
iveresov@3035 192 if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
iveresov@3035 193 && is_method_profiled(max_method)) {
iveresov@2630 194 max_task->set_comp_level(CompLevel_limited_profile);
iveresov@2630 195 if (PrintTieredEvents) {
iveresov@2988 196 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
iveresov@2630 197 }
iveresov@2630 198 }
iveresov@2630 199
iveresov@2630 200 return max_task;
iveresov@2630 201 }
iveresov@2630 202
iveresov@2630 203 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
iveresov@2630 204 double queue_size = CompileBroker::queue_size(level);
iveresov@2630 205 int comp_count = compiler_count(level);
iveresov@2630 206 double k = queue_size / (feedback_k * comp_count) + 1;
iveresov@2630 207 return k;
iveresov@2630 208 }
iveresov@2630 209
iveresov@2630 210 // Call and loop predicates determine whether a transition to a higher
iveresov@2630 211 // compilation level should be performed (pointers to predicate functions
iveresov@2630 212 // are passed to common()).
iveresov@2630 213 // Tier?LoadFeedback is basically a coefficient that determines of
iveresov@2630 214 // how many methods per compiler thread can be in the queue before
iveresov@2630 215 // the threshold values double.
iveresov@2630 216 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
iveresov@2630 217 switch(cur_level) {
iveresov@2630 218 case CompLevel_none:
iveresov@2630 219 case CompLevel_limited_profile: {
iveresov@2630 220 double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
iveresov@2630 221 return loop_predicate_helper<CompLevel_none>(i, b, k);
iveresov@2630 222 }
iveresov@2630 223 case CompLevel_full_profile: {
iveresov@2630 224 double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
iveresov@2630 225 return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
iveresov@2630 226 }
iveresov@2630 227 default:
iveresov@2630 228 return true;
iveresov@2630 229 }
iveresov@2630 230 }
iveresov@2630 231
iveresov@2630 232 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
iveresov@2630 233 switch(cur_level) {
iveresov@2630 234 case CompLevel_none:
iveresov@2630 235 case CompLevel_limited_profile: {
iveresov@2630 236 double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
iveresov@2630 237 return call_predicate_helper<CompLevel_none>(i, b, k);
iveresov@2630 238 }
iveresov@2630 239 case CompLevel_full_profile: {
iveresov@2630 240 double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
iveresov@2630 241 return call_predicate_helper<CompLevel_full_profile>(i, b, k);
iveresov@2630 242 }
iveresov@2630 243 default:
iveresov@2630 244 return true;
iveresov@2630 245 }
iveresov@2630 246 }
iveresov@2630 247
iveresov@2630 248 // If a method is old enough and is still in the interpreter we would want to
iveresov@2630 249 // start profiling without waiting for the compiled method to arrive.
iveresov@2630 250 // We also take the load on compilers into the account.
iveresov@2630 251 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
iveresov@2630 252 if (cur_level == CompLevel_none &&
iveresov@2630 253 CompileBroker::queue_size(CompLevel_full_optimization) <=
iveresov@2630 254 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
iveresov@2630 255 int i = method->invocation_count();
iveresov@2630 256 int b = method->backedge_count();
iveresov@2630 257 double k = Tier0ProfilingStartPercentage / 100.0;
iveresov@2630 258 return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
iveresov@2630 259 }
iveresov@2630 260 return false;
iveresov@2630 261 }
iveresov@2630 262
iveresov@2988 263 // Inlining control: if we're compiling a profiled method with C1 and the callee
iveresov@2988 264 // is known to have OSRed in a C2 version, don't inline it.
iveresov@2988 265 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
iveresov@2988 266 CompLevel comp_level = (CompLevel)env->comp_level();
iveresov@2988 267 if (comp_level == CompLevel_full_profile ||
iveresov@2988 268 comp_level == CompLevel_limited_profile) {
iveresov@2988 269 return callee->highest_osr_comp_level() == CompLevel_full_optimization;
iveresov@2988 270 }
iveresov@2988 271 return false;
iveresov@2988 272 }
iveresov@2988 273
iveresov@2630 274 // Create MDO if necessary.
iveresov@2630 275 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
iveresov@2630 276 if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
iveresov@2630 277 if (mh->method_data() == NULL) {
iveresov@2630 278 methodOopDesc::build_interpreter_method_data(mh, THREAD);
iveresov@2630 279 if (HAS_PENDING_EXCEPTION) {
iveresov@2630 280 CLEAR_PENDING_EXCEPTION;
iveresov@2630 281 }
iveresov@2630 282 }
iveresov@2630 283 }
iveresov@2630 284
iveresov@2630 285
iveresov@2630 286 /*
iveresov@2630 287 * Method states:
iveresov@2630 288 * 0 - interpreter (CompLevel_none)
iveresov@2630 289 * 1 - pure C1 (CompLevel_simple)
iveresov@2630 290 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
iveresov@2630 291 * 3 - C1 with full profiling (CompLevel_full_profile)
iveresov@2630 292 * 4 - C2 (CompLevel_full_optimization)
iveresov@2630 293 *
iveresov@2630 294 * Common state transition patterns:
iveresov@2630 295 * a. 0 -> 3 -> 4.
iveresov@2630 296 * The most common path. But note that even in this straightforward case
iveresov@2630 297 * profiling can start at level 0 and finish at level 3.
iveresov@2630 298 *
iveresov@2630 299 * b. 0 -> 2 -> 3 -> 4.
iveresov@2630 300 * This case occures when the load on C2 is deemed too high. So, instead of transitioning
iveresov@2630 301 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to
iveresov@2630 302 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
iveresov@2630 303 *
iveresov@2630 304 * c. 0 -> (3->2) -> 4.
iveresov@2630 305 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
iveresov@2630 306 * to enable the profiling to fully occur at level 0. In this case we change the compilation level
iveresov@2630 307 * of the method to 2, because it'll allow it to run much faster without full profiling while c2
iveresov@2630 308 * is compiling.
iveresov@2630 309 *
iveresov@2630 310 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
iveresov@2630 311 * After a method was once compiled with C1 it can be identified as trivial and be compiled to
iveresov@2630 312 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
iveresov@2630 313 *
iveresov@2630 314 * e. 0 -> 4.
iveresov@2630 315 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
iveresov@2630 316 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
iveresov@2630 317 * the compiled version already exists).
iveresov@2630 318 *
iveresov@2630 319 * Note that since state 0 can be reached from any other state via deoptimization different loops
iveresov@2630 320 * are possible.
iveresov@2630 321 *
iveresov@2630 322 */
iveresov@2630 323
iveresov@2630 324 // Common transition function. Given a predicate determines if a method should transition to another level.
iveresov@3035 325 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level, bool disable_feedback) {
iveresov@2630 326 CompLevel next_level = cur_level;
iveresov@2630 327 int i = method->invocation_count();
iveresov@2630 328 int b = method->backedge_count();
iveresov@2630 329
iveresov@3035 330 if (is_trivial(method)) {
iveresov@3035 331 next_level = CompLevel_simple;
iveresov@3035 332 } else {
iveresov@3035 333 switch(cur_level) {
iveresov@3035 334 case CompLevel_none:
iveresov@3035 335 // If we were at full profile level, would we switch to full opt?
iveresov@3035 336 if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
iveresov@3035 337 next_level = CompLevel_full_optimization;
iveresov@3035 338 } else if ((this->*p)(i, b, cur_level)) {
iveresov@3035 339 // C1-generated fully profiled code is about 30% slower than the limited profile
iveresov@3035 340 // code that has only invocation and backedge counters. The observation is that
iveresov@3035 341 // if C2 queue is large enough we can spend too much time in the fully profiled code
iveresov@3035 342 // while waiting for C2 to pick the method from the queue. To alleviate this problem
iveresov@3035 343 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
iveresov@3035 344 // we choose to compile a limited profiled version and then recompile with full profiling
iveresov@3035 345 // when the load on C2 goes down.
iveresov@3035 346 if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
iveresov@3035 347 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
iveresov@3035 348 next_level = CompLevel_limited_profile;
iveresov@2630 349 } else {
iveresov@3035 350 next_level = CompLevel_full_profile;
iveresov@2630 351 }
iveresov@2630 352 }
iveresov@3035 353 break;
iveresov@3035 354 case CompLevel_limited_profile:
iveresov@3035 355 if (is_method_profiled(method)) {
iveresov@3035 356 // Special case: we got here because this method was fully profiled in the interpreter.
iveresov@3035 357 next_level = CompLevel_full_optimization;
iveresov@3035 358 } else {
iveresov@3035 359 methodDataOop mdo = method->method_data();
iveresov@3035 360 if (mdo != NULL) {
iveresov@3035 361 if (mdo->would_profile()) {
iveresov@3035 362 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
iveresov@3035 363 Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
iveresov@3035 364 (this->*p)(i, b, cur_level))) {
iveresov@3035 365 next_level = CompLevel_full_profile;
iveresov@3035 366 }
iveresov@3035 367 } else {
iveresov@2630 368 next_level = CompLevel_full_optimization;
iveresov@2630 369 }
iveresov@2630 370 }
iveresov@2630 371 }
iveresov@3035 372 break;
iveresov@3035 373 case CompLevel_full_profile:
iveresov@3035 374 {
iveresov@3035 375 methodDataOop mdo = method->method_data();
iveresov@3035 376 if (mdo != NULL) {
iveresov@3035 377 if (mdo->would_profile()) {
iveresov@3035 378 int mdo_i = mdo->invocation_count_delta();
iveresov@3035 379 int mdo_b = mdo->backedge_count_delta();
iveresov@3035 380 if ((this->*p)(mdo_i, mdo_b, cur_level)) {
iveresov@3035 381 next_level = CompLevel_full_optimization;
iveresov@3035 382 }
iveresov@3035 383 } else {
iveresov@3035 384 next_level = CompLevel_full_optimization;
iveresov@3035 385 }
iveresov@3035 386 }
iveresov@3035 387 }
iveresov@3035 388 break;
iveresov@2630 389 }
iveresov@2630 390 }
iveresov@3035 391 return MIN2(next_level, (CompLevel)TieredStopAtLevel);
iveresov@2630 392 }
iveresov@2630 393
iveresov@2630 394 // Determine if a method should be compiled with a normal entry point at a different level.
iveresov@2987 395 CompLevel AdvancedThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
iveresov@2987 396 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
iveresov@3035 397 common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
iveresov@2630 398 CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
iveresov@2630 399
iveresov@2630 400 // If OSR method level is greater than the regular method level, the levels should be
iveresov@2630 401 // equalized by raising the regular method level in order to avoid OSRs during each
iveresov@2630 402 // invocation of the method.
iveresov@2630 403 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
iveresov@2630 404 methodDataOop mdo = method->method_data();
iveresov@2630 405 guarantee(mdo != NULL, "MDO should not be NULL");
iveresov@2630 406 if (mdo->invocation_count() >= 1) {
iveresov@2630 407 next_level = CompLevel_full_optimization;
iveresov@2630 408 }
iveresov@2630 409 } else {
iveresov@2630 410 next_level = MAX2(osr_level, next_level);
iveresov@2630 411 }
iveresov@2630 412 return next_level;
iveresov@2630 413 }
iveresov@2630 414
iveresov@2630 415 // Determine if we should do an OSR compilation of a given method.
iveresov@2630 416 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
iveresov@3035 417 CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
iveresov@2630 418 if (cur_level == CompLevel_none) {
iveresov@2630 419 // If there is a live OSR method that means that we deopted to the interpreter
iveresov@2630 420 // for the transition.
iveresov@2987 421 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
iveresov@2630 422 if (osr_level > CompLevel_none) {
iveresov@2630 423 return osr_level;
iveresov@2630 424 }
iveresov@2630 425 }
iveresov@2987 426 return next_level;
iveresov@2630 427 }
iveresov@2630 428
iveresov@2630 429 // Update the rate and submit compile
iveresov@2630 430 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
iveresov@2630 431 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
iveresov@2630 432 update_rate(os::javaTimeMillis(), mh());
iveresov@2630 433 CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
iveresov@2630 434 }
iveresov@2630 435
iveresov@2630 436 // Handle the invocation event.
iveresov@2630 437 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
iveresov@2988 438 CompLevel level, nmethod* nm, TRAPS) {
iveresov@2630 439 if (should_create_mdo(mh(), level)) {
iveresov@2630 440 create_mdo(mh, THREAD);
iveresov@2630 441 }
iveresov@2630 442 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
iveresov@2630 443 CompLevel next_level = call_event(mh(), level);
iveresov@2630 444 if (next_level != level) {
iveresov@2630 445 compile(mh, InvocationEntryBci, next_level, THREAD);
iveresov@2630 446 }
iveresov@2630 447 }
iveresov@2630 448 }
iveresov@2630 449
iveresov@2630 450 // Handle the back branch event. Notice that we can compile the method
iveresov@2630 451 // with a regular entry from here.
iveresov@2630 452 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
iveresov@2988 453 int bci, CompLevel level, nmethod* nm, TRAPS) {
iveresov@2630 454 if (should_create_mdo(mh(), level)) {
iveresov@2630 455 create_mdo(mh, THREAD);
iveresov@2630 456 }
iveresov@2988 457 // Check if MDO should be created for the inlined method
iveresov@2988 458 if (should_create_mdo(imh(), level)) {
iveresov@2988 459 create_mdo(imh, THREAD);
iveresov@2988 460 }
iveresov@2630 461
iveresov@2988 462 if (is_compilation_enabled()) {
iveresov@2988 463 CompLevel next_osr_level = loop_event(imh(), level);
iveresov@2988 464 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
iveresov@2988 465 // At the very least compile the OSR version
iveresov@3035 466 if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
iveresov@3035 467 compile(imh, bci, next_osr_level, THREAD);
iveresov@2630 468 }
iveresov@2630 469
iveresov@2988 470 // Use loop event as an opportunity to also check if there's been
iveresov@2988 471 // enough calls.
iveresov@2988 472 CompLevel cur_level, next_level;
iveresov@2988 473 if (mh() != imh()) { // If there is an enclosing method
iveresov@2988 474 guarantee(nm != NULL, "Should have nmethod here");
iveresov@2988 475 cur_level = comp_level(mh());
iveresov@2988 476 next_level = call_event(mh(), cur_level);
iveresov@2988 477
iveresov@2988 478 if (max_osr_level == CompLevel_full_optimization) {
iveresov@2988 479 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
iveresov@2988 480 bool make_not_entrant = false;
iveresov@2988 481 if (nm->is_osr_method()) {
iveresov@2988 482 // This is an osr method, just make it not entrant and recompile later if needed
iveresov@2988 483 make_not_entrant = true;
iveresov@2988 484 } else {
iveresov@2988 485 if (next_level != CompLevel_full_optimization) {
iveresov@2988 486 // next_level is not full opt, so we need to recompile the
iveresov@2988 487 // enclosing method without the inlinee
iveresov@2988 488 cur_level = CompLevel_none;
iveresov@2988 489 make_not_entrant = true;
iveresov@2988 490 }
iveresov@2988 491 }
iveresov@2988 492 if (make_not_entrant) {
iveresov@2988 493 if (PrintTieredEvents) {
iveresov@2988 494 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
iveresov@2988 495 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
iveresov@2988 496 }
iveresov@2988 497 nm->make_not_entrant();
iveresov@2988 498 }
iveresov@2988 499 }
iveresov@2988 500 if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
iveresov@2988 501 // Fix up next_level if necessary to avoid deopts
iveresov@2988 502 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
iveresov@2988 503 next_level = CompLevel_full_profile;
iveresov@2988 504 }
iveresov@2988 505 if (cur_level != next_level) {
iveresov@2988 506 compile(mh, InvocationEntryBci, next_level, THREAD);
iveresov@2988 507 }
iveresov@2988 508 }
iveresov@2988 509 } else {
iveresov@2988 510 cur_level = comp_level(imh());
iveresov@2988 511 next_level = call_event(imh(), cur_level);
iveresov@2988 512 if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
iveresov@2988 513 compile(imh, InvocationEntryBci, next_level, THREAD);
iveresov@2988 514 }
iveresov@2630 515 }
iveresov@2630 516 }
iveresov@2630 517 }
iveresov@2630 518
iveresov@2630 519 #endif // TIERED

mercurial