src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 6461
bdd155477289
child 6876
710a3c8b516e
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

duke@435 1 /*
tamao@5192 2 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcStats.hpp"
stefank@2314 28 #include "memory/defNewGeneration.hpp"
stefank@2314 29 #include "memory/genCollectedHeap.hpp"
stefank@2314 30 #include "runtime/thread.hpp"
stefank@2314 31 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 32 # include "os_linux.inline.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 35 # include "os_solaris.inline.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 38 # include "os_windows.inline.hpp"
stefank@2314 39 #endif
goetz@6461 40 #ifdef TARGET_OS_FAMILY_aix
goetz@6461 41 # include "os_aix.inline.hpp"
goetz@6461 42 #endif
never@3156 43 #ifdef TARGET_OS_FAMILY_bsd
never@3156 44 # include "os_bsd.inline.hpp"
never@3156 45 #endif
duke@435 46 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
duke@435 47 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
duke@435 48
duke@435 49 // Defined if the granularity of the time measurements is potentially too large.
duke@435 50 #define CLOCK_GRANULARITY_TOO_LARGE
duke@435 51
duke@435 52 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 53 size_t init_promo_size,
duke@435 54 size_t init_survivor_size,
duke@435 55 double max_gc_minor_pause_sec,
duke@435 56 double max_gc_pause_sec,
duke@435 57 uint gc_cost_ratio) :
duke@435 58 AdaptiveSizePolicy(init_eden_size,
duke@435 59 init_promo_size,
duke@435 60 init_survivor_size,
duke@435 61 max_gc_pause_sec,
duke@435 62 gc_cost_ratio) {
duke@435 63
duke@435 64 clear_internal_time_intervals();
duke@435 65
duke@435 66 _processor_count = os::active_processor_count();
duke@435 67
jmasa@1719 68 if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
duke@435 69 assert(_processor_count > 0, "Processor count is suspect");
jmasa@1719 70 _concurrent_processor_count = MIN2((uint) ConcGCThreads,
duke@435 71 (uint) _processor_count);
duke@435 72 } else {
duke@435 73 _concurrent_processor_count = 1;
duke@435 74 }
duke@435 75
duke@435 76 _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 77 _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 78 _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 79
duke@435 80 _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 81 PausePadding);
duke@435 82 _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 83 PausePadding);
duke@435 84
duke@435 85 _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 86 _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 87
duke@435 88 _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 89 _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 90 _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 91
duke@435 92 // Mark-sweep-compact
duke@435 93 _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 94 _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 95 _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 96
duke@435 97 // Mark-sweep
duke@435 98 _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 99 _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 100 _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 101
duke@435 102 // Variables that estimate pause times as a function of generation
duke@435 103 // size.
duke@435 104 _remark_pause_old_estimator =
duke@435 105 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 106 _initial_pause_old_estimator =
duke@435 107 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 108 _remark_pause_young_estimator =
duke@435 109 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 110 _initial_pause_young_estimator =
duke@435 111 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 112
duke@435 113 // Alignment comes from that used in ReservedSpace.
duke@435 114 _generation_alignment = os::vm_allocation_granularity();
duke@435 115
duke@435 116 // Start the concurrent timer here so that the first
duke@435 117 // concurrent_phases_begin() measures a finite mutator
duke@435 118 // time. A finite mutator time is used to determine
duke@435 119 // if a concurrent collection has been started. If this
duke@435 120 // proves to be a problem, use some explicit flag to
duke@435 121 // signal that a concurrent collection has been started.
duke@435 122 _concurrent_timer.start();
duke@435 123 _STW_timer.start();
duke@435 124 }
duke@435 125
duke@435 126 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
duke@435 127 // For now assume no other daemon threads are taking alway
duke@435 128 // cpu's from the application.
duke@435 129 return ((double) _concurrent_processor_count / (double) _processor_count);
duke@435 130 }
duke@435 131
duke@435 132 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
duke@435 133 double interval_in_seconds) {
duke@435 134 // When the precleaning and sweeping phases use multiple
duke@435 135 // threads, change one_processor_fraction to
duke@435 136 // concurrent_processor_fraction().
duke@435 137 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 138 double concurrent_cost =
duke@435 139 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 140 interval_in_seconds) * concurrent_processor_fraction() +
duke@435 141 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 142 interval_in_seconds) * one_processor_fraction +
duke@435 143 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 144 interval_in_seconds) * one_processor_fraction;
duke@435 145 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 146 gclog_or_tty->print_cr(
duke@435 147 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
duke@435 148 "_latest_cms_concurrent_marking_cost %f "
duke@435 149 "_latest_cms_concurrent_precleaning_cost %f "
duke@435 150 "_latest_cms_concurrent_sweeping_cost %f "
duke@435 151 "concurrent_processor_fraction %f "
duke@435 152 "concurrent_cost %f ",
duke@435 153 interval_in_seconds,
duke@435 154 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 155 interval_in_seconds),
duke@435 156 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 157 interval_in_seconds),
duke@435 158 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 159 interval_in_seconds),
duke@435 160 concurrent_processor_fraction(),
duke@435 161 concurrent_cost);
duke@435 162 }
duke@435 163 return concurrent_cost;
duke@435 164 }
duke@435 165
duke@435 166 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
duke@435 167 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 168 _latest_cms_concurrent_marking_time_secs +
duke@435 169 _latest_cms_concurrent_precleaning_time_secs +
duke@435 170 _latest_cms_concurrent_sweeping_time_secs;
duke@435 171 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 172 }
duke@435 173
duke@435 174 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
duke@435 175 // When the precleaning and sweeping phases use multiple
duke@435 176 // threads, change one_processor_fraction to
duke@435 177 // concurrent_processor_fraction().
duke@435 178 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 179 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 180 _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
duke@435 181 _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
duke@435 182 _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
duke@435 183 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 184 gclog_or_tty->print_cr(
duke@435 185 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
duke@435 186 "_latest_cms_concurrent_marking_time_secs %f "
duke@435 187 "_latest_cms_concurrent_precleaning_time_secs %f "
duke@435 188 "_latest_cms_concurrent_sweeping_time_secs %f "
duke@435 189 "concurrent_processor_fraction %f "
duke@435 190 "latest_cms_sum_concurrent_phases_time_secs %f ",
duke@435 191 _latest_cms_concurrent_marking_time_secs,
duke@435 192 _latest_cms_concurrent_precleaning_time_secs,
duke@435 193 _latest_cms_concurrent_sweeping_time_secs,
duke@435 194 concurrent_processor_fraction(),
duke@435 195 latest_cms_sum_concurrent_phases_time_secs);
duke@435 196 }
duke@435 197 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 198 }
duke@435 199
duke@435 200 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 201 double minor_pause_in_ms) {
duke@435 202 // Get the equivalent of the free space
duke@435 203 // that is available for promotions in the CMS generation
duke@435 204 // and use that to update _minor_pause_old_estimator
duke@435 205
duke@435 206 // Don't implement this until it is needed. A warning is
duke@435 207 // printed if _minor_pause_old_estimator is used.
duke@435 208 }
duke@435 209
duke@435 210 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
duke@435 211 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 212 gclog_or_tty->print(" ");
duke@435 213 gclog_or_tty->stamp();
duke@435 214 gclog_or_tty->print(": concurrent_marking_begin ");
duke@435 215 }
duke@435 216 // Update the interval time
duke@435 217 _concurrent_timer.stop();
duke@435 218 _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
duke@435 219 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 220 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
duke@435 221 "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
duke@435 222 }
duke@435 223 _concurrent_timer.reset();
duke@435 224 _concurrent_timer.start();
duke@435 225 }
duke@435 226
duke@435 227 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
duke@435 228 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 229 gclog_or_tty->stamp();
duke@435 230 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
duke@435 231 }
duke@435 232
duke@435 233 _concurrent_timer.stop();
duke@435 234 _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
duke@435 235
duke@435 236 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 237 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
duke@435 238 ":concurrent marking time (s) %f",
duke@435 239 _latest_cms_concurrent_marking_time_secs);
duke@435 240 }
duke@435 241 }
duke@435 242
duke@435 243 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
duke@435 244 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 245 gclog_or_tty->stamp();
duke@435 246 gclog_or_tty->print_cr(
duke@435 247 "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
duke@435 248 }
duke@435 249 _concurrent_timer.reset();
duke@435 250 _concurrent_timer.start();
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
duke@435 255 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 256 gclog_or_tty->stamp();
duke@435 257 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
duke@435 258 }
duke@435 259
duke@435 260 _concurrent_timer.stop();
duke@435 261 // May be set again by a second call during the same collection.
duke@435 262 _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
duke@435 263
duke@435 264 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 265 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
duke@435 266 ":concurrent precleaning time (s) %f",
duke@435 267 _latest_cms_concurrent_precleaning_time_secs);
duke@435 268 }
duke@435 269 }
duke@435 270
duke@435 271 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
duke@435 272 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 273 gclog_or_tty->stamp();
duke@435 274 gclog_or_tty->print_cr(
duke@435 275 "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
duke@435 276 }
duke@435 277 _concurrent_timer.reset();
duke@435 278 _concurrent_timer.start();
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
duke@435 283 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 284 gclog_or_tty->stamp();
duke@435 285 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
duke@435 286 }
duke@435 287
duke@435 288 _concurrent_timer.stop();
duke@435 289 _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
duke@435 290
duke@435 291 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 292 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
duke@435 293 ":concurrent sweeping time (s) %f",
duke@435 294 _latest_cms_concurrent_sweeping_time_secs);
duke@435 295 }
duke@435 296 }
duke@435 297
duke@435 298 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
duke@435 299 size_t cur_eden,
duke@435 300 size_t cur_promo) {
duke@435 301 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 302 gclog_or_tty->print(" ");
duke@435 303 gclog_or_tty->stamp();
duke@435 304 gclog_or_tty->print(": concurrent_phases_end ");
duke@435 305 }
duke@435 306
duke@435 307 // Update the concurrent timer
duke@435 308 _concurrent_timer.stop();
duke@435 309
duke@435 310 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 311 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 312
duke@435 313 avg_cms_free()->sample(cur_promo);
duke@435 314 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 315 concurrent_collection_time();
duke@435 316
duke@435 317 _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
duke@435 318
duke@435 319 // Cost of collection (unit-less)
duke@435 320
duke@435 321 // Total interval for collection. May not be valid. Tests
duke@435 322 // below determine whether to use this.
duke@435 323 //
duke@435 324 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 325 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
duke@435 326 "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
duke@435 327 "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
duke@435 328 "_latest_cms_remark_start_to_end_time_secs %f \n"
duke@435 329 "_latest_cms_concurrent_marking_time_secs %f \n"
duke@435 330 "_latest_cms_concurrent_precleaning_time_secs %f \n"
duke@435 331 "_latest_cms_concurrent_sweeping_time_secs %f \n"
duke@435 332 "latest_cms_sum_concurrent_phases_time_secs %f \n"
duke@435 333 "_latest_cms_collection_end_to_collection_start_secs %f \n"
duke@435 334 "concurrent_processor_fraction %f",
duke@435 335 _latest_cms_reset_end_to_initial_mark_start_secs,
duke@435 336 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 337 _latest_cms_remark_start_to_end_time_secs,
duke@435 338 _latest_cms_concurrent_marking_time_secs,
duke@435 339 _latest_cms_concurrent_precleaning_time_secs,
duke@435 340 _latest_cms_concurrent_sweeping_time_secs,
duke@435 341 latest_cms_sum_concurrent_phases_time_secs,
duke@435 342 _latest_cms_collection_end_to_collection_start_secs,
duke@435 343 concurrent_processor_fraction());
duke@435 344 }
duke@435 345 double interval_in_seconds =
duke@435 346 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 347 _latest_cms_remark_start_to_end_time_secs +
duke@435 348 latest_cms_sum_concurrent_phases_time_secs +
duke@435 349 _latest_cms_collection_end_to_collection_start_secs;
duke@435 350 assert(interval_in_seconds >= 0.0,
duke@435 351 "Bad interval between cms collections");
duke@435 352
duke@435 353 // Sample for performance counter
duke@435 354 avg_concurrent_interval()->sample(interval_in_seconds);
duke@435 355
duke@435 356 // STW costs (initial and remark pauses)
duke@435 357 // Cost of collection (unit-less)
duke@435 358 assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
duke@435 359 "Bad initial mark pause");
duke@435 360 assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
duke@435 361 "Bad remark pause");
duke@435 362 double STW_time_in_seconds =
duke@435 363 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 364 _latest_cms_remark_start_to_end_time_secs;
duke@435 365 double STW_collection_cost = 0.0;
duke@435 366 if (interval_in_seconds > 0.0) {
duke@435 367 // cost for the STW phases of the concurrent collection.
duke@435 368 STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
duke@435 369 avg_cms_STW_gc_cost()->sample(STW_collection_cost);
duke@435 370 }
duke@435 371 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 372 gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
duke@435 373 "STW gc cost: %f average: %f", STW_collection_cost,
duke@435 374 avg_cms_STW_gc_cost()->average());
duke@435 375 gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)",
duke@435 376 (double) STW_time_in_seconds * MILLIUNITS,
duke@435 377 (double) interval_in_seconds * MILLIUNITS);
duke@435 378 }
duke@435 379
duke@435 380 double concurrent_cost = 0.0;
duke@435 381 if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
duke@435 382 concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 383
duke@435 384 avg_concurrent_gc_cost()->sample(concurrent_cost);
duke@435 385 // Average this ms cost into all the other types gc costs
duke@435 386
duke@435 387 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 388 gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
duke@435 389 "concurrent gc cost: %f average: %f",
duke@435 390 concurrent_cost,
duke@435 391 _avg_concurrent_gc_cost->average());
duke@435 392 gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)"
duke@435 393 " processor fraction: %f",
duke@435 394 latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
duke@435 395 interval_in_seconds * MILLIUNITS,
duke@435 396 concurrent_processor_fraction());
duke@435 397 }
duke@435 398 }
duke@435 399 double total_collection_cost = STW_collection_cost + concurrent_cost;
duke@435 400 avg_major_gc_cost()->sample(total_collection_cost);
duke@435 401
duke@435 402 // Gather information for estimating future behavior
duke@435 403 double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
duke@435 404 double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
duke@435 405
duke@435 406 double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
duke@435 407 initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 408 initial_pause_in_ms);
duke@435 409 remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 410 remark_pause_in_ms);
duke@435 411 major_collection_estimator()->update(cur_promo_size_in_mbytes,
duke@435 412 total_collection_cost);
duke@435 413
duke@435 414 // This estimate uses the average eden size. It could also
duke@435 415 // have used the latest eden size. Which is better?
duke@435 416 double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
duke@435 417 initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 418 initial_pause_in_ms);
duke@435 419 remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 420 remark_pause_in_ms);
duke@435 421 }
duke@435 422
duke@435 423 clear_internal_time_intervals();
duke@435 424
duke@435 425 set_first_after_collection();
duke@435 426
duke@435 427 // The concurrent phases keeps track of it's own mutator interval
duke@435 428 // with this timer. This allows the stop-the-world phase to
duke@435 429 // be included in the mutator time so that the stop-the-world time
duke@435 430 // is not double counted. Reset and start it.
duke@435 431 _concurrent_timer.reset();
duke@435 432 _concurrent_timer.start();
duke@435 433
duke@435 434 // The mutator time between STW phases does not include the
duke@435 435 // concurrent collection time.
duke@435 436 _STW_timer.reset();
duke@435 437 _STW_timer.start();
duke@435 438 }
duke@435 439
duke@435 440 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
duke@435 441 // Update the interval time
duke@435 442 _STW_timer.stop();
duke@435 443 _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
duke@435 444 // Reset for the initial mark
duke@435 445 _STW_timer.reset();
duke@435 446 _STW_timer.start();
duke@435 447 }
duke@435 448
duke@435 449 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
duke@435 450 GCCause::Cause gc_cause) {
duke@435 451 _STW_timer.stop();
duke@435 452
duke@435 453 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 454 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 455 _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 456 avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
duke@435 457
duke@435 458 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 459 gclog_or_tty->print(
duke@435 460 "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
duke@435 461 "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
duke@435 462 }
duke@435 463 }
duke@435 464
duke@435 465 _STW_timer.reset();
duke@435 466 _STW_timer.start();
duke@435 467 }
duke@435 468
duke@435 469 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
duke@435 470 _STW_timer.stop();
duke@435 471 _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
duke@435 472 // Start accumumlating time for the remark in the STW timer.
duke@435 473 _STW_timer.reset();
duke@435 474 _STW_timer.start();
duke@435 475 }
duke@435 476
duke@435 477 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
duke@435 478 GCCause::Cause gc_cause) {
duke@435 479 _STW_timer.stop();
duke@435 480 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 481 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 482 // Total initial mark pause + remark pause.
duke@435 483 _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 484 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 485 _latest_cms_remark_start_to_end_time_secs;
duke@435 486 double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
duke@435 487
duke@435 488 avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
duke@435 489
duke@435 490 // Sample total for initial mark + remark
duke@435 491 avg_cms_STW_time()->sample(STW_time_in_seconds);
duke@435 492
duke@435 493 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 494 gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
duke@435 495 "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
duke@435 496 }
duke@435 497
duke@435 498 }
duke@435 499 // Don't start the STW times here because the concurrent
duke@435 500 // sweep and reset has not happened.
duke@435 501 // Keep the old comment above in case I don't understand
duke@435 502 // what is going on but now
duke@435 503 // Start the STW timer because it is used by ms_collection_begin()
duke@435 504 // and ms_collection_end() to get the sweep time if a MS is being
duke@435 505 // done in the foreground.
duke@435 506 _STW_timer.reset();
duke@435 507 _STW_timer.start();
duke@435 508 }
duke@435 509
duke@435 510 void CMSAdaptiveSizePolicy::msc_collection_begin() {
duke@435 511 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 512 gclog_or_tty->print(" ");
duke@435 513 gclog_or_tty->stamp();
duke@435 514 gclog_or_tty->print(": msc_collection_begin ");
duke@435 515 }
duke@435 516 _STW_timer.stop();
duke@435 517 _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
duke@435 518 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 519 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
duke@435 520 "mutator time %f",
duke@435 521 _latest_cms_msc_end_to_msc_start_time_secs);
duke@435 522 }
duke@435 523 avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
duke@435 524 _STW_timer.reset();
duke@435 525 _STW_timer.start();
duke@435 526 }
duke@435 527
duke@435 528 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
duke@435 529 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 530 gclog_or_tty->print(" ");
duke@435 531 gclog_or_tty->stamp();
duke@435 532 gclog_or_tty->print(": msc_collection_end ");
duke@435 533 }
duke@435 534 _STW_timer.stop();
duke@435 535 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 536 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 537 double msc_pause_in_seconds = _STW_timer.seconds();
duke@435 538 if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
duke@435 539 (msc_pause_in_seconds > 0.0)) {
duke@435 540 avg_msc_pause()->sample(msc_pause_in_seconds);
duke@435 541 double mutator_time_in_seconds = 0.0;
duke@435 542 if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
duke@435 543 // This assertion may fail because of time stamp gradularity.
duke@435 544 // Comment it out and investiage it at a later time. The large
duke@435 545 // time stamp granularity occurs on some older linux systems.
duke@435 546 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 547 assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
duke@435 548 (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
duke@435 549 (_latest_cms_concurrent_sweeping_time_secs == 0.0),
duke@435 550 "There should not be any concurrent time");
duke@435 551 #endif
duke@435 552 // A concurrent collection did not start. Mutator time
duke@435 553 // between collections comes from the STW MSC timer.
duke@435 554 mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
duke@435 555 } else {
duke@435 556 // The concurrent collection did start so count the mutator
duke@435 557 // time to the start of the concurrent collection. In this
duke@435 558 // case the _latest_cms_msc_end_to_msc_start_time_secs measures
duke@435 559 // the time between the initial mark or remark and the
duke@435 560 // start of the MSC. That has no real meaning.
duke@435 561 mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
duke@435 562 }
duke@435 563
duke@435 564 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 565 concurrent_collection_time();
duke@435 566 double interval_in_seconds =
duke@435 567 mutator_time_in_seconds +
duke@435 568 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 569 _latest_cms_remark_start_to_end_time_secs +
duke@435 570 latest_cms_sum_concurrent_phases_time_secs +
duke@435 571 msc_pause_in_seconds;
duke@435 572
duke@435 573 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 574 gclog_or_tty->print_cr(" interval_in_seconds %f \n"
duke@435 575 " mutator_time_in_seconds %f \n"
duke@435 576 " _latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 577 " _latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 578 " latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 579 " msc_pause_in_seconds %f\n",
duke@435 580 interval_in_seconds,
duke@435 581 mutator_time_in_seconds,
duke@435 582 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 583 _latest_cms_remark_start_to_end_time_secs,
duke@435 584 latest_cms_sum_concurrent_phases_time_secs,
duke@435 585 msc_pause_in_seconds);
duke@435 586 }
duke@435 587
duke@435 588 // The concurrent cost is wasted cost but it should be
duke@435 589 // included.
duke@435 590 double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 591
duke@435 592 // Initial mark and remark, also wasted.
duke@435 593 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 594 _latest_cms_remark_start_to_end_time_secs;
duke@435 595 double STW_collection_cost =
duke@435 596 collection_cost(STW_time_in_seconds, interval_in_seconds) +
duke@435 597 concurrent_cost;
duke@435 598
duke@435 599 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 600 gclog_or_tty->print_cr(" msc_collection_end:\n"
duke@435 601 "_latest_cms_collection_end_to_collection_start_secs %f\n"
duke@435 602 "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
duke@435 603 "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 604 "_latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 605 "latest_cms_sum_concurrent_phases_time_secs %f\n",
duke@435 606 _latest_cms_collection_end_to_collection_start_secs,
duke@435 607 _latest_cms_msc_end_to_msc_start_time_secs,
duke@435 608 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 609 _latest_cms_remark_start_to_end_time_secs,
duke@435 610 latest_cms_sum_concurrent_phases_time_secs);
duke@435 611
duke@435 612 gclog_or_tty->print_cr(" msc_collection_end: \n"
duke@435 613 "latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 614 "STW_time_in_seconds %f\n"
duke@435 615 "msc_pause_in_seconds %f\n",
duke@435 616 latest_cms_sum_concurrent_phases_time_secs,
duke@435 617 STW_time_in_seconds,
duke@435 618 msc_pause_in_seconds);
duke@435 619 }
duke@435 620
duke@435 621 double cost = concurrent_cost + STW_collection_cost +
duke@435 622 collection_cost(msc_pause_in_seconds, interval_in_seconds);
duke@435 623
duke@435 624 _avg_msc_gc_cost->sample(cost);
duke@435 625
duke@435 626 // Average this ms cost into all the other types gc costs
duke@435 627 avg_major_gc_cost()->sample(cost);
duke@435 628
duke@435 629 // Sample for performance counter
duke@435 630 _avg_msc_interval->sample(interval_in_seconds);
duke@435 631 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 632 gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
duke@435 633 "MSC gc cost: %f average: %f", cost,
duke@435 634 _avg_msc_gc_cost->average());
duke@435 635
duke@435 636 double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
duke@435 637 gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)",
duke@435 638 msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
duke@435 639 }
duke@435 640 }
duke@435 641 }
duke@435 642
duke@435 643 clear_internal_time_intervals();
duke@435 644
duke@435 645 // Can this call be put into the epilogue?
duke@435 646 set_first_after_collection();
duke@435 647
duke@435 648 // The concurrent phases keeps track of it's own mutator interval
duke@435 649 // with this timer. This allows the stop-the-world phase to
duke@435 650 // be included in the mutator time so that the stop-the-world time
duke@435 651 // is not double counted. Reset and start it.
duke@435 652 _concurrent_timer.stop();
duke@435 653 _concurrent_timer.reset();
duke@435 654 _concurrent_timer.start();
duke@435 655
duke@435 656 _STW_timer.reset();
duke@435 657 _STW_timer.start();
duke@435 658 }
duke@435 659
duke@435 660 void CMSAdaptiveSizePolicy::ms_collection_begin() {
duke@435 661 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 662 gclog_or_tty->print(" ");
duke@435 663 gclog_or_tty->stamp();
duke@435 664 gclog_or_tty->print(": ms_collection_begin ");
duke@435 665 }
duke@435 666 _STW_timer.stop();
duke@435 667 _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
duke@435 668 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 669 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
duke@435 670 "mutator time %f",
duke@435 671 _latest_cms_ms_end_to_ms_start);
duke@435 672 }
duke@435 673 avg_ms_interval()->sample(_STW_timer.seconds());
duke@435 674 _STW_timer.reset();
duke@435 675 _STW_timer.start();
duke@435 676 }
duke@435 677
duke@435 678 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
duke@435 679 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 680 gclog_or_tty->print(" ");
duke@435 681 gclog_or_tty->stamp();
duke@435 682 gclog_or_tty->print(": ms_collection_end ");
duke@435 683 }
duke@435 684 _STW_timer.stop();
duke@435 685 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 686 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 687 // The MS collection is a foreground collection that does all
duke@435 688 // the parts of a mostly concurrent collection.
duke@435 689 //
duke@435 690 // For this collection include the cost of the
duke@435 691 // initial mark
duke@435 692 // remark
duke@435 693 // all concurrent time (scaled down by the
duke@435 694 // concurrent_processor_fraction). Some
duke@435 695 // may be zero if the baton was passed before
duke@435 696 // it was reached.
duke@435 697 // concurrent marking
duke@435 698 // sweeping
duke@435 699 // resetting
duke@435 700 // STW after baton was passed (STW_in_foreground_in_seconds)
duke@435 701 double STW_in_foreground_in_seconds = _STW_timer.seconds();
duke@435 702
duke@435 703 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 704 concurrent_collection_time();
duke@435 705 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 706 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
duke@435 707 "STW_in_foreground_in_seconds %f "
duke@435 708 "_latest_cms_initial_mark_start_to_end_time_secs %f "
duke@435 709 "_latest_cms_remark_start_to_end_time_secs %f "
duke@435 710 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 711 "_latest_cms_ms_marking_start_to_end_time_secs %f "
duke@435 712 "_latest_cms_ms_end_to_ms_start %f",
duke@435 713 STW_in_foreground_in_seconds,
duke@435 714 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 715 _latest_cms_remark_start_to_end_time_secs,
duke@435 716 latest_cms_sum_concurrent_phases_time_secs,
duke@435 717 _latest_cms_ms_marking_start_to_end_time_secs,
duke@435 718 _latest_cms_ms_end_to_ms_start);
duke@435 719 }
duke@435 720
duke@435 721 double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 722 _latest_cms_remark_start_to_end_time_secs;
duke@435 723 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 724 assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
duke@435 725 latest_cms_sum_concurrent_phases_time_secs == 0.0,
duke@435 726 "marking done twice?");
duke@435 727 #endif
duke@435 728 double ms_time_in_seconds = STW_marking_in_seconds +
duke@435 729 STW_in_foreground_in_seconds +
duke@435 730 _latest_cms_ms_marking_start_to_end_time_secs +
duke@435 731 scaled_concurrent_collection_time();
duke@435 732 avg_ms_pause()->sample(ms_time_in_seconds);
duke@435 733 // Use the STW costs from the initial mark and remark plus
duke@435 734 // the cost of the concurrent phase to calculate a
duke@435 735 // collection cost.
duke@435 736 double cost = 0.0;
duke@435 737 if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
duke@435 738 (ms_time_in_seconds > 0.0)) {
duke@435 739 double interval_in_seconds =
duke@435 740 _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
duke@435 741
duke@435 742 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 743 gclog_or_tty->print_cr("\n ms_time_in_seconds %f "
duke@435 744 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 745 "interval_in_seconds %f",
duke@435 746 ms_time_in_seconds,
duke@435 747 latest_cms_sum_concurrent_phases_time_secs,
duke@435 748 interval_in_seconds);
duke@435 749 }
duke@435 750
duke@435 751 cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
duke@435 752
duke@435 753 _avg_ms_gc_cost->sample(cost);
duke@435 754 // Average this ms cost into all the other types gc costs
duke@435 755 avg_major_gc_cost()->sample(cost);
duke@435 756
duke@435 757 // Sample for performance counter
duke@435 758 _avg_ms_interval->sample(interval_in_seconds);
duke@435 759 }
duke@435 760 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 761 gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
duke@435 762 "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average());
duke@435 763
duke@435 764 double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
duke@435 765 gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)",
duke@435 766 ms_time_in_ms,
duke@435 767 _latest_cms_ms_end_to_ms_start * MILLIUNITS);
duke@435 768 }
duke@435 769 }
duke@435 770
duke@435 771 // Consider putting this code (here to end) into a
duke@435 772 // method for convenience.
duke@435 773 clear_internal_time_intervals();
duke@435 774
duke@435 775 set_first_after_collection();
duke@435 776
duke@435 777 // The concurrent phases keeps track of it's own mutator interval
duke@435 778 // with this timer. This allows the stop-the-world phase to
duke@435 779 // be included in the mutator time so that the stop-the-world time
duke@435 780 // is not double counted. Reset and start it.
duke@435 781 _concurrent_timer.stop();
duke@435 782 _concurrent_timer.reset();
duke@435 783 _concurrent_timer.start();
duke@435 784
duke@435 785 _STW_timer.reset();
duke@435 786 _STW_timer.start();
duke@435 787 }
duke@435 788
duke@435 789 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
duke@435 790 _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
duke@435 791 _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
duke@435 792 _latest_cms_collection_end_to_collection_start_secs = 0.0;
duke@435 793 _latest_cms_concurrent_marking_time_secs = 0.0;
duke@435 794 _latest_cms_concurrent_precleaning_time_secs = 0.0;
duke@435 795 _latest_cms_concurrent_sweeping_time_secs = 0.0;
duke@435 796 _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
duke@435 797 _latest_cms_ms_end_to_ms_start = 0.0;
duke@435 798 _latest_cms_remark_start_to_end_time_secs = 0.0;
duke@435 799 _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
duke@435 800 _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
duke@435 801 }
duke@435 802
duke@435 803 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 804 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 805
duke@435 806 set_change_young_gen_for_maj_pauses(0);
duke@435 807 }
duke@435 808
duke@435 809 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
duke@435 810 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 811 gclog_or_tty->stamp();
duke@435 812 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
duke@435 813 }
duke@435 814 _concurrent_timer.start();
duke@435 815 }
duke@435 816
duke@435 817 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
duke@435 818 _concurrent_timer.stop();
duke@435 819 double time_since_cms_gc = _concurrent_timer.seconds();
duke@435 820 _concurrent_timer.start();
duke@435 821 _STW_timer.stop();
duke@435 822 double time_since_STW_gc = _STW_timer.seconds();
duke@435 823 _STW_timer.start();
duke@435 824
duke@435 825 return MIN2(time_since_cms_gc, time_since_STW_gc);
duke@435 826 }
duke@435 827
duke@435 828 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
duke@435 829 double cms_interval = _avg_concurrent_interval->average();
duke@435 830 double msc_interval = _avg_msc_interval->average();
duke@435 831 double ms_interval = _avg_ms_interval->average();
duke@435 832
duke@435 833 return MAX3(cms_interval, msc_interval, ms_interval);
duke@435 834 }
duke@435 835
duke@435 836 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
duke@435 837 return avg_major_gc_cost()->average();
duke@435 838 }
duke@435 839
duke@435 840 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
duke@435 841 _STW_timer.stop();
duke@435 842 // Start accumumlating time for the marking in the STW timer.
duke@435 843 _STW_timer.reset();
duke@435 844 _STW_timer.start();
duke@435 845 }
duke@435 846
duke@435 847 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
duke@435 848 GCCause::Cause gc_cause) {
duke@435 849 _STW_timer.stop();
duke@435 850 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 851 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 852 _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
duke@435 853 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 854 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
duke@435 855 "msc_collection_marking_end: mutator time %f",
duke@435 856 _latest_cms_ms_marking_start_to_end_time_secs);
duke@435 857 }
duke@435 858 }
duke@435 859 _STW_timer.reset();
duke@435 860 _STW_timer.start();
duke@435 861 }
duke@435 862
duke@435 863 double CMSAdaptiveSizePolicy::gc_cost() const {
duke@435 864 double cms_gen_cost = cms_gc_cost();
duke@435 865 double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost);
duke@435 866 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 867 return result;
duke@435 868 }
duke@435 869
duke@435 870 // Cost of collection (unit-less)
duke@435 871 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
duke@435 872 double interval_in_seconds) {
duke@435 873 // Cost of collection (unit-less)
duke@435 874 double cost = 0.0;
duke@435 875 if ((interval_in_seconds > 0.0) &&
duke@435 876 (pause_in_seconds > 0.0)) {
duke@435 877 cost =
duke@435 878 pause_in_seconds / interval_in_seconds;
duke@435 879 }
duke@435 880 return cost;
duke@435 881 }
duke@435 882
duke@435 883 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
duke@435 884 size_t change = 0;
duke@435 885 size_t desired_eden = cur_eden;
duke@435 886
duke@435 887 // reduce eden size
duke@435 888 change = eden_decrement_aligned_down(cur_eden);
duke@435 889 desired_eden = cur_eden - change;
duke@435 890
duke@435 891 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 892 gclog_or_tty->print_cr(
duke@435 893 "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
duke@435 894 "adjusting eden for pause time. "
duke@435 895 " starting eden size " SIZE_FORMAT
duke@435 896 " reduced eden size " SIZE_FORMAT
duke@435 897 " eden delta " SIZE_FORMAT,
duke@435 898 cur_eden, desired_eden, change);
duke@435 899 }
duke@435 900
duke@435 901 return desired_eden;
duke@435 902 }
duke@435 903
duke@435 904 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
duke@435 905
duke@435 906 size_t desired_eden = cur_eden;
duke@435 907
duke@435 908 set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
duke@435 909
duke@435 910 size_t change = eden_increment_aligned_up(cur_eden);
duke@435 911 size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
duke@435 912
duke@435 913 if (cur_eden + scaled_change > cur_eden) {
duke@435 914 desired_eden = cur_eden + scaled_change;
duke@435 915 }
duke@435 916
duke@435 917 _young_gen_change_for_minor_throughput++;
duke@435 918
duke@435 919 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 920 gclog_or_tty->print_cr(
duke@435 921 "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
duke@435 922 "adjusting eden for throughput. "
duke@435 923 " starting eden size " SIZE_FORMAT
duke@435 924 " increased eden size " SIZE_FORMAT
duke@435 925 " eden delta " SIZE_FORMAT,
duke@435 926 cur_eden, desired_eden, scaled_change);
duke@435 927 }
duke@435 928
duke@435 929 return desired_eden;
duke@435 930 }
duke@435 931
duke@435 932 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
duke@435 933
duke@435 934 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 935
duke@435 936 size_t change = eden_decrement(cur_eden);
duke@435 937 size_t desired_eden_size = cur_eden - change;
duke@435 938
duke@435 939 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 940 gclog_or_tty->print_cr(
duke@435 941 "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
duke@435 942 "adjusting eden for footprint. "
duke@435 943 " starting eden size " SIZE_FORMAT
duke@435 944 " reduced eden size " SIZE_FORMAT
duke@435 945 " eden delta " SIZE_FORMAT,
duke@435 946 cur_eden, desired_eden_size, change);
duke@435 947 }
duke@435 948 return desired_eden_size;
duke@435 949 }
duke@435 950
duke@435 951 // The eden and promo versions should be combined if possible.
duke@435 952 // They are the same except that the sizes of the decrement
duke@435 953 // and increment are different for eden and promo.
duke@435 954 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 955 size_t delta = eden_decrement(cur_eden);
duke@435 956 return align_size_down(delta, generation_alignment());
duke@435 957 }
duke@435 958
duke@435 959 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 960 size_t delta = eden_increment(cur_eden);
duke@435 961 return align_size_up(delta, generation_alignment());
duke@435 962 }
duke@435 963
duke@435 964 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 965 size_t delta = promo_decrement(cur_promo);
duke@435 966 return align_size_down(delta, generation_alignment());
duke@435 967 }
duke@435 968
duke@435 969 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 970 size_t delta = promo_increment(cur_promo);
duke@435 971 return align_size_up(delta, generation_alignment());
duke@435 972 }
duke@435 973
duke@435 974
tamao@5192 975 void CMSAdaptiveSizePolicy::compute_eden_space_size(size_t cur_eden,
tamao@5192 976 size_t max_eden_size)
duke@435 977 {
duke@435 978 size_t desired_eden_size = cur_eden;
duke@435 979 size_t eden_limit = max_eden_size;
duke@435 980
duke@435 981 // Printout input
duke@435 982 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 983 gclog_or_tty->print_cr(
tamao@5192 984 "CMSAdaptiveSizePolicy::compute_eden_space_size: "
duke@435 985 "cur_eden " SIZE_FORMAT,
duke@435 986 cur_eden);
duke@435 987 }
duke@435 988
duke@435 989 // Used for diagnostics
duke@435 990 clear_generation_free_space_flags();
duke@435 991
duke@435 992 if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
duke@435 993 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 994 // If the minor pause is too long, shrink the young gen.
duke@435 995 set_change_young_gen_for_min_pauses(
duke@435 996 decrease_young_gen_for_min_pauses_true);
duke@435 997 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 998 }
duke@435 999 } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 1000 (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
duke@435 1001 // The remark or initial pauses are not meeting the goal. Should
duke@435 1002 // the generation be shrunk?
duke@435 1003 if (get_and_clear_first_after_collection() &&
duke@435 1004 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 1005 remark_pause_young_estimator()->decrement_will_decrease()) ||
duke@435 1006 (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 1007 initial_pause_young_estimator()->decrement_will_decrease()))) {
duke@435 1008
duke@435 1009 set_change_young_gen_for_maj_pauses(
duke@435 1010 decrease_young_gen_for_maj_pauses_true);
duke@435 1011
duke@435 1012 // If the remark or initial pause is too long and this is the
duke@435 1013 // first young gen collection after a cms collection, shrink
duke@435 1014 // the young gen.
duke@435 1015 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 1016 }
duke@435 1017 // If not the first young gen collection after a cms collection,
duke@435 1018 // don't do anything. In this case an adjustment has already
duke@435 1019 // been made and the results of the adjustment has not yet been
duke@435 1020 // measured.
duke@435 1021 } else if ((minor_gc_cost() >= 0.0) &&
duke@435 1022 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1023 desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
duke@435 1024 } else {
duke@435 1025 desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
duke@435 1026 }
duke@435 1027
duke@435 1028 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1029 gclog_or_tty->print_cr(
tamao@5192 1030 "CMSAdaptiveSizePolicy::compute_eden_space_size limits:"
duke@435 1031 " desired_eden_size: " SIZE_FORMAT
duke@435 1032 " old_eden_size: " SIZE_FORMAT,
duke@435 1033 desired_eden_size, cur_eden);
duke@435 1034 }
duke@435 1035
duke@435 1036 set_eden_size(desired_eden_size);
duke@435 1037 }
duke@435 1038
duke@435 1039 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
duke@435 1040 size_t change = 0;
duke@435 1041 size_t desired_promo = cur_promo;
duke@435 1042 // Move this test up to caller like the adjust_eden_for_pause_time()
duke@435 1043 // call.
duke@435 1044 if ((AdaptiveSizePausePolicy == 0) &&
duke@435 1045 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 1046 (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
duke@435 1047 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1048 change = promo_decrement_aligned_down(cur_promo);
duke@435 1049 desired_promo = cur_promo - change;
duke@435 1050 } else if ((AdaptiveSizePausePolicy > 0) &&
duke@435 1051 (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1052 remark_pause_old_estimator()->decrement_will_decrease()) ||
duke@435 1053 ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1054 initial_pause_old_estimator()->decrement_will_decrease()))) {
duke@435 1055 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1056 change = promo_decrement_aligned_down(cur_promo);
duke@435 1057 desired_promo = cur_promo - change;
duke@435 1058 }
duke@435 1059
duke@435 1060 if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
duke@435 1061 gclog_or_tty->print_cr(
duke@435 1062 "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
duke@435 1063 "adjusting promo for pause time. "
duke@435 1064 " starting promo size " SIZE_FORMAT
duke@435 1065 " reduced promo size " SIZE_FORMAT
duke@435 1066 " promo delta " SIZE_FORMAT,
duke@435 1067 cur_promo, desired_promo, change);
duke@435 1068 }
duke@435 1069
duke@435 1070 return desired_promo;
duke@435 1071 }
duke@435 1072
duke@435 1073 // Try to share this with PS.
duke@435 1074 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
duke@435 1075 double gen_gc_cost) {
duke@435 1076
duke@435 1077 // Calculate the change to use for the tenured gen.
duke@435 1078 size_t scaled_change = 0;
duke@435 1079 // Can the increment to the generation be scaled?
duke@435 1080 if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
duke@435 1081 double scale_by_ratio = gen_gc_cost / gc_cost();
duke@435 1082 scaled_change =
duke@435 1083 (size_t) (scale_by_ratio * (double) base_change);
duke@435 1084 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1085 gclog_or_tty->print_cr(
duke@435 1086 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 1087 SIZE_FORMAT,
duke@435 1088 base_change, scale_by_ratio, scaled_change);
duke@435 1089 }
duke@435 1090 } else if (gen_gc_cost >= 0.0) {
duke@435 1091 // Scaling is not going to work. If the major gc time is the
duke@435 1092 // larger than the other GC costs, give it a full increment.
duke@435 1093 if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
duke@435 1094 scaled_change = base_change;
duke@435 1095 }
duke@435 1096 } else {
duke@435 1097 // Don't expect to get here but it's ok if it does
duke@435 1098 // in the product build since the delta will be 0
duke@435 1099 // and nothing will change.
duke@435 1100 assert(false, "Unexpected value for gc costs");
duke@435 1101 }
duke@435 1102
duke@435 1103 return scaled_change;
duke@435 1104 }
duke@435 1105
duke@435 1106 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
duke@435 1107
duke@435 1108 size_t desired_promo = cur_promo;
duke@435 1109
duke@435 1110 set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
duke@435 1111
duke@435 1112 size_t change = promo_increment_aligned_up(cur_promo);
duke@435 1113 size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
duke@435 1114
duke@435 1115 if (cur_promo + scaled_change > cur_promo) {
duke@435 1116 desired_promo = cur_promo + scaled_change;
duke@435 1117 }
duke@435 1118
duke@435 1119 _old_gen_change_for_major_throughput++;
duke@435 1120
duke@435 1121 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1122 gclog_or_tty->print_cr(
duke@435 1123 "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
duke@435 1124 "adjusting promo for throughput. "
duke@435 1125 " starting promo size " SIZE_FORMAT
duke@435 1126 " increased promo size " SIZE_FORMAT
duke@435 1127 " promo delta " SIZE_FORMAT,
duke@435 1128 cur_promo, desired_promo, scaled_change);
duke@435 1129 }
duke@435 1130
duke@435 1131 return desired_promo;
duke@435 1132 }
duke@435 1133
duke@435 1134 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
duke@435 1135 size_t cur_eden) {
duke@435 1136
duke@435 1137 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 1138
duke@435 1139 size_t change = promo_decrement(cur_promo);
duke@435 1140 size_t desired_promo_size = cur_promo - change;
duke@435 1141
duke@435 1142 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1143 gclog_or_tty->print_cr(
duke@435 1144 "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
duke@435 1145 "adjusting promo for footprint. "
duke@435 1146 " starting promo size " SIZE_FORMAT
duke@435 1147 " reduced promo size " SIZE_FORMAT
duke@435 1148 " promo delta " SIZE_FORMAT,
duke@435 1149 cur_promo, desired_promo_size, change);
duke@435 1150 }
duke@435 1151 return desired_promo_size;
duke@435 1152 }
duke@435 1153
duke@435 1154 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
duke@435 1155 size_t cur_tenured_free,
duke@435 1156 size_t max_tenured_available,
duke@435 1157 size_t cur_eden) {
duke@435 1158 // This can be bad if the desired value grows/shrinks without
duke@435 1159 // any connection to the read free space
duke@435 1160 size_t desired_promo_size = promo_size();
duke@435 1161 size_t tenured_limit = max_tenured_available;
duke@435 1162
duke@435 1163 // Printout input
duke@435 1164 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1165 gclog_or_tty->print_cr(
duke@435 1166 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
duke@435 1167 "cur_tenured_free " SIZE_FORMAT
duke@435 1168 " max_tenured_available " SIZE_FORMAT,
duke@435 1169 cur_tenured_free, max_tenured_available);
duke@435 1170 }
duke@435 1171
duke@435 1172 // Used for diagnostics
duke@435 1173 clear_generation_free_space_flags();
duke@435 1174
duke@435 1175 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 1176 if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
duke@435 1177 avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1178 desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
duke@435 1179 } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1180 // Nothing to do since the minor collections are too large and
duke@435 1181 // this method only deals with the cms generation.
duke@435 1182 } else if ((cms_gc_cost() >= 0.0) &&
duke@435 1183 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1184 desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
duke@435 1185 } else {
duke@435 1186 desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
duke@435 1187 cur_eden);
duke@435 1188 }
duke@435 1189
duke@435 1190 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1191 gclog_or_tty->print_cr(
duke@435 1192 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
duke@435 1193 " desired_promo_size: " SIZE_FORMAT
duke@435 1194 " old_promo_size: " SIZE_FORMAT,
duke@435 1195 desired_promo_size, cur_tenured_free);
duke@435 1196 }
duke@435 1197
duke@435 1198 set_promo_size(desired_promo_size);
duke@435 1199 }
duke@435 1200
jwilhelm@4129 1201 uint CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 1202 bool is_survivor_overflow,
jwilhelm@4129 1203 uint tenuring_threshold,
duke@435 1204 size_t survivor_limit) {
duke@435 1205 assert(survivor_limit >= generation_alignment(),
duke@435 1206 "survivor_limit too small");
duke@435 1207 assert((size_t)align_size_down(survivor_limit, generation_alignment())
duke@435 1208 == survivor_limit, "survivor_limit not aligned");
duke@435 1209
duke@435 1210 // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
duke@435 1211 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 1212 !young_gen_policy_is_ready()) {
duke@435 1213 return tenuring_threshold;
duke@435 1214 }
duke@435 1215
duke@435 1216 // We'll decide whether to increase or decrease the tenuring
duke@435 1217 // threshold based partly on the newly computed survivor size
duke@435 1218 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 1219 // decrement the threshold).
duke@435 1220 bool incr_tenuring_threshold = false;
duke@435 1221 bool decr_tenuring_threshold = false;
duke@435 1222
duke@435 1223 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 1224 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 1225 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 1226
duke@435 1227 if (!is_survivor_overflow) {
duke@435 1228 // Keep running averages on how much survived
duke@435 1229
duke@435 1230 // We use the tenuring threshold to equalize the cost of major
duke@435 1231 // and minor collections.
duke@435 1232 // ThresholdTolerance is used to indicate how sensitive the
duke@435 1233 // tenuring threshold is to differences in cost betweent the
duke@435 1234 // collection types.
duke@435 1235
duke@435 1236 // Get the times of interest. This involves a little work, so
duke@435 1237 // we cache the values here.
duke@435 1238 const double major_cost = major_gc_cost();
duke@435 1239 const double minor_cost = minor_gc_cost();
duke@435 1240
duke@435 1241 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 1242 // Minor times are getting too long; lower the threshold so
duke@435 1243 // less survives and more is promoted.
duke@435 1244 decr_tenuring_threshold = true;
duke@435 1245 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 1246 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 1247 // Major times are too long, so we want less promotion.
duke@435 1248 incr_tenuring_threshold = true;
duke@435 1249 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 1250 }
duke@435 1251
duke@435 1252 } else {
duke@435 1253 // Survivor space overflow occurred, so promoted and survived are
duke@435 1254 // not accurate. We'll make our best guess by combining survived
duke@435 1255 // and promoted and count them as survivors.
duke@435 1256 //
duke@435 1257 // We'll lower the tenuring threshold to see if we can correct
duke@435 1258 // things. Also, set the survivor size conservatively. We're
duke@435 1259 // trying to avoid many overflows from occurring if defnew size
duke@435 1260 // is just too small.
duke@435 1261
duke@435 1262 decr_tenuring_threshold = true;
duke@435 1263 }
duke@435 1264
duke@435 1265 // The padded average also maintains a deviation from the average;
duke@435 1266 // we use this to see how good of an estimate we have of what survived.
duke@435 1267 // We're trying to pad the survivor size as little as possible without
duke@435 1268 // overflowing the survivor spaces.
duke@435 1269 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
duke@435 1270 generation_alignment());
duke@435 1271 target_size = MAX2(target_size, generation_alignment());
duke@435 1272
duke@435 1273 if (target_size > survivor_limit) {
duke@435 1274 // Target size is bigger than we can handle. Let's also reduce
duke@435 1275 // the tenuring threshold.
duke@435 1276 target_size = survivor_limit;
duke@435 1277 decr_tenuring_threshold = true;
duke@435 1278 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1279 }
duke@435 1280
duke@435 1281 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1282 // We test for decrementing first, as we might have hit the target size
duke@435 1283 // limit.
duke@435 1284 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1285 if (tenuring_threshold > 1) {
duke@435 1286 tenuring_threshold--;
duke@435 1287 }
duke@435 1288 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1289 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1290 tenuring_threshold++;
duke@435 1291 }
duke@435 1292 }
duke@435 1293
duke@435 1294 // We keep a running average of the amount promoted which is used
duke@435 1295 // to decide when we should collect the old generation (when
duke@435 1296 // the amount of old gen free space is less than what we expect to
duke@435 1297 // promote).
duke@435 1298
duke@435 1299 if (PrintAdaptiveSizePolicy) {
duke@435 1300 // A little more detail if Verbose is on
duke@435 1301 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1302 if (Verbose) {
duke@435 1303 gclog_or_tty->print( " avg_survived: %f"
duke@435 1304 " avg_deviation: %f",
duke@435 1305 _avg_survived->average(),
duke@435 1306 _avg_survived->deviation());
duke@435 1307 }
duke@435 1308
duke@435 1309 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1310 _avg_survived->padded_average());
duke@435 1311
duke@435 1312 if (Verbose) {
duke@435 1313 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1314 " avg_promoted_dev: %f",
duke@435 1315 gch->gc_stats(1)->avg_promoted()->average(),
duke@435 1316 gch->gc_stats(1)->avg_promoted()->deviation());
duke@435 1317 }
duke@435 1318
duke@435 1319 gclog_or_tty->print( " avg_promoted_padded_avg: %f"
duke@435 1320 " avg_pretenured_padded_avg: %f"
jwilhelm@4129 1321 " tenuring_thresh: %u"
duke@435 1322 " target_size: " SIZE_FORMAT
duke@435 1323 " survivor_limit: " SIZE_FORMAT,
duke@435 1324 gch->gc_stats(1)->avg_promoted()->padded_average(),
duke@435 1325 _avg_pretenured->padded_average(),
duke@435 1326 tenuring_threshold, target_size, survivor_limit);
duke@435 1327 gclog_or_tty->cr();
duke@435 1328 }
duke@435 1329
duke@435 1330 set_survivor_size(target_size);
duke@435 1331
duke@435 1332 return tenuring_threshold;
duke@435 1333 }
duke@435 1334
duke@435 1335 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
duke@435 1336 bool result = _first_after_collection;
duke@435 1337 _first_after_collection = false;
duke@435 1338 return result;
duke@435 1339 }
duke@435 1340
duke@435 1341 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1342 outputStream* st) const {
duke@435 1343
duke@435 1344 if (!UseAdaptiveSizePolicy) return false;
duke@435 1345
duke@435 1346 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1347 Generation* gen0 = gch->get_gen(0);
duke@435 1348 DefNewGeneration* def_new = gen0->as_DefNewGeneration();
duke@435 1349 return
duke@435 1350 AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1351 st,
duke@435 1352 def_new->tenuring_threshold());
duke@435 1353 }

mercurial