src/share/vm/runtime/sharedRuntimeTrig.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6461
bdd155477289
parent 1
2d8a650513c2
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
aoqi@0 31 #include "precompiled.hpp"
aoqi@0 32 #include "prims/jni.h"
aoqi@0 33 #include "runtime/interfaceSupport.hpp"
aoqi@0 34 #include "runtime/sharedRuntime.hpp"
aoqi@0 35
aoqi@0 36 // This file contains copies of the fdlibm routines used by
aoqi@0 37 // StrictMath. It turns out that it is almost always required to use
aoqi@0 38 // these runtime routines; the Intel CPU doesn't meet the Java
aoqi@0 39 // specification for sin/cos outside a certain limited argument range,
aoqi@0 40 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
aoqi@0 41 // also turns out that avoiding the indirect call through function
aoqi@0 42 // pointer out to libjava.so in SharedRuntime speeds these routines up
aoqi@0 43 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
aoqi@0 44
aoqi@0 45 // Enabling optimizations in this file causes incorrect code to be
aoqi@0 46 // generated; can not figure out how to turn down optimization for one
aoqi@0 47 // file in the IDE on Windows
aoqi@0 48 #ifdef WIN32
aoqi@0 49 # pragma optimize ( "", off )
aoqi@0 50 #endif
aoqi@0 51
aoqi@0 52 /* The above workaround now causes more problems with the latest MS compiler.
aoqi@0 53 * Visual Studio 2010's /GS option tries to guard against buffer overruns.
aoqi@0 54 * /GS is on by default if you specify optimizations, which we do globally
aoqi@0 55 * via /W3 /O2. However the above selective turning off of optimizations means
aoqi@0 56 * that /GS issues a warning "4748". And since we treat warnings as errors (/WX)
aoqi@0 57 * then the compilation fails. There are several possible solutions
aoqi@0 58 * (1) Remove that pragma above as obsolete with VS2010 - requires testing.
aoqi@0 59 * (2) Stop treating warnings as errors - would be a backward step
aoqi@0 60 * (3) Disable /GS - may help performance but you lose the security checks
aoqi@0 61 * (4) Disable the warning with "#pragma warning( disable : 4748 )"
aoqi@0 62 * (5) Disable planting the code with __declspec(safebuffers)
aoqi@0 63 * I've opted for (5) although we should investigate the local performance
aoqi@0 64 * benefits of (1) and global performance benefit of (3).
aoqi@0 65 */
aoqi@0 66 #if defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1600))
aoqi@0 67 #define SAFEBUF __declspec(safebuffers)
aoqi@0 68 #else
aoqi@0 69 #define SAFEBUF
aoqi@0 70 #endif
aoqi@0 71
aoqi@0 72 #include <math.h>
aoqi@0 73
aoqi@0 74 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
aoqi@0 75 // [jk] this is not 100% correct because the float word order may different
aoqi@0 76 // from the byte order (e.g. on ARM)
aoqi@0 77 #ifdef VM_LITTLE_ENDIAN
aoqi@0 78 # define __HI(x) *(1+(int*)&x)
aoqi@0 79 # define __LO(x) *(int*)&x
aoqi@0 80 #else
aoqi@0 81 # define __HI(x) *(int*)&x
aoqi@0 82 # define __LO(x) *(1+(int*)&x)
aoqi@0 83 #endif
aoqi@0 84
aoqi@0 85 static double copysignA(double x, double y) {
aoqi@0 86 __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
aoqi@0 87 return x;
aoqi@0 88 }
aoqi@0 89
aoqi@0 90 /*
aoqi@0 91 * scalbn (double x, int n)
aoqi@0 92 * scalbn(x,n) returns x* 2**n computed by exponent
aoqi@0 93 * manipulation rather than by actually performing an
aoqi@0 94 * exponentiation or a multiplication.
aoqi@0 95 */
aoqi@0 96
aoqi@0 97 static const double
aoqi@0 98 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
aoqi@0 99 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
aoqi@0 100 hugeX = 1.0e+300,
aoqi@0 101 tiny = 1.0e-300;
aoqi@0 102
aoqi@0 103 static double scalbnA (double x, int n) {
aoqi@0 104 int k,hx,lx;
aoqi@0 105 hx = __HI(x);
aoqi@0 106 lx = __LO(x);
aoqi@0 107 k = (hx&0x7ff00000)>>20; /* extract exponent */
aoqi@0 108 if (k==0) { /* 0 or subnormal x */
aoqi@0 109 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
aoqi@0 110 x *= two54;
aoqi@0 111 hx = __HI(x);
aoqi@0 112 k = ((hx&0x7ff00000)>>20) - 54;
aoqi@0 113 if (n< -50000) return tiny*x; /*underflow*/
aoqi@0 114 }
aoqi@0 115 if (k==0x7ff) return x+x; /* NaN or Inf */
aoqi@0 116 k = k+n;
aoqi@0 117 if (k > 0x7fe) return hugeX*copysignA(hugeX,x); /* overflow */
aoqi@0 118 if (k > 0) /* normal result */
aoqi@0 119 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
aoqi@0 120 if (k <= -54) {
aoqi@0 121 if (n > 50000) /* in case integer overflow in n+k */
aoqi@0 122 return hugeX*copysignA(hugeX,x); /*overflow*/
aoqi@0 123 else return tiny*copysignA(tiny,x); /*underflow*/
aoqi@0 124 }
aoqi@0 125 k += 54; /* subnormal result */
aoqi@0 126 __HI(x) = (hx&0x800fffff)|(k<<20);
aoqi@0 127 return x*twom54;
aoqi@0 128 }
aoqi@0 129
aoqi@0 130 /*
aoqi@0 131 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
aoqi@0 132 * double x[],y[]; int e0,nx,prec; int ipio2[];
aoqi@0 133 *
aoqi@0 134 * __kernel_rem_pio2 return the last three digits of N with
aoqi@0 135 * y = x - N*pi/2
aoqi@0 136 * so that |y| < pi/2.
aoqi@0 137 *
aoqi@0 138 * The method is to compute the integer (mod 8) and fraction parts of
aoqi@0 139 * (2/pi)*x without doing the full multiplication. In general we
aoqi@0 140 * skip the part of the product that are known to be a huge integer (
aoqi@0 141 * more accurately, = 0 mod 8 ). Thus the number of operations are
aoqi@0 142 * independent of the exponent of the input.
aoqi@0 143 *
aoqi@0 144 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
aoqi@0 145 *
aoqi@0 146 * Input parameters:
aoqi@0 147 * x[] The input value (must be positive) is broken into nx
aoqi@0 148 * pieces of 24-bit integers in double precision format.
aoqi@0 149 * x[i] will be the i-th 24 bit of x. The scaled exponent
aoqi@0 150 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
aoqi@0 151 * match x's up to 24 bits.
aoqi@0 152 *
aoqi@0 153 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
aoqi@0 154 * e0 = ilogb(z)-23
aoqi@0 155 * z = scalbn(z,-e0)
aoqi@0 156 * for i = 0,1,2
aoqi@0 157 * x[i] = floor(z)
aoqi@0 158 * z = (z-x[i])*2**24
aoqi@0 159 *
aoqi@0 160 *
aoqi@0 161 * y[] ouput result in an array of double precision numbers.
aoqi@0 162 * The dimension of y[] is:
aoqi@0 163 * 24-bit precision 1
aoqi@0 164 * 53-bit precision 2
aoqi@0 165 * 64-bit precision 2
aoqi@0 166 * 113-bit precision 3
aoqi@0 167 * The actual value is the sum of them. Thus for 113-bit
aoqi@0 168 * precsion, one may have to do something like:
aoqi@0 169 *
aoqi@0 170 * long double t,w,r_head, r_tail;
aoqi@0 171 * t = (long double)y[2] + (long double)y[1];
aoqi@0 172 * w = (long double)y[0];
aoqi@0 173 * r_head = t+w;
aoqi@0 174 * r_tail = w - (r_head - t);
aoqi@0 175 *
aoqi@0 176 * e0 The exponent of x[0]
aoqi@0 177 *
aoqi@0 178 * nx dimension of x[]
aoqi@0 179 *
aoqi@0 180 * prec an interger indicating the precision:
aoqi@0 181 * 0 24 bits (single)
aoqi@0 182 * 1 53 bits (double)
aoqi@0 183 * 2 64 bits (extended)
aoqi@0 184 * 3 113 bits (quad)
aoqi@0 185 *
aoqi@0 186 * ipio2[]
aoqi@0 187 * integer array, contains the (24*i)-th to (24*i+23)-th
aoqi@0 188 * bit of 2/pi after binary point. The corresponding
aoqi@0 189 * floating value is
aoqi@0 190 *
aoqi@0 191 * ipio2[i] * 2^(-24(i+1)).
aoqi@0 192 *
aoqi@0 193 * External function:
aoqi@0 194 * double scalbn(), floor();
aoqi@0 195 *
aoqi@0 196 *
aoqi@0 197 * Here is the description of some local variables:
aoqi@0 198 *
aoqi@0 199 * jk jk+1 is the initial number of terms of ipio2[] needed
aoqi@0 200 * in the computation. The recommended value is 2,3,4,
aoqi@0 201 * 6 for single, double, extended,and quad.
aoqi@0 202 *
aoqi@0 203 * jz local integer variable indicating the number of
aoqi@0 204 * terms of ipio2[] used.
aoqi@0 205 *
aoqi@0 206 * jx nx - 1
aoqi@0 207 *
aoqi@0 208 * jv index for pointing to the suitable ipio2[] for the
aoqi@0 209 * computation. In general, we want
aoqi@0 210 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
aoqi@0 211 * is an integer. Thus
aoqi@0 212 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
aoqi@0 213 * Hence jv = max(0,(e0-3)/24).
aoqi@0 214 *
aoqi@0 215 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
aoqi@0 216 *
aoqi@0 217 * q[] double array with integral value, representing the
aoqi@0 218 * 24-bits chunk of the product of x and 2/pi.
aoqi@0 219 *
aoqi@0 220 * q0 the corresponding exponent of q[0]. Note that the
aoqi@0 221 * exponent for q[i] would be q0-24*i.
aoqi@0 222 *
aoqi@0 223 * PIo2[] double precision array, obtained by cutting pi/2
aoqi@0 224 * into 24 bits chunks.
aoqi@0 225 *
aoqi@0 226 * f[] ipio2[] in floating point
aoqi@0 227 *
aoqi@0 228 * iq[] integer array by breaking up q[] in 24-bits chunk.
aoqi@0 229 *
aoqi@0 230 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
aoqi@0 231 *
aoqi@0 232 * ih integer. If >0 it indicats q[] is >= 0.5, hence
aoqi@0 233 * it also indicates the *sign* of the result.
aoqi@0 234 *
aoqi@0 235 */
aoqi@0 236
aoqi@0 237
aoqi@0 238 /*
aoqi@0 239 * Constants:
aoqi@0 240 * The hexadecimal values are the intended ones for the following
aoqi@0 241 * constants. The decimal values may be used, provided that the
aoqi@0 242 * compiler will convert from decimal to binary accurately enough
aoqi@0 243 * to produce the hexadecimal values shown.
aoqi@0 244 */
aoqi@0 245
aoqi@0 246
aoqi@0 247 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
aoqi@0 248
aoqi@0 249 static const double PIo2[] = {
aoqi@0 250 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
aoqi@0 251 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
aoqi@0 252 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
aoqi@0 253 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
aoqi@0 254 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
aoqi@0 255 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
aoqi@0 256 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
aoqi@0 257 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
aoqi@0 258 };
aoqi@0 259
aoqi@0 260 static const double
aoqi@0 261 zeroB = 0.0,
aoqi@0 262 one = 1.0,
aoqi@0 263 two24B = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
aoqi@0 264 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
aoqi@0 265
aoqi@0 266 static SAFEBUF int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
aoqi@0 267 int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
aoqi@0 268 double z,fw,f[20],fq[20],q[20];
aoqi@0 269
aoqi@0 270 /* initialize jk*/
aoqi@0 271 jk = init_jk[prec];
aoqi@0 272 jp = jk;
aoqi@0 273
aoqi@0 274 /* determine jx,jv,q0, note that 3>q0 */
aoqi@0 275 jx = nx-1;
aoqi@0 276 jv = (e0-3)/24; if(jv<0) jv=0;
aoqi@0 277 q0 = e0-24*(jv+1);
aoqi@0 278
aoqi@0 279 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
aoqi@0 280 j = jv-jx; m = jx+jk;
aoqi@0 281 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];
aoqi@0 282
aoqi@0 283 /* compute q[0],q[1],...q[jk] */
aoqi@0 284 for (i=0;i<=jk;i++) {
aoqi@0 285 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
aoqi@0 286 }
aoqi@0 287
aoqi@0 288 jz = jk;
aoqi@0 289 recompute:
aoqi@0 290 /* distill q[] into iq[] reversingly */
aoqi@0 291 for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
aoqi@0 292 fw = (double)((int)(twon24* z));
aoqi@0 293 iq[i] = (int)(z-two24B*fw);
aoqi@0 294 z = q[j-1]+fw;
aoqi@0 295 }
aoqi@0 296
aoqi@0 297 /* compute n */
aoqi@0 298 z = scalbnA(z,q0); /* actual value of z */
aoqi@0 299 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
aoqi@0 300 n = (int) z;
aoqi@0 301 z -= (double)n;
aoqi@0 302 ih = 0;
aoqi@0 303 if(q0>0) { /* need iq[jz-1] to determine n */
aoqi@0 304 i = (iq[jz-1]>>(24-q0)); n += i;
aoqi@0 305 iq[jz-1] -= i<<(24-q0);
aoqi@0 306 ih = iq[jz-1]>>(23-q0);
aoqi@0 307 }
aoqi@0 308 else if(q0==0) ih = iq[jz-1]>>23;
aoqi@0 309 else if(z>=0.5) ih=2;
aoqi@0 310
aoqi@0 311 if(ih>0) { /* q > 0.5 */
aoqi@0 312 n += 1; carry = 0;
aoqi@0 313 for(i=0;i<jz ;i++) { /* compute 1-q */
aoqi@0 314 j = iq[i];
aoqi@0 315 if(carry==0) {
aoqi@0 316 if(j!=0) {
aoqi@0 317 carry = 1; iq[i] = 0x1000000- j;
aoqi@0 318 }
aoqi@0 319 } else iq[i] = 0xffffff - j;
aoqi@0 320 }
aoqi@0 321 if(q0>0) { /* rare case: chance is 1 in 12 */
aoqi@0 322 switch(q0) {
aoqi@0 323 case 1:
aoqi@0 324 iq[jz-1] &= 0x7fffff; break;
aoqi@0 325 case 2:
aoqi@0 326 iq[jz-1] &= 0x3fffff; break;
aoqi@0 327 }
aoqi@0 328 }
aoqi@0 329 if(ih==2) {
aoqi@0 330 z = one - z;
aoqi@0 331 if(carry!=0) z -= scalbnA(one,q0);
aoqi@0 332 }
aoqi@0 333 }
aoqi@0 334
aoqi@0 335 /* check if recomputation is needed */
aoqi@0 336 if(z==zeroB) {
aoqi@0 337 j = 0;
aoqi@0 338 for (i=jz-1;i>=jk;i--) j |= iq[i];
aoqi@0 339 if(j==0) { /* need recomputation */
aoqi@0 340 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
aoqi@0 341
aoqi@0 342 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
aoqi@0 343 f[jx+i] = (double) ipio2[jv+i];
aoqi@0 344 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
aoqi@0 345 q[i] = fw;
aoqi@0 346 }
aoqi@0 347 jz += k;
aoqi@0 348 goto recompute;
aoqi@0 349 }
aoqi@0 350 }
aoqi@0 351
aoqi@0 352 /* chop off zero terms */
aoqi@0 353 if(z==0.0) {
aoqi@0 354 jz -= 1; q0 -= 24;
aoqi@0 355 while(iq[jz]==0) { jz--; q0-=24;}
aoqi@0 356 } else { /* break z into 24-bit if neccessary */
aoqi@0 357 z = scalbnA(z,-q0);
aoqi@0 358 if(z>=two24B) {
aoqi@0 359 fw = (double)((int)(twon24*z));
aoqi@0 360 iq[jz] = (int)(z-two24B*fw);
aoqi@0 361 jz += 1; q0 += 24;
aoqi@0 362 iq[jz] = (int) fw;
aoqi@0 363 } else iq[jz] = (int) z ;
aoqi@0 364 }
aoqi@0 365
aoqi@0 366 /* convert integer "bit" chunk to floating-point value */
aoqi@0 367 fw = scalbnA(one,q0);
aoqi@0 368 for(i=jz;i>=0;i--) {
aoqi@0 369 q[i] = fw*(double)iq[i]; fw*=twon24;
aoqi@0 370 }
aoqi@0 371
aoqi@0 372 /* compute PIo2[0,...,jp]*q[jz,...,0] */
aoqi@0 373 for(i=jz;i>=0;i--) {
aoqi@0 374 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
aoqi@0 375 fq[jz-i] = fw;
aoqi@0 376 }
aoqi@0 377
aoqi@0 378 /* compress fq[] into y[] */
aoqi@0 379 switch(prec) {
aoqi@0 380 case 0:
aoqi@0 381 fw = 0.0;
aoqi@0 382 for (i=jz;i>=0;i--) fw += fq[i];
aoqi@0 383 y[0] = (ih==0)? fw: -fw;
aoqi@0 384 break;
aoqi@0 385 case 1:
aoqi@0 386 case 2:
aoqi@0 387 fw = 0.0;
aoqi@0 388 for (i=jz;i>=0;i--) fw += fq[i];
aoqi@0 389 y[0] = (ih==0)? fw: -fw;
aoqi@0 390 fw = fq[0]-fw;
aoqi@0 391 for (i=1;i<=jz;i++) fw += fq[i];
aoqi@0 392 y[1] = (ih==0)? fw: -fw;
aoqi@0 393 break;
aoqi@0 394 case 3: /* painful */
aoqi@0 395 for (i=jz;i>0;i--) {
aoqi@0 396 fw = fq[i-1]+fq[i];
aoqi@0 397 fq[i] += fq[i-1]-fw;
aoqi@0 398 fq[i-1] = fw;
aoqi@0 399 }
aoqi@0 400 for (i=jz;i>1;i--) {
aoqi@0 401 fw = fq[i-1]+fq[i];
aoqi@0 402 fq[i] += fq[i-1]-fw;
aoqi@0 403 fq[i-1] = fw;
aoqi@0 404 }
aoqi@0 405 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
aoqi@0 406 if(ih==0) {
aoqi@0 407 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
aoqi@0 408 } else {
aoqi@0 409 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
aoqi@0 410 }
aoqi@0 411 }
aoqi@0 412 return n&7;
aoqi@0 413 }
aoqi@0 414
aoqi@0 415
aoqi@0 416 /*
aoqi@0 417 * ====================================================
aoqi@0 418 * Copyright (c) 1993 Oracle and/or its affilates. All rights reserved.
aoqi@0 419 *
aoqi@0 420 * Developed at SunPro, a Sun Microsystems, Inc. business.
aoqi@0 421 * Permission to use, copy, modify, and distribute this
aoqi@0 422 * software is freely granted, provided that this notice
aoqi@0 423 * is preserved.
aoqi@0 424 * ====================================================
aoqi@0 425 *
aoqi@0 426 */
aoqi@0 427
aoqi@0 428 /* __ieee754_rem_pio2(x,y)
aoqi@0 429 *
aoqi@0 430 * return the remainder of x rem pi/2 in y[0]+y[1]
aoqi@0 431 * use __kernel_rem_pio2()
aoqi@0 432 */
aoqi@0 433
aoqi@0 434 /*
aoqi@0 435 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
aoqi@0 436 */
aoqi@0 437 static const int two_over_pi[] = {
aoqi@0 438 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
aoqi@0 439 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
aoqi@0 440 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
aoqi@0 441 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
aoqi@0 442 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
aoqi@0 443 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
aoqi@0 444 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
aoqi@0 445 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
aoqi@0 446 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
aoqi@0 447 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
aoqi@0 448 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
aoqi@0 449 };
aoqi@0 450
aoqi@0 451 static const int npio2_hw[] = {
aoqi@0 452 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
aoqi@0 453 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
aoqi@0 454 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
aoqi@0 455 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
aoqi@0 456 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
aoqi@0 457 0x404858EB, 0x404921FB,
aoqi@0 458 };
aoqi@0 459
aoqi@0 460 /*
aoqi@0 461 * invpio2: 53 bits of 2/pi
aoqi@0 462 * pio2_1: first 33 bit of pi/2
aoqi@0 463 * pio2_1t: pi/2 - pio2_1
aoqi@0 464 * pio2_2: second 33 bit of pi/2
aoqi@0 465 * pio2_2t: pi/2 - (pio2_1+pio2_2)
aoqi@0 466 * pio2_3: third 33 bit of pi/2
aoqi@0 467 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
aoqi@0 468 */
aoqi@0 469
aoqi@0 470 static const double
aoqi@0 471 zeroA = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
aoqi@0 472 half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
aoqi@0 473 two24A = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
aoqi@0 474 invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
aoqi@0 475 pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
aoqi@0 476 pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
aoqi@0 477 pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
aoqi@0 478 pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
aoqi@0 479 pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
aoqi@0 480 pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
aoqi@0 481
aoqi@0 482 static SAFEBUF int __ieee754_rem_pio2(double x, double *y) {
aoqi@0 483 double z,w,t,r,fn;
aoqi@0 484 double tx[3];
aoqi@0 485 int e0,i,j,nx,n,ix,hx,i0;
aoqi@0 486
aoqi@0 487 i0 = ((*(int*)&two24A)>>30)^1; /* high word index */
aoqi@0 488 hx = *(i0+(int*)&x); /* high word of x */
aoqi@0 489 ix = hx&0x7fffffff;
aoqi@0 490 if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
aoqi@0 491 {y[0] = x; y[1] = 0; return 0;}
aoqi@0 492 if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
aoqi@0 493 if(hx>0) {
aoqi@0 494 z = x - pio2_1;
aoqi@0 495 if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
aoqi@0 496 y[0] = z - pio2_1t;
aoqi@0 497 y[1] = (z-y[0])-pio2_1t;
aoqi@0 498 } else { /* near pi/2, use 33+33+53 bit pi */
aoqi@0 499 z -= pio2_2;
aoqi@0 500 y[0] = z - pio2_2t;
aoqi@0 501 y[1] = (z-y[0])-pio2_2t;
aoqi@0 502 }
aoqi@0 503 return 1;
aoqi@0 504 } else { /* negative x */
aoqi@0 505 z = x + pio2_1;
aoqi@0 506 if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
aoqi@0 507 y[0] = z + pio2_1t;
aoqi@0 508 y[1] = (z-y[0])+pio2_1t;
aoqi@0 509 } else { /* near pi/2, use 33+33+53 bit pi */
aoqi@0 510 z += pio2_2;
aoqi@0 511 y[0] = z + pio2_2t;
aoqi@0 512 y[1] = (z-y[0])+pio2_2t;
aoqi@0 513 }
aoqi@0 514 return -1;
aoqi@0 515 }
aoqi@0 516 }
aoqi@0 517 if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
aoqi@0 518 t = fabsd(x);
aoqi@0 519 n = (int) (t*invpio2+half);
aoqi@0 520 fn = (double)n;
aoqi@0 521 r = t-fn*pio2_1;
aoqi@0 522 w = fn*pio2_1t; /* 1st round good to 85 bit */
aoqi@0 523 if(n<32&&ix!=npio2_hw[n-1]) {
aoqi@0 524 y[0] = r-w; /* quick check no cancellation */
aoqi@0 525 } else {
aoqi@0 526 j = ix>>20;
aoqi@0 527 y[0] = r-w;
aoqi@0 528 i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
aoqi@0 529 if(i>16) { /* 2nd iteration needed, good to 118 */
aoqi@0 530 t = r;
aoqi@0 531 w = fn*pio2_2;
aoqi@0 532 r = t-w;
aoqi@0 533 w = fn*pio2_2t-((t-r)-w);
aoqi@0 534 y[0] = r-w;
aoqi@0 535 i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
aoqi@0 536 if(i>49) { /* 3rd iteration need, 151 bits acc */
aoqi@0 537 t = r; /* will cover all possible cases */
aoqi@0 538 w = fn*pio2_3;
aoqi@0 539 r = t-w;
aoqi@0 540 w = fn*pio2_3t-((t-r)-w);
aoqi@0 541 y[0] = r-w;
aoqi@0 542 }
aoqi@0 543 }
aoqi@0 544 }
aoqi@0 545 y[1] = (r-y[0])-w;
aoqi@0 546 if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
aoqi@0 547 else return n;
aoqi@0 548 }
aoqi@0 549 /*
aoqi@0 550 * all other (large) arguments
aoqi@0 551 */
aoqi@0 552 if(ix>=0x7ff00000) { /* x is inf or NaN */
aoqi@0 553 y[0]=y[1]=x-x; return 0;
aoqi@0 554 }
aoqi@0 555 /* set z = scalbn(|x|,ilogb(x)-23) */
aoqi@0 556 *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
aoqi@0 557 e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
aoqi@0 558 *(i0+(int*)&z) = ix - (e0<<20);
aoqi@0 559 for(i=0;i<2;i++) {
aoqi@0 560 tx[i] = (double)((int)(z));
aoqi@0 561 z = (z-tx[i])*two24A;
aoqi@0 562 }
aoqi@0 563 tx[2] = z;
aoqi@0 564 nx = 3;
aoqi@0 565 while(tx[nx-1]==zeroA) nx--; /* skip zero term */
aoqi@0 566 n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
aoqi@0 567 if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
aoqi@0 568 return n;
aoqi@0 569 }
aoqi@0 570
aoqi@0 571
aoqi@0 572 /* __kernel_sin( x, y, iy)
aoqi@0 573 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
aoqi@0 574 * Input x is assumed to be bounded by ~pi/4 in magnitude.
aoqi@0 575 * Input y is the tail of x.
aoqi@0 576 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
aoqi@0 577 *
aoqi@0 578 * Algorithm
aoqi@0 579 * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
aoqi@0 580 * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
aoqi@0 581 * 3. sin(x) is approximated by a polynomial of degree 13 on
aoqi@0 582 * [0,pi/4]
aoqi@0 583 * 3 13
aoqi@0 584 * sin(x) ~ x + S1*x + ... + S6*x
aoqi@0 585 * where
aoqi@0 586 *
aoqi@0 587 * |sin(x) 2 4 6 8 10 12 | -58
aoqi@0 588 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
aoqi@0 589 * | x |
aoqi@0 590 *
aoqi@0 591 * 4. sin(x+y) = sin(x) + sin'(x')*y
aoqi@0 592 * ~ sin(x) + (1-x*x/2)*y
aoqi@0 593 * For better accuracy, let
aoqi@0 594 * 3 2 2 2 2
aoqi@0 595 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
aoqi@0 596 * then 3 2
aoqi@0 597 * sin(x) = x + (S1*x + (x *(r-y/2)+y))
aoqi@0 598 */
aoqi@1 599 #ifdef MIPS64
aoqi@1 600 #undef S1
aoqi@1 601 #undef S2
aoqi@1 602 #undef S3
aoqi@1 603 #undef S4
aoqi@1 604 #undef S5
aoqi@1 605 #undef S6
aoqi@1 606 #endif
aoqi@0 607
aoqi@0 608 static const double
aoqi@0 609 S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
aoqi@0 610 S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
aoqi@0 611 S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
aoqi@0 612 S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
aoqi@0 613 S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
aoqi@0 614 S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
aoqi@0 615
aoqi@0 616 static double __kernel_sin(double x, double y, int iy)
aoqi@0 617 {
aoqi@0 618 double z,r,v;
aoqi@0 619 int ix;
aoqi@0 620 ix = __HI(x)&0x7fffffff; /* high word of x */
aoqi@0 621 if(ix<0x3e400000) /* |x| < 2**-27 */
aoqi@0 622 {if((int)x==0) return x;} /* generate inexact */
aoqi@0 623 z = x*x;
aoqi@0 624 v = z*x;
aoqi@0 625 r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
aoqi@0 626 if(iy==0) return x+v*(S1+z*r);
aoqi@0 627 else return x-((z*(half*y-v*r)-y)-v*S1);
aoqi@0 628 }
aoqi@0 629
aoqi@0 630 /*
aoqi@0 631 * __kernel_cos( x, y )
aoqi@0 632 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
aoqi@0 633 * Input x is assumed to be bounded by ~pi/4 in magnitude.
aoqi@0 634 * Input y is the tail of x.
aoqi@0 635 *
aoqi@0 636 * Algorithm
aoqi@0 637 * 1. Since cos(-x) = cos(x), we need only to consider positive x.
aoqi@0 638 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
aoqi@0 639 * 3. cos(x) is approximated by a polynomial of degree 14 on
aoqi@0 640 * [0,pi/4]
aoqi@0 641 * 4 14
aoqi@0 642 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
aoqi@0 643 * where the remez error is
aoqi@0 644 *
aoqi@0 645 * | 2 4 6 8 10 12 14 | -58
aoqi@0 646 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
aoqi@0 647 * | |
aoqi@0 648 *
aoqi@0 649 * 4 6 8 10 12 14
aoqi@0 650 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
aoqi@0 651 * cos(x) = 1 - x*x/2 + r
aoqi@0 652 * since cos(x+y) ~ cos(x) - sin(x)*y
aoqi@0 653 * ~ cos(x) - x*y,
aoqi@0 654 * a correction term is necessary in cos(x) and hence
aoqi@0 655 * cos(x+y) = 1 - (x*x/2 - (r - x*y))
aoqi@0 656 * For better accuracy when x > 0.3, let qx = |x|/4 with
aoqi@0 657 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
aoqi@0 658 * Then
aoqi@0 659 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
aoqi@0 660 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
aoqi@0 661 * magnitude of the latter is at least a quarter of x*x/2,
aoqi@0 662 * thus, reducing the rounding error in the subtraction.
aoqi@0 663 */
aoqi@0 664
aoqi@0 665 static const double
aoqi@0 666 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
aoqi@0 667 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
aoqi@0 668 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
aoqi@0 669 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
aoqi@0 670 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
aoqi@0 671 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
aoqi@0 672
aoqi@0 673 static double __kernel_cos(double x, double y)
aoqi@0 674 {
aoqi@0 675 double a,h,z,r,qx;
aoqi@0 676 int ix;
aoqi@0 677 ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
aoqi@0 678 if(ix<0x3e400000) { /* if x < 2**27 */
aoqi@0 679 if(((int)x)==0) return one; /* generate inexact */
aoqi@0 680 }
aoqi@0 681 z = x*x;
aoqi@0 682 r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
aoqi@0 683 if(ix < 0x3FD33333) /* if |x| < 0.3 */
aoqi@0 684 return one - (0.5*z - (z*r - x*y));
aoqi@0 685 else {
aoqi@0 686 if(ix > 0x3fe90000) { /* x > 0.78125 */
aoqi@0 687 qx = 0.28125;
aoqi@0 688 } else {
aoqi@0 689 __HI(qx) = ix-0x00200000; /* x/4 */
aoqi@0 690 __LO(qx) = 0;
aoqi@0 691 }
aoqi@0 692 h = 0.5*z-qx;
aoqi@0 693 a = one-qx;
aoqi@0 694 return a - (h - (z*r-x*y));
aoqi@0 695 }
aoqi@0 696 }
aoqi@0 697
aoqi@0 698 /* __kernel_tan( x, y, k )
aoqi@0 699 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
aoqi@0 700 * Input x is assumed to be bounded by ~pi/4 in magnitude.
aoqi@0 701 * Input y is the tail of x.
aoqi@0 702 * Input k indicates whether tan (if k=1) or
aoqi@0 703 * -1/tan (if k= -1) is returned.
aoqi@0 704 *
aoqi@0 705 * Algorithm
aoqi@0 706 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
aoqi@0 707 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
aoqi@0 708 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
aoqi@0 709 * [0,0.67434]
aoqi@0 710 * 3 27
aoqi@0 711 * tan(x) ~ x + T1*x + ... + T13*x
aoqi@0 712 * where
aoqi@0 713 *
aoqi@0 714 * |tan(x) 2 4 26 | -59.2
aoqi@0 715 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
aoqi@0 716 * | x |
aoqi@0 717 *
aoqi@0 718 * Note: tan(x+y) = tan(x) + tan'(x)*y
aoqi@0 719 * ~ tan(x) + (1+x*x)*y
aoqi@0 720 * Therefore, for better accuracy in computing tan(x+y), let
aoqi@0 721 * 3 2 2 2 2
aoqi@0 722 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
aoqi@0 723 * then
aoqi@0 724 * 3 2
aoqi@0 725 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
aoqi@0 726 *
aoqi@0 727 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
aoqi@0 728 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
aoqi@0 729 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
aoqi@0 730 */
aoqi@0 731
aoqi@0 732 static const double
aoqi@0 733 pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
aoqi@0 734 pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
aoqi@0 735 T[] = {
aoqi@0 736 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
aoqi@0 737 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
aoqi@0 738 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
aoqi@0 739 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
aoqi@0 740 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
aoqi@0 741 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
aoqi@0 742 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
aoqi@0 743 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
aoqi@0 744 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
aoqi@0 745 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
aoqi@0 746 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
aoqi@0 747 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
aoqi@0 748 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
aoqi@0 749 };
aoqi@0 750
aoqi@0 751 static double __kernel_tan(double x, double y, int iy)
aoqi@0 752 {
aoqi@0 753 double z,r,v,w,s;
aoqi@0 754 int ix,hx;
aoqi@0 755 hx = __HI(x); /* high word of x */
aoqi@0 756 ix = hx&0x7fffffff; /* high word of |x| */
aoqi@0 757 if(ix<0x3e300000) { /* x < 2**-28 */
aoqi@0 758 if((int)x==0) { /* generate inexact */
aoqi@0 759 if (((ix | __LO(x)) | (iy + 1)) == 0)
aoqi@0 760 return one / fabsd(x);
aoqi@0 761 else {
aoqi@0 762 if (iy == 1)
aoqi@0 763 return x;
aoqi@0 764 else { /* compute -1 / (x+y) carefully */
aoqi@0 765 double a, t;
aoqi@0 766
aoqi@0 767 z = w = x + y;
aoqi@0 768 __LO(z) = 0;
aoqi@0 769 v = y - (z - x);
aoqi@0 770 t = a = -one / w;
aoqi@0 771 __LO(t) = 0;
aoqi@0 772 s = one + t * z;
aoqi@0 773 return t + a * (s + t * v);
aoqi@0 774 }
aoqi@0 775 }
aoqi@0 776 }
aoqi@0 777 }
aoqi@0 778 if(ix>=0x3FE59428) { /* |x|>=0.6744 */
aoqi@0 779 if(hx<0) {x = -x; y = -y;}
aoqi@0 780 z = pio4-x;
aoqi@0 781 w = pio4lo-y;
aoqi@0 782 x = z+w; y = 0.0;
aoqi@0 783 }
aoqi@0 784 z = x*x;
aoqi@0 785 w = z*z;
aoqi@0 786 /* Break x^5*(T[1]+x^2*T[2]+...) into
aoqi@0 787 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
aoqi@0 788 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
aoqi@0 789 */
aoqi@0 790 r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
aoqi@0 791 v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
aoqi@0 792 s = z*x;
aoqi@0 793 r = y + z*(s*(r+v)+y);
aoqi@0 794 r += T[0]*s;
aoqi@0 795 w = x+r;
aoqi@0 796 if(ix>=0x3FE59428) {
aoqi@0 797 v = (double)iy;
aoqi@0 798 return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
aoqi@0 799 }
aoqi@0 800 if(iy==1) return w;
aoqi@0 801 else { /* if allow error up to 2 ulp,
aoqi@0 802 simply return -1.0/(x+r) here */
aoqi@0 803 /* compute -1.0/(x+r) accurately */
aoqi@0 804 double a,t;
aoqi@0 805 z = w;
aoqi@0 806 __LO(z) = 0;
aoqi@0 807 v = r-(z - x); /* z+v = r+x */
aoqi@0 808 t = a = -1.0/w; /* a = -1.0/w */
aoqi@0 809 __LO(t) = 0;
aoqi@0 810 s = 1.0+t*z;
aoqi@0 811 return t+a*(s+t*v);
aoqi@0 812 }
aoqi@0 813 }
aoqi@0 814
aoqi@0 815
aoqi@0 816 //----------------------------------------------------------------------
aoqi@0 817 //
aoqi@0 818 // Routines for new sin/cos implementation
aoqi@0 819 //
aoqi@0 820 //----------------------------------------------------------------------
aoqi@0 821
aoqi@0 822 /* sin(x)
aoqi@0 823 * Return sine function of x.
aoqi@0 824 *
aoqi@0 825 * kernel function:
aoqi@0 826 * __kernel_sin ... sine function on [-pi/4,pi/4]
aoqi@0 827 * __kernel_cos ... cose function on [-pi/4,pi/4]
aoqi@0 828 * __ieee754_rem_pio2 ... argument reduction routine
aoqi@0 829 *
aoqi@0 830 * Method.
aoqi@0 831 * Let S,C and T denote the sin, cos and tan respectively on
aoqi@0 832 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
aoqi@0 833 * in [-pi/4 , +pi/4], and let n = k mod 4.
aoqi@0 834 * We have
aoqi@0 835 *
aoqi@0 836 * n sin(x) cos(x) tan(x)
aoqi@0 837 * ----------------------------------------------------------
aoqi@0 838 * 0 S C T
aoqi@0 839 * 1 C -S -1/T
aoqi@0 840 * 2 -S -C T
aoqi@0 841 * 3 -C S -1/T
aoqi@0 842 * ----------------------------------------------------------
aoqi@0 843 *
aoqi@0 844 * Special cases:
aoqi@0 845 * Let trig be any of sin, cos, or tan.
aoqi@0 846 * trig(+-INF) is NaN, with signals;
aoqi@0 847 * trig(NaN) is that NaN;
aoqi@0 848 *
aoqi@0 849 * Accuracy:
aoqi@0 850 * TRIG(x) returns trig(x) nearly rounded
aoqi@0 851 */
aoqi@0 852
aoqi@0 853 JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
aoqi@0 854 double y[2],z=0.0;
aoqi@0 855 int n, ix;
aoqi@0 856
aoqi@0 857 /* High word of x. */
aoqi@0 858 ix = __HI(x);
aoqi@0 859
aoqi@0 860 /* |x| ~< pi/4 */
aoqi@0 861 ix &= 0x7fffffff;
aoqi@0 862 if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
aoqi@0 863
aoqi@0 864 /* sin(Inf or NaN) is NaN */
aoqi@0 865 else if (ix>=0x7ff00000) return x-x;
aoqi@0 866
aoqi@0 867 /* argument reduction needed */
aoqi@0 868 else {
aoqi@0 869 n = __ieee754_rem_pio2(x,y);
aoqi@0 870 switch(n&3) {
aoqi@0 871 case 0: return __kernel_sin(y[0],y[1],1);
aoqi@0 872 case 1: return __kernel_cos(y[0],y[1]);
aoqi@0 873 case 2: return -__kernel_sin(y[0],y[1],1);
aoqi@0 874 default:
aoqi@0 875 return -__kernel_cos(y[0],y[1]);
aoqi@0 876 }
aoqi@0 877 }
aoqi@0 878 JRT_END
aoqi@0 879
aoqi@0 880 /* cos(x)
aoqi@0 881 * Return cosine function of x.
aoqi@0 882 *
aoqi@0 883 * kernel function:
aoqi@0 884 * __kernel_sin ... sine function on [-pi/4,pi/4]
aoqi@0 885 * __kernel_cos ... cosine function on [-pi/4,pi/4]
aoqi@0 886 * __ieee754_rem_pio2 ... argument reduction routine
aoqi@0 887 *
aoqi@0 888 * Method.
aoqi@0 889 * Let S,C and T denote the sin, cos and tan respectively on
aoqi@0 890 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
aoqi@0 891 * in [-pi/4 , +pi/4], and let n = k mod 4.
aoqi@0 892 * We have
aoqi@0 893 *
aoqi@0 894 * n sin(x) cos(x) tan(x)
aoqi@0 895 * ----------------------------------------------------------
aoqi@0 896 * 0 S C T
aoqi@0 897 * 1 C -S -1/T
aoqi@0 898 * 2 -S -C T
aoqi@0 899 * 3 -C S -1/T
aoqi@0 900 * ----------------------------------------------------------
aoqi@0 901 *
aoqi@0 902 * Special cases:
aoqi@0 903 * Let trig be any of sin, cos, or tan.
aoqi@0 904 * trig(+-INF) is NaN, with signals;
aoqi@0 905 * trig(NaN) is that NaN;
aoqi@0 906 *
aoqi@0 907 * Accuracy:
aoqi@0 908 * TRIG(x) returns trig(x) nearly rounded
aoqi@0 909 */
aoqi@0 910
aoqi@0 911 JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
aoqi@0 912 double y[2],z=0.0;
aoqi@0 913 int n, ix;
aoqi@0 914
aoqi@0 915 /* High word of x. */
aoqi@0 916 ix = __HI(x);
aoqi@0 917
aoqi@0 918 /* |x| ~< pi/4 */
aoqi@0 919 ix &= 0x7fffffff;
aoqi@0 920 if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
aoqi@0 921
aoqi@0 922 /* cos(Inf or NaN) is NaN */
aoqi@0 923 else if (ix>=0x7ff00000) return x-x;
aoqi@0 924
aoqi@0 925 /* argument reduction needed */
aoqi@0 926 else {
aoqi@0 927 n = __ieee754_rem_pio2(x,y);
aoqi@0 928 switch(n&3) {
aoqi@0 929 case 0: return __kernel_cos(y[0],y[1]);
aoqi@0 930 case 1: return -__kernel_sin(y[0],y[1],1);
aoqi@0 931 case 2: return -__kernel_cos(y[0],y[1]);
aoqi@0 932 default:
aoqi@0 933 return __kernel_sin(y[0],y[1],1);
aoqi@0 934 }
aoqi@0 935 }
aoqi@0 936 JRT_END
aoqi@0 937
aoqi@0 938 /* tan(x)
aoqi@0 939 * Return tangent function of x.
aoqi@0 940 *
aoqi@0 941 * kernel function:
aoqi@0 942 * __kernel_tan ... tangent function on [-pi/4,pi/4]
aoqi@0 943 * __ieee754_rem_pio2 ... argument reduction routine
aoqi@0 944 *
aoqi@0 945 * Method.
aoqi@0 946 * Let S,C and T denote the sin, cos and tan respectively on
aoqi@0 947 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
aoqi@0 948 * in [-pi/4 , +pi/4], and let n = k mod 4.
aoqi@0 949 * We have
aoqi@0 950 *
aoqi@0 951 * n sin(x) cos(x) tan(x)
aoqi@0 952 * ----------------------------------------------------------
aoqi@0 953 * 0 S C T
aoqi@0 954 * 1 C -S -1/T
aoqi@0 955 * 2 -S -C T
aoqi@0 956 * 3 -C S -1/T
aoqi@0 957 * ----------------------------------------------------------
aoqi@0 958 *
aoqi@0 959 * Special cases:
aoqi@0 960 * Let trig be any of sin, cos, or tan.
aoqi@0 961 * trig(+-INF) is NaN, with signals;
aoqi@0 962 * trig(NaN) is that NaN;
aoqi@0 963 *
aoqi@0 964 * Accuracy:
aoqi@0 965 * TRIG(x) returns trig(x) nearly rounded
aoqi@0 966 */
aoqi@0 967
aoqi@0 968 JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
aoqi@0 969 double y[2],z=0.0;
aoqi@0 970 int n, ix;
aoqi@0 971
aoqi@0 972 /* High word of x. */
aoqi@0 973 ix = __HI(x);
aoqi@0 974
aoqi@0 975 /* |x| ~< pi/4 */
aoqi@0 976 ix &= 0x7fffffff;
aoqi@0 977 if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
aoqi@0 978
aoqi@0 979 /* tan(Inf or NaN) is NaN */
aoqi@0 980 else if (ix>=0x7ff00000) return x-x; /* NaN */
aoqi@0 981
aoqi@0 982 /* argument reduction needed */
aoqi@0 983 else {
aoqi@0 984 n = __ieee754_rem_pio2(x,y);
aoqi@0 985 return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
aoqi@0 986 -1 -- n odd */
aoqi@0 987 }
aoqi@0 988 JRT_END
aoqi@0 989
aoqi@0 990
aoqi@0 991 #ifdef WIN32
aoqi@0 992 # pragma optimize ( "", on )
aoqi@0 993 #endif

mercurial