src/share/vm/runtime/sharedRuntimeTrans.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6461
bdd155477289
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "prims/jni.h"
aoqi@0 27 #include "runtime/interfaceSupport.hpp"
aoqi@0 28 #include "runtime/sharedRuntime.hpp"
aoqi@0 29
aoqi@0 30 // This file contains copies of the fdlibm routines used by
aoqi@0 31 // StrictMath. It turns out that it is almost always required to use
aoqi@0 32 // these runtime routines; the Intel CPU doesn't meet the Java
aoqi@0 33 // specification for sin/cos outside a certain limited argument range,
aoqi@0 34 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
aoqi@0 35 // also turns out that avoiding the indirect call through function
aoqi@0 36 // pointer out to libjava.so in SharedRuntime speeds these routines up
aoqi@0 37 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
aoqi@0 38
aoqi@0 39 // Enabling optimizations in this file causes incorrect code to be
aoqi@0 40 // generated; can not figure out how to turn down optimization for one
aoqi@0 41 // file in the IDE on Windows
aoqi@0 42 #ifdef WIN32
aoqi@0 43 # pragma optimize ( "", off )
aoqi@0 44 #endif
aoqi@0 45
aoqi@0 46 #include <math.h>
aoqi@0 47
aoqi@0 48 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
aoqi@0 49 // [jk] this is not 100% correct because the float word order may different
aoqi@0 50 // from the byte order (e.g. on ARM)
aoqi@0 51 #ifdef VM_LITTLE_ENDIAN
aoqi@0 52 # define __HI(x) *(1+(int*)&x)
aoqi@0 53 # define __LO(x) *(int*)&x
aoqi@0 54 #else
aoqi@0 55 # define __HI(x) *(int*)&x
aoqi@0 56 # define __LO(x) *(1+(int*)&x)
aoqi@0 57 #endif
aoqi@0 58
aoqi@0 59 #if !defined(AIX)
aoqi@0 60 double copysign(double x, double y) {
aoqi@0 61 __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
aoqi@0 62 return x;
aoqi@0 63 }
aoqi@0 64 #endif
aoqi@0 65
aoqi@0 66 /*
aoqi@0 67 * ====================================================
aoqi@0 68 * Copyright (c) 1998 Oracle and/or its affiliates. All rights reserved.
aoqi@0 69 *
aoqi@0 70 * Developed at SunSoft, a Sun Microsystems, Inc. business.
aoqi@0 71 * Permission to use, copy, modify, and distribute this
aoqi@0 72 * software is freely granted, provided that this notice
aoqi@0 73 * is preserved.
aoqi@0 74 * ====================================================
aoqi@0 75 */
aoqi@0 76
aoqi@0 77 /*
aoqi@0 78 * scalbn (double x, int n)
aoqi@0 79 * scalbn(x,n) returns x* 2**n computed by exponent
aoqi@0 80 * manipulation rather than by actually performing an
aoqi@0 81 * exponentiation or a multiplication.
aoqi@0 82 */
aoqi@0 83
aoqi@0 84 static const double
aoqi@0 85 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
aoqi@0 86 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
aoqi@0 87 hugeX = 1.0e+300,
aoqi@0 88 tiny = 1.0e-300;
aoqi@0 89
aoqi@0 90 #if !defined(AIX)
aoqi@0 91 double scalbn (double x, int n) {
aoqi@0 92 int k,hx,lx;
aoqi@0 93 hx = __HI(x);
aoqi@0 94 lx = __LO(x);
aoqi@0 95 k = (hx&0x7ff00000)>>20; /* extract exponent */
aoqi@0 96 if (k==0) { /* 0 or subnormal x */
aoqi@0 97 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
aoqi@0 98 x *= two54;
aoqi@0 99 hx = __HI(x);
aoqi@0 100 k = ((hx&0x7ff00000)>>20) - 54;
aoqi@0 101 if (n< -50000) return tiny*x; /*underflow*/
aoqi@0 102 }
aoqi@0 103 if (k==0x7ff) return x+x; /* NaN or Inf */
aoqi@0 104 k = k+n;
aoqi@0 105 if (k > 0x7fe) return hugeX*copysign(hugeX,x); /* overflow */
aoqi@0 106 if (k > 0) /* normal result */
aoqi@0 107 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
aoqi@0 108 if (k <= -54) {
aoqi@0 109 if (n > 50000) /* in case integer overflow in n+k */
aoqi@0 110 return hugeX*copysign(hugeX,x); /*overflow*/
aoqi@0 111 else return tiny*copysign(tiny,x); /*underflow*/
aoqi@0 112 }
aoqi@0 113 k += 54; /* subnormal result */
aoqi@0 114 __HI(x) = (hx&0x800fffff)|(k<<20);
aoqi@0 115 return x*twom54;
aoqi@0 116 }
aoqi@0 117 #endif
aoqi@0 118
aoqi@0 119 /* __ieee754_log(x)
aoqi@0 120 * Return the logrithm of x
aoqi@0 121 *
aoqi@0 122 * Method :
aoqi@0 123 * 1. Argument Reduction: find k and f such that
aoqi@0 124 * x = 2^k * (1+f),
aoqi@0 125 * where sqrt(2)/2 < 1+f < sqrt(2) .
aoqi@0 126 *
aoqi@0 127 * 2. Approximation of log(1+f).
aoqi@0 128 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
aoqi@0 129 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
aoqi@0 130 * = 2s + s*R
aoqi@0 131 * We use a special Reme algorithm on [0,0.1716] to generate
aoqi@0 132 * a polynomial of degree 14 to approximate R The maximum error
aoqi@0 133 * of this polynomial approximation is bounded by 2**-58.45. In
aoqi@0 134 * other words,
aoqi@0 135 * 2 4 6 8 10 12 14
aoqi@0 136 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
aoqi@0 137 * (the values of Lg1 to Lg7 are listed in the program)
aoqi@0 138 * and
aoqi@0 139 * | 2 14 | -58.45
aoqi@0 140 * | Lg1*s +...+Lg7*s - R(z) | <= 2
aoqi@0 141 * | |
aoqi@0 142 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
aoqi@0 143 * In order to guarantee error in log below 1ulp, we compute log
aoqi@0 144 * by
aoqi@0 145 * log(1+f) = f - s*(f - R) (if f is not too large)
aoqi@0 146 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
aoqi@0 147 *
aoqi@0 148 * 3. Finally, log(x) = k*ln2 + log(1+f).
aoqi@0 149 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
aoqi@0 150 * Here ln2 is split into two floating point number:
aoqi@0 151 * ln2_hi + ln2_lo,
aoqi@0 152 * where n*ln2_hi is always exact for |n| < 2000.
aoqi@0 153 *
aoqi@0 154 * Special cases:
aoqi@0 155 * log(x) is NaN with signal if x < 0 (including -INF) ;
aoqi@0 156 * log(+INF) is +INF; log(0) is -INF with signal;
aoqi@0 157 * log(NaN) is that NaN with no signal.
aoqi@0 158 *
aoqi@0 159 * Accuracy:
aoqi@0 160 * according to an error analysis, the error is always less than
aoqi@0 161 * 1 ulp (unit in the last place).
aoqi@0 162 *
aoqi@0 163 * Constants:
aoqi@0 164 * The hexadecimal values are the intended ones for the following
aoqi@0 165 * constants. The decimal values may be used, provided that the
aoqi@0 166 * compiler will convert from decimal to binary accurately enough
aoqi@0 167 * to produce the hexadecimal values shown.
aoqi@0 168 */
aoqi@0 169
aoqi@0 170 static const double
aoqi@0 171 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
aoqi@0 172 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
aoqi@0 173 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
aoqi@0 174 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
aoqi@0 175 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
aoqi@0 176 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
aoqi@0 177 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
aoqi@0 178 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
aoqi@0 179 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
aoqi@0 180
aoqi@0 181 static double zero = 0.0;
aoqi@0 182
aoqi@0 183 static double __ieee754_log(double x) {
aoqi@0 184 double hfsq,f,s,z,R,w,t1,t2,dk;
aoqi@0 185 int k,hx,i,j;
aoqi@0 186 unsigned lx;
aoqi@0 187
aoqi@0 188 hx = __HI(x); /* high word of x */
aoqi@0 189 lx = __LO(x); /* low word of x */
aoqi@0 190
aoqi@0 191 k=0;
aoqi@0 192 if (hx < 0x00100000) { /* x < 2**-1022 */
aoqi@0 193 if (((hx&0x7fffffff)|lx)==0)
aoqi@0 194 return -two54/zero; /* log(+-0)=-inf */
aoqi@0 195 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
aoqi@0 196 k -= 54; x *= two54; /* subnormal number, scale up x */
aoqi@0 197 hx = __HI(x); /* high word of x */
aoqi@0 198 }
aoqi@0 199 if (hx >= 0x7ff00000) return x+x;
aoqi@0 200 k += (hx>>20)-1023;
aoqi@0 201 hx &= 0x000fffff;
aoqi@0 202 i = (hx+0x95f64)&0x100000;
aoqi@0 203 __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
aoqi@0 204 k += (i>>20);
aoqi@0 205 f = x-1.0;
aoqi@0 206 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
aoqi@0 207 if(f==zero) {
aoqi@0 208 if (k==0) return zero;
aoqi@0 209 else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
aoqi@0 210 }
aoqi@0 211 R = f*f*(0.5-0.33333333333333333*f);
aoqi@0 212 if(k==0) return f-R; else {dk=(double)k;
aoqi@0 213 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
aoqi@0 214 }
aoqi@0 215 s = f/(2.0+f);
aoqi@0 216 dk = (double)k;
aoqi@0 217 z = s*s;
aoqi@0 218 i = hx-0x6147a;
aoqi@0 219 w = z*z;
aoqi@0 220 j = 0x6b851-hx;
aoqi@0 221 t1= w*(Lg2+w*(Lg4+w*Lg6));
aoqi@0 222 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
aoqi@0 223 i |= j;
aoqi@0 224 R = t2+t1;
aoqi@0 225 if(i>0) {
aoqi@0 226 hfsq=0.5*f*f;
aoqi@0 227 if(k==0) return f-(hfsq-s*(hfsq+R)); else
aoqi@0 228 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
aoqi@0 229 } else {
aoqi@0 230 if(k==0) return f-s*(f-R); else
aoqi@0 231 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
aoqi@0 232 }
aoqi@0 233 }
aoqi@0 234
aoqi@0 235 JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
aoqi@0 236 return __ieee754_log(x);
aoqi@0 237 JRT_END
aoqi@0 238
aoqi@0 239 /* __ieee754_log10(x)
aoqi@0 240 * Return the base 10 logarithm of x
aoqi@0 241 *
aoqi@0 242 * Method :
aoqi@0 243 * Let log10_2hi = leading 40 bits of log10(2) and
aoqi@0 244 * log10_2lo = log10(2) - log10_2hi,
aoqi@0 245 * ivln10 = 1/log(10) rounded.
aoqi@0 246 * Then
aoqi@0 247 * n = ilogb(x),
aoqi@0 248 * if(n<0) n = n+1;
aoqi@0 249 * x = scalbn(x,-n);
aoqi@0 250 * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
aoqi@0 251 *
aoqi@0 252 * Note 1:
aoqi@0 253 * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
aoqi@0 254 * mode must set to Round-to-Nearest.
aoqi@0 255 * Note 2:
aoqi@0 256 * [1/log(10)] rounded to 53 bits has error .198 ulps;
aoqi@0 257 * log10 is monotonic at all binary break points.
aoqi@0 258 *
aoqi@0 259 * Special cases:
aoqi@0 260 * log10(x) is NaN with signal if x < 0;
aoqi@0 261 * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
aoqi@0 262 * log10(NaN) is that NaN with no signal;
aoqi@0 263 * log10(10**N) = N for N=0,1,...,22.
aoqi@0 264 *
aoqi@0 265 * Constants:
aoqi@0 266 * The hexadecimal values are the intended ones for the following constants.
aoqi@0 267 * The decimal values may be used, provided that the compiler will convert
aoqi@0 268 * from decimal to binary accurately enough to produce the hexadecimal values
aoqi@0 269 * shown.
aoqi@0 270 */
aoqi@0 271
aoqi@0 272 static const double
aoqi@0 273 ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
aoqi@0 274 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
aoqi@0 275 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
aoqi@0 276
aoqi@0 277 static double __ieee754_log10(double x) {
aoqi@0 278 double y,z;
aoqi@0 279 int i,k,hx;
aoqi@0 280 unsigned lx;
aoqi@0 281
aoqi@0 282 hx = __HI(x); /* high word of x */
aoqi@0 283 lx = __LO(x); /* low word of x */
aoqi@0 284
aoqi@0 285 k=0;
aoqi@0 286 if (hx < 0x00100000) { /* x < 2**-1022 */
aoqi@0 287 if (((hx&0x7fffffff)|lx)==0)
aoqi@0 288 return -two54/zero; /* log(+-0)=-inf */
aoqi@0 289 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
aoqi@0 290 k -= 54; x *= two54; /* subnormal number, scale up x */
aoqi@0 291 hx = __HI(x); /* high word of x */
aoqi@0 292 }
aoqi@0 293 if (hx >= 0x7ff00000) return x+x;
aoqi@0 294 k += (hx>>20)-1023;
aoqi@0 295 i = ((unsigned)k&0x80000000)>>31;
aoqi@0 296 hx = (hx&0x000fffff)|((0x3ff-i)<<20);
aoqi@0 297 y = (double)(k+i);
aoqi@0 298 __HI(x) = hx;
aoqi@0 299 z = y*log10_2lo + ivln10*__ieee754_log(x);
aoqi@0 300 return z+y*log10_2hi;
aoqi@0 301 }
aoqi@0 302
aoqi@0 303 JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
aoqi@0 304 return __ieee754_log10(x);
aoqi@0 305 JRT_END
aoqi@0 306
aoqi@0 307
aoqi@0 308 /* __ieee754_exp(x)
aoqi@0 309 * Returns the exponential of x.
aoqi@0 310 *
aoqi@0 311 * Method
aoqi@0 312 * 1. Argument reduction:
aoqi@0 313 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
aoqi@0 314 * Given x, find r and integer k such that
aoqi@0 315 *
aoqi@0 316 * x = k*ln2 + r, |r| <= 0.5*ln2.
aoqi@0 317 *
aoqi@0 318 * Here r will be represented as r = hi-lo for better
aoqi@0 319 * accuracy.
aoqi@0 320 *
aoqi@0 321 * 2. Approximation of exp(r) by a special rational function on
aoqi@0 322 * the interval [0,0.34658]:
aoqi@0 323 * Write
aoqi@0 324 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
aoqi@0 325 * We use a special Reme algorithm on [0,0.34658] to generate
aoqi@0 326 * a polynomial of degree 5 to approximate R. The maximum error
aoqi@0 327 * of this polynomial approximation is bounded by 2**-59. In
aoqi@0 328 * other words,
aoqi@0 329 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
aoqi@0 330 * (where z=r*r, and the values of P1 to P5 are listed below)
aoqi@0 331 * and
aoqi@0 332 * | 5 | -59
aoqi@0 333 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
aoqi@0 334 * | |
aoqi@0 335 * The computation of exp(r) thus becomes
aoqi@0 336 * 2*r
aoqi@0 337 * exp(r) = 1 + -------
aoqi@0 338 * R - r
aoqi@0 339 * r*R1(r)
aoqi@0 340 * = 1 + r + ----------- (for better accuracy)
aoqi@0 341 * 2 - R1(r)
aoqi@0 342 * where
aoqi@0 343 * 2 4 10
aoqi@0 344 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
aoqi@0 345 *
aoqi@0 346 * 3. Scale back to obtain exp(x):
aoqi@0 347 * From step 1, we have
aoqi@0 348 * exp(x) = 2^k * exp(r)
aoqi@0 349 *
aoqi@0 350 * Special cases:
aoqi@0 351 * exp(INF) is INF, exp(NaN) is NaN;
aoqi@0 352 * exp(-INF) is 0, and
aoqi@0 353 * for finite argument, only exp(0)=1 is exact.
aoqi@0 354 *
aoqi@0 355 * Accuracy:
aoqi@0 356 * according to an error analysis, the error is always less than
aoqi@0 357 * 1 ulp (unit in the last place).
aoqi@0 358 *
aoqi@0 359 * Misc. info.
aoqi@0 360 * For IEEE double
aoqi@0 361 * if x > 7.09782712893383973096e+02 then exp(x) overflow
aoqi@0 362 * if x < -7.45133219101941108420e+02 then exp(x) underflow
aoqi@0 363 *
aoqi@0 364 * Constants:
aoqi@0 365 * The hexadecimal values are the intended ones for the following
aoqi@0 366 * constants. The decimal values may be used, provided that the
aoqi@0 367 * compiler will convert from decimal to binary accurately enough
aoqi@0 368 * to produce the hexadecimal values shown.
aoqi@0 369 */
aoqi@0 370
aoqi@0 371 static const double
aoqi@0 372 one = 1.0,
aoqi@0 373 halF[2] = {0.5,-0.5,},
aoqi@0 374 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
aoqi@0 375 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
aoqi@0 376 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
aoqi@0 377 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
aoqi@0 378 -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
aoqi@0 379 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
aoqi@0 380 -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
aoqi@0 381 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
aoqi@0 382 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
aoqi@0 383 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
aoqi@0 384 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
aoqi@0 385 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
aoqi@0 386 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
aoqi@0 387
aoqi@0 388 static double __ieee754_exp(double x) {
aoqi@0 389 double y,hi=0,lo=0,c,t;
aoqi@0 390 int k=0,xsb;
aoqi@0 391 unsigned hx;
aoqi@0 392
aoqi@0 393 hx = __HI(x); /* high word of x */
aoqi@0 394 xsb = (hx>>31)&1; /* sign bit of x */
aoqi@0 395 hx &= 0x7fffffff; /* high word of |x| */
aoqi@0 396
aoqi@0 397 /* filter out non-finite argument */
aoqi@0 398 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
aoqi@0 399 if(hx>=0x7ff00000) {
aoqi@0 400 if(((hx&0xfffff)|__LO(x))!=0)
aoqi@0 401 return x+x; /* NaN */
aoqi@0 402 else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
aoqi@0 403 }
aoqi@0 404 if(x > o_threshold) return hugeX*hugeX; /* overflow */
aoqi@0 405 if(x < u_threshold) return twom1000*twom1000; /* underflow */
aoqi@0 406 }
aoqi@0 407
aoqi@0 408 /* argument reduction */
aoqi@0 409 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
aoqi@0 410 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
aoqi@0 411 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
aoqi@0 412 } else {
aoqi@0 413 k = (int)(invln2*x+halF[xsb]);
aoqi@0 414 t = k;
aoqi@0 415 hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
aoqi@0 416 lo = t*ln2LO[0];
aoqi@0 417 }
aoqi@0 418 x = hi - lo;
aoqi@0 419 }
aoqi@0 420 else if(hx < 0x3e300000) { /* when |x|<2**-28 */
aoqi@0 421 if(hugeX+x>one) return one+x;/* trigger inexact */
aoqi@0 422 }
aoqi@0 423 else k = 0;
aoqi@0 424
aoqi@0 425 /* x is now in primary range */
aoqi@0 426 t = x*x;
aoqi@0 427 c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
aoqi@0 428 if(k==0) return one-((x*c)/(c-2.0)-x);
aoqi@0 429 else y = one-((lo-(x*c)/(2.0-c))-hi);
aoqi@0 430 if(k >= -1021) {
aoqi@0 431 __HI(y) += (k<<20); /* add k to y's exponent */
aoqi@0 432 return y;
aoqi@0 433 } else {
aoqi@0 434 __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
aoqi@0 435 return y*twom1000;
aoqi@0 436 }
aoqi@0 437 }
aoqi@0 438
aoqi@0 439 JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
aoqi@0 440 return __ieee754_exp(x);
aoqi@0 441 JRT_END
aoqi@0 442
aoqi@0 443 /* __ieee754_pow(x,y) return x**y
aoqi@0 444 *
aoqi@0 445 * n
aoqi@0 446 * Method: Let x = 2 * (1+f)
aoqi@0 447 * 1. Compute and return log2(x) in two pieces:
aoqi@0 448 * log2(x) = w1 + w2,
aoqi@0 449 * where w1 has 53-24 = 29 bit trailing zeros.
aoqi@0 450 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
aoqi@0 451 * arithmetic, where |y'|<=0.5.
aoqi@0 452 * 3. Return x**y = 2**n*exp(y'*log2)
aoqi@0 453 *
aoqi@0 454 * Special cases:
aoqi@0 455 * 1. (anything) ** 0 is 1
aoqi@0 456 * 2. (anything) ** 1 is itself
aoqi@0 457 * 3. (anything) ** NAN is NAN
aoqi@0 458 * 4. NAN ** (anything except 0) is NAN
aoqi@0 459 * 5. +-(|x| > 1) ** +INF is +INF
aoqi@0 460 * 6. +-(|x| > 1) ** -INF is +0
aoqi@0 461 * 7. +-(|x| < 1) ** +INF is +0
aoqi@0 462 * 8. +-(|x| < 1) ** -INF is +INF
aoqi@0 463 * 9. +-1 ** +-INF is NAN
aoqi@0 464 * 10. +0 ** (+anything except 0, NAN) is +0
aoqi@0 465 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
aoqi@0 466 * 12. +0 ** (-anything except 0, NAN) is +INF
aoqi@0 467 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
aoqi@0 468 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
aoqi@0 469 * 15. +INF ** (+anything except 0,NAN) is +INF
aoqi@0 470 * 16. +INF ** (-anything except 0,NAN) is +0
aoqi@0 471 * 17. -INF ** (anything) = -0 ** (-anything)
aoqi@0 472 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
aoqi@0 473 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
aoqi@0 474 *
aoqi@0 475 * Accuracy:
aoqi@0 476 * pow(x,y) returns x**y nearly rounded. In particular
aoqi@0 477 * pow(integer,integer)
aoqi@0 478 * always returns the correct integer provided it is
aoqi@0 479 * representable.
aoqi@0 480 *
aoqi@0 481 * Constants :
aoqi@0 482 * The hexadecimal values are the intended ones for the following
aoqi@0 483 * constants. The decimal values may be used, provided that the
aoqi@0 484 * compiler will convert from decimal to binary accurately enough
aoqi@0 485 * to produce the hexadecimal values shown.
aoqi@0 486 */
aoqi@0 487
aoqi@0 488 static const double
aoqi@0 489 bp[] = {1.0, 1.5,},
aoqi@0 490 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
aoqi@0 491 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
aoqi@0 492 zeroX = 0.0,
aoqi@0 493 two = 2.0,
aoqi@0 494 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
aoqi@0 495 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
aoqi@0 496 L1X = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
aoqi@0 497 L2X = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
aoqi@0 498 L3X = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
aoqi@0 499 L4X = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
aoqi@0 500 L5X = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
aoqi@0 501 L6X = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
aoqi@0 502 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
aoqi@0 503 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
aoqi@0 504 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
aoqi@0 505 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
aoqi@0 506 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
aoqi@0 507 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
aoqi@0 508 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
aoqi@0 509 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
aoqi@0 510 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
aoqi@0 511 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
aoqi@0 512
aoqi@0 513 double __ieee754_pow(double x, double y) {
aoqi@0 514 double z,ax,z_h,z_l,p_h,p_l;
aoqi@0 515 double y1,t1,t2,r,s,t,u,v,w;
aoqi@0 516 int i0,i1,i,j,k,yisint,n;
aoqi@0 517 int hx,hy,ix,iy;
aoqi@0 518 unsigned lx,ly;
aoqi@0 519
aoqi@0 520 i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
aoqi@0 521 hx = __HI(x); lx = __LO(x);
aoqi@0 522 hy = __HI(y); ly = __LO(y);
aoqi@0 523 ix = hx&0x7fffffff; iy = hy&0x7fffffff;
aoqi@0 524
aoqi@0 525 /* y==zero: x**0 = 1 */
aoqi@0 526 if((iy|ly)==0) return one;
aoqi@0 527
aoqi@0 528 /* +-NaN return x+y */
aoqi@0 529 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
aoqi@0 530 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
aoqi@0 531 return x+y;
aoqi@0 532
aoqi@0 533 /* determine if y is an odd int when x < 0
aoqi@0 534 * yisint = 0 ... y is not an integer
aoqi@0 535 * yisint = 1 ... y is an odd int
aoqi@0 536 * yisint = 2 ... y is an even int
aoqi@0 537 */
aoqi@0 538 yisint = 0;
aoqi@0 539 if(hx<0) {
aoqi@0 540 if(iy>=0x43400000) yisint = 2; /* even integer y */
aoqi@0 541 else if(iy>=0x3ff00000) {
aoqi@0 542 k = (iy>>20)-0x3ff; /* exponent */
aoqi@0 543 if(k>20) {
aoqi@0 544 j = ly>>(52-k);
aoqi@0 545 if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
aoqi@0 546 } else if(ly==0) {
aoqi@0 547 j = iy>>(20-k);
aoqi@0 548 if((j<<(20-k))==iy) yisint = 2-(j&1);
aoqi@0 549 }
aoqi@0 550 }
aoqi@0 551 }
aoqi@0 552
aoqi@0 553 /* special value of y */
aoqi@0 554 if(ly==0) {
aoqi@0 555 if (iy==0x7ff00000) { /* y is +-inf */
aoqi@0 556 if(((ix-0x3ff00000)|lx)==0)
aoqi@0 557 return y - y; /* inf**+-1 is NaN */
aoqi@0 558 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
aoqi@0 559 return (hy>=0)? y: zeroX;
aoqi@0 560 else /* (|x|<1)**-,+inf = inf,0 */
aoqi@0 561 return (hy<0)?-y: zeroX;
aoqi@0 562 }
aoqi@0 563 if(iy==0x3ff00000) { /* y is +-1 */
aoqi@0 564 if(hy<0) return one/x; else return x;
aoqi@0 565 }
aoqi@0 566 if(hy==0x40000000) return x*x; /* y is 2 */
aoqi@0 567 if(hy==0x3fe00000) { /* y is 0.5 */
aoqi@0 568 if(hx>=0) /* x >= +0 */
aoqi@0 569 return sqrt(x);
aoqi@0 570 }
aoqi@0 571 }
aoqi@0 572
aoqi@0 573 ax = fabsd(x);
aoqi@0 574 /* special value of x */
aoqi@0 575 if(lx==0) {
aoqi@0 576 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
aoqi@0 577 z = ax; /*x is +-0,+-inf,+-1*/
aoqi@0 578 if(hy<0) z = one/z; /* z = (1/|x|) */
aoqi@0 579 if(hx<0) {
aoqi@0 580 if(((ix-0x3ff00000)|yisint)==0) {
aoqi@0 581 #ifdef CAN_USE_NAN_DEFINE
aoqi@0 582 z = NAN;
aoqi@0 583 #else
aoqi@0 584 z = (z-z)/(z-z); /* (-1)**non-int is NaN */
aoqi@0 585 #endif
aoqi@0 586 } else if(yisint==1)
aoqi@0 587 z = -1.0*z; /* (x<0)**odd = -(|x|**odd) */
aoqi@0 588 }
aoqi@0 589 return z;
aoqi@0 590 }
aoqi@0 591 }
aoqi@0 592
aoqi@0 593 n = (hx>>31)+1;
aoqi@0 594
aoqi@0 595 /* (x<0)**(non-int) is NaN */
aoqi@0 596 if((n|yisint)==0)
aoqi@0 597 #ifdef CAN_USE_NAN_DEFINE
aoqi@0 598 return NAN;
aoqi@0 599 #else
aoqi@0 600 return (x-x)/(x-x);
aoqi@0 601 #endif
aoqi@0 602
aoqi@0 603 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
aoqi@0 604 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
aoqi@0 605
aoqi@0 606 /* |y| is huge */
aoqi@0 607 if(iy>0x41e00000) { /* if |y| > 2**31 */
aoqi@0 608 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
aoqi@0 609 if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
aoqi@0 610 if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
aoqi@0 611 }
aoqi@0 612 /* over/underflow if x is not close to one */
aoqi@0 613 if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
aoqi@0 614 if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
aoqi@0 615 /* now |1-x| is tiny <= 2**-20, suffice to compute
aoqi@0 616 log(x) by x-x^2/2+x^3/3-x^4/4 */
aoqi@0 617 t = ax-one; /* t has 20 trailing zeros */
aoqi@0 618 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
aoqi@0 619 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
aoqi@0 620 v = t*ivln2_l-w*ivln2;
aoqi@0 621 t1 = u+v;
aoqi@0 622 __LO(t1) = 0;
aoqi@0 623 t2 = v-(t1-u);
aoqi@0 624 } else {
aoqi@0 625 double ss,s2,s_h,s_l,t_h,t_l;
aoqi@0 626 n = 0;
aoqi@0 627 /* take care subnormal number */
aoqi@0 628 if(ix<0x00100000)
aoqi@0 629 {ax *= two53; n -= 53; ix = __HI(ax); }
aoqi@0 630 n += ((ix)>>20)-0x3ff;
aoqi@0 631 j = ix&0x000fffff;
aoqi@0 632 /* determine interval */
aoqi@0 633 ix = j|0x3ff00000; /* normalize ix */
aoqi@0 634 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
aoqi@0 635 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
aoqi@0 636 else {k=0;n+=1;ix -= 0x00100000;}
aoqi@0 637 __HI(ax) = ix;
aoqi@0 638
aoqi@0 639 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
aoqi@0 640 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
aoqi@0 641 v = one/(ax+bp[k]);
aoqi@0 642 ss = u*v;
aoqi@0 643 s_h = ss;
aoqi@0 644 __LO(s_h) = 0;
aoqi@0 645 /* t_h=ax+bp[k] High */
aoqi@0 646 t_h = zeroX;
aoqi@0 647 __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
aoqi@0 648 t_l = ax - (t_h-bp[k]);
aoqi@0 649 s_l = v*((u-s_h*t_h)-s_h*t_l);
aoqi@0 650 /* compute log(ax) */
aoqi@0 651 s2 = ss*ss;
aoqi@0 652 r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
aoqi@0 653 r += s_l*(s_h+ss);
aoqi@0 654 s2 = s_h*s_h;
aoqi@0 655 t_h = 3.0+s2+r;
aoqi@0 656 __LO(t_h) = 0;
aoqi@0 657 t_l = r-((t_h-3.0)-s2);
aoqi@0 658 /* u+v = ss*(1+...) */
aoqi@0 659 u = s_h*t_h;
aoqi@0 660 v = s_l*t_h+t_l*ss;
aoqi@0 661 /* 2/(3log2)*(ss+...) */
aoqi@0 662 p_h = u+v;
aoqi@0 663 __LO(p_h) = 0;
aoqi@0 664 p_l = v-(p_h-u);
aoqi@0 665 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
aoqi@0 666 z_l = cp_l*p_h+p_l*cp+dp_l[k];
aoqi@0 667 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
aoqi@0 668 t = (double)n;
aoqi@0 669 t1 = (((z_h+z_l)+dp_h[k])+t);
aoqi@0 670 __LO(t1) = 0;
aoqi@0 671 t2 = z_l-(((t1-t)-dp_h[k])-z_h);
aoqi@0 672 }
aoqi@0 673
aoqi@0 674 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
aoqi@0 675 y1 = y;
aoqi@0 676 __LO(y1) = 0;
aoqi@0 677 p_l = (y-y1)*t1+y*t2;
aoqi@0 678 p_h = y1*t1;
aoqi@0 679 z = p_l+p_h;
aoqi@0 680 j = __HI(z);
aoqi@0 681 i = __LO(z);
aoqi@0 682 if (j>=0x40900000) { /* z >= 1024 */
aoqi@0 683 if(((j-0x40900000)|i)!=0) /* if z > 1024 */
aoqi@0 684 return s*hugeX*hugeX; /* overflow */
aoqi@0 685 else {
aoqi@0 686 if(p_l+ovt>z-p_h) return s*hugeX*hugeX; /* overflow */
aoqi@0 687 }
aoqi@0 688 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
aoqi@0 689 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
aoqi@0 690 return s*tiny*tiny; /* underflow */
aoqi@0 691 else {
aoqi@0 692 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
aoqi@0 693 }
aoqi@0 694 }
aoqi@0 695 /*
aoqi@0 696 * compute 2**(p_h+p_l)
aoqi@0 697 */
aoqi@0 698 i = j&0x7fffffff;
aoqi@0 699 k = (i>>20)-0x3ff;
aoqi@0 700 n = 0;
aoqi@0 701 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
aoqi@0 702 n = j+(0x00100000>>(k+1));
aoqi@0 703 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
aoqi@0 704 t = zeroX;
aoqi@0 705 __HI(t) = (n&~(0x000fffff>>k));
aoqi@0 706 n = ((n&0x000fffff)|0x00100000)>>(20-k);
aoqi@0 707 if(j<0) n = -n;
aoqi@0 708 p_h -= t;
aoqi@0 709 }
aoqi@0 710 t = p_l+p_h;
aoqi@0 711 __LO(t) = 0;
aoqi@0 712 u = t*lg2_h;
aoqi@0 713 v = (p_l-(t-p_h))*lg2+t*lg2_l;
aoqi@0 714 z = u+v;
aoqi@0 715 w = v-(z-u);
aoqi@0 716 t = z*z;
aoqi@0 717 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
aoqi@0 718 r = (z*t1)/(t1-two)-(w+z*w);
aoqi@0 719 z = one-(r-z);
aoqi@0 720 j = __HI(z);
aoqi@0 721 j += (n<<20);
aoqi@0 722 if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
aoqi@0 723 else __HI(z) += (n<<20);
aoqi@0 724 return s*z;
aoqi@0 725 }
aoqi@0 726
aoqi@0 727
aoqi@0 728 JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
aoqi@0 729 return __ieee754_pow(x, y);
aoqi@0 730 JRT_END
aoqi@0 731
aoqi@0 732 #ifdef WIN32
aoqi@0 733 # pragma optimize ( "", on )
aoqi@0 734 #endif

mercurial