src/share/vm/runtime/advancedThresholdPolicy.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6649
7150b16fda52
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "runtime/advancedThresholdPolicy.hpp"
aoqi@0 27 #include "runtime/simpleThresholdPolicy.inline.hpp"
aoqi@0 28
aoqi@0 29 #ifdef TIERED
aoqi@0 30 // Print an event.
aoqi@0 31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
aoqi@0 32 int bci, CompLevel level) {
aoqi@0 33 tty->print(" rate=");
aoqi@0 34 if (mh->prev_time() == 0) tty->print("n/a");
aoqi@0 35 else tty->print("%f", mh->rate());
aoqi@0 36
aoqi@0 37 tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
aoqi@0 38 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
aoqi@0 39
aoqi@0 40 }
aoqi@0 41
aoqi@0 42 void AdvancedThresholdPolicy::initialize() {
aoqi@0 43 // Turn on ergonomic compiler count selection
aoqi@0 44 if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
aoqi@0 45 FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
aoqi@0 46 }
aoqi@0 47 int count = CICompilerCount;
aoqi@0 48 if (CICompilerCountPerCPU) {
aoqi@0 49 // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
aoqi@0 50 int log_cpu = log2_intptr(os::active_processor_count());
aoqi@0 51 int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
aoqi@0 52 count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
aoqi@0 53 }
aoqi@0 54
aoqi@0 55 set_c1_count(MAX2(count / 3, 1));
aoqi@0 56 set_c2_count(MAX2(count - c1_count(), 1));
aoqi@0 57 FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
aoqi@0 58
aoqi@0 59 // Some inlining tuning
aoqi@0 60 #ifdef X86
aoqi@0 61 if (FLAG_IS_DEFAULT(InlineSmallCode)) {
aoqi@0 62 FLAG_SET_DEFAULT(InlineSmallCode, 2000);
aoqi@0 63 }
aoqi@0 64 #endif
aoqi@0 65
aoqi@0 66 #ifdef SPARC
aoqi@0 67 if (FLAG_IS_DEFAULT(InlineSmallCode)) {
aoqi@0 68 FLAG_SET_DEFAULT(InlineSmallCode, 2500);
aoqi@0 69 }
aoqi@0 70 #endif
aoqi@0 71
aoqi@0 72 set_increase_threshold_at_ratio();
aoqi@0 73 set_start_time(os::javaTimeMillis());
aoqi@0 74 }
aoqi@0 75
aoqi@0 76 // update_rate() is called from select_task() while holding a compile queue lock.
aoqi@0 77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
aoqi@0 78 JavaThread* THREAD = JavaThread::current();
aoqi@0 79 if (is_old(m)) {
aoqi@0 80 // We don't remove old methods from the queue,
aoqi@0 81 // so we can just zero the rate.
aoqi@0 82 m->set_rate(0, THREAD);
aoqi@0 83 return;
aoqi@0 84 }
aoqi@0 85
aoqi@0 86 // We don't update the rate if we've just came out of a safepoint.
aoqi@0 87 // delta_s is the time since last safepoint in milliseconds.
aoqi@0 88 jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
aoqi@0 89 jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
aoqi@0 90 // How many events were there since the last time?
aoqi@0 91 int event_count = m->invocation_count() + m->backedge_count();
aoqi@0 92 int delta_e = event_count - m->prev_event_count();
aoqi@0 93
aoqi@0 94 // We should be running for at least 1ms.
aoqi@0 95 if (delta_s >= TieredRateUpdateMinTime) {
aoqi@0 96 // And we must've taken the previous point at least 1ms before.
aoqi@0 97 if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
aoqi@0 98 m->set_prev_time(t, THREAD);
aoqi@0 99 m->set_prev_event_count(event_count, THREAD);
aoqi@0 100 m->set_rate((float)delta_e / (float)delta_t, THREAD); // Rate is events per millisecond
aoqi@0 101 } else
aoqi@0 102 if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
aoqi@0 103 // If nothing happened for 25ms, zero the rate. Don't modify prev values.
aoqi@0 104 m->set_rate(0, THREAD);
aoqi@0 105 }
aoqi@0 106 }
aoqi@0 107 }
aoqi@0 108
aoqi@0 109 // Check if this method has been stale from a given number of milliseconds.
aoqi@0 110 // See select_task().
aoqi@0 111 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
aoqi@0 112 jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
aoqi@0 113 jlong delta_t = t - m->prev_time();
aoqi@0 114 if (delta_t > timeout && delta_s > timeout) {
aoqi@0 115 int event_count = m->invocation_count() + m->backedge_count();
aoqi@0 116 int delta_e = event_count - m->prev_event_count();
aoqi@0 117 // Return true if there were no events.
aoqi@0 118 return delta_e == 0;
aoqi@0 119 }
aoqi@0 120 return false;
aoqi@0 121 }
aoqi@0 122
aoqi@0 123 // We don't remove old methods from the compile queue even if they have
aoqi@0 124 // very low activity. See select_task().
aoqi@0 125 bool AdvancedThresholdPolicy::is_old(Method* method) {
aoqi@0 126 return method->invocation_count() > 50000 || method->backedge_count() > 500000;
aoqi@0 127 }
aoqi@0 128
aoqi@0 129 double AdvancedThresholdPolicy::weight(Method* method) {
aoqi@0 130 return (method->rate() + 1) * ((method->invocation_count() + 1) * (method->backedge_count() + 1));
aoqi@0 131 }
aoqi@0 132
aoqi@0 133 // Apply heuristics and return true if x should be compiled before y
aoqi@0 134 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
aoqi@0 135 if (x->highest_comp_level() > y->highest_comp_level()) {
aoqi@0 136 // recompilation after deopt
aoqi@0 137 return true;
aoqi@0 138 } else
aoqi@0 139 if (x->highest_comp_level() == y->highest_comp_level()) {
aoqi@0 140 if (weight(x) > weight(y)) {
aoqi@0 141 return true;
aoqi@0 142 }
aoqi@0 143 }
aoqi@0 144 return false;
aoqi@0 145 }
aoqi@0 146
aoqi@0 147 // Is method profiled enough?
aoqi@0 148 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
aoqi@0 149 MethodData* mdo = method->method_data();
aoqi@0 150 if (mdo != NULL) {
aoqi@0 151 int i = mdo->invocation_count_delta();
aoqi@0 152 int b = mdo->backedge_count_delta();
aoqi@0 153 return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
aoqi@0 154 }
aoqi@0 155 return false;
aoqi@0 156 }
aoqi@0 157
aoqi@0 158 // Called with the queue locked and with at least one element
aoqi@0 159 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
aoqi@0 160 CompileTask *max_task = NULL;
aoqi@0 161 Method* max_method = NULL;
aoqi@0 162 jlong t = os::javaTimeMillis();
aoqi@0 163 // Iterate through the queue and find a method with a maximum rate.
aoqi@0 164 for (CompileTask* task = compile_queue->first(); task != NULL;) {
aoqi@0 165 CompileTask* next_task = task->next();
aoqi@0 166 Method* method = task->method();
aoqi@0 167 MethodData* mdo = method->method_data();
aoqi@0 168 update_rate(t, method);
aoqi@0 169 if (max_task == NULL) {
aoqi@0 170 max_task = task;
aoqi@0 171 max_method = method;
aoqi@0 172 } else {
aoqi@0 173 // If a method has been stale for some time, remove it from the queue.
aoqi@0 174 if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
aoqi@0 175 if (PrintTieredEvents) {
aoqi@0 176 print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
aoqi@0 177 }
aoqi@0 178 CompileTaskWrapper ctw(task); // Frees the task
aoqi@0 179 compile_queue->remove(task);
aoqi@0 180 method->clear_queued_for_compilation();
aoqi@0 181 task = next_task;
aoqi@0 182 continue;
aoqi@0 183 }
aoqi@0 184
aoqi@0 185 // Select a method with a higher rate
aoqi@0 186 if (compare_methods(method, max_method)) {
aoqi@0 187 max_task = task;
aoqi@0 188 max_method = method;
aoqi@0 189 }
aoqi@0 190 }
aoqi@0 191 task = next_task;
aoqi@0 192 }
aoqi@0 193
aoqi@0 194 if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
aoqi@0 195 && is_method_profiled(max_method)) {
aoqi@0 196 max_task->set_comp_level(CompLevel_limited_profile);
aoqi@0 197 if (PrintTieredEvents) {
aoqi@0 198 print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
aoqi@0 199 }
aoqi@0 200 }
aoqi@0 201
aoqi@0 202 return max_task;
aoqi@0 203 }
aoqi@0 204
aoqi@0 205 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
aoqi@0 206 double queue_size = CompileBroker::queue_size(level);
aoqi@0 207 int comp_count = compiler_count(level);
aoqi@0 208 double k = queue_size / (feedback_k * comp_count) + 1;
aoqi@0 209
aoqi@0 210 // Increase C1 compile threshold when the code cache is filled more
aoqi@0 211 // than specified by IncreaseFirstTierCompileThresholdAt percentage.
aoqi@0 212 // The main intention is to keep enough free space for C2 compiled code
aoqi@0 213 // to achieve peak performance if the code cache is under stress.
aoqi@0 214 if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization)) {
aoqi@0 215 double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
aoqi@0 216 if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
aoqi@0 217 k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
aoqi@0 218 }
aoqi@0 219 }
aoqi@0 220 return k;
aoqi@0 221 }
aoqi@0 222
aoqi@0 223 // Call and loop predicates determine whether a transition to a higher
aoqi@0 224 // compilation level should be performed (pointers to predicate functions
aoqi@0 225 // are passed to common()).
aoqi@0 226 // Tier?LoadFeedback is basically a coefficient that determines of
aoqi@0 227 // how many methods per compiler thread can be in the queue before
aoqi@0 228 // the threshold values double.
aoqi@0 229 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
aoqi@0 230 switch(cur_level) {
aoqi@0 231 case CompLevel_none:
aoqi@0 232 case CompLevel_limited_profile: {
aoqi@0 233 double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
aoqi@0 234 return loop_predicate_helper<CompLevel_none>(i, b, k);
aoqi@0 235 }
aoqi@0 236 case CompLevel_full_profile: {
aoqi@0 237 double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
aoqi@0 238 return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
aoqi@0 239 }
aoqi@0 240 default:
aoqi@0 241 return true;
aoqi@0 242 }
aoqi@0 243 }
aoqi@0 244
aoqi@0 245 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
aoqi@0 246 switch(cur_level) {
aoqi@0 247 case CompLevel_none:
aoqi@0 248 case CompLevel_limited_profile: {
aoqi@0 249 double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
aoqi@0 250 return call_predicate_helper<CompLevel_none>(i, b, k);
aoqi@0 251 }
aoqi@0 252 case CompLevel_full_profile: {
aoqi@0 253 double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
aoqi@0 254 return call_predicate_helper<CompLevel_full_profile>(i, b, k);
aoqi@0 255 }
aoqi@0 256 default:
aoqi@0 257 return true;
aoqi@0 258 }
aoqi@0 259 }
aoqi@0 260
aoqi@0 261 // If a method is old enough and is still in the interpreter we would want to
aoqi@0 262 // start profiling without waiting for the compiled method to arrive.
aoqi@0 263 // We also take the load on compilers into the account.
aoqi@0 264 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
aoqi@0 265 if (cur_level == CompLevel_none &&
aoqi@0 266 CompileBroker::queue_size(CompLevel_full_optimization) <=
aoqi@0 267 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
aoqi@0 268 int i = method->invocation_count();
aoqi@0 269 int b = method->backedge_count();
aoqi@0 270 double k = Tier0ProfilingStartPercentage / 100.0;
aoqi@0 271 return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
aoqi@0 272 }
aoqi@0 273 return false;
aoqi@0 274 }
aoqi@0 275
aoqi@0 276 // Inlining control: if we're compiling a profiled method with C1 and the callee
aoqi@0 277 // is known to have OSRed in a C2 version, don't inline it.
aoqi@0 278 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
aoqi@0 279 CompLevel comp_level = (CompLevel)env->comp_level();
aoqi@0 280 if (comp_level == CompLevel_full_profile ||
aoqi@0 281 comp_level == CompLevel_limited_profile) {
aoqi@0 282 return callee->highest_osr_comp_level() == CompLevel_full_optimization;
aoqi@0 283 }
aoqi@0 284 return false;
aoqi@0 285 }
aoqi@0 286
aoqi@0 287 // Create MDO if necessary.
aoqi@0 288 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
aoqi@0 289 if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
aoqi@0 290 if (mh->method_data() == NULL) {
aoqi@0 291 Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
aoqi@0 292 }
aoqi@0 293 }
aoqi@0 294
aoqi@0 295
aoqi@0 296 /*
aoqi@0 297 * Method states:
aoqi@0 298 * 0 - interpreter (CompLevel_none)
aoqi@0 299 * 1 - pure C1 (CompLevel_simple)
aoqi@0 300 * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
aoqi@0 301 * 3 - C1 with full profiling (CompLevel_full_profile)
aoqi@0 302 * 4 - C2 (CompLevel_full_optimization)
aoqi@0 303 *
aoqi@0 304 * Common state transition patterns:
aoqi@0 305 * a. 0 -> 3 -> 4.
aoqi@0 306 * The most common path. But note that even in this straightforward case
aoqi@0 307 * profiling can start at level 0 and finish at level 3.
aoqi@0 308 *
aoqi@0 309 * b. 0 -> 2 -> 3 -> 4.
aoqi@0 310 * This case occures when the load on C2 is deemed too high. So, instead of transitioning
aoqi@0 311 * into state 3 directly and over-profiling while a method is in the C2 queue we transition to
aoqi@0 312 * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
aoqi@0 313 *
aoqi@0 314 * c. 0 -> (3->2) -> 4.
aoqi@0 315 * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
aoqi@0 316 * to enable the profiling to fully occur at level 0. In this case we change the compilation level
aoqi@0 317 * of the method to 2, because it'll allow it to run much faster without full profiling while c2
aoqi@0 318 * is compiling.
aoqi@0 319 *
aoqi@0 320 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
aoqi@0 321 * After a method was once compiled with C1 it can be identified as trivial and be compiled to
aoqi@0 322 * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
aoqi@0 323 *
aoqi@0 324 * e. 0 -> 4.
aoqi@0 325 * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
aoqi@0 326 * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
aoqi@0 327 * the compiled version already exists).
aoqi@0 328 *
aoqi@0 329 * Note that since state 0 can be reached from any other state via deoptimization different loops
aoqi@0 330 * are possible.
aoqi@0 331 *
aoqi@0 332 */
aoqi@0 333
aoqi@0 334 // Common transition function. Given a predicate determines if a method should transition to another level.
aoqi@0 335 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
aoqi@0 336 CompLevel next_level = cur_level;
aoqi@0 337 int i = method->invocation_count();
aoqi@0 338 int b = method->backedge_count();
aoqi@0 339
aoqi@0 340 if (is_trivial(method)) {
aoqi@0 341 next_level = CompLevel_simple;
aoqi@0 342 } else {
aoqi@0 343 switch(cur_level) {
aoqi@0 344 case CompLevel_none:
aoqi@0 345 // If we were at full profile level, would we switch to full opt?
aoqi@0 346 if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
aoqi@0 347 next_level = CompLevel_full_optimization;
aoqi@0 348 } else if ((this->*p)(i, b, cur_level)) {
aoqi@0 349 // C1-generated fully profiled code is about 30% slower than the limited profile
aoqi@0 350 // code that has only invocation and backedge counters. The observation is that
aoqi@0 351 // if C2 queue is large enough we can spend too much time in the fully profiled code
aoqi@0 352 // while waiting for C2 to pick the method from the queue. To alleviate this problem
aoqi@0 353 // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
aoqi@0 354 // we choose to compile a limited profiled version and then recompile with full profiling
aoqi@0 355 // when the load on C2 goes down.
aoqi@0 356 if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
aoqi@0 357 Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
aoqi@0 358 next_level = CompLevel_limited_profile;
aoqi@0 359 } else {
aoqi@0 360 next_level = CompLevel_full_profile;
aoqi@0 361 }
aoqi@0 362 }
aoqi@0 363 break;
aoqi@0 364 case CompLevel_limited_profile:
aoqi@0 365 if (is_method_profiled(method)) {
aoqi@0 366 // Special case: we got here because this method was fully profiled in the interpreter.
aoqi@0 367 next_level = CompLevel_full_optimization;
aoqi@0 368 } else {
aoqi@0 369 MethodData* mdo = method->method_data();
aoqi@0 370 if (mdo != NULL) {
aoqi@0 371 if (mdo->would_profile()) {
aoqi@0 372 if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
aoqi@0 373 Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
aoqi@0 374 (this->*p)(i, b, cur_level))) {
aoqi@0 375 next_level = CompLevel_full_profile;
aoqi@0 376 }
aoqi@0 377 } else {
aoqi@0 378 next_level = CompLevel_full_optimization;
aoqi@0 379 }
aoqi@0 380 }
aoqi@0 381 }
aoqi@0 382 break;
aoqi@0 383 case CompLevel_full_profile:
aoqi@0 384 {
aoqi@0 385 MethodData* mdo = method->method_data();
aoqi@0 386 if (mdo != NULL) {
aoqi@0 387 if (mdo->would_profile()) {
aoqi@0 388 int mdo_i = mdo->invocation_count_delta();
aoqi@0 389 int mdo_b = mdo->backedge_count_delta();
aoqi@0 390 if ((this->*p)(mdo_i, mdo_b, cur_level)) {
aoqi@0 391 next_level = CompLevel_full_optimization;
aoqi@0 392 }
aoqi@0 393 } else {
aoqi@0 394 next_level = CompLevel_full_optimization;
aoqi@0 395 }
aoqi@0 396 }
aoqi@0 397 }
aoqi@0 398 break;
aoqi@0 399 }
aoqi@0 400 }
aoqi@0 401 return MIN2(next_level, (CompLevel)TieredStopAtLevel);
aoqi@0 402 }
aoqi@0 403
aoqi@0 404 // Determine if a method should be compiled with a normal entry point at a different level.
aoqi@0 405 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
aoqi@0 406 CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
aoqi@0 407 common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
aoqi@0 408 CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
aoqi@0 409
aoqi@0 410 // If OSR method level is greater than the regular method level, the levels should be
aoqi@0 411 // equalized by raising the regular method level in order to avoid OSRs during each
aoqi@0 412 // invocation of the method.
aoqi@0 413 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
aoqi@0 414 MethodData* mdo = method->method_data();
aoqi@0 415 guarantee(mdo != NULL, "MDO should not be NULL");
aoqi@0 416 if (mdo->invocation_count() >= 1) {
aoqi@0 417 next_level = CompLevel_full_optimization;
aoqi@0 418 }
aoqi@0 419 } else {
aoqi@0 420 next_level = MAX2(osr_level, next_level);
aoqi@0 421 }
aoqi@0 422 return next_level;
aoqi@0 423 }
aoqi@0 424
aoqi@0 425 // Determine if we should do an OSR compilation of a given method.
aoqi@0 426 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
aoqi@0 427 CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
aoqi@0 428 if (cur_level == CompLevel_none) {
aoqi@0 429 // If there is a live OSR method that means that we deopted to the interpreter
aoqi@0 430 // for the transition.
aoqi@0 431 CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
aoqi@0 432 if (osr_level > CompLevel_none) {
aoqi@0 433 return osr_level;
aoqi@0 434 }
aoqi@0 435 }
aoqi@0 436 return next_level;
aoqi@0 437 }
aoqi@0 438
aoqi@0 439 // Update the rate and submit compile
aoqi@0 440 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
aoqi@0 441 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
aoqi@0 442 update_rate(os::javaTimeMillis(), mh());
aoqi@0 443 CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
aoqi@0 444 }
aoqi@0 445
aoqi@0 446 // Handle the invocation event.
aoqi@0 447 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
aoqi@0 448 CompLevel level, nmethod* nm, JavaThread* thread) {
aoqi@0 449 if (should_create_mdo(mh(), level)) {
aoqi@0 450 create_mdo(mh, thread);
aoqi@0 451 }
aoqi@0 452 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
aoqi@0 453 CompLevel next_level = call_event(mh(), level);
aoqi@0 454 if (next_level != level) {
aoqi@0 455 compile(mh, InvocationEntryBci, next_level, thread);
aoqi@0 456 }
aoqi@0 457 }
aoqi@0 458 }
aoqi@0 459
aoqi@0 460 // Handle the back branch event. Notice that we can compile the method
aoqi@0 461 // with a regular entry from here.
aoqi@0 462 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
aoqi@0 463 int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
aoqi@0 464 if (should_create_mdo(mh(), level)) {
aoqi@0 465 create_mdo(mh, thread);
aoqi@0 466 }
aoqi@0 467 // Check if MDO should be created for the inlined method
aoqi@0 468 if (should_create_mdo(imh(), level)) {
aoqi@0 469 create_mdo(imh, thread);
aoqi@0 470 }
aoqi@0 471
aoqi@0 472 if (is_compilation_enabled()) {
aoqi@0 473 CompLevel next_osr_level = loop_event(imh(), level);
aoqi@0 474 CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
aoqi@0 475 // At the very least compile the OSR version
aoqi@0 476 if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
aoqi@0 477 compile(imh, bci, next_osr_level, thread);
aoqi@0 478 }
aoqi@0 479
aoqi@0 480 // Use loop event as an opportunity to also check if there's been
aoqi@0 481 // enough calls.
aoqi@0 482 CompLevel cur_level, next_level;
aoqi@0 483 if (mh() != imh()) { // If there is an enclosing method
aoqi@0 484 guarantee(nm != NULL, "Should have nmethod here");
aoqi@0 485 cur_level = comp_level(mh());
aoqi@0 486 next_level = call_event(mh(), cur_level);
aoqi@0 487
aoqi@0 488 if (max_osr_level == CompLevel_full_optimization) {
aoqi@0 489 // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
aoqi@0 490 bool make_not_entrant = false;
aoqi@0 491 if (nm->is_osr_method()) {
aoqi@0 492 // This is an osr method, just make it not entrant and recompile later if needed
aoqi@0 493 make_not_entrant = true;
aoqi@0 494 } else {
aoqi@0 495 if (next_level != CompLevel_full_optimization) {
aoqi@0 496 // next_level is not full opt, so we need to recompile the
aoqi@0 497 // enclosing method without the inlinee
aoqi@0 498 cur_level = CompLevel_none;
aoqi@0 499 make_not_entrant = true;
aoqi@0 500 }
aoqi@0 501 }
aoqi@0 502 if (make_not_entrant) {
aoqi@0 503 if (PrintTieredEvents) {
aoqi@0 504 int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
aoqi@0 505 print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
aoqi@0 506 }
aoqi@0 507 nm->make_not_entrant();
aoqi@0 508 }
aoqi@0 509 }
aoqi@0 510 if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
aoqi@0 511 // Fix up next_level if necessary to avoid deopts
aoqi@0 512 if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
aoqi@0 513 next_level = CompLevel_full_profile;
aoqi@0 514 }
aoqi@0 515 if (cur_level != next_level) {
aoqi@0 516 compile(mh, InvocationEntryBci, next_level, thread);
aoqi@0 517 }
aoqi@0 518 }
aoqi@0 519 } else {
aoqi@0 520 cur_level = comp_level(imh());
aoqi@0 521 next_level = call_event(imh(), cur_level);
aoqi@0 522 if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
aoqi@0 523 compile(imh, InvocationEntryBci, next_level, thread);
aoqi@0 524 }
aoqi@0 525 }
aoqi@0 526 }
aoqi@0 527 }
aoqi@0 528
aoqi@0 529 #endif // TIERED

mercurial