src/share/vm/opto/type.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 209
994cec5b3f6f
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "ci/ciMethodData.hpp"
aoqi@0 27 #include "ci/ciTypeFlow.hpp"
aoqi@0 28 #include "classfile/symbolTable.hpp"
aoqi@0 29 #include "classfile/systemDictionary.hpp"
aoqi@0 30 #include "compiler/compileLog.hpp"
aoqi@0 31 #include "libadt/dict.hpp"
aoqi@0 32 #include "memory/gcLocker.hpp"
aoqi@0 33 #include "memory/oopFactory.hpp"
aoqi@0 34 #include "memory/resourceArea.hpp"
aoqi@0 35 #include "oops/instanceKlass.hpp"
aoqi@0 36 #include "oops/instanceMirrorKlass.hpp"
aoqi@0 37 #include "oops/objArrayKlass.hpp"
aoqi@0 38 #include "oops/typeArrayKlass.hpp"
aoqi@0 39 #include "opto/matcher.hpp"
aoqi@0 40 #include "opto/node.hpp"
aoqi@0 41 #include "opto/opcodes.hpp"
aoqi@0 42 #include "opto/type.hpp"
aoqi@0 43
aoqi@0 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
aoqi@0 45
aoqi@0 46 // Portions of code courtesy of Clifford Click
aoqi@0 47
aoqi@0 48 // Optimization - Graph Style
aoqi@0 49
aoqi@0 50 // Dictionary of types shared among compilations.
aoqi@0 51 Dict* Type::_shared_type_dict = NULL;
aoqi@0 52
aoqi@0 53 // Array which maps compiler types to Basic Types
aoqi@0 54 Type::TypeInfo Type::_type_info[Type::lastype] = {
aoqi@0 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
aoqi@0 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
aoqi@0 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
aoqi@0 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
aoqi@0 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
aoqi@0 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
aoqi@0 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
aoqi@0 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
aoqi@0 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
aoqi@0 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
aoqi@0 65
aoqi@0 66 #ifdef SPARC
aoqi@0 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@0 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
aoqi@0 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@0 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@209 71 #elif defined(MIPS64)
aoqi@209 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@209 73 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
aoqi@209 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@209 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@0 76 #elif defined(PPC64)
aoqi@0 77 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@0 78 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
aoqi@0 79 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@0 80 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@0 81 #else // all other
aoqi@0 82 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
aoqi@0 83 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
aoqi@0 84 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
aoqi@0 85 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
aoqi@0 86 #endif
aoqi@0 87 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
aoqi@0 88 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
aoqi@0 89 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
aoqi@0 90 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
aoqi@0 91 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
aoqi@0 92 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
aoqi@0 93 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
aoqi@0 94 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
aoqi@0 95 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
aoqi@0 96 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
aoqi@0 97 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
aoqi@0 98 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
aoqi@0 99 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
aoqi@0 100 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
aoqi@0 101 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
aoqi@0 102 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
aoqi@0 103 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
aoqi@0 104 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
aoqi@0 105 };
aoqi@0 106
aoqi@0 107 // Map ideal registers (machine types) to ideal types
aoqi@0 108 const Type *Type::mreg2type[_last_machine_leaf];
aoqi@0 109
aoqi@0 110 // Map basic types to canonical Type* pointers.
aoqi@0 111 const Type* Type:: _const_basic_type[T_CONFLICT+1];
aoqi@0 112
aoqi@0 113 // Map basic types to constant-zero Types.
aoqi@0 114 const Type* Type:: _zero_type[T_CONFLICT+1];
aoqi@0 115
aoqi@0 116 // Map basic types to array-body alias types.
aoqi@0 117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
aoqi@0 118
aoqi@0 119 //=============================================================================
aoqi@0 120 // Convenience common pre-built types.
aoqi@0 121 const Type *Type::ABIO; // State-of-machine only
aoqi@0 122 const Type *Type::BOTTOM; // All values
aoqi@0 123 const Type *Type::CONTROL; // Control only
aoqi@0 124 const Type *Type::DOUBLE; // All doubles
aoqi@0 125 const Type *Type::FLOAT; // All floats
aoqi@0 126 const Type *Type::HALF; // Placeholder half of doublewide type
aoqi@0 127 const Type *Type::MEMORY; // Abstract store only
aoqi@0 128 const Type *Type::RETURN_ADDRESS;
aoqi@0 129 const Type *Type::TOP; // No values in set
aoqi@0 130
aoqi@0 131 //------------------------------get_const_type---------------------------
aoqi@0 132 const Type* Type::get_const_type(ciType* type) {
aoqi@0 133 if (type == NULL) {
aoqi@0 134 return NULL;
aoqi@0 135 } else if (type->is_primitive_type()) {
aoqi@0 136 return get_const_basic_type(type->basic_type());
aoqi@0 137 } else {
aoqi@0 138 return TypeOopPtr::make_from_klass(type->as_klass());
aoqi@0 139 }
aoqi@0 140 }
aoqi@0 141
aoqi@0 142 //---------------------------array_element_basic_type---------------------------------
aoqi@0 143 // Mapping to the array element's basic type.
aoqi@0 144 BasicType Type::array_element_basic_type() const {
aoqi@0 145 BasicType bt = basic_type();
aoqi@0 146 if (bt == T_INT) {
aoqi@0 147 if (this == TypeInt::INT) return T_INT;
aoqi@0 148 if (this == TypeInt::CHAR) return T_CHAR;
aoqi@0 149 if (this == TypeInt::BYTE) return T_BYTE;
aoqi@0 150 if (this == TypeInt::BOOL) return T_BOOLEAN;
aoqi@0 151 if (this == TypeInt::SHORT) return T_SHORT;
aoqi@0 152 return T_VOID;
aoqi@0 153 }
aoqi@0 154 return bt;
aoqi@0 155 }
aoqi@0 156
aoqi@0 157 //---------------------------get_typeflow_type---------------------------------
aoqi@0 158 // Import a type produced by ciTypeFlow.
aoqi@0 159 const Type* Type::get_typeflow_type(ciType* type) {
aoqi@0 160 switch (type->basic_type()) {
aoqi@0 161
aoqi@0 162 case ciTypeFlow::StateVector::T_BOTTOM:
aoqi@0 163 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
aoqi@0 164 return Type::BOTTOM;
aoqi@0 165
aoqi@0 166 case ciTypeFlow::StateVector::T_TOP:
aoqi@0 167 assert(type == ciTypeFlow::StateVector::top_type(), "");
aoqi@0 168 return Type::TOP;
aoqi@0 169
aoqi@0 170 case ciTypeFlow::StateVector::T_NULL:
aoqi@0 171 assert(type == ciTypeFlow::StateVector::null_type(), "");
aoqi@0 172 return TypePtr::NULL_PTR;
aoqi@0 173
aoqi@0 174 case ciTypeFlow::StateVector::T_LONG2:
aoqi@0 175 // The ciTypeFlow pass pushes a long, then the half.
aoqi@0 176 // We do the same.
aoqi@0 177 assert(type == ciTypeFlow::StateVector::long2_type(), "");
aoqi@0 178 return TypeInt::TOP;
aoqi@0 179
aoqi@0 180 case ciTypeFlow::StateVector::T_DOUBLE2:
aoqi@0 181 // The ciTypeFlow pass pushes double, then the half.
aoqi@0 182 // Our convention is the same.
aoqi@0 183 assert(type == ciTypeFlow::StateVector::double2_type(), "");
aoqi@0 184 return Type::TOP;
aoqi@0 185
aoqi@0 186 case T_ADDRESS:
aoqi@0 187 assert(type->is_return_address(), "");
aoqi@0 188 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
aoqi@0 189
aoqi@0 190 default:
aoqi@0 191 // make sure we did not mix up the cases:
aoqi@0 192 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
aoqi@0 193 assert(type != ciTypeFlow::StateVector::top_type(), "");
aoqi@0 194 assert(type != ciTypeFlow::StateVector::null_type(), "");
aoqi@0 195 assert(type != ciTypeFlow::StateVector::long2_type(), "");
aoqi@0 196 assert(type != ciTypeFlow::StateVector::double2_type(), "");
aoqi@0 197 assert(!type->is_return_address(), "");
aoqi@0 198
aoqi@0 199 return Type::get_const_type(type);
aoqi@0 200 }
aoqi@0 201 }
aoqi@0 202
aoqi@0 203
aoqi@0 204 //-----------------------make_from_constant------------------------------------
aoqi@0 205 const Type* Type::make_from_constant(ciConstant constant,
aoqi@0 206 bool require_constant, bool is_autobox_cache) {
aoqi@0 207 switch (constant.basic_type()) {
aoqi@0 208 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
aoqi@0 209 case T_CHAR: return TypeInt::make(constant.as_char());
aoqi@0 210 case T_BYTE: return TypeInt::make(constant.as_byte());
aoqi@0 211 case T_SHORT: return TypeInt::make(constant.as_short());
aoqi@0 212 case T_INT: return TypeInt::make(constant.as_int());
aoqi@0 213 case T_LONG: return TypeLong::make(constant.as_long());
aoqi@0 214 case T_FLOAT: return TypeF::make(constant.as_float());
aoqi@0 215 case T_DOUBLE: return TypeD::make(constant.as_double());
aoqi@0 216 case T_ARRAY:
aoqi@0 217 case T_OBJECT:
aoqi@0 218 {
aoqi@0 219 // cases:
aoqi@0 220 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
aoqi@0 221 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
aoqi@0 222 // An oop is not scavengable if it is in the perm gen.
aoqi@0 223 ciObject* oop_constant = constant.as_object();
aoqi@0 224 if (oop_constant->is_null_object()) {
aoqi@0 225 return Type::get_zero_type(T_OBJECT);
aoqi@0 226 } else if (require_constant || oop_constant->should_be_constant()) {
aoqi@0 227 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
aoqi@0 228 }
aoqi@0 229 }
aoqi@0 230 }
aoqi@0 231 // Fall through to failure
aoqi@0 232 return NULL;
aoqi@0 233 }
aoqi@0 234
aoqi@0 235
aoqi@0 236 //------------------------------make-------------------------------------------
aoqi@0 237 // Create a simple Type, with default empty symbol sets. Then hashcons it
aoqi@0 238 // and look for an existing copy in the type dictionary.
aoqi@0 239 const Type *Type::make( enum TYPES t ) {
aoqi@0 240 return (new Type(t))->hashcons();
aoqi@0 241 }
aoqi@0 242
aoqi@0 243 //------------------------------cmp--------------------------------------------
aoqi@0 244 int Type::cmp( const Type *const t1, const Type *const t2 ) {
aoqi@0 245 if( t1->_base != t2->_base )
aoqi@0 246 return 1; // Missed badly
aoqi@0 247 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
aoqi@0 248 return !t1->eq(t2); // Return ZERO if equal
aoqi@0 249 }
aoqi@0 250
aoqi@0 251 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
aoqi@0 252 if (!include_speculative) {
aoqi@0 253 return remove_speculative();
aoqi@0 254 }
aoqi@0 255 return this;
aoqi@0 256 }
aoqi@0 257
aoqi@0 258 //------------------------------hash-------------------------------------------
aoqi@0 259 int Type::uhash( const Type *const t ) {
aoqi@0 260 return t->hash();
aoqi@0 261 }
aoqi@0 262
aoqi@0 263 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
aoqi@0 264
aoqi@0 265 //--------------------------Initialize_shared----------------------------------
aoqi@0 266 void Type::Initialize_shared(Compile* current) {
aoqi@0 267 // This method does not need to be locked because the first system
aoqi@0 268 // compilations (stub compilations) occur serially. If they are
aoqi@0 269 // changed to proceed in parallel, then this section will need
aoqi@0 270 // locking.
aoqi@0 271
aoqi@0 272 Arena* save = current->type_arena();
aoqi@0 273 Arena* shared_type_arena = new (mtCompiler)Arena();
aoqi@0 274
aoqi@0 275 current->set_type_arena(shared_type_arena);
aoqi@0 276 _shared_type_dict =
aoqi@0 277 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
aoqi@0 278 shared_type_arena, 128 );
aoqi@0 279 current->set_type_dict(_shared_type_dict);
aoqi@0 280
aoqi@0 281 // Make shared pre-built types.
aoqi@0 282 CONTROL = make(Control); // Control only
aoqi@0 283 TOP = make(Top); // No values in set
aoqi@0 284 MEMORY = make(Memory); // Abstract store only
aoqi@0 285 ABIO = make(Abio); // State-of-machine only
aoqi@0 286 RETURN_ADDRESS=make(Return_Address);
aoqi@0 287 FLOAT = make(FloatBot); // All floats
aoqi@0 288 DOUBLE = make(DoubleBot); // All doubles
aoqi@0 289 BOTTOM = make(Bottom); // Everything
aoqi@0 290 HALF = make(Half); // Placeholder half of doublewide type
aoqi@0 291
aoqi@0 292 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
aoqi@0 293 TypeF::ONE = TypeF::make(1.0); // Float 1
aoqi@0 294
aoqi@0 295 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
aoqi@0 296 TypeD::ONE = TypeD::make(1.0); // Double 1
aoqi@0 297
aoqi@0 298 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
aoqi@0 299 TypeInt::ZERO = TypeInt::make( 0); // 0
aoqi@0 300 TypeInt::ONE = TypeInt::make( 1); // 1
aoqi@0 301 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
aoqi@0 302 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
aoqi@0 303 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
aoqi@0 304 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
aoqi@0 305 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
aoqi@0 306 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
aoqi@0 307 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
aoqi@0 308 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
aoqi@0 309 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
aoqi@0 310 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
aoqi@0 311 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
aoqi@0 312 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
aoqi@0 313 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
aoqi@0 314 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
aoqi@0 315 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
aoqi@0 316 TypeInt::TYPE_DOMAIN = TypeInt::INT;
aoqi@0 317 // CmpL is overloaded both as the bytecode computation returning
aoqi@0 318 // a trinary (-1,0,+1) integer result AND as an efficient long
aoqi@0 319 // compare returning optimizer ideal-type flags.
aoqi@0 320 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
aoqi@0 321 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
aoqi@0 322 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
aoqi@0 323 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
aoqi@0 324 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
aoqi@0 325
aoqi@0 326 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
aoqi@0 327 TypeLong::ZERO = TypeLong::make( 0); // 0
aoqi@0 328 TypeLong::ONE = TypeLong::make( 1); // 1
aoqi@0 329 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
aoqi@0 330 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
aoqi@0 331 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
aoqi@0 332 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
aoqi@0 333 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
aoqi@0 334
aoqi@0 335 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 336 fboth[0] = Type::CONTROL;
aoqi@0 337 fboth[1] = Type::CONTROL;
aoqi@0 338 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
aoqi@0 339
aoqi@0 340 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 341 ffalse[0] = Type::CONTROL;
aoqi@0 342 ffalse[1] = Type::TOP;
aoqi@0 343 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
aoqi@0 344
aoqi@0 345 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 346 fneither[0] = Type::TOP;
aoqi@0 347 fneither[1] = Type::TOP;
aoqi@0 348 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
aoqi@0 349
aoqi@0 350 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 351 ftrue[0] = Type::TOP;
aoqi@0 352 ftrue[1] = Type::CONTROL;
aoqi@0 353 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
aoqi@0 354
aoqi@0 355 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 356 floop[0] = Type::CONTROL;
aoqi@0 357 floop[1] = TypeInt::INT;
aoqi@0 358 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
aoqi@0 359
aoqi@0 360 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
aoqi@0 361 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
aoqi@0 362 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
aoqi@0 363
aoqi@0 364 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
aoqi@0 365 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
aoqi@0 366
aoqi@0 367 const Type **fmembar = TypeTuple::fields(0);
aoqi@0 368 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
aoqi@0 369
aoqi@0 370 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 371 fsc[0] = TypeInt::CC;
aoqi@0 372 fsc[1] = Type::MEMORY;
aoqi@0 373 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
aoqi@0 374
aoqi@0 375 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
aoqi@0 376 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
aoqi@0 377 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
aoqi@0 378 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
aoqi@0 379 false, 0, oopDesc::mark_offset_in_bytes());
aoqi@0 380 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
aoqi@0 381 false, 0, oopDesc::klass_offset_in_bytes());
aoqi@0 382 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
aoqi@0 383
aoqi@0 384 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
aoqi@0 385
aoqi@0 386 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
aoqi@0 387 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
aoqi@0 388
aoqi@0 389 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
aoqi@0 390
aoqi@0 391 mreg2type[Op_Node] = Type::BOTTOM;
aoqi@0 392 mreg2type[Op_Set ] = 0;
aoqi@0 393 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
aoqi@0 394 mreg2type[Op_RegI] = TypeInt::INT;
aoqi@0 395 mreg2type[Op_RegP] = TypePtr::BOTTOM;
aoqi@0 396 mreg2type[Op_RegF] = Type::FLOAT;
aoqi@0 397 mreg2type[Op_RegD] = Type::DOUBLE;
aoqi@0 398 mreg2type[Op_RegL] = TypeLong::LONG;
aoqi@0 399 mreg2type[Op_RegFlags] = TypeInt::CC;
aoqi@0 400
aoqi@0 401 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
aoqi@0 402
aoqi@0 403 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
aoqi@0 404
aoqi@0 405 #ifdef _LP64
aoqi@0 406 if (UseCompressedOops) {
aoqi@0 407 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
aoqi@0 408 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
aoqi@0 409 } else
aoqi@0 410 #endif
aoqi@0 411 {
aoqi@0 412 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
aoqi@0 413 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
aoqi@0 414 }
aoqi@0 415 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
aoqi@0 416 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
aoqi@0 417 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
aoqi@0 418 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
aoqi@0 419 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
aoqi@0 420 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
aoqi@0 421 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
aoqi@0 422
aoqi@0 423 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
aoqi@0 424 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
aoqi@0 425 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
aoqi@0 426 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
aoqi@0 427 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
aoqi@0 428 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
aoqi@0 429 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
aoqi@0 430 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
aoqi@0 431 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
aoqi@0 432 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
aoqi@0 433 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
aoqi@0 434 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
aoqi@0 435
aoqi@0 436 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
aoqi@0 437 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
aoqi@0 438
aoqi@0 439 const Type **fi2c = TypeTuple::fields(2);
aoqi@0 440 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
aoqi@0 441 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
aoqi@0 442 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
aoqi@0 443
aoqi@0 444 const Type **intpair = TypeTuple::fields(2);
aoqi@0 445 intpair[0] = TypeInt::INT;
aoqi@0 446 intpair[1] = TypeInt::INT;
aoqi@0 447 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
aoqi@0 448
aoqi@0 449 const Type **longpair = TypeTuple::fields(2);
aoqi@0 450 longpair[0] = TypeLong::LONG;
aoqi@0 451 longpair[1] = TypeLong::LONG;
aoqi@0 452 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
aoqi@0 453
aoqi@0 454 const Type **intccpair = TypeTuple::fields(2);
aoqi@0 455 intccpair[0] = TypeInt::INT;
aoqi@0 456 intccpair[1] = TypeInt::CC;
aoqi@0 457 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
aoqi@0 458
aoqi@0 459 const Type **longccpair = TypeTuple::fields(2);
aoqi@0 460 longccpair[0] = TypeLong::LONG;
aoqi@0 461 longccpair[1] = TypeInt::CC;
aoqi@0 462 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
aoqi@0 463
aoqi@0 464 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
aoqi@0 465 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
aoqi@0 466 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
aoqi@0 467 _const_basic_type[T_CHAR] = TypeInt::CHAR;
aoqi@0 468 _const_basic_type[T_BYTE] = TypeInt::BYTE;
aoqi@0 469 _const_basic_type[T_SHORT] = TypeInt::SHORT;
aoqi@0 470 _const_basic_type[T_INT] = TypeInt::INT;
aoqi@0 471 _const_basic_type[T_LONG] = TypeLong::LONG;
aoqi@0 472 _const_basic_type[T_FLOAT] = Type::FLOAT;
aoqi@0 473 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
aoqi@0 474 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
aoqi@0 475 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
aoqi@0 476 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
aoqi@0 477 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
aoqi@0 478 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
aoqi@0 479
aoqi@0 480 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
aoqi@0 481 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
aoqi@0 482 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
aoqi@0 483 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
aoqi@0 484 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
aoqi@0 485 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
aoqi@0 486 _zero_type[T_INT] = TypeInt::ZERO;
aoqi@0 487 _zero_type[T_LONG] = TypeLong::ZERO;
aoqi@0 488 _zero_type[T_FLOAT] = TypeF::ZERO;
aoqi@0 489 _zero_type[T_DOUBLE] = TypeD::ZERO;
aoqi@0 490 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
aoqi@0 491 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
aoqi@0 492 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
aoqi@0 493 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
aoqi@0 494
aoqi@0 495 // get_zero_type() should not happen for T_CONFLICT
aoqi@0 496 _zero_type[T_CONFLICT]= NULL;
aoqi@0 497
aoqi@0 498 // Vector predefined types, it needs initialized _const_basic_type[].
aoqi@0 499 if (Matcher::vector_size_supported(T_BYTE,4)) {
aoqi@0 500 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
aoqi@0 501 }
aoqi@0 502 if (Matcher::vector_size_supported(T_FLOAT,2)) {
aoqi@0 503 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
aoqi@0 504 }
aoqi@0 505 if (Matcher::vector_size_supported(T_FLOAT,4)) {
aoqi@0 506 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
aoqi@0 507 }
aoqi@0 508 if (Matcher::vector_size_supported(T_FLOAT,8)) {
aoqi@0 509 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
aoqi@0 510 }
aoqi@0 511 mreg2type[Op_VecS] = TypeVect::VECTS;
aoqi@0 512 mreg2type[Op_VecD] = TypeVect::VECTD;
aoqi@0 513 mreg2type[Op_VecX] = TypeVect::VECTX;
aoqi@0 514 mreg2type[Op_VecY] = TypeVect::VECTY;
aoqi@0 515
aoqi@0 516 // Restore working type arena.
aoqi@0 517 current->set_type_arena(save);
aoqi@0 518 current->set_type_dict(NULL);
aoqi@0 519 }
aoqi@0 520
aoqi@0 521 //------------------------------Initialize-------------------------------------
aoqi@0 522 void Type::Initialize(Compile* current) {
aoqi@0 523 assert(current->type_arena() != NULL, "must have created type arena");
aoqi@0 524
aoqi@0 525 if (_shared_type_dict == NULL) {
aoqi@0 526 Initialize_shared(current);
aoqi@0 527 }
aoqi@0 528
aoqi@0 529 Arena* type_arena = current->type_arena();
aoqi@0 530
aoqi@0 531 // Create the hash-cons'ing dictionary with top-level storage allocation
aoqi@0 532 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
aoqi@0 533 current->set_type_dict(tdic);
aoqi@0 534
aoqi@0 535 // Transfer the shared types.
aoqi@0 536 DictI i(_shared_type_dict);
aoqi@0 537 for( ; i.test(); ++i ) {
aoqi@0 538 Type* t = (Type*)i._value;
aoqi@0 539 tdic->Insert(t,t); // New Type, insert into Type table
aoqi@0 540 }
aoqi@0 541 }
aoqi@0 542
aoqi@0 543 //------------------------------hashcons---------------------------------------
aoqi@0 544 // Do the hash-cons trick. If the Type already exists in the type table,
aoqi@0 545 // delete the current Type and return the existing Type. Otherwise stick the
aoqi@0 546 // current Type in the Type table.
aoqi@0 547 const Type *Type::hashcons(void) {
aoqi@0 548 debug_only(base()); // Check the assertion in Type::base().
aoqi@0 549 // Look up the Type in the Type dictionary
aoqi@0 550 Dict *tdic = type_dict();
aoqi@0 551 Type* old = (Type*)(tdic->Insert(this, this, false));
aoqi@0 552 if( old ) { // Pre-existing Type?
aoqi@0 553 if( old != this ) // Yes, this guy is not the pre-existing?
aoqi@0 554 delete this; // Yes, Nuke this guy
aoqi@0 555 assert( old->_dual, "" );
aoqi@0 556 return old; // Return pre-existing
aoqi@0 557 }
aoqi@0 558
aoqi@0 559 // Every type has a dual (to make my lattice symmetric).
aoqi@0 560 // Since we just discovered a new Type, compute its dual right now.
aoqi@0 561 assert( !_dual, "" ); // No dual yet
aoqi@0 562 _dual = xdual(); // Compute the dual
aoqi@0 563 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
aoqi@0 564 _dual = this;
aoqi@0 565 return this;
aoqi@0 566 }
aoqi@0 567 assert( !_dual->_dual, "" ); // No reverse dual yet
aoqi@0 568 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
aoqi@0 569 // New Type, insert into Type table
aoqi@0 570 tdic->Insert((void*)_dual,(void*)_dual);
aoqi@0 571 ((Type*)_dual)->_dual = this; // Finish up being symmetric
aoqi@0 572 #ifdef ASSERT
aoqi@0 573 Type *dual_dual = (Type*)_dual->xdual();
aoqi@0 574 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
aoqi@0 575 delete dual_dual;
aoqi@0 576 #endif
aoqi@0 577 return this; // Return new Type
aoqi@0 578 }
aoqi@0 579
aoqi@0 580 //------------------------------eq---------------------------------------------
aoqi@0 581 // Structural equality check for Type representations
aoqi@0 582 bool Type::eq( const Type * ) const {
aoqi@0 583 return true; // Nothing else can go wrong
aoqi@0 584 }
aoqi@0 585
aoqi@0 586 //------------------------------hash-------------------------------------------
aoqi@0 587 // Type-specific hashing function.
aoqi@0 588 int Type::hash(void) const {
aoqi@0 589 return _base;
aoqi@0 590 }
aoqi@0 591
aoqi@0 592 //------------------------------is_finite--------------------------------------
aoqi@0 593 // Has a finite value
aoqi@0 594 bool Type::is_finite() const {
aoqi@0 595 return false;
aoqi@0 596 }
aoqi@0 597
aoqi@0 598 //------------------------------is_nan-----------------------------------------
aoqi@0 599 // Is not a number (NaN)
aoqi@0 600 bool Type::is_nan() const {
aoqi@0 601 return false;
aoqi@0 602 }
aoqi@0 603
aoqi@0 604 //----------------------interface_vs_oop---------------------------------------
aoqi@0 605 #ifdef ASSERT
aoqi@0 606 bool Type::interface_vs_oop_helper(const Type *t) const {
aoqi@0 607 bool result = false;
aoqi@0 608
aoqi@0 609 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
aoqi@0 610 const TypePtr* t_ptr = t->make_ptr();
aoqi@0 611 if( this_ptr == NULL || t_ptr == NULL )
aoqi@0 612 return result;
aoqi@0 613
aoqi@0 614 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
aoqi@0 615 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
aoqi@0 616 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
aoqi@0 617 bool this_interface = this_inst->klass()->is_interface();
aoqi@0 618 bool t_interface = t_inst->klass()->is_interface();
aoqi@0 619 result = this_interface ^ t_interface;
aoqi@0 620 }
aoqi@0 621
aoqi@0 622 return result;
aoqi@0 623 }
aoqi@0 624
aoqi@0 625 bool Type::interface_vs_oop(const Type *t) const {
aoqi@0 626 if (interface_vs_oop_helper(t)) {
aoqi@0 627 return true;
aoqi@0 628 }
aoqi@0 629 // Now check the speculative parts as well
aoqi@0 630 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
aoqi@0 631 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
aoqi@0 632 if (this_spec != NULL && t_spec != NULL) {
aoqi@0 633 if (this_spec->interface_vs_oop_helper(t_spec)) {
aoqi@0 634 return true;
aoqi@0 635 }
aoqi@0 636 return false;
aoqi@0 637 }
aoqi@0 638 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
aoqi@0 639 return true;
aoqi@0 640 }
aoqi@0 641 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
aoqi@0 642 return true;
aoqi@0 643 }
aoqi@0 644 return false;
aoqi@0 645 }
aoqi@0 646
aoqi@0 647 #endif
aoqi@0 648
aoqi@0 649 //------------------------------meet-------------------------------------------
aoqi@0 650 // Compute the MEET of two types. NOT virtual. It enforces that meet is
aoqi@0 651 // commutative and the lattice is symmetric.
aoqi@0 652 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
aoqi@0 653 if (isa_narrowoop() && t->isa_narrowoop()) {
aoqi@0 654 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
aoqi@0 655 return result->make_narrowoop();
aoqi@0 656 }
aoqi@0 657 if (isa_narrowklass() && t->isa_narrowklass()) {
aoqi@0 658 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
aoqi@0 659 return result->make_narrowklass();
aoqi@0 660 }
aoqi@0 661
aoqi@0 662 const Type *this_t = maybe_remove_speculative(include_speculative);
aoqi@0 663 t = t->maybe_remove_speculative(include_speculative);
aoqi@0 664
aoqi@0 665 const Type *mt = this_t->xmeet(t);
aoqi@0 666 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
aoqi@0 667 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
aoqi@0 668 #ifdef ASSERT
aoqi@0 669 assert(mt == t->xmeet(this_t), "meet not commutative");
aoqi@0 670 const Type* dual_join = mt->_dual;
aoqi@0 671 const Type *t2t = dual_join->xmeet(t->_dual);
aoqi@0 672 const Type *t2this = dual_join->xmeet(this_t->_dual);
aoqi@0 673
aoqi@0 674 // Interface meet Oop is Not Symmetric:
aoqi@0 675 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
aoqi@0 676 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
aoqi@0 677
aoqi@0 678 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
aoqi@0 679 tty->print_cr("=== Meet Not Symmetric ===");
aoqi@0 680 tty->print("t = "); t->dump(); tty->cr();
aoqi@0 681 tty->print("this= "); this_t->dump(); tty->cr();
aoqi@0 682 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
aoqi@0 683
aoqi@0 684 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
aoqi@0 685 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
aoqi@0 686 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
aoqi@0 687
aoqi@0 688 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
aoqi@0 689 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
aoqi@0 690
aoqi@0 691 fatal("meet not symmetric" );
aoqi@0 692 }
aoqi@0 693 #endif
aoqi@0 694 return mt;
aoqi@0 695 }
aoqi@0 696
aoqi@0 697 //------------------------------xmeet------------------------------------------
aoqi@0 698 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 699 const Type *Type::xmeet( const Type *t ) const {
aoqi@0 700 // Perform a fast test for common case; meeting the same types together.
aoqi@0 701 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 702
aoqi@0 703 // Meeting TOP with anything?
aoqi@0 704 if( _base == Top ) return t;
aoqi@0 705
aoqi@0 706 // Meeting BOTTOM with anything?
aoqi@0 707 if( _base == Bottom ) return BOTTOM;
aoqi@0 708
aoqi@0 709 // Current "this->_base" is one of: Bad, Multi, Control, Top,
aoqi@0 710 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
aoqi@0 711 switch (t->base()) { // Switch on original type
aoqi@0 712
aoqi@0 713 // Cut in half the number of cases I must handle. Only need cases for when
aoqi@0 714 // the given enum "t->type" is less than or equal to the local enum "type".
aoqi@0 715 case FloatCon:
aoqi@0 716 case DoubleCon:
aoqi@0 717 case Int:
aoqi@0 718 case Long:
aoqi@0 719 return t->xmeet(this);
aoqi@0 720
aoqi@0 721 case OopPtr:
aoqi@0 722 return t->xmeet(this);
aoqi@0 723
aoqi@0 724 case InstPtr:
aoqi@0 725 return t->xmeet(this);
aoqi@0 726
aoqi@0 727 case MetadataPtr:
aoqi@0 728 case KlassPtr:
aoqi@0 729 return t->xmeet(this);
aoqi@0 730
aoqi@0 731 case AryPtr:
aoqi@0 732 return t->xmeet(this);
aoqi@0 733
aoqi@0 734 case NarrowOop:
aoqi@0 735 return t->xmeet(this);
aoqi@0 736
aoqi@0 737 case NarrowKlass:
aoqi@0 738 return t->xmeet(this);
aoqi@0 739
aoqi@0 740 case Bad: // Type check
aoqi@0 741 default: // Bogus type not in lattice
aoqi@0 742 typerr(t);
aoqi@0 743 return Type::BOTTOM;
aoqi@0 744
aoqi@0 745 case Bottom: // Ye Olde Default
aoqi@0 746 return t;
aoqi@0 747
aoqi@0 748 case FloatTop:
aoqi@0 749 if( _base == FloatTop ) return this;
aoqi@0 750 case FloatBot: // Float
aoqi@0 751 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
aoqi@0 752 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
aoqi@0 753 typerr(t);
aoqi@0 754 return Type::BOTTOM;
aoqi@0 755
aoqi@0 756 case DoubleTop:
aoqi@0 757 if( _base == DoubleTop ) return this;
aoqi@0 758 case DoubleBot: // Double
aoqi@0 759 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
aoqi@0 760 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
aoqi@0 761 typerr(t);
aoqi@0 762 return Type::BOTTOM;
aoqi@0 763
aoqi@0 764 // These next few cases must match exactly or it is a compile-time error.
aoqi@0 765 case Control: // Control of code
aoqi@0 766 case Abio: // State of world outside of program
aoqi@0 767 case Memory:
aoqi@0 768 if( _base == t->_base ) return this;
aoqi@0 769 typerr(t);
aoqi@0 770 return Type::BOTTOM;
aoqi@0 771
aoqi@0 772 case Top: // Top of the lattice
aoqi@0 773 return this;
aoqi@0 774 }
aoqi@0 775
aoqi@0 776 // The type is unchanged
aoqi@0 777 return this;
aoqi@0 778 }
aoqi@0 779
aoqi@0 780 //-----------------------------filter------------------------------------------
aoqi@0 781 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 782 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 783 if (ft->empty())
aoqi@0 784 return Type::TOP; // Canonical empty value
aoqi@0 785 return ft;
aoqi@0 786 }
aoqi@0 787
aoqi@0 788 //------------------------------xdual------------------------------------------
aoqi@0 789 // Compute dual right now.
aoqi@0 790 const Type::TYPES Type::dual_type[Type::lastype] = {
aoqi@0 791 Bad, // Bad
aoqi@0 792 Control, // Control
aoqi@0 793 Bottom, // Top
aoqi@0 794 Bad, // Int - handled in v-call
aoqi@0 795 Bad, // Long - handled in v-call
aoqi@0 796 Half, // Half
aoqi@0 797 Bad, // NarrowOop - handled in v-call
aoqi@0 798 Bad, // NarrowKlass - handled in v-call
aoqi@0 799
aoqi@0 800 Bad, // Tuple - handled in v-call
aoqi@0 801 Bad, // Array - handled in v-call
aoqi@0 802 Bad, // VectorS - handled in v-call
aoqi@0 803 Bad, // VectorD - handled in v-call
aoqi@0 804 Bad, // VectorX - handled in v-call
aoqi@0 805 Bad, // VectorY - handled in v-call
aoqi@0 806
aoqi@0 807 Bad, // AnyPtr - handled in v-call
aoqi@0 808 Bad, // RawPtr - handled in v-call
aoqi@0 809 Bad, // OopPtr - handled in v-call
aoqi@0 810 Bad, // InstPtr - handled in v-call
aoqi@0 811 Bad, // AryPtr - handled in v-call
aoqi@0 812
aoqi@0 813 Bad, // MetadataPtr - handled in v-call
aoqi@0 814 Bad, // KlassPtr - handled in v-call
aoqi@0 815
aoqi@0 816 Bad, // Function - handled in v-call
aoqi@0 817 Abio, // Abio
aoqi@0 818 Return_Address,// Return_Address
aoqi@0 819 Memory, // Memory
aoqi@0 820 FloatBot, // FloatTop
aoqi@0 821 FloatCon, // FloatCon
aoqi@0 822 FloatTop, // FloatBot
aoqi@0 823 DoubleBot, // DoubleTop
aoqi@0 824 DoubleCon, // DoubleCon
aoqi@0 825 DoubleTop, // DoubleBot
aoqi@0 826 Top // Bottom
aoqi@0 827 };
aoqi@0 828
aoqi@0 829 const Type *Type::xdual() const {
aoqi@0 830 // Note: the base() accessor asserts the sanity of _base.
aoqi@0 831 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
aoqi@0 832 return new Type(_type_info[_base].dual_type);
aoqi@0 833 }
aoqi@0 834
aoqi@0 835 //------------------------------has_memory-------------------------------------
aoqi@0 836 bool Type::has_memory() const {
aoqi@0 837 Type::TYPES tx = base();
aoqi@0 838 if (tx == Memory) return true;
aoqi@0 839 if (tx == Tuple) {
aoqi@0 840 const TypeTuple *t = is_tuple();
aoqi@0 841 for (uint i=0; i < t->cnt(); i++) {
aoqi@0 842 tx = t->field_at(i)->base();
aoqi@0 843 if (tx == Memory) return true;
aoqi@0 844 }
aoqi@0 845 }
aoqi@0 846 return false;
aoqi@0 847 }
aoqi@0 848
aoqi@0 849 #ifndef PRODUCT
aoqi@0 850 //------------------------------dump2------------------------------------------
aoqi@0 851 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 852 st->print("%s", _type_info[_base].msg);
aoqi@0 853 }
aoqi@0 854
aoqi@0 855 //------------------------------dump-------------------------------------------
aoqi@0 856 void Type::dump_on(outputStream *st) const {
aoqi@0 857 ResourceMark rm;
aoqi@0 858 Dict d(cmpkey,hashkey); // Stop recursive type dumping
aoqi@0 859 dump2(d,1, st);
aoqi@0 860 if (is_ptr_to_narrowoop()) {
aoqi@0 861 st->print(" [narrow]");
aoqi@0 862 } else if (is_ptr_to_narrowklass()) {
aoqi@0 863 st->print(" [narrowklass]");
aoqi@0 864 }
aoqi@0 865 }
aoqi@0 866 #endif
aoqi@0 867
aoqi@0 868 //------------------------------singleton--------------------------------------
aoqi@0 869 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 870 // constants (Ldi nodes). Singletons are integer, float or double constants.
aoqi@0 871 bool Type::singleton(void) const {
aoqi@0 872 return _base == Top || _base == Half;
aoqi@0 873 }
aoqi@0 874
aoqi@0 875 //------------------------------empty------------------------------------------
aoqi@0 876 // TRUE if Type is a type with no values, FALSE otherwise.
aoqi@0 877 bool Type::empty(void) const {
aoqi@0 878 switch (_base) {
aoqi@0 879 case DoubleTop:
aoqi@0 880 case FloatTop:
aoqi@0 881 case Top:
aoqi@0 882 return true;
aoqi@0 883
aoqi@0 884 case Half:
aoqi@0 885 case Abio:
aoqi@0 886 case Return_Address:
aoqi@0 887 case Memory:
aoqi@0 888 case Bottom:
aoqi@0 889 case FloatBot:
aoqi@0 890 case DoubleBot:
aoqi@0 891 return false; // never a singleton, therefore never empty
aoqi@0 892 }
aoqi@0 893
aoqi@0 894 ShouldNotReachHere();
aoqi@0 895 return false;
aoqi@0 896 }
aoqi@0 897
aoqi@0 898 //------------------------------dump_stats-------------------------------------
aoqi@0 899 // Dump collected statistics to stderr
aoqi@0 900 #ifndef PRODUCT
aoqi@0 901 void Type::dump_stats() {
aoqi@0 902 tty->print("Types made: %d\n", type_dict()->Size());
aoqi@0 903 }
aoqi@0 904 #endif
aoqi@0 905
aoqi@0 906 //------------------------------typerr-----------------------------------------
aoqi@0 907 void Type::typerr( const Type *t ) const {
aoqi@0 908 #ifndef PRODUCT
aoqi@0 909 tty->print("\nError mixing types: ");
aoqi@0 910 dump();
aoqi@0 911 tty->print(" and ");
aoqi@0 912 t->dump();
aoqi@0 913 tty->print("\n");
aoqi@0 914 #endif
aoqi@0 915 ShouldNotReachHere();
aoqi@0 916 }
aoqi@0 917
aoqi@0 918
aoqi@0 919 //=============================================================================
aoqi@0 920 // Convenience common pre-built types.
aoqi@0 921 const TypeF *TypeF::ZERO; // Floating point zero
aoqi@0 922 const TypeF *TypeF::ONE; // Floating point one
aoqi@0 923
aoqi@0 924 //------------------------------make-------------------------------------------
aoqi@0 925 // Create a float constant
aoqi@0 926 const TypeF *TypeF::make(float f) {
aoqi@0 927 return (TypeF*)(new TypeF(f))->hashcons();
aoqi@0 928 }
aoqi@0 929
aoqi@0 930 //------------------------------meet-------------------------------------------
aoqi@0 931 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 932 const Type *TypeF::xmeet( const Type *t ) const {
aoqi@0 933 // Perform a fast test for common case; meeting the same types together.
aoqi@0 934 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 935
aoqi@0 936 // Current "this->_base" is FloatCon
aoqi@0 937 switch (t->base()) { // Switch on original type
aoqi@0 938 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 939 case RawPtr: // reuses local variables
aoqi@0 940 case OopPtr:
aoqi@0 941 case InstPtr:
aoqi@0 942 case AryPtr:
aoqi@0 943 case MetadataPtr:
aoqi@0 944 case KlassPtr:
aoqi@0 945 case NarrowOop:
aoqi@0 946 case NarrowKlass:
aoqi@0 947 case Int:
aoqi@0 948 case Long:
aoqi@0 949 case DoubleTop:
aoqi@0 950 case DoubleCon:
aoqi@0 951 case DoubleBot:
aoqi@0 952 case Bottom: // Ye Olde Default
aoqi@0 953 return Type::BOTTOM;
aoqi@0 954
aoqi@0 955 case FloatBot:
aoqi@0 956 return t;
aoqi@0 957
aoqi@0 958 default: // All else is a mistake
aoqi@0 959 typerr(t);
aoqi@0 960
aoqi@0 961 case FloatCon: // Float-constant vs Float-constant?
aoqi@0 962 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
aoqi@0 963 // must compare bitwise as positive zero, negative zero and NaN have
aoqi@0 964 // all the same representation in C++
aoqi@0 965 return FLOAT; // Return generic float
aoqi@0 966 // Equal constants
aoqi@0 967 case Top:
aoqi@0 968 case FloatTop:
aoqi@0 969 break; // Return the float constant
aoqi@0 970 }
aoqi@0 971 return this; // Return the float constant
aoqi@0 972 }
aoqi@0 973
aoqi@0 974 //------------------------------xdual------------------------------------------
aoqi@0 975 // Dual: symmetric
aoqi@0 976 const Type *TypeF::xdual() const {
aoqi@0 977 return this;
aoqi@0 978 }
aoqi@0 979
aoqi@0 980 //------------------------------eq---------------------------------------------
aoqi@0 981 // Structural equality check for Type representations
aoqi@0 982 bool TypeF::eq( const Type *t ) const {
aoqi@0 983 if( g_isnan(_f) ||
aoqi@0 984 g_isnan(t->getf()) ) {
aoqi@0 985 // One or both are NANs. If both are NANs return true, else false.
aoqi@0 986 return (g_isnan(_f) && g_isnan(t->getf()));
aoqi@0 987 }
aoqi@0 988 if (_f == t->getf()) {
aoqi@0 989 // (NaN is impossible at this point, since it is not equal even to itself)
aoqi@0 990 if (_f == 0.0) {
aoqi@0 991 // difference between positive and negative zero
aoqi@0 992 if (jint_cast(_f) != jint_cast(t->getf())) return false;
aoqi@0 993 }
aoqi@0 994 return true;
aoqi@0 995 }
aoqi@0 996 return false;
aoqi@0 997 }
aoqi@0 998
aoqi@0 999 //------------------------------hash-------------------------------------------
aoqi@0 1000 // Type-specific hashing function.
aoqi@0 1001 int TypeF::hash(void) const {
aoqi@0 1002 return *(int*)(&_f);
aoqi@0 1003 }
aoqi@0 1004
aoqi@0 1005 //------------------------------is_finite--------------------------------------
aoqi@0 1006 // Has a finite value
aoqi@0 1007 bool TypeF::is_finite() const {
aoqi@0 1008 return g_isfinite(getf()) != 0;
aoqi@0 1009 }
aoqi@0 1010
aoqi@0 1011 //------------------------------is_nan-----------------------------------------
aoqi@0 1012 // Is not a number (NaN)
aoqi@0 1013 bool TypeF::is_nan() const {
aoqi@0 1014 return g_isnan(getf()) != 0;
aoqi@0 1015 }
aoqi@0 1016
aoqi@0 1017 //------------------------------dump2------------------------------------------
aoqi@0 1018 // Dump float constant Type
aoqi@0 1019 #ifndef PRODUCT
aoqi@0 1020 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1021 Type::dump2(d,depth, st);
aoqi@0 1022 st->print("%f", _f);
aoqi@0 1023 }
aoqi@0 1024 #endif
aoqi@0 1025
aoqi@0 1026 //------------------------------singleton--------------------------------------
aoqi@0 1027 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1028 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1029 // or a single symbol.
aoqi@0 1030 bool TypeF::singleton(void) const {
aoqi@0 1031 return true; // Always a singleton
aoqi@0 1032 }
aoqi@0 1033
aoqi@0 1034 bool TypeF::empty(void) const {
aoqi@0 1035 return false; // always exactly a singleton
aoqi@0 1036 }
aoqi@0 1037
aoqi@0 1038 //=============================================================================
aoqi@0 1039 // Convenience common pre-built types.
aoqi@0 1040 const TypeD *TypeD::ZERO; // Floating point zero
aoqi@0 1041 const TypeD *TypeD::ONE; // Floating point one
aoqi@0 1042
aoqi@0 1043 //------------------------------make-------------------------------------------
aoqi@0 1044 const TypeD *TypeD::make(double d) {
aoqi@0 1045 return (TypeD*)(new TypeD(d))->hashcons();
aoqi@0 1046 }
aoqi@0 1047
aoqi@0 1048 //------------------------------meet-------------------------------------------
aoqi@0 1049 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1050 const Type *TypeD::xmeet( const Type *t ) const {
aoqi@0 1051 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1052 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1053
aoqi@0 1054 // Current "this->_base" is DoubleCon
aoqi@0 1055 switch (t->base()) { // Switch on original type
aoqi@0 1056 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1057 case RawPtr: // reuses local variables
aoqi@0 1058 case OopPtr:
aoqi@0 1059 case InstPtr:
aoqi@0 1060 case AryPtr:
aoqi@0 1061 case MetadataPtr:
aoqi@0 1062 case KlassPtr:
aoqi@0 1063 case NarrowOop:
aoqi@0 1064 case NarrowKlass:
aoqi@0 1065 case Int:
aoqi@0 1066 case Long:
aoqi@0 1067 case FloatTop:
aoqi@0 1068 case FloatCon:
aoqi@0 1069 case FloatBot:
aoqi@0 1070 case Bottom: // Ye Olde Default
aoqi@0 1071 return Type::BOTTOM;
aoqi@0 1072
aoqi@0 1073 case DoubleBot:
aoqi@0 1074 return t;
aoqi@0 1075
aoqi@0 1076 default: // All else is a mistake
aoqi@0 1077 typerr(t);
aoqi@0 1078
aoqi@0 1079 case DoubleCon: // Double-constant vs Double-constant?
aoqi@0 1080 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
aoqi@0 1081 return DOUBLE; // Return generic double
aoqi@0 1082 case Top:
aoqi@0 1083 case DoubleTop:
aoqi@0 1084 break;
aoqi@0 1085 }
aoqi@0 1086 return this; // Return the double constant
aoqi@0 1087 }
aoqi@0 1088
aoqi@0 1089 //------------------------------xdual------------------------------------------
aoqi@0 1090 // Dual: symmetric
aoqi@0 1091 const Type *TypeD::xdual() const {
aoqi@0 1092 return this;
aoqi@0 1093 }
aoqi@0 1094
aoqi@0 1095 //------------------------------eq---------------------------------------------
aoqi@0 1096 // Structural equality check for Type representations
aoqi@0 1097 bool TypeD::eq( const Type *t ) const {
aoqi@0 1098 if( g_isnan(_d) ||
aoqi@0 1099 g_isnan(t->getd()) ) {
aoqi@0 1100 // One or both are NANs. If both are NANs return true, else false.
aoqi@0 1101 return (g_isnan(_d) && g_isnan(t->getd()));
aoqi@0 1102 }
aoqi@0 1103 if (_d == t->getd()) {
aoqi@0 1104 // (NaN is impossible at this point, since it is not equal even to itself)
aoqi@0 1105 if (_d == 0.0) {
aoqi@0 1106 // difference between positive and negative zero
aoqi@0 1107 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
aoqi@0 1108 }
aoqi@0 1109 return true;
aoqi@0 1110 }
aoqi@0 1111 return false;
aoqi@0 1112 }
aoqi@0 1113
aoqi@0 1114 //------------------------------hash-------------------------------------------
aoqi@0 1115 // Type-specific hashing function.
aoqi@0 1116 int TypeD::hash(void) const {
aoqi@0 1117 return *(int*)(&_d);
aoqi@0 1118 }
aoqi@0 1119
aoqi@0 1120 //------------------------------is_finite--------------------------------------
aoqi@0 1121 // Has a finite value
aoqi@0 1122 bool TypeD::is_finite() const {
aoqi@0 1123 return g_isfinite(getd()) != 0;
aoqi@0 1124 }
aoqi@0 1125
aoqi@0 1126 //------------------------------is_nan-----------------------------------------
aoqi@0 1127 // Is not a number (NaN)
aoqi@0 1128 bool TypeD::is_nan() const {
aoqi@0 1129 return g_isnan(getd()) != 0;
aoqi@0 1130 }
aoqi@0 1131
aoqi@0 1132 //------------------------------dump2------------------------------------------
aoqi@0 1133 // Dump double constant Type
aoqi@0 1134 #ifndef PRODUCT
aoqi@0 1135 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1136 Type::dump2(d,depth,st);
aoqi@0 1137 st->print("%f", _d);
aoqi@0 1138 }
aoqi@0 1139 #endif
aoqi@0 1140
aoqi@0 1141 //------------------------------singleton--------------------------------------
aoqi@0 1142 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1143 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1144 // or a single symbol.
aoqi@0 1145 bool TypeD::singleton(void) const {
aoqi@0 1146 return true; // Always a singleton
aoqi@0 1147 }
aoqi@0 1148
aoqi@0 1149 bool TypeD::empty(void) const {
aoqi@0 1150 return false; // always exactly a singleton
aoqi@0 1151 }
aoqi@0 1152
aoqi@0 1153 //=============================================================================
aoqi@0 1154 // Convience common pre-built types.
aoqi@0 1155 const TypeInt *TypeInt::MINUS_1;// -1
aoqi@0 1156 const TypeInt *TypeInt::ZERO; // 0
aoqi@0 1157 const TypeInt *TypeInt::ONE; // 1
aoqi@0 1158 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
aoqi@0 1159 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
aoqi@0 1160 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
aoqi@0 1161 const TypeInt *TypeInt::CC_GT; // [1] == ONE
aoqi@0 1162 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
aoqi@0 1163 const TypeInt *TypeInt::CC_LE; // [-1,0]
aoqi@0 1164 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
aoqi@0 1165 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
aoqi@0 1166 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
aoqi@0 1167 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
aoqi@0 1168 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
aoqi@0 1169 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
aoqi@0 1170 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
aoqi@0 1171 const TypeInt *TypeInt::INT; // 32-bit integers
aoqi@0 1172 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
aoqi@0 1173 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
aoqi@0 1174
aoqi@0 1175 //------------------------------TypeInt----------------------------------------
aoqi@0 1176 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
aoqi@0 1177 }
aoqi@0 1178
aoqi@0 1179 //------------------------------make-------------------------------------------
aoqi@0 1180 const TypeInt *TypeInt::make( jint lo ) {
aoqi@0 1181 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
aoqi@0 1182 }
aoqi@0 1183
aoqi@0 1184 static int normalize_int_widen( jint lo, jint hi, int w ) {
aoqi@0 1185 // Certain normalizations keep us sane when comparing types.
aoqi@0 1186 // The 'SMALLINT' covers constants and also CC and its relatives.
aoqi@0 1187 if (lo <= hi) {
aoqi@0 1188 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
aoqi@0 1189 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
aoqi@0 1190 } else {
aoqi@0 1191 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
aoqi@0 1192 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
aoqi@0 1193 }
aoqi@0 1194 return w;
aoqi@0 1195 }
aoqi@0 1196
aoqi@0 1197 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
aoqi@0 1198 w = normalize_int_widen(lo, hi, w);
aoqi@0 1199 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
aoqi@0 1200 }
aoqi@0 1201
aoqi@0 1202 //------------------------------meet-------------------------------------------
aoqi@0 1203 // Compute the MEET of two types. It returns a new Type representation object
aoqi@0 1204 // with reference count equal to the number of Types pointing at it.
aoqi@0 1205 // Caller should wrap a Types around it.
aoqi@0 1206 const Type *TypeInt::xmeet( const Type *t ) const {
aoqi@0 1207 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1208 if( this == t ) return this; // Meeting same type?
aoqi@0 1209
aoqi@0 1210 // Currently "this->_base" is a TypeInt
aoqi@0 1211 switch (t->base()) { // Switch on original type
aoqi@0 1212 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1213 case RawPtr: // reuses local variables
aoqi@0 1214 case OopPtr:
aoqi@0 1215 case InstPtr:
aoqi@0 1216 case AryPtr:
aoqi@0 1217 case MetadataPtr:
aoqi@0 1218 case KlassPtr:
aoqi@0 1219 case NarrowOop:
aoqi@0 1220 case NarrowKlass:
aoqi@0 1221 case Long:
aoqi@0 1222 case FloatTop:
aoqi@0 1223 case FloatCon:
aoqi@0 1224 case FloatBot:
aoqi@0 1225 case DoubleTop:
aoqi@0 1226 case DoubleCon:
aoqi@0 1227 case DoubleBot:
aoqi@0 1228 case Bottom: // Ye Olde Default
aoqi@0 1229 return Type::BOTTOM;
aoqi@0 1230 default: // All else is a mistake
aoqi@0 1231 typerr(t);
aoqi@0 1232 case Top: // No change
aoqi@0 1233 return this;
aoqi@0 1234 case Int: // Int vs Int?
aoqi@0 1235 break;
aoqi@0 1236 }
aoqi@0 1237
aoqi@0 1238 // Expand covered set
aoqi@0 1239 const TypeInt *r = t->is_int();
aoqi@0 1240 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
aoqi@0 1241 }
aoqi@0 1242
aoqi@0 1243 //------------------------------xdual------------------------------------------
aoqi@0 1244 // Dual: reverse hi & lo; flip widen
aoqi@0 1245 const Type *TypeInt::xdual() const {
aoqi@0 1246 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
aoqi@0 1247 return new TypeInt(_hi,_lo,w);
aoqi@0 1248 }
aoqi@0 1249
aoqi@0 1250 //------------------------------widen------------------------------------------
aoqi@0 1251 // Only happens for optimistic top-down optimizations.
aoqi@0 1252 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
aoqi@0 1253 // Coming from TOP or such; no widening
aoqi@0 1254 if( old->base() != Int ) return this;
aoqi@0 1255 const TypeInt *ot = old->is_int();
aoqi@0 1256
aoqi@0 1257 // If new guy is equal to old guy, no widening
aoqi@0 1258 if( _lo == ot->_lo && _hi == ot->_hi )
aoqi@0 1259 return old;
aoqi@0 1260
aoqi@0 1261 // If new guy contains old, then we widened
aoqi@0 1262 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
aoqi@0 1263 // New contains old
aoqi@0 1264 // If new guy is already wider than old, no widening
aoqi@0 1265 if( _widen > ot->_widen ) return this;
aoqi@0 1266 // If old guy was a constant, do not bother
aoqi@0 1267 if (ot->_lo == ot->_hi) return this;
aoqi@0 1268 // Now widen new guy.
aoqi@0 1269 // Check for widening too far
aoqi@0 1270 if (_widen == WidenMax) {
aoqi@0 1271 int max = max_jint;
aoqi@0 1272 int min = min_jint;
aoqi@0 1273 if (limit->isa_int()) {
aoqi@0 1274 max = limit->is_int()->_hi;
aoqi@0 1275 min = limit->is_int()->_lo;
aoqi@0 1276 }
aoqi@0 1277 if (min < _lo && _hi < max) {
aoqi@0 1278 // If neither endpoint is extremal yet, push out the endpoint
aoqi@0 1279 // which is closer to its respective limit.
aoqi@0 1280 if (_lo >= 0 || // easy common case
aoqi@0 1281 (juint)(_lo - min) >= (juint)(max - _hi)) {
aoqi@0 1282 // Try to widen to an unsigned range type of 31 bits:
aoqi@0 1283 return make(_lo, max, WidenMax);
aoqi@0 1284 } else {
aoqi@0 1285 return make(min, _hi, WidenMax);
aoqi@0 1286 }
aoqi@0 1287 }
aoqi@0 1288 return TypeInt::INT;
aoqi@0 1289 }
aoqi@0 1290 // Returned widened new guy
aoqi@0 1291 return make(_lo,_hi,_widen+1);
aoqi@0 1292 }
aoqi@0 1293
aoqi@0 1294 // If old guy contains new, then we probably widened too far & dropped to
aoqi@0 1295 // bottom. Return the wider fellow.
aoqi@0 1296 if ( ot->_lo <= _lo && ot->_hi >= _hi )
aoqi@0 1297 return old;
aoqi@0 1298
aoqi@0 1299 //fatal("Integer value range is not subset");
aoqi@0 1300 //return this;
aoqi@0 1301 return TypeInt::INT;
aoqi@0 1302 }
aoqi@0 1303
aoqi@0 1304 //------------------------------narrow---------------------------------------
aoqi@0 1305 // Only happens for pessimistic optimizations.
aoqi@0 1306 const Type *TypeInt::narrow( const Type *old ) const {
aoqi@0 1307 if (_lo >= _hi) return this; // already narrow enough
aoqi@0 1308 if (old == NULL) return this;
aoqi@0 1309 const TypeInt* ot = old->isa_int();
aoqi@0 1310 if (ot == NULL) return this;
aoqi@0 1311 jint olo = ot->_lo;
aoqi@0 1312 jint ohi = ot->_hi;
aoqi@0 1313
aoqi@0 1314 // If new guy is equal to old guy, no narrowing
aoqi@0 1315 if (_lo == olo && _hi == ohi) return old;
aoqi@0 1316
aoqi@0 1317 // If old guy was maximum range, allow the narrowing
aoqi@0 1318 if (olo == min_jint && ohi == max_jint) return this;
aoqi@0 1319
aoqi@0 1320 if (_lo < olo || _hi > ohi)
aoqi@0 1321 return this; // doesn't narrow; pretty wierd
aoqi@0 1322
aoqi@0 1323 // The new type narrows the old type, so look for a "death march".
aoqi@0 1324 // See comments on PhaseTransform::saturate.
aoqi@0 1325 juint nrange = _hi - _lo;
aoqi@0 1326 juint orange = ohi - olo;
aoqi@0 1327 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
aoqi@0 1328 // Use the new type only if the range shrinks a lot.
aoqi@0 1329 // We do not want the optimizer computing 2^31 point by point.
aoqi@0 1330 return old;
aoqi@0 1331 }
aoqi@0 1332
aoqi@0 1333 return this;
aoqi@0 1334 }
aoqi@0 1335
aoqi@0 1336 //-----------------------------filter------------------------------------------
aoqi@0 1337 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 1338 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
aoqi@0 1339 if (ft == NULL || ft->empty())
aoqi@0 1340 return Type::TOP; // Canonical empty value
aoqi@0 1341 if (ft->_widen < this->_widen) {
aoqi@0 1342 // Do not allow the value of kill->_widen to affect the outcome.
aoqi@0 1343 // The widen bits must be allowed to run freely through the graph.
aoqi@0 1344 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
aoqi@0 1345 }
aoqi@0 1346 return ft;
aoqi@0 1347 }
aoqi@0 1348
aoqi@0 1349 //------------------------------eq---------------------------------------------
aoqi@0 1350 // Structural equality check for Type representations
aoqi@0 1351 bool TypeInt::eq( const Type *t ) const {
aoqi@0 1352 const TypeInt *r = t->is_int(); // Handy access
aoqi@0 1353 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
aoqi@0 1354 }
aoqi@0 1355
aoqi@0 1356 //------------------------------hash-------------------------------------------
aoqi@0 1357 // Type-specific hashing function.
aoqi@0 1358 int TypeInt::hash(void) const {
aoqi@0 1359 return _lo+_hi+_widen+(int)Type::Int;
aoqi@0 1360 }
aoqi@0 1361
aoqi@0 1362 //------------------------------is_finite--------------------------------------
aoqi@0 1363 // Has a finite value
aoqi@0 1364 bool TypeInt::is_finite() const {
aoqi@0 1365 return true;
aoqi@0 1366 }
aoqi@0 1367
aoqi@0 1368 //------------------------------dump2------------------------------------------
aoqi@0 1369 // Dump TypeInt
aoqi@0 1370 #ifndef PRODUCT
aoqi@0 1371 static const char* intname(char* buf, jint n) {
aoqi@0 1372 if (n == min_jint)
aoqi@0 1373 return "min";
aoqi@0 1374 else if (n < min_jint + 10000)
aoqi@0 1375 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
aoqi@0 1376 else if (n == max_jint)
aoqi@0 1377 return "max";
aoqi@0 1378 else if (n > max_jint - 10000)
aoqi@0 1379 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
aoqi@0 1380 else
aoqi@0 1381 sprintf(buf, INT32_FORMAT, n);
aoqi@0 1382 return buf;
aoqi@0 1383 }
aoqi@0 1384
aoqi@0 1385 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1386 char buf[40], buf2[40];
aoqi@0 1387 if (_lo == min_jint && _hi == max_jint)
aoqi@0 1388 st->print("int");
aoqi@0 1389 else if (is_con())
aoqi@0 1390 st->print("int:%s", intname(buf, get_con()));
aoqi@0 1391 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
aoqi@0 1392 st->print("bool");
aoqi@0 1393 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
aoqi@0 1394 st->print("byte");
aoqi@0 1395 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
aoqi@0 1396 st->print("char");
aoqi@0 1397 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
aoqi@0 1398 st->print("short");
aoqi@0 1399 else if (_hi == max_jint)
aoqi@0 1400 st->print("int:>=%s", intname(buf, _lo));
aoqi@0 1401 else if (_lo == min_jint)
aoqi@0 1402 st->print("int:<=%s", intname(buf, _hi));
aoqi@0 1403 else
aoqi@0 1404 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
aoqi@0 1405
aoqi@0 1406 if (_widen != 0 && this != TypeInt::INT)
aoqi@0 1407 st->print(":%.*s", _widen, "wwww");
aoqi@0 1408 }
aoqi@0 1409 #endif
aoqi@0 1410
aoqi@0 1411 //------------------------------singleton--------------------------------------
aoqi@0 1412 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1413 // constants.
aoqi@0 1414 bool TypeInt::singleton(void) const {
aoqi@0 1415 return _lo >= _hi;
aoqi@0 1416 }
aoqi@0 1417
aoqi@0 1418 bool TypeInt::empty(void) const {
aoqi@0 1419 return _lo > _hi;
aoqi@0 1420 }
aoqi@0 1421
aoqi@0 1422 //=============================================================================
aoqi@0 1423 // Convenience common pre-built types.
aoqi@0 1424 const TypeLong *TypeLong::MINUS_1;// -1
aoqi@0 1425 const TypeLong *TypeLong::ZERO; // 0
aoqi@0 1426 const TypeLong *TypeLong::ONE; // 1
aoqi@0 1427 const TypeLong *TypeLong::POS; // >=0
aoqi@0 1428 const TypeLong *TypeLong::LONG; // 64-bit integers
aoqi@0 1429 const TypeLong *TypeLong::INT; // 32-bit subrange
aoqi@0 1430 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
aoqi@0 1431 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
aoqi@0 1432
aoqi@0 1433 //------------------------------TypeLong---------------------------------------
aoqi@0 1434 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
aoqi@0 1435 }
aoqi@0 1436
aoqi@0 1437 //------------------------------make-------------------------------------------
aoqi@0 1438 const TypeLong *TypeLong::make( jlong lo ) {
aoqi@0 1439 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
aoqi@0 1440 }
aoqi@0 1441
aoqi@0 1442 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
aoqi@0 1443 // Certain normalizations keep us sane when comparing types.
aoqi@0 1444 // The 'SMALLINT' covers constants.
aoqi@0 1445 if (lo <= hi) {
aoqi@0 1446 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
aoqi@0 1447 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
aoqi@0 1448 } else {
aoqi@0 1449 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
aoqi@0 1450 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
aoqi@0 1451 }
aoqi@0 1452 return w;
aoqi@0 1453 }
aoqi@0 1454
aoqi@0 1455 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
aoqi@0 1456 w = normalize_long_widen(lo, hi, w);
aoqi@0 1457 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
aoqi@0 1458 }
aoqi@0 1459
aoqi@0 1460
aoqi@0 1461 //------------------------------meet-------------------------------------------
aoqi@0 1462 // Compute the MEET of two types. It returns a new Type representation object
aoqi@0 1463 // with reference count equal to the number of Types pointing at it.
aoqi@0 1464 // Caller should wrap a Types around it.
aoqi@0 1465 const Type *TypeLong::xmeet( const Type *t ) const {
aoqi@0 1466 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1467 if( this == t ) return this; // Meeting same type?
aoqi@0 1468
aoqi@0 1469 // Currently "this->_base" is a TypeLong
aoqi@0 1470 switch (t->base()) { // Switch on original type
aoqi@0 1471 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1472 case RawPtr: // reuses local variables
aoqi@0 1473 case OopPtr:
aoqi@0 1474 case InstPtr:
aoqi@0 1475 case AryPtr:
aoqi@0 1476 case MetadataPtr:
aoqi@0 1477 case KlassPtr:
aoqi@0 1478 case NarrowOop:
aoqi@0 1479 case NarrowKlass:
aoqi@0 1480 case Int:
aoqi@0 1481 case FloatTop:
aoqi@0 1482 case FloatCon:
aoqi@0 1483 case FloatBot:
aoqi@0 1484 case DoubleTop:
aoqi@0 1485 case DoubleCon:
aoqi@0 1486 case DoubleBot:
aoqi@0 1487 case Bottom: // Ye Olde Default
aoqi@0 1488 return Type::BOTTOM;
aoqi@0 1489 default: // All else is a mistake
aoqi@0 1490 typerr(t);
aoqi@0 1491 case Top: // No change
aoqi@0 1492 return this;
aoqi@0 1493 case Long: // Long vs Long?
aoqi@0 1494 break;
aoqi@0 1495 }
aoqi@0 1496
aoqi@0 1497 // Expand covered set
aoqi@0 1498 const TypeLong *r = t->is_long(); // Turn into a TypeLong
aoqi@0 1499 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
aoqi@0 1500 }
aoqi@0 1501
aoqi@0 1502 //------------------------------xdual------------------------------------------
aoqi@0 1503 // Dual: reverse hi & lo; flip widen
aoqi@0 1504 const Type *TypeLong::xdual() const {
aoqi@0 1505 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
aoqi@0 1506 return new TypeLong(_hi,_lo,w);
aoqi@0 1507 }
aoqi@0 1508
aoqi@0 1509 //------------------------------widen------------------------------------------
aoqi@0 1510 // Only happens for optimistic top-down optimizations.
aoqi@0 1511 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
aoqi@0 1512 // Coming from TOP or such; no widening
aoqi@0 1513 if( old->base() != Long ) return this;
aoqi@0 1514 const TypeLong *ot = old->is_long();
aoqi@0 1515
aoqi@0 1516 // If new guy is equal to old guy, no widening
aoqi@0 1517 if( _lo == ot->_lo && _hi == ot->_hi )
aoqi@0 1518 return old;
aoqi@0 1519
aoqi@0 1520 // If new guy contains old, then we widened
aoqi@0 1521 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
aoqi@0 1522 // New contains old
aoqi@0 1523 // If new guy is already wider than old, no widening
aoqi@0 1524 if( _widen > ot->_widen ) return this;
aoqi@0 1525 // If old guy was a constant, do not bother
aoqi@0 1526 if (ot->_lo == ot->_hi) return this;
aoqi@0 1527 // Now widen new guy.
aoqi@0 1528 // Check for widening too far
aoqi@0 1529 if (_widen == WidenMax) {
aoqi@0 1530 jlong max = max_jlong;
aoqi@0 1531 jlong min = min_jlong;
aoqi@0 1532 if (limit->isa_long()) {
aoqi@0 1533 max = limit->is_long()->_hi;
aoqi@0 1534 min = limit->is_long()->_lo;
aoqi@0 1535 }
aoqi@0 1536 if (min < _lo && _hi < max) {
aoqi@0 1537 // If neither endpoint is extremal yet, push out the endpoint
aoqi@0 1538 // which is closer to its respective limit.
aoqi@0 1539 if (_lo >= 0 || // easy common case
aoqi@0 1540 (julong)(_lo - min) >= (julong)(max - _hi)) {
aoqi@0 1541 // Try to widen to an unsigned range type of 32/63 bits:
aoqi@0 1542 if (max >= max_juint && _hi < max_juint)
aoqi@0 1543 return make(_lo, max_juint, WidenMax);
aoqi@0 1544 else
aoqi@0 1545 return make(_lo, max, WidenMax);
aoqi@0 1546 } else {
aoqi@0 1547 return make(min, _hi, WidenMax);
aoqi@0 1548 }
aoqi@0 1549 }
aoqi@0 1550 return TypeLong::LONG;
aoqi@0 1551 }
aoqi@0 1552 // Returned widened new guy
aoqi@0 1553 return make(_lo,_hi,_widen+1);
aoqi@0 1554 }
aoqi@0 1555
aoqi@0 1556 // If old guy contains new, then we probably widened too far & dropped to
aoqi@0 1557 // bottom. Return the wider fellow.
aoqi@0 1558 if ( ot->_lo <= _lo && ot->_hi >= _hi )
aoqi@0 1559 return old;
aoqi@0 1560
aoqi@0 1561 // fatal("Long value range is not subset");
aoqi@0 1562 // return this;
aoqi@0 1563 return TypeLong::LONG;
aoqi@0 1564 }
aoqi@0 1565
aoqi@0 1566 //------------------------------narrow----------------------------------------
aoqi@0 1567 // Only happens for pessimistic optimizations.
aoqi@0 1568 const Type *TypeLong::narrow( const Type *old ) const {
aoqi@0 1569 if (_lo >= _hi) return this; // already narrow enough
aoqi@0 1570 if (old == NULL) return this;
aoqi@0 1571 const TypeLong* ot = old->isa_long();
aoqi@0 1572 if (ot == NULL) return this;
aoqi@0 1573 jlong olo = ot->_lo;
aoqi@0 1574 jlong ohi = ot->_hi;
aoqi@0 1575
aoqi@0 1576 // If new guy is equal to old guy, no narrowing
aoqi@0 1577 if (_lo == olo && _hi == ohi) return old;
aoqi@0 1578
aoqi@0 1579 // If old guy was maximum range, allow the narrowing
aoqi@0 1580 if (olo == min_jlong && ohi == max_jlong) return this;
aoqi@0 1581
aoqi@0 1582 if (_lo < olo || _hi > ohi)
aoqi@0 1583 return this; // doesn't narrow; pretty wierd
aoqi@0 1584
aoqi@0 1585 // The new type narrows the old type, so look for a "death march".
aoqi@0 1586 // See comments on PhaseTransform::saturate.
aoqi@0 1587 julong nrange = _hi - _lo;
aoqi@0 1588 julong orange = ohi - olo;
aoqi@0 1589 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
aoqi@0 1590 // Use the new type only if the range shrinks a lot.
aoqi@0 1591 // We do not want the optimizer computing 2^31 point by point.
aoqi@0 1592 return old;
aoqi@0 1593 }
aoqi@0 1594
aoqi@0 1595 return this;
aoqi@0 1596 }
aoqi@0 1597
aoqi@0 1598 //-----------------------------filter------------------------------------------
aoqi@0 1599 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 1600 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
aoqi@0 1601 if (ft == NULL || ft->empty())
aoqi@0 1602 return Type::TOP; // Canonical empty value
aoqi@0 1603 if (ft->_widen < this->_widen) {
aoqi@0 1604 // Do not allow the value of kill->_widen to affect the outcome.
aoqi@0 1605 // The widen bits must be allowed to run freely through the graph.
aoqi@0 1606 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
aoqi@0 1607 }
aoqi@0 1608 return ft;
aoqi@0 1609 }
aoqi@0 1610
aoqi@0 1611 //------------------------------eq---------------------------------------------
aoqi@0 1612 // Structural equality check for Type representations
aoqi@0 1613 bool TypeLong::eq( const Type *t ) const {
aoqi@0 1614 const TypeLong *r = t->is_long(); // Handy access
aoqi@0 1615 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
aoqi@0 1616 }
aoqi@0 1617
aoqi@0 1618 //------------------------------hash-------------------------------------------
aoqi@0 1619 // Type-specific hashing function.
aoqi@0 1620 int TypeLong::hash(void) const {
aoqi@0 1621 return (int)(_lo+_hi+_widen+(int)Type::Long);
aoqi@0 1622 }
aoqi@0 1623
aoqi@0 1624 //------------------------------is_finite--------------------------------------
aoqi@0 1625 // Has a finite value
aoqi@0 1626 bool TypeLong::is_finite() const {
aoqi@0 1627 return true;
aoqi@0 1628 }
aoqi@0 1629
aoqi@0 1630 //------------------------------dump2------------------------------------------
aoqi@0 1631 // Dump TypeLong
aoqi@0 1632 #ifndef PRODUCT
aoqi@0 1633 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
aoqi@0 1634 if (n > x) {
aoqi@0 1635 if (n >= x + 10000) return NULL;
aoqi@0 1636 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
aoqi@0 1637 } else if (n < x) {
aoqi@0 1638 if (n <= x - 10000) return NULL;
aoqi@0 1639 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
aoqi@0 1640 } else {
aoqi@0 1641 return xname;
aoqi@0 1642 }
aoqi@0 1643 return buf;
aoqi@0 1644 }
aoqi@0 1645
aoqi@0 1646 static const char* longname(char* buf, jlong n) {
aoqi@0 1647 const char* str;
aoqi@0 1648 if (n == min_jlong)
aoqi@0 1649 return "min";
aoqi@0 1650 else if (n < min_jlong + 10000)
aoqi@0 1651 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
aoqi@0 1652 else if (n == max_jlong)
aoqi@0 1653 return "max";
aoqi@0 1654 else if (n > max_jlong - 10000)
aoqi@0 1655 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
aoqi@0 1656 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
aoqi@0 1657 return str;
aoqi@0 1658 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
aoqi@0 1659 return str;
aoqi@0 1660 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
aoqi@0 1661 return str;
aoqi@0 1662 else
aoqi@0 1663 sprintf(buf, JLONG_FORMAT, n);
aoqi@0 1664 return buf;
aoqi@0 1665 }
aoqi@0 1666
aoqi@0 1667 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1668 char buf[80], buf2[80];
aoqi@0 1669 if (_lo == min_jlong && _hi == max_jlong)
aoqi@0 1670 st->print("long");
aoqi@0 1671 else if (is_con())
aoqi@0 1672 st->print("long:%s", longname(buf, get_con()));
aoqi@0 1673 else if (_hi == max_jlong)
aoqi@0 1674 st->print("long:>=%s", longname(buf, _lo));
aoqi@0 1675 else if (_lo == min_jlong)
aoqi@0 1676 st->print("long:<=%s", longname(buf, _hi));
aoqi@0 1677 else
aoqi@0 1678 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
aoqi@0 1679
aoqi@0 1680 if (_widen != 0 && this != TypeLong::LONG)
aoqi@0 1681 st->print(":%.*s", _widen, "wwww");
aoqi@0 1682 }
aoqi@0 1683 #endif
aoqi@0 1684
aoqi@0 1685 //------------------------------singleton--------------------------------------
aoqi@0 1686 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1687 // constants
aoqi@0 1688 bool TypeLong::singleton(void) const {
aoqi@0 1689 return _lo >= _hi;
aoqi@0 1690 }
aoqi@0 1691
aoqi@0 1692 bool TypeLong::empty(void) const {
aoqi@0 1693 return _lo > _hi;
aoqi@0 1694 }
aoqi@0 1695
aoqi@0 1696 //=============================================================================
aoqi@0 1697 // Convenience common pre-built types.
aoqi@0 1698 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
aoqi@0 1699 const TypeTuple *TypeTuple::IFFALSE;
aoqi@0 1700 const TypeTuple *TypeTuple::IFTRUE;
aoqi@0 1701 const TypeTuple *TypeTuple::IFNEITHER;
aoqi@0 1702 const TypeTuple *TypeTuple::LOOPBODY;
aoqi@0 1703 const TypeTuple *TypeTuple::MEMBAR;
aoqi@0 1704 const TypeTuple *TypeTuple::STORECONDITIONAL;
aoqi@0 1705 const TypeTuple *TypeTuple::START_I2C;
aoqi@0 1706 const TypeTuple *TypeTuple::INT_PAIR;
aoqi@0 1707 const TypeTuple *TypeTuple::LONG_PAIR;
aoqi@0 1708 const TypeTuple *TypeTuple::INT_CC_PAIR;
aoqi@0 1709 const TypeTuple *TypeTuple::LONG_CC_PAIR;
aoqi@0 1710
aoqi@0 1711
aoqi@0 1712 //------------------------------make-------------------------------------------
aoqi@0 1713 // Make a TypeTuple from the range of a method signature
aoqi@0 1714 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
aoqi@0 1715 ciType* return_type = sig->return_type();
aoqi@0 1716 uint total_fields = TypeFunc::Parms + return_type->size();
aoqi@0 1717 const Type **field_array = fields(total_fields);
aoqi@0 1718 switch (return_type->basic_type()) {
aoqi@0 1719 case T_LONG:
aoqi@0 1720 field_array[TypeFunc::Parms] = TypeLong::LONG;
aoqi@0 1721 field_array[TypeFunc::Parms+1] = Type::HALF;
aoqi@0 1722 break;
aoqi@0 1723 case T_DOUBLE:
aoqi@0 1724 field_array[TypeFunc::Parms] = Type::DOUBLE;
aoqi@0 1725 field_array[TypeFunc::Parms+1] = Type::HALF;
aoqi@0 1726 break;
aoqi@0 1727 case T_OBJECT:
aoqi@0 1728 case T_ARRAY:
aoqi@0 1729 case T_BOOLEAN:
aoqi@0 1730 case T_CHAR:
aoqi@0 1731 case T_FLOAT:
aoqi@0 1732 case T_BYTE:
aoqi@0 1733 case T_SHORT:
aoqi@0 1734 case T_INT:
aoqi@0 1735 field_array[TypeFunc::Parms] = get_const_type(return_type);
aoqi@0 1736 break;
aoqi@0 1737 case T_VOID:
aoqi@0 1738 break;
aoqi@0 1739 default:
aoqi@0 1740 ShouldNotReachHere();
aoqi@0 1741 }
aoqi@0 1742 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
aoqi@0 1743 }
aoqi@0 1744
aoqi@0 1745 // Make a TypeTuple from the domain of a method signature
aoqi@0 1746 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
aoqi@0 1747 uint total_fields = TypeFunc::Parms + sig->size();
aoqi@0 1748
aoqi@0 1749 uint pos = TypeFunc::Parms;
aoqi@0 1750 const Type **field_array;
aoqi@0 1751 if (recv != NULL) {
aoqi@0 1752 total_fields++;
aoqi@0 1753 field_array = fields(total_fields);
aoqi@0 1754 // Use get_const_type here because it respects UseUniqueSubclasses:
aoqi@0 1755 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
aoqi@0 1756 } else {
aoqi@0 1757 field_array = fields(total_fields);
aoqi@0 1758 }
aoqi@0 1759
aoqi@0 1760 int i = 0;
aoqi@0 1761 while (pos < total_fields) {
aoqi@0 1762 ciType* type = sig->type_at(i);
aoqi@0 1763
aoqi@0 1764 switch (type->basic_type()) {
aoqi@0 1765 case T_LONG:
aoqi@0 1766 field_array[pos++] = TypeLong::LONG;
aoqi@0 1767 field_array[pos++] = Type::HALF;
aoqi@0 1768 break;
aoqi@0 1769 case T_DOUBLE:
aoqi@0 1770 field_array[pos++] = Type::DOUBLE;
aoqi@0 1771 field_array[pos++] = Type::HALF;
aoqi@0 1772 break;
aoqi@0 1773 case T_OBJECT:
aoqi@0 1774 case T_ARRAY:
aoqi@0 1775 case T_BOOLEAN:
aoqi@0 1776 case T_CHAR:
aoqi@0 1777 case T_FLOAT:
aoqi@0 1778 case T_BYTE:
aoqi@0 1779 case T_SHORT:
aoqi@0 1780 case T_INT:
aoqi@0 1781 field_array[pos++] = get_const_type(type);
aoqi@0 1782 break;
aoqi@0 1783 default:
aoqi@0 1784 ShouldNotReachHere();
aoqi@0 1785 }
aoqi@0 1786 i++;
aoqi@0 1787 }
aoqi@0 1788 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
aoqi@0 1789 }
aoqi@0 1790
aoqi@0 1791 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
aoqi@0 1792 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
aoqi@0 1793 }
aoqi@0 1794
aoqi@0 1795 //------------------------------fields-----------------------------------------
aoqi@0 1796 // Subroutine call type with space allocated for argument types
aoqi@0 1797 const Type **TypeTuple::fields( uint arg_cnt ) {
aoqi@0 1798 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
aoqi@0 1799 flds[TypeFunc::Control ] = Type::CONTROL;
aoqi@0 1800 flds[TypeFunc::I_O ] = Type::ABIO;
aoqi@0 1801 flds[TypeFunc::Memory ] = Type::MEMORY;
aoqi@0 1802 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
aoqi@0 1803 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
aoqi@0 1804
aoqi@0 1805 return flds;
aoqi@0 1806 }
aoqi@0 1807
aoqi@0 1808 //------------------------------meet-------------------------------------------
aoqi@0 1809 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1810 const Type *TypeTuple::xmeet( const Type *t ) const {
aoqi@0 1811 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1812 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1813
aoqi@0 1814 // Current "this->_base" is Tuple
aoqi@0 1815 switch (t->base()) { // switch on original type
aoqi@0 1816
aoqi@0 1817 case Bottom: // Ye Olde Default
aoqi@0 1818 return t;
aoqi@0 1819
aoqi@0 1820 default: // All else is a mistake
aoqi@0 1821 typerr(t);
aoqi@0 1822
aoqi@0 1823 case Tuple: { // Meeting 2 signatures?
aoqi@0 1824 const TypeTuple *x = t->is_tuple();
aoqi@0 1825 assert( _cnt == x->_cnt, "" );
aoqi@0 1826 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
aoqi@0 1827 for( uint i=0; i<_cnt; i++ )
aoqi@0 1828 fields[i] = field_at(i)->xmeet( x->field_at(i) );
aoqi@0 1829 return TypeTuple::make(_cnt,fields);
aoqi@0 1830 }
aoqi@0 1831 case Top:
aoqi@0 1832 break;
aoqi@0 1833 }
aoqi@0 1834 return this; // Return the double constant
aoqi@0 1835 }
aoqi@0 1836
aoqi@0 1837 //------------------------------xdual------------------------------------------
aoqi@0 1838 // Dual: compute field-by-field dual
aoqi@0 1839 const Type *TypeTuple::xdual() const {
aoqi@0 1840 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
aoqi@0 1841 for( uint i=0; i<_cnt; i++ )
aoqi@0 1842 fields[i] = _fields[i]->dual();
aoqi@0 1843 return new TypeTuple(_cnt,fields);
aoqi@0 1844 }
aoqi@0 1845
aoqi@0 1846 //------------------------------eq---------------------------------------------
aoqi@0 1847 // Structural equality check for Type representations
aoqi@0 1848 bool TypeTuple::eq( const Type *t ) const {
aoqi@0 1849 const TypeTuple *s = (const TypeTuple *)t;
aoqi@0 1850 if (_cnt != s->_cnt) return false; // Unequal field counts
aoqi@0 1851 for (uint i = 0; i < _cnt; i++)
aoqi@0 1852 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
aoqi@0 1853 return false; // Missed
aoqi@0 1854 return true;
aoqi@0 1855 }
aoqi@0 1856
aoqi@0 1857 //------------------------------hash-------------------------------------------
aoqi@0 1858 // Type-specific hashing function.
aoqi@0 1859 int TypeTuple::hash(void) const {
aoqi@0 1860 intptr_t sum = _cnt;
aoqi@0 1861 for( uint i=0; i<_cnt; i++ )
aoqi@0 1862 sum += (intptr_t)_fields[i]; // Hash on pointers directly
aoqi@0 1863 return sum;
aoqi@0 1864 }
aoqi@0 1865
aoqi@0 1866 //------------------------------dump2------------------------------------------
aoqi@0 1867 // Dump signature Type
aoqi@0 1868 #ifndef PRODUCT
aoqi@0 1869 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1870 st->print("{");
aoqi@0 1871 if( !depth || d[this] ) { // Check for recursive print
aoqi@0 1872 st->print("...}");
aoqi@0 1873 return;
aoqi@0 1874 }
aoqi@0 1875 d.Insert((void*)this, (void*)this); // Stop recursion
aoqi@0 1876 if( _cnt ) {
aoqi@0 1877 uint i;
aoqi@0 1878 for( i=0; i<_cnt-1; i++ ) {
aoqi@0 1879 st->print("%d:", i);
aoqi@0 1880 _fields[i]->dump2(d, depth-1, st);
aoqi@0 1881 st->print(", ");
aoqi@0 1882 }
aoqi@0 1883 st->print("%d:", i);
aoqi@0 1884 _fields[i]->dump2(d, depth-1, st);
aoqi@0 1885 }
aoqi@0 1886 st->print("}");
aoqi@0 1887 }
aoqi@0 1888 #endif
aoqi@0 1889
aoqi@0 1890 //------------------------------singleton--------------------------------------
aoqi@0 1891 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1892 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1893 // or a single symbol.
aoqi@0 1894 bool TypeTuple::singleton(void) const {
aoqi@0 1895 return false; // Never a singleton
aoqi@0 1896 }
aoqi@0 1897
aoqi@0 1898 bool TypeTuple::empty(void) const {
aoqi@0 1899 for( uint i=0; i<_cnt; i++ ) {
aoqi@0 1900 if (_fields[i]->empty()) return true;
aoqi@0 1901 }
aoqi@0 1902 return false;
aoqi@0 1903 }
aoqi@0 1904
aoqi@0 1905 //=============================================================================
aoqi@0 1906 // Convenience common pre-built types.
aoqi@0 1907
aoqi@0 1908 inline const TypeInt* normalize_array_size(const TypeInt* size) {
aoqi@0 1909 // Certain normalizations keep us sane when comparing types.
aoqi@0 1910 // We do not want arrayOop variables to differ only by the wideness
aoqi@0 1911 // of their index types. Pick minimum wideness, since that is the
aoqi@0 1912 // forced wideness of small ranges anyway.
aoqi@0 1913 if (size->_widen != Type::WidenMin)
aoqi@0 1914 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
aoqi@0 1915 else
aoqi@0 1916 return size;
aoqi@0 1917 }
aoqi@0 1918
aoqi@0 1919 //------------------------------make-------------------------------------------
aoqi@0 1920 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
aoqi@0 1921 if (UseCompressedOops && elem->isa_oopptr()) {
aoqi@0 1922 elem = elem->make_narrowoop();
aoqi@0 1923 }
aoqi@0 1924 size = normalize_array_size(size);
aoqi@0 1925 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
aoqi@0 1926 }
aoqi@0 1927
aoqi@0 1928 //------------------------------meet-------------------------------------------
aoqi@0 1929 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1930 const Type *TypeAry::xmeet( const Type *t ) const {
aoqi@0 1931 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1932 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1933
aoqi@0 1934 // Current "this->_base" is Ary
aoqi@0 1935 switch (t->base()) { // switch on original type
aoqi@0 1936
aoqi@0 1937 case Bottom: // Ye Olde Default
aoqi@0 1938 return t;
aoqi@0 1939
aoqi@0 1940 default: // All else is a mistake
aoqi@0 1941 typerr(t);
aoqi@0 1942
aoqi@0 1943 case Array: { // Meeting 2 arrays?
aoqi@0 1944 const TypeAry *a = t->is_ary();
aoqi@0 1945 return TypeAry::make(_elem->meet_speculative(a->_elem),
aoqi@0 1946 _size->xmeet(a->_size)->is_int(),
aoqi@0 1947 _stable & a->_stable);
aoqi@0 1948 }
aoqi@0 1949 case Top:
aoqi@0 1950 break;
aoqi@0 1951 }
aoqi@0 1952 return this; // Return the double constant
aoqi@0 1953 }
aoqi@0 1954
aoqi@0 1955 //------------------------------xdual------------------------------------------
aoqi@0 1956 // Dual: compute field-by-field dual
aoqi@0 1957 const Type *TypeAry::xdual() const {
aoqi@0 1958 const TypeInt* size_dual = _size->dual()->is_int();
aoqi@0 1959 size_dual = normalize_array_size(size_dual);
aoqi@0 1960 return new TypeAry(_elem->dual(), size_dual, !_stable);
aoqi@0 1961 }
aoqi@0 1962
aoqi@0 1963 //------------------------------eq---------------------------------------------
aoqi@0 1964 // Structural equality check for Type representations
aoqi@0 1965 bool TypeAry::eq( const Type *t ) const {
aoqi@0 1966 const TypeAry *a = (const TypeAry*)t;
aoqi@0 1967 return _elem == a->_elem &&
aoqi@0 1968 _stable == a->_stable &&
aoqi@0 1969 _size == a->_size;
aoqi@0 1970 }
aoqi@0 1971
aoqi@0 1972 //------------------------------hash-------------------------------------------
aoqi@0 1973 // Type-specific hashing function.
aoqi@0 1974 int TypeAry::hash(void) const {
aoqi@0 1975 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
aoqi@0 1976 }
aoqi@0 1977
aoqi@0 1978 /**
aoqi@0 1979 * Return same type without a speculative part in the element
aoqi@0 1980 */
aoqi@0 1981 const Type* TypeAry::remove_speculative() const {
aoqi@0 1982 return make(_elem->remove_speculative(), _size, _stable);
aoqi@0 1983 }
aoqi@0 1984
aoqi@0 1985 //----------------------interface_vs_oop---------------------------------------
aoqi@0 1986 #ifdef ASSERT
aoqi@0 1987 bool TypeAry::interface_vs_oop(const Type *t) const {
aoqi@0 1988 const TypeAry* t_ary = t->is_ary();
aoqi@0 1989 if (t_ary) {
aoqi@0 1990 return _elem->interface_vs_oop(t_ary->_elem);
aoqi@0 1991 }
aoqi@0 1992 return false;
aoqi@0 1993 }
aoqi@0 1994 #endif
aoqi@0 1995
aoqi@0 1996 //------------------------------dump2------------------------------------------
aoqi@0 1997 #ifndef PRODUCT
aoqi@0 1998 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1999 if (_stable) st->print("stable:");
aoqi@0 2000 _elem->dump2(d, depth, st);
aoqi@0 2001 st->print("[");
aoqi@0 2002 _size->dump2(d, depth, st);
aoqi@0 2003 st->print("]");
aoqi@0 2004 }
aoqi@0 2005 #endif
aoqi@0 2006
aoqi@0 2007 //------------------------------singleton--------------------------------------
aoqi@0 2008 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2009 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 2010 // or a single symbol.
aoqi@0 2011 bool TypeAry::singleton(void) const {
aoqi@0 2012 return false; // Never a singleton
aoqi@0 2013 }
aoqi@0 2014
aoqi@0 2015 bool TypeAry::empty(void) const {
aoqi@0 2016 return _elem->empty() || _size->empty();
aoqi@0 2017 }
aoqi@0 2018
aoqi@0 2019 //--------------------------ary_must_be_exact----------------------------------
aoqi@0 2020 bool TypeAry::ary_must_be_exact() const {
aoqi@0 2021 if (!UseExactTypes) return false;
aoqi@0 2022 // This logic looks at the element type of an array, and returns true
aoqi@0 2023 // if the element type is either a primitive or a final instance class.
aoqi@0 2024 // In such cases, an array built on this ary must have no subclasses.
aoqi@0 2025 if (_elem == BOTTOM) return false; // general array not exact
aoqi@0 2026 if (_elem == TOP ) return false; // inverted general array not exact
aoqi@0 2027 const TypeOopPtr* toop = NULL;
aoqi@0 2028 if (UseCompressedOops && _elem->isa_narrowoop()) {
aoqi@0 2029 toop = _elem->make_ptr()->isa_oopptr();
aoqi@0 2030 } else {
aoqi@0 2031 toop = _elem->isa_oopptr();
aoqi@0 2032 }
aoqi@0 2033 if (!toop) return true; // a primitive type, like int
aoqi@0 2034 ciKlass* tklass = toop->klass();
aoqi@0 2035 if (tklass == NULL) return false; // unloaded class
aoqi@0 2036 if (!tklass->is_loaded()) return false; // unloaded class
aoqi@0 2037 const TypeInstPtr* tinst;
aoqi@0 2038 if (_elem->isa_narrowoop())
aoqi@0 2039 tinst = _elem->make_ptr()->isa_instptr();
aoqi@0 2040 else
aoqi@0 2041 tinst = _elem->isa_instptr();
aoqi@0 2042 if (tinst)
aoqi@0 2043 return tklass->as_instance_klass()->is_final();
aoqi@0 2044 const TypeAryPtr* tap;
aoqi@0 2045 if (_elem->isa_narrowoop())
aoqi@0 2046 tap = _elem->make_ptr()->isa_aryptr();
aoqi@0 2047 else
aoqi@0 2048 tap = _elem->isa_aryptr();
aoqi@0 2049 if (tap)
aoqi@0 2050 return tap->ary()->ary_must_be_exact();
aoqi@0 2051 return false;
aoqi@0 2052 }
aoqi@0 2053
aoqi@0 2054 //==============================TypeVect=======================================
aoqi@0 2055 // Convenience common pre-built types.
aoqi@0 2056 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
aoqi@0 2057 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
aoqi@0 2058 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
aoqi@0 2059 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
aoqi@0 2060
aoqi@0 2061 //------------------------------make-------------------------------------------
aoqi@0 2062 const TypeVect* TypeVect::make(const Type *elem, uint length) {
aoqi@0 2063 BasicType elem_bt = elem->array_element_basic_type();
aoqi@0 2064 assert(is_java_primitive(elem_bt), "only primitive types in vector");
aoqi@0 2065 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
aoqi@0 2066 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
aoqi@0 2067 int size = length * type2aelembytes(elem_bt);
aoqi@0 2068 switch (Matcher::vector_ideal_reg(size)) {
aoqi@0 2069 case Op_VecS:
aoqi@0 2070 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
aoqi@0 2071 case Op_RegL:
aoqi@0 2072 case Op_VecD:
aoqi@0 2073 case Op_RegD:
aoqi@0 2074 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
aoqi@0 2075 case Op_VecX:
aoqi@0 2076 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
aoqi@0 2077 case Op_VecY:
aoqi@0 2078 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
aoqi@0 2079 }
aoqi@0 2080 ShouldNotReachHere();
aoqi@0 2081 return NULL;
aoqi@0 2082 }
aoqi@0 2083
aoqi@0 2084 //------------------------------meet-------------------------------------------
aoqi@0 2085 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2086 const Type *TypeVect::xmeet( const Type *t ) const {
aoqi@0 2087 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2088 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2089
aoqi@0 2090 // Current "this->_base" is Vector
aoqi@0 2091 switch (t->base()) { // switch on original type
aoqi@0 2092
aoqi@0 2093 case Bottom: // Ye Olde Default
aoqi@0 2094 return t;
aoqi@0 2095
aoqi@0 2096 default: // All else is a mistake
aoqi@0 2097 typerr(t);
aoqi@0 2098
aoqi@0 2099 case VectorS:
aoqi@0 2100 case VectorD:
aoqi@0 2101 case VectorX:
aoqi@0 2102 case VectorY: { // Meeting 2 vectors?
aoqi@0 2103 const TypeVect* v = t->is_vect();
aoqi@0 2104 assert( base() == v->base(), "");
aoqi@0 2105 assert(length() == v->length(), "");
aoqi@0 2106 assert(element_basic_type() == v->element_basic_type(), "");
aoqi@0 2107 return TypeVect::make(_elem->xmeet(v->_elem), _length);
aoqi@0 2108 }
aoqi@0 2109 case Top:
aoqi@0 2110 break;
aoqi@0 2111 }
aoqi@0 2112 return this;
aoqi@0 2113 }
aoqi@0 2114
aoqi@0 2115 //------------------------------xdual------------------------------------------
aoqi@0 2116 // Dual: compute field-by-field dual
aoqi@0 2117 const Type *TypeVect::xdual() const {
aoqi@0 2118 return new TypeVect(base(), _elem->dual(), _length);
aoqi@0 2119 }
aoqi@0 2120
aoqi@0 2121 //------------------------------eq---------------------------------------------
aoqi@0 2122 // Structural equality check for Type representations
aoqi@0 2123 bool TypeVect::eq(const Type *t) const {
aoqi@0 2124 const TypeVect *v = t->is_vect();
aoqi@0 2125 return (_elem == v->_elem) && (_length == v->_length);
aoqi@0 2126 }
aoqi@0 2127
aoqi@0 2128 //------------------------------hash-------------------------------------------
aoqi@0 2129 // Type-specific hashing function.
aoqi@0 2130 int TypeVect::hash(void) const {
aoqi@0 2131 return (intptr_t)_elem + (intptr_t)_length;
aoqi@0 2132 }
aoqi@0 2133
aoqi@0 2134 //------------------------------singleton--------------------------------------
aoqi@0 2135 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2136 // constants (Ldi nodes). Vector is singleton if all elements are the same
aoqi@0 2137 // constant value (when vector is created with Replicate code).
aoqi@0 2138 bool TypeVect::singleton(void) const {
aoqi@0 2139 // There is no Con node for vectors yet.
aoqi@0 2140 // return _elem->singleton();
aoqi@0 2141 return false;
aoqi@0 2142 }
aoqi@0 2143
aoqi@0 2144 bool TypeVect::empty(void) const {
aoqi@0 2145 return _elem->empty();
aoqi@0 2146 }
aoqi@0 2147
aoqi@0 2148 //------------------------------dump2------------------------------------------
aoqi@0 2149 #ifndef PRODUCT
aoqi@0 2150 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
aoqi@0 2151 switch (base()) {
aoqi@0 2152 case VectorS:
aoqi@0 2153 st->print("vectors["); break;
aoqi@0 2154 case VectorD:
aoqi@0 2155 st->print("vectord["); break;
aoqi@0 2156 case VectorX:
aoqi@0 2157 st->print("vectorx["); break;
aoqi@0 2158 case VectorY:
aoqi@0 2159 st->print("vectory["); break;
aoqi@0 2160 default:
aoqi@0 2161 ShouldNotReachHere();
aoqi@0 2162 }
aoqi@0 2163 st->print("%d]:{", _length);
aoqi@0 2164 _elem->dump2(d, depth, st);
aoqi@0 2165 st->print("}");
aoqi@0 2166 }
aoqi@0 2167 #endif
aoqi@0 2168
aoqi@0 2169
aoqi@0 2170 //=============================================================================
aoqi@0 2171 // Convenience common pre-built types.
aoqi@0 2172 const TypePtr *TypePtr::NULL_PTR;
aoqi@0 2173 const TypePtr *TypePtr::NOTNULL;
aoqi@0 2174 const TypePtr *TypePtr::BOTTOM;
aoqi@0 2175
aoqi@0 2176 //------------------------------meet-------------------------------------------
aoqi@0 2177 // Meet over the PTR enum
aoqi@0 2178 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
aoqi@0 2179 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
aoqi@0 2180 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
aoqi@0 2181 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
aoqi@0 2182 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
aoqi@0 2183 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
aoqi@0 2184 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
aoqi@0 2185 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
aoqi@0 2186 };
aoqi@0 2187
aoqi@0 2188 //------------------------------make-------------------------------------------
aoqi@0 2189 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
aoqi@0 2190 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
aoqi@0 2191 }
aoqi@0 2192
aoqi@0 2193 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2194 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2195 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
aoqi@0 2196 if( ptr == _ptr ) return this;
aoqi@0 2197 return make(_base, ptr, _offset);
aoqi@0 2198 }
aoqi@0 2199
aoqi@0 2200 //------------------------------get_con----------------------------------------
aoqi@0 2201 intptr_t TypePtr::get_con() const {
aoqi@0 2202 assert( _ptr == Null, "" );
aoqi@0 2203 return _offset;
aoqi@0 2204 }
aoqi@0 2205
aoqi@0 2206 //------------------------------meet-------------------------------------------
aoqi@0 2207 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2208 const Type *TypePtr::xmeet( const Type *t ) const {
aoqi@0 2209 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2210 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2211
aoqi@0 2212 // Current "this->_base" is AnyPtr
aoqi@0 2213 switch (t->base()) { // switch on original type
aoqi@0 2214 case Int: // Mixing ints & oops happens when javac
aoqi@0 2215 case Long: // reuses local variables
aoqi@0 2216 case FloatTop:
aoqi@0 2217 case FloatCon:
aoqi@0 2218 case FloatBot:
aoqi@0 2219 case DoubleTop:
aoqi@0 2220 case DoubleCon:
aoqi@0 2221 case DoubleBot:
aoqi@0 2222 case NarrowOop:
aoqi@0 2223 case NarrowKlass:
aoqi@0 2224 case Bottom: // Ye Olde Default
aoqi@0 2225 return Type::BOTTOM;
aoqi@0 2226 case Top:
aoqi@0 2227 return this;
aoqi@0 2228
aoqi@0 2229 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 2230 const TypePtr *tp = t->is_ptr();
aoqi@0 2231 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
aoqi@0 2232 }
aoqi@0 2233 case RawPtr: // For these, flip the call around to cut down
aoqi@0 2234 case OopPtr:
aoqi@0 2235 case InstPtr: // on the cases I have to handle.
aoqi@0 2236 case AryPtr:
aoqi@0 2237 case MetadataPtr:
aoqi@0 2238 case KlassPtr:
aoqi@0 2239 return t->xmeet(this); // Call in reverse direction
aoqi@0 2240 default: // All else is a mistake
aoqi@0 2241 typerr(t);
aoqi@0 2242
aoqi@0 2243 }
aoqi@0 2244 return this;
aoqi@0 2245 }
aoqi@0 2246
aoqi@0 2247 //------------------------------meet_offset------------------------------------
aoqi@0 2248 int TypePtr::meet_offset( int offset ) const {
aoqi@0 2249 // Either is 'TOP' offset? Return the other offset!
aoqi@0 2250 if( _offset == OffsetTop ) return offset;
aoqi@0 2251 if( offset == OffsetTop ) return _offset;
aoqi@0 2252 // If either is different, return 'BOTTOM' offset
aoqi@0 2253 if( _offset != offset ) return OffsetBot;
aoqi@0 2254 return _offset;
aoqi@0 2255 }
aoqi@0 2256
aoqi@0 2257 //------------------------------dual_offset------------------------------------
aoqi@0 2258 int TypePtr::dual_offset( ) const {
aoqi@0 2259 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
aoqi@0 2260 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
aoqi@0 2261 return _offset; // Map everything else into self
aoqi@0 2262 }
aoqi@0 2263
aoqi@0 2264 //------------------------------xdual------------------------------------------
aoqi@0 2265 // Dual: compute field-by-field dual
aoqi@0 2266 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
aoqi@0 2267 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
aoqi@0 2268 };
aoqi@0 2269 const Type *TypePtr::xdual() const {
aoqi@0 2270 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
aoqi@0 2271 }
aoqi@0 2272
aoqi@0 2273 //------------------------------xadd_offset------------------------------------
aoqi@0 2274 int TypePtr::xadd_offset( intptr_t offset ) const {
aoqi@0 2275 // Adding to 'TOP' offset? Return 'TOP'!
aoqi@0 2276 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
aoqi@0 2277 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
aoqi@0 2278 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
aoqi@0 2279 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
aoqi@0 2280 offset += (intptr_t)_offset;
aoqi@0 2281 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
aoqi@0 2282
aoqi@0 2283 // assert( _offset >= 0 && _offset+offset >= 0, "" );
aoqi@0 2284 // It is possible to construct a negative offset during PhaseCCP
aoqi@0 2285
aoqi@0 2286 return (int)offset; // Sum valid offsets
aoqi@0 2287 }
aoqi@0 2288
aoqi@0 2289 //------------------------------add_offset-------------------------------------
aoqi@0 2290 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
aoqi@0 2291 return make( AnyPtr, _ptr, xadd_offset(offset) );
aoqi@0 2292 }
aoqi@0 2293
aoqi@0 2294 //------------------------------eq---------------------------------------------
aoqi@0 2295 // Structural equality check for Type representations
aoqi@0 2296 bool TypePtr::eq( const Type *t ) const {
aoqi@0 2297 const TypePtr *a = (const TypePtr*)t;
aoqi@0 2298 return _ptr == a->ptr() && _offset == a->offset();
aoqi@0 2299 }
aoqi@0 2300
aoqi@0 2301 //------------------------------hash-------------------------------------------
aoqi@0 2302 // Type-specific hashing function.
aoqi@0 2303 int TypePtr::hash(void) const {
aoqi@0 2304 return _ptr + _offset;
aoqi@0 2305 }
aoqi@0 2306
aoqi@0 2307 //------------------------------dump2------------------------------------------
aoqi@0 2308 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
aoqi@0 2309 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
aoqi@0 2310 };
aoqi@0 2311
aoqi@0 2312 #ifndef PRODUCT
aoqi@0 2313 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2314 if( _ptr == Null ) st->print("NULL");
aoqi@0 2315 else st->print("%s *", ptr_msg[_ptr]);
aoqi@0 2316 if( _offset == OffsetTop ) st->print("+top");
aoqi@0 2317 else if( _offset == OffsetBot ) st->print("+bot");
aoqi@0 2318 else if( _offset ) st->print("+%d", _offset);
aoqi@0 2319 }
aoqi@0 2320 #endif
aoqi@0 2321
aoqi@0 2322 //------------------------------singleton--------------------------------------
aoqi@0 2323 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2324 // constants
aoqi@0 2325 bool TypePtr::singleton(void) const {
aoqi@0 2326 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 2327 return (_offset != OffsetBot) && !below_centerline(_ptr);
aoqi@0 2328 }
aoqi@0 2329
aoqi@0 2330 bool TypePtr::empty(void) const {
aoqi@0 2331 return (_offset == OffsetTop) || above_centerline(_ptr);
aoqi@0 2332 }
aoqi@0 2333
aoqi@0 2334 //=============================================================================
aoqi@0 2335 // Convenience common pre-built types.
aoqi@0 2336 const TypeRawPtr *TypeRawPtr::BOTTOM;
aoqi@0 2337 const TypeRawPtr *TypeRawPtr::NOTNULL;
aoqi@0 2338
aoqi@0 2339 //------------------------------make-------------------------------------------
aoqi@0 2340 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
aoqi@0 2341 assert( ptr != Constant, "what is the constant?" );
aoqi@0 2342 assert( ptr != Null, "Use TypePtr for NULL" );
aoqi@0 2343 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
aoqi@0 2344 }
aoqi@0 2345
aoqi@0 2346 const TypeRawPtr *TypeRawPtr::make( address bits ) {
aoqi@0 2347 assert( bits, "Use TypePtr for NULL" );
aoqi@0 2348 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
aoqi@0 2349 }
aoqi@0 2350
aoqi@0 2351 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2352 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2353 assert( ptr != Constant, "what is the constant?" );
aoqi@0 2354 assert( ptr != Null, "Use TypePtr for NULL" );
aoqi@0 2355 assert( _bits==0, "Why cast a constant address?");
aoqi@0 2356 if( ptr == _ptr ) return this;
aoqi@0 2357 return make(ptr);
aoqi@0 2358 }
aoqi@0 2359
aoqi@0 2360 //------------------------------get_con----------------------------------------
aoqi@0 2361 intptr_t TypeRawPtr::get_con() const {
aoqi@0 2362 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 2363 return (intptr_t)_bits;
aoqi@0 2364 }
aoqi@0 2365
aoqi@0 2366 //------------------------------meet-------------------------------------------
aoqi@0 2367 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2368 const Type *TypeRawPtr::xmeet( const Type *t ) const {
aoqi@0 2369 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2370 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2371
aoqi@0 2372 // Current "this->_base" is RawPtr
aoqi@0 2373 switch( t->base() ) { // switch on original type
aoqi@0 2374 case Bottom: // Ye Olde Default
aoqi@0 2375 return t;
aoqi@0 2376 case Top:
aoqi@0 2377 return this;
aoqi@0 2378 case AnyPtr: // Meeting to AnyPtrs
aoqi@0 2379 break;
aoqi@0 2380 case RawPtr: { // might be top, bot, any/not or constant
aoqi@0 2381 enum PTR tptr = t->is_ptr()->ptr();
aoqi@0 2382 enum PTR ptr = meet_ptr( tptr );
aoqi@0 2383 if( ptr == Constant ) { // Cannot be equal constants, so...
aoqi@0 2384 if( tptr == Constant && _ptr != Constant) return t;
aoqi@0 2385 if( _ptr == Constant && tptr != Constant) return this;
aoqi@0 2386 ptr = NotNull; // Fall down in lattice
aoqi@0 2387 }
aoqi@0 2388 return make( ptr );
aoqi@0 2389 }
aoqi@0 2390
aoqi@0 2391 case OopPtr:
aoqi@0 2392 case InstPtr:
aoqi@0 2393 case AryPtr:
aoqi@0 2394 case MetadataPtr:
aoqi@0 2395 case KlassPtr:
aoqi@0 2396 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 2397 default: // All else is a mistake
aoqi@0 2398 typerr(t);
aoqi@0 2399 }
aoqi@0 2400
aoqi@0 2401 // Found an AnyPtr type vs self-RawPtr type
aoqi@0 2402 const TypePtr *tp = t->is_ptr();
aoqi@0 2403 switch (tp->ptr()) {
aoqi@0 2404 case TypePtr::TopPTR: return this;
aoqi@0 2405 case TypePtr::BotPTR: return t;
aoqi@0 2406 case TypePtr::Null:
aoqi@0 2407 if( _ptr == TypePtr::TopPTR ) return t;
aoqi@0 2408 return TypeRawPtr::BOTTOM;
aoqi@0 2409 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
aoqi@0 2410 case TypePtr::AnyNull:
aoqi@0 2411 if( _ptr == TypePtr::Constant) return this;
aoqi@0 2412 return make( meet_ptr(TypePtr::AnyNull) );
aoqi@0 2413 default: ShouldNotReachHere();
aoqi@0 2414 }
aoqi@0 2415 return this;
aoqi@0 2416 }
aoqi@0 2417
aoqi@0 2418 //------------------------------xdual------------------------------------------
aoqi@0 2419 // Dual: compute field-by-field dual
aoqi@0 2420 const Type *TypeRawPtr::xdual() const {
aoqi@0 2421 return new TypeRawPtr( dual_ptr(), _bits );
aoqi@0 2422 }
aoqi@0 2423
aoqi@0 2424 //------------------------------add_offset-------------------------------------
aoqi@0 2425 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
aoqi@0 2426 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
aoqi@0 2427 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
aoqi@0 2428 if( offset == 0 ) return this; // No change
aoqi@0 2429 switch (_ptr) {
aoqi@0 2430 case TypePtr::TopPTR:
aoqi@0 2431 case TypePtr::BotPTR:
aoqi@0 2432 case TypePtr::NotNull:
aoqi@0 2433 return this;
aoqi@0 2434 case TypePtr::Null:
aoqi@0 2435 case TypePtr::Constant: {
aoqi@0 2436 address bits = _bits+offset;
aoqi@0 2437 if ( bits == 0 ) return TypePtr::NULL_PTR;
aoqi@0 2438 return make( bits );
aoqi@0 2439 }
aoqi@0 2440 default: ShouldNotReachHere();
aoqi@0 2441 }
aoqi@0 2442 return NULL; // Lint noise
aoqi@0 2443 }
aoqi@0 2444
aoqi@0 2445 //------------------------------eq---------------------------------------------
aoqi@0 2446 // Structural equality check for Type representations
aoqi@0 2447 bool TypeRawPtr::eq( const Type *t ) const {
aoqi@0 2448 const TypeRawPtr *a = (const TypeRawPtr*)t;
aoqi@0 2449 return _bits == a->_bits && TypePtr::eq(t);
aoqi@0 2450 }
aoqi@0 2451
aoqi@0 2452 //------------------------------hash-------------------------------------------
aoqi@0 2453 // Type-specific hashing function.
aoqi@0 2454 int TypeRawPtr::hash(void) const {
aoqi@0 2455 return (intptr_t)_bits + TypePtr::hash();
aoqi@0 2456 }
aoqi@0 2457
aoqi@0 2458 //------------------------------dump2------------------------------------------
aoqi@0 2459 #ifndef PRODUCT
aoqi@0 2460 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2461 if( _ptr == Constant )
aoqi@0 2462 st->print(INTPTR_FORMAT, _bits);
aoqi@0 2463 else
aoqi@0 2464 st->print("rawptr:%s", ptr_msg[_ptr]);
aoqi@0 2465 }
aoqi@0 2466 #endif
aoqi@0 2467
aoqi@0 2468 //=============================================================================
aoqi@0 2469 // Convenience common pre-built type.
aoqi@0 2470 const TypeOopPtr *TypeOopPtr::BOTTOM;
aoqi@0 2471
aoqi@0 2472 //------------------------------TypeOopPtr-------------------------------------
aoqi@0 2473 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
aoqi@0 2474 : TypePtr(t, ptr, offset),
aoqi@0 2475 _const_oop(o), _klass(k),
aoqi@0 2476 _klass_is_exact(xk),
aoqi@0 2477 _is_ptr_to_narrowoop(false),
aoqi@0 2478 _is_ptr_to_narrowklass(false),
aoqi@0 2479 _is_ptr_to_boxed_value(false),
aoqi@0 2480 _instance_id(instance_id),
aoqi@0 2481 _speculative(speculative),
aoqi@0 2482 _inline_depth(inline_depth){
aoqi@0 2483 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
aoqi@0 2484 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
aoqi@0 2485 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
aoqi@0 2486 }
aoqi@0 2487 #ifdef _LP64
aoqi@0 2488 if (_offset != 0) {
aoqi@0 2489 if (_offset == oopDesc::klass_offset_in_bytes()) {
aoqi@0 2490 _is_ptr_to_narrowklass = UseCompressedClassPointers;
aoqi@0 2491 } else if (klass() == NULL) {
aoqi@0 2492 // Array with unknown body type
aoqi@0 2493 assert(this->isa_aryptr(), "only arrays without klass");
aoqi@0 2494 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2495 } else if (this->isa_aryptr()) {
aoqi@0 2496 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
aoqi@0 2497 _offset != arrayOopDesc::length_offset_in_bytes());
aoqi@0 2498 } else if (klass()->is_instance_klass()) {
aoqi@0 2499 ciInstanceKlass* ik = klass()->as_instance_klass();
aoqi@0 2500 ciField* field = NULL;
aoqi@0 2501 if (this->isa_klassptr()) {
aoqi@0 2502 // Perm objects don't use compressed references
aoqi@0 2503 } else if (_offset == OffsetBot || _offset == OffsetTop) {
aoqi@0 2504 // unsafe access
aoqi@0 2505 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2506 } else { // exclude unsafe ops
aoqi@0 2507 assert(this->isa_instptr(), "must be an instance ptr.");
aoqi@0 2508
aoqi@0 2509 if (klass() == ciEnv::current()->Class_klass() &&
aoqi@0 2510 (_offset == java_lang_Class::klass_offset_in_bytes() ||
aoqi@0 2511 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
aoqi@0 2512 // Special hidden fields from the Class.
aoqi@0 2513 assert(this->isa_instptr(), "must be an instance ptr.");
aoqi@0 2514 _is_ptr_to_narrowoop = false;
aoqi@0 2515 } else if (klass() == ciEnv::current()->Class_klass() &&
aoqi@0 2516 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
aoqi@0 2517 // Static fields
aoqi@0 2518 assert(o != NULL, "must be constant");
aoqi@0 2519 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
aoqi@0 2520 ciField* field = k->get_field_by_offset(_offset, true);
aoqi@0 2521 assert(field != NULL, "missing field");
aoqi@0 2522 BasicType basic_elem_type = field->layout_type();
aoqi@0 2523 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
aoqi@0 2524 basic_elem_type == T_ARRAY);
aoqi@0 2525 } else {
aoqi@0 2526 // Instance fields which contains a compressed oop references.
aoqi@0 2527 field = ik->get_field_by_offset(_offset, false);
aoqi@0 2528 if (field != NULL) {
aoqi@0 2529 BasicType basic_elem_type = field->layout_type();
aoqi@0 2530 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
aoqi@0 2531 basic_elem_type == T_ARRAY);
aoqi@0 2532 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
aoqi@0 2533 // Compile::find_alias_type() cast exactness on all types to verify
aoqi@0 2534 // that it does not affect alias type.
aoqi@0 2535 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2536 } else {
aoqi@0 2537 // Type for the copy start in LibraryCallKit::inline_native_clone().
aoqi@0 2538 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2539 }
aoqi@0 2540 }
aoqi@0 2541 }
aoqi@0 2542 }
aoqi@0 2543 }
aoqi@0 2544 #endif
aoqi@0 2545 }
aoqi@0 2546
aoqi@0 2547 //------------------------------make-------------------------------------------
aoqi@0 2548 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
aoqi@0 2549 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
aoqi@0 2550 assert(ptr != Constant, "no constant generic pointers");
aoqi@0 2551 ciKlass* k = Compile::current()->env()->Object_klass();
aoqi@0 2552 bool xk = false;
aoqi@0 2553 ciObject* o = NULL;
aoqi@0 2554 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
aoqi@0 2555 }
aoqi@0 2556
aoqi@0 2557
aoqi@0 2558 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2559 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2560 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
aoqi@0 2561 if( ptr == _ptr ) return this;
aoqi@0 2562 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 2563 }
aoqi@0 2564
aoqi@0 2565 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 2566 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 2567 // There are no instances of a general oop.
aoqi@0 2568 // Return self unchanged.
aoqi@0 2569 return this;
aoqi@0 2570 }
aoqi@0 2571
aoqi@0 2572 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 2573 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 2574 // There is no such thing as an exact general oop.
aoqi@0 2575 // Return self unchanged.
aoqi@0 2576 return this;
aoqi@0 2577 }
aoqi@0 2578
aoqi@0 2579
aoqi@0 2580 //------------------------------as_klass_type----------------------------------
aoqi@0 2581 // Return the klass type corresponding to this instance or array type.
aoqi@0 2582 // It is the type that is loaded from an object of this type.
aoqi@0 2583 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
aoqi@0 2584 ciKlass* k = klass();
aoqi@0 2585 bool xk = klass_is_exact();
aoqi@0 2586 if (k == NULL)
aoqi@0 2587 return TypeKlassPtr::OBJECT;
aoqi@0 2588 else
aoqi@0 2589 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
aoqi@0 2590 }
aoqi@0 2591
aoqi@0 2592 const Type *TypeOopPtr::xmeet(const Type *t) const {
aoqi@0 2593 const Type* res = xmeet_helper(t);
aoqi@0 2594 if (res->isa_oopptr() == NULL) {
aoqi@0 2595 return res;
aoqi@0 2596 }
aoqi@0 2597
aoqi@0 2598 const TypeOopPtr* res_oopptr = res->is_oopptr();
aoqi@0 2599 if (res_oopptr->speculative() != NULL) {
aoqi@0 2600 // type->speculative() == NULL means that speculation is no better
aoqi@0 2601 // than type, i.e. type->speculative() == type. So there are 2
aoqi@0 2602 // ways to represent the fact that we have no useful speculative
aoqi@0 2603 // data and we should use a single one to be able to test for
aoqi@0 2604 // equality between types. Check whether type->speculative() ==
aoqi@0 2605 // type and set speculative to NULL if it is the case.
aoqi@0 2606 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
aoqi@0 2607 return res_oopptr->remove_speculative();
aoqi@0 2608 }
aoqi@0 2609 }
aoqi@0 2610
aoqi@0 2611 return res;
aoqi@0 2612 }
aoqi@0 2613
aoqi@0 2614 //------------------------------meet-------------------------------------------
aoqi@0 2615 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2616 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
aoqi@0 2617 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2618 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2619
aoqi@0 2620 // Current "this->_base" is OopPtr
aoqi@0 2621 switch (t->base()) { // switch on original type
aoqi@0 2622
aoqi@0 2623 case Int: // Mixing ints & oops happens when javac
aoqi@0 2624 case Long: // reuses local variables
aoqi@0 2625 case FloatTop:
aoqi@0 2626 case FloatCon:
aoqi@0 2627 case FloatBot:
aoqi@0 2628 case DoubleTop:
aoqi@0 2629 case DoubleCon:
aoqi@0 2630 case DoubleBot:
aoqi@0 2631 case NarrowOop:
aoqi@0 2632 case NarrowKlass:
aoqi@0 2633 case Bottom: // Ye Olde Default
aoqi@0 2634 return Type::BOTTOM;
aoqi@0 2635 case Top:
aoqi@0 2636 return this;
aoqi@0 2637
aoqi@0 2638 default: // All else is a mistake
aoqi@0 2639 typerr(t);
aoqi@0 2640
aoqi@0 2641 case RawPtr:
aoqi@0 2642 case MetadataPtr:
aoqi@0 2643 case KlassPtr:
aoqi@0 2644 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 2645
aoqi@0 2646 case AnyPtr: {
aoqi@0 2647 // Found an AnyPtr type vs self-OopPtr type
aoqi@0 2648 const TypePtr *tp = t->is_ptr();
aoqi@0 2649 int offset = meet_offset(tp->offset());
aoqi@0 2650 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 2651 switch (tp->ptr()) {
aoqi@0 2652 case Null:
aoqi@0 2653 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 2654 // else fall through:
aoqi@0 2655 case TopPTR:
aoqi@0 2656 case AnyNull: {
aoqi@0 2657 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 2658 const TypeOopPtr* speculative = _speculative;
aoqi@0 2659 return make(ptr, offset, instance_id, speculative, _inline_depth);
aoqi@0 2660 }
aoqi@0 2661 case BotPTR:
aoqi@0 2662 case NotNull:
aoqi@0 2663 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 2664 default: typerr(t);
aoqi@0 2665 }
aoqi@0 2666 }
aoqi@0 2667
aoqi@0 2668 case OopPtr: { // Meeting to other OopPtrs
aoqi@0 2669 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 2670 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 2671 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 2672 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 2673 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
aoqi@0 2674 }
aoqi@0 2675
aoqi@0 2676 case InstPtr: // For these, flip the call around to cut down
aoqi@0 2677 case AryPtr:
aoqi@0 2678 return t->xmeet(this); // Call in reverse direction
aoqi@0 2679
aoqi@0 2680 } // End of switch
aoqi@0 2681 return this; // Return the double constant
aoqi@0 2682 }
aoqi@0 2683
aoqi@0 2684
aoqi@0 2685 //------------------------------xdual------------------------------------------
aoqi@0 2686 // Dual of a pure heap pointer. No relevant klass or oop information.
aoqi@0 2687 const Type *TypeOopPtr::xdual() const {
aoqi@0 2688 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
aoqi@0 2689 assert(const_oop() == NULL, "no constants here");
aoqi@0 2690 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
aoqi@0 2691 }
aoqi@0 2692
aoqi@0 2693 //--------------------------make_from_klass_common-----------------------------
aoqi@0 2694 // Computes the element-type given a klass.
aoqi@0 2695 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
aoqi@0 2696 if (klass->is_instance_klass()) {
aoqi@0 2697 Compile* C = Compile::current();
aoqi@0 2698 Dependencies* deps = C->dependencies();
aoqi@0 2699 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
aoqi@0 2700 // Element is an instance
aoqi@0 2701 bool klass_is_exact = false;
aoqi@0 2702 if (klass->is_loaded()) {
aoqi@0 2703 // Try to set klass_is_exact.
aoqi@0 2704 ciInstanceKlass* ik = klass->as_instance_klass();
aoqi@0 2705 klass_is_exact = ik->is_final();
aoqi@0 2706 if (!klass_is_exact && klass_change
aoqi@0 2707 && deps != NULL && UseUniqueSubclasses) {
aoqi@0 2708 ciInstanceKlass* sub = ik->unique_concrete_subklass();
aoqi@0 2709 if (sub != NULL) {
aoqi@0 2710 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
aoqi@0 2711 klass = ik = sub;
aoqi@0 2712 klass_is_exact = sub->is_final();
aoqi@0 2713 }
aoqi@0 2714 }
aoqi@0 2715 if (!klass_is_exact && try_for_exact
aoqi@0 2716 && deps != NULL && UseExactTypes) {
aoqi@0 2717 if (!ik->is_interface() && !ik->has_subklass()) {
aoqi@0 2718 // Add a dependence; if concrete subclass added we need to recompile
aoqi@0 2719 deps->assert_leaf_type(ik);
aoqi@0 2720 klass_is_exact = true;
aoqi@0 2721 }
aoqi@0 2722 }
aoqi@0 2723 }
aoqi@0 2724 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
aoqi@0 2725 } else if (klass->is_obj_array_klass()) {
aoqi@0 2726 // Element is an object array. Recursively call ourself.
aoqi@0 2727 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
aoqi@0 2728 bool xk = etype->klass_is_exact();
aoqi@0 2729 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
aoqi@0 2730 // We used to pass NotNull in here, asserting that the sub-arrays
aoqi@0 2731 // are all not-null. This is not true in generally, as code can
aoqi@0 2732 // slam NULLs down in the subarrays.
aoqi@0 2733 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
aoqi@0 2734 return arr;
aoqi@0 2735 } else if (klass->is_type_array_klass()) {
aoqi@0 2736 // Element is an typeArray
aoqi@0 2737 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
aoqi@0 2738 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
aoqi@0 2739 // We used to pass NotNull in here, asserting that the array pointer
aoqi@0 2740 // is not-null. That was not true in general.
aoqi@0 2741 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
aoqi@0 2742 return arr;
aoqi@0 2743 } else {
aoqi@0 2744 ShouldNotReachHere();
aoqi@0 2745 return NULL;
aoqi@0 2746 }
aoqi@0 2747 }
aoqi@0 2748
aoqi@0 2749 //------------------------------make_from_constant-----------------------------
aoqi@0 2750 // Make a java pointer from an oop constant
aoqi@0 2751 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
aoqi@0 2752 bool require_constant,
aoqi@0 2753 bool is_autobox_cache) {
aoqi@0 2754 assert(!o->is_null_object(), "null object not yet handled here.");
aoqi@0 2755 ciKlass* klass = o->klass();
aoqi@0 2756 if (klass->is_instance_klass()) {
aoqi@0 2757 // Element is an instance
aoqi@0 2758 if (require_constant) {
aoqi@0 2759 if (!o->can_be_constant()) return NULL;
aoqi@0 2760 } else if (!o->should_be_constant()) {
aoqi@0 2761 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
aoqi@0 2762 }
aoqi@0 2763 return TypeInstPtr::make(o);
aoqi@0 2764 } else if (klass->is_obj_array_klass()) {
aoqi@0 2765 // Element is an object array. Recursively call ourself.
aoqi@0 2766 const TypeOopPtr *etype =
aoqi@0 2767 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
aoqi@0 2768 if (is_autobox_cache) {
aoqi@0 2769 // The pointers in the autobox arrays are always non-null.
aoqi@0 2770 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
aoqi@0 2771 }
aoqi@0 2772 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
aoqi@0 2773 // We used to pass NotNull in here, asserting that the sub-arrays
aoqi@0 2774 // are all not-null. This is not true in generally, as code can
aoqi@0 2775 // slam NULLs down in the subarrays.
aoqi@0 2776 if (require_constant) {
aoqi@0 2777 if (!o->can_be_constant()) return NULL;
aoqi@0 2778 } else if (!o->should_be_constant()) {
aoqi@0 2779 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
aoqi@0 2780 }
aoqi@0 2781 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
aoqi@0 2782 return arr;
aoqi@0 2783 } else if (klass->is_type_array_klass()) {
aoqi@0 2784 // Element is an typeArray
aoqi@0 2785 const Type* etype =
aoqi@0 2786 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
aoqi@0 2787 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
aoqi@0 2788 // We used to pass NotNull in here, asserting that the array pointer
aoqi@0 2789 // is not-null. That was not true in general.
aoqi@0 2790 if (require_constant) {
aoqi@0 2791 if (!o->can_be_constant()) return NULL;
aoqi@0 2792 } else if (!o->should_be_constant()) {
aoqi@0 2793 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
aoqi@0 2794 }
aoqi@0 2795 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
aoqi@0 2796 return arr;
aoqi@0 2797 }
aoqi@0 2798
aoqi@0 2799 fatal("unhandled object type");
aoqi@0 2800 return NULL;
aoqi@0 2801 }
aoqi@0 2802
aoqi@0 2803 //------------------------------get_con----------------------------------------
aoqi@0 2804 intptr_t TypeOopPtr::get_con() const {
aoqi@0 2805 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 2806 assert( _offset >= 0, "" );
aoqi@0 2807
aoqi@0 2808 if (_offset != 0) {
aoqi@0 2809 // After being ported to the compiler interface, the compiler no longer
aoqi@0 2810 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 2811 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 2812 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 2813 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 2814 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 2815 // but this assertion here is to help prevent its occurence.
aoqi@0 2816 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 2817 ShouldNotReachHere();
aoqi@0 2818 }
aoqi@0 2819
aoqi@0 2820 return (intptr_t)const_oop()->constant_encoding();
aoqi@0 2821 }
aoqi@0 2822
aoqi@0 2823
aoqi@0 2824 //-----------------------------filter------------------------------------------
aoqi@0 2825 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 2826 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 2827
aoqi@0 2828 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 2829 const TypeInstPtr* ftip = ft->isa_instptr();
aoqi@0 2830 const TypeInstPtr* ktip = kills->isa_instptr();
aoqi@0 2831
aoqi@0 2832 if (ft->empty()) {
aoqi@0 2833 // Check for evil case of 'this' being a class and 'kills' expecting an
aoqi@0 2834 // interface. This can happen because the bytecodes do not contain
aoqi@0 2835 // enough type info to distinguish a Java-level interface variable
aoqi@0 2836 // from a Java-level object variable. If we meet 2 classes which
aoqi@0 2837 // both implement interface I, but their meet is at 'j/l/O' which
aoqi@0 2838 // doesn't implement I, we have no way to tell if the result should
aoqi@0 2839 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
aoqi@0 2840 // into a Phi which "knows" it's an Interface type we'll have to
aoqi@0 2841 // uplift the type.
aoqi@0 2842 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
aoqi@0 2843 return kills; // Uplift to interface
aoqi@0 2844
aoqi@0 2845 return Type::TOP; // Canonical empty value
aoqi@0 2846 }
aoqi@0 2847
aoqi@0 2848 // If we have an interface-typed Phi or cast and we narrow to a class type,
aoqi@0 2849 // the join should report back the class. However, if we have a J/L/Object
aoqi@0 2850 // class-typed Phi and an interface flows in, it's possible that the meet &
aoqi@0 2851 // join report an interface back out. This isn't possible but happens
aoqi@0 2852 // because the type system doesn't interact well with interfaces.
aoqi@0 2853 if (ftip != NULL && ktip != NULL &&
aoqi@0 2854 ftip->is_loaded() && ftip->klass()->is_interface() &&
aoqi@0 2855 ktip->is_loaded() && !ktip->klass()->is_interface()) {
aoqi@0 2856 // Happens in a CTW of rt.jar, 320-341, no extra flags
aoqi@0 2857 assert(!ftip->klass_is_exact(), "interface could not be exact");
aoqi@0 2858 return ktip->cast_to_ptr_type(ftip->ptr());
aoqi@0 2859 }
aoqi@0 2860
aoqi@0 2861 return ft;
aoqi@0 2862 }
aoqi@0 2863
aoqi@0 2864 //------------------------------eq---------------------------------------------
aoqi@0 2865 // Structural equality check for Type representations
aoqi@0 2866 bool TypeOopPtr::eq( const Type *t ) const {
aoqi@0 2867 const TypeOopPtr *a = (const TypeOopPtr*)t;
aoqi@0 2868 if (_klass_is_exact != a->_klass_is_exact ||
aoqi@0 2869 _instance_id != a->_instance_id ||
aoqi@0 2870 !eq_speculative(a) ||
aoqi@0 2871 _inline_depth != a->_inline_depth) return false;
aoqi@0 2872 ciObject* one = const_oop();
aoqi@0 2873 ciObject* two = a->const_oop();
aoqi@0 2874 if (one == NULL || two == NULL) {
aoqi@0 2875 return (one == two) && TypePtr::eq(t);
aoqi@0 2876 } else {
aoqi@0 2877 return one->equals(two) && TypePtr::eq(t);
aoqi@0 2878 }
aoqi@0 2879 }
aoqi@0 2880
aoqi@0 2881 //------------------------------hash-------------------------------------------
aoqi@0 2882 // Type-specific hashing function.
aoqi@0 2883 int TypeOopPtr::hash(void) const {
aoqi@0 2884 return
aoqi@0 2885 (const_oop() ? const_oop()->hash() : 0) +
aoqi@0 2886 _klass_is_exact +
aoqi@0 2887 _instance_id +
aoqi@0 2888 hash_speculative() +
aoqi@0 2889 _inline_depth +
aoqi@0 2890 TypePtr::hash();
aoqi@0 2891 }
aoqi@0 2892
aoqi@0 2893 //------------------------------dump2------------------------------------------
aoqi@0 2894 #ifndef PRODUCT
aoqi@0 2895 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2896 st->print("oopptr:%s", ptr_msg[_ptr]);
aoqi@0 2897 if( _klass_is_exact ) st->print(":exact");
aoqi@0 2898 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
aoqi@0 2899 switch( _offset ) {
aoqi@0 2900 case OffsetTop: st->print("+top"); break;
aoqi@0 2901 case OffsetBot: st->print("+any"); break;
aoqi@0 2902 case 0: break;
aoqi@0 2903 default: st->print("+%d",_offset); break;
aoqi@0 2904 }
aoqi@0 2905 if (_instance_id == InstanceTop)
aoqi@0 2906 st->print(",iid=top");
aoqi@0 2907 else if (_instance_id != InstanceBot)
aoqi@0 2908 st->print(",iid=%d",_instance_id);
aoqi@0 2909
aoqi@0 2910 dump_inline_depth(st);
aoqi@0 2911 dump_speculative(st);
aoqi@0 2912 }
aoqi@0 2913
aoqi@0 2914 /**
aoqi@0 2915 *dump the speculative part of the type
aoqi@0 2916 */
aoqi@0 2917 void TypeOopPtr::dump_speculative(outputStream *st) const {
aoqi@0 2918 if (_speculative != NULL) {
aoqi@0 2919 st->print(" (speculative=");
aoqi@0 2920 _speculative->dump_on(st);
aoqi@0 2921 st->print(")");
aoqi@0 2922 }
aoqi@0 2923 }
aoqi@0 2924
aoqi@0 2925 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
aoqi@0 2926 if (_inline_depth != InlineDepthBottom) {
aoqi@0 2927 if (_inline_depth == InlineDepthTop) {
aoqi@0 2928 st->print(" (inline_depth=InlineDepthTop)");
aoqi@0 2929 } else {
aoqi@0 2930 st->print(" (inline_depth=%d)", _inline_depth);
aoqi@0 2931 }
aoqi@0 2932 }
aoqi@0 2933 }
aoqi@0 2934 #endif
aoqi@0 2935
aoqi@0 2936 //------------------------------singleton--------------------------------------
aoqi@0 2937 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2938 // constants
aoqi@0 2939 bool TypeOopPtr::singleton(void) const {
aoqi@0 2940 // detune optimizer to not generate constant oop + constant offset as a constant!
aoqi@0 2941 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 2942 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 2943 }
aoqi@0 2944
aoqi@0 2945 //------------------------------add_offset-------------------------------------
aoqi@0 2946 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
aoqi@0 2947 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
aoqi@0 2948 }
aoqi@0 2949
aoqi@0 2950 /**
aoqi@0 2951 * Return same type without a speculative part
aoqi@0 2952 */
aoqi@0 2953 const Type* TypeOopPtr::remove_speculative() const {
aoqi@0 2954 if (_speculative == NULL) {
aoqi@0 2955 return this;
aoqi@0 2956 }
aoqi@0 2957 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 2958 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
aoqi@0 2959 }
aoqi@0 2960
aoqi@0 2961 /**
aoqi@0 2962 * Return same type but with a different inline depth (used for speculation)
aoqi@0 2963 *
aoqi@0 2964 * @param depth depth to meet with
aoqi@0 2965 */
aoqi@0 2966 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
aoqi@0 2967 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 2968 return this;
aoqi@0 2969 }
aoqi@0 2970 return make(_ptr, _offset, _instance_id, _speculative, depth);
aoqi@0 2971 }
aoqi@0 2972
aoqi@0 2973 /**
aoqi@0 2974 * Check whether new profiling would improve speculative type
aoqi@0 2975 *
aoqi@0 2976 * @param exact_kls class from profiling
aoqi@0 2977 * @param inline_depth inlining depth of profile point
aoqi@0 2978 *
aoqi@0 2979 * @return true if type profile is valuable
aoqi@0 2980 */
aoqi@0 2981 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
aoqi@0 2982 // no way to improve an already exact type
aoqi@0 2983 if (klass_is_exact()) {
aoqi@0 2984 return false;
aoqi@0 2985 }
aoqi@0 2986 // no profiling?
aoqi@0 2987 if (exact_kls == NULL) {
aoqi@0 2988 return false;
aoqi@0 2989 }
aoqi@0 2990 // no speculative type or non exact speculative type?
aoqi@0 2991 if (speculative_type() == NULL) {
aoqi@0 2992 return true;
aoqi@0 2993 }
aoqi@0 2994 // If the node already has an exact speculative type keep it,
aoqi@0 2995 // unless it was provided by profiling that is at a deeper
aoqi@0 2996 // inlining level. Profiling at a higher inlining depth is
aoqi@0 2997 // expected to be less accurate.
aoqi@0 2998 if (_speculative->inline_depth() == InlineDepthBottom) {
aoqi@0 2999 return false;
aoqi@0 3000 }
aoqi@0 3001 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
aoqi@0 3002 return inline_depth < _speculative->inline_depth();
aoqi@0 3003 }
aoqi@0 3004
aoqi@0 3005 //------------------------------meet_instance_id--------------------------------
aoqi@0 3006 int TypeOopPtr::meet_instance_id( int instance_id ) const {
aoqi@0 3007 // Either is 'TOP' instance? Return the other instance!
aoqi@0 3008 if( _instance_id == InstanceTop ) return instance_id;
aoqi@0 3009 if( instance_id == InstanceTop ) return _instance_id;
aoqi@0 3010 // If either is different, return 'BOTTOM' instance
aoqi@0 3011 if( _instance_id != instance_id ) return InstanceBot;
aoqi@0 3012 return _instance_id;
aoqi@0 3013 }
aoqi@0 3014
aoqi@0 3015 //------------------------------dual_instance_id--------------------------------
aoqi@0 3016 int TypeOopPtr::dual_instance_id( ) const {
aoqi@0 3017 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
aoqi@0 3018 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
aoqi@0 3019 return _instance_id; // Map everything else into self
aoqi@0 3020 }
aoqi@0 3021
aoqi@0 3022 /**
aoqi@0 3023 * meet of the speculative parts of 2 types
aoqi@0 3024 *
aoqi@0 3025 * @param other type to meet with
aoqi@0 3026 */
aoqi@0 3027 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
aoqi@0 3028 bool this_has_spec = (_speculative != NULL);
aoqi@0 3029 bool other_has_spec = (other->speculative() != NULL);
aoqi@0 3030
aoqi@0 3031 if (!this_has_spec && !other_has_spec) {
aoqi@0 3032 return NULL;
aoqi@0 3033 }
aoqi@0 3034
aoqi@0 3035 // If we are at a point where control flow meets and one branch has
aoqi@0 3036 // a speculative type and the other has not, we meet the speculative
aoqi@0 3037 // type of one branch with the actual type of the other. If the
aoqi@0 3038 // actual type is exact and the speculative is as well, then the
aoqi@0 3039 // result is a speculative type which is exact and we can continue
aoqi@0 3040 // speculation further.
aoqi@0 3041 const TypeOopPtr* this_spec = _speculative;
aoqi@0 3042 const TypeOopPtr* other_spec = other->speculative();
aoqi@0 3043
aoqi@0 3044 if (!this_has_spec) {
aoqi@0 3045 this_spec = this;
aoqi@0 3046 }
aoqi@0 3047
aoqi@0 3048 if (!other_has_spec) {
aoqi@0 3049 other_spec = other;
aoqi@0 3050 }
aoqi@0 3051
aoqi@0 3052 return this_spec->meet_speculative(other_spec)->is_oopptr();
aoqi@0 3053 }
aoqi@0 3054
aoqi@0 3055 /**
aoqi@0 3056 * dual of the speculative part of the type
aoqi@0 3057 */
aoqi@0 3058 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
aoqi@0 3059 if (_speculative == NULL) {
aoqi@0 3060 return NULL;
aoqi@0 3061 }
aoqi@0 3062 return _speculative->dual()->is_oopptr();
aoqi@0 3063 }
aoqi@0 3064
aoqi@0 3065 /**
aoqi@0 3066 * add offset to the speculative part of the type
aoqi@0 3067 *
aoqi@0 3068 * @param offset offset to add
aoqi@0 3069 */
aoqi@0 3070 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
aoqi@0 3071 if (_speculative == NULL) {
aoqi@0 3072 return NULL;
aoqi@0 3073 }
aoqi@0 3074 return _speculative->add_offset(offset)->is_oopptr();
aoqi@0 3075 }
aoqi@0 3076
aoqi@0 3077 /**
aoqi@0 3078 * Are the speculative parts of 2 types equal?
aoqi@0 3079 *
aoqi@0 3080 * @param other type to compare this one to
aoqi@0 3081 */
aoqi@0 3082 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
aoqi@0 3083 if (_speculative == NULL || other->speculative() == NULL) {
aoqi@0 3084 return _speculative == other->speculative();
aoqi@0 3085 }
aoqi@0 3086
aoqi@0 3087 if (_speculative->base() != other->speculative()->base()) {
aoqi@0 3088 return false;
aoqi@0 3089 }
aoqi@0 3090
aoqi@0 3091 return _speculative->eq(other->speculative());
aoqi@0 3092 }
aoqi@0 3093
aoqi@0 3094 /**
aoqi@0 3095 * Hash of the speculative part of the type
aoqi@0 3096 */
aoqi@0 3097 int TypeOopPtr::hash_speculative() const {
aoqi@0 3098 if (_speculative == NULL) {
aoqi@0 3099 return 0;
aoqi@0 3100 }
aoqi@0 3101
aoqi@0 3102 return _speculative->hash();
aoqi@0 3103 }
aoqi@0 3104
aoqi@0 3105 /**
aoqi@0 3106 * dual of the inline depth for this type (used for speculation)
aoqi@0 3107 */
aoqi@0 3108 int TypeOopPtr::dual_inline_depth() const {
aoqi@0 3109 return -inline_depth();
aoqi@0 3110 }
aoqi@0 3111
aoqi@0 3112 /**
aoqi@0 3113 * meet of 2 inline depth (used for speculation)
aoqi@0 3114 *
aoqi@0 3115 * @param depth depth to meet with
aoqi@0 3116 */
aoqi@0 3117 int TypeOopPtr::meet_inline_depth(int depth) const {
aoqi@0 3118 return MAX2(inline_depth(), depth);
aoqi@0 3119 }
aoqi@0 3120
aoqi@0 3121 //=============================================================================
aoqi@0 3122 // Convenience common pre-built types.
aoqi@0 3123 const TypeInstPtr *TypeInstPtr::NOTNULL;
aoqi@0 3124 const TypeInstPtr *TypeInstPtr::BOTTOM;
aoqi@0 3125 const TypeInstPtr *TypeInstPtr::MIRROR;
aoqi@0 3126 const TypeInstPtr *TypeInstPtr::MARK;
aoqi@0 3127 const TypeInstPtr *TypeInstPtr::KLASS;
aoqi@0 3128
aoqi@0 3129 //------------------------------TypeInstPtr-------------------------------------
aoqi@0 3130 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
aoqi@0 3131 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
aoqi@0 3132 assert(k != NULL &&
aoqi@0 3133 (k->is_loaded() || o == NULL),
aoqi@0 3134 "cannot have constants with non-loaded klass");
aoqi@0 3135 };
aoqi@0 3136
aoqi@0 3137 //------------------------------make-------------------------------------------
aoqi@0 3138 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
aoqi@0 3139 ciKlass* k,
aoqi@0 3140 bool xk,
aoqi@0 3141 ciObject* o,
aoqi@0 3142 int offset,
aoqi@0 3143 int instance_id,
aoqi@0 3144 const TypeOopPtr* speculative,
aoqi@0 3145 int inline_depth) {
aoqi@0 3146 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
aoqi@0 3147 // Either const_oop() is NULL or else ptr is Constant
aoqi@0 3148 assert( (!o && ptr != Constant) || (o && ptr == Constant),
aoqi@0 3149 "constant pointers must have a value supplied" );
aoqi@0 3150 // Ptr is never Null
aoqi@0 3151 assert( ptr != Null, "NULL pointers are not typed" );
aoqi@0 3152
aoqi@0 3153 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3154 if (!UseExactTypes) xk = false;
aoqi@0 3155 if (ptr == Constant) {
aoqi@0 3156 // Note: This case includes meta-object constants, such as methods.
aoqi@0 3157 xk = true;
aoqi@0 3158 } else if (k->is_loaded()) {
aoqi@0 3159 ciInstanceKlass* ik = k->as_instance_klass();
aoqi@0 3160 if (!xk && ik->is_final()) xk = true; // no inexact final klass
aoqi@0 3161 if (xk && ik->is_interface()) xk = false; // no exact interface
aoqi@0 3162 }
aoqi@0 3163
aoqi@0 3164 // Now hash this baby
aoqi@0 3165 TypeInstPtr *result =
aoqi@0 3166 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
aoqi@0 3167
aoqi@0 3168 return result;
aoqi@0 3169 }
aoqi@0 3170
aoqi@0 3171 /**
aoqi@0 3172 * Create constant type for a constant boxed value
aoqi@0 3173 */
aoqi@0 3174 const Type* TypeInstPtr::get_const_boxed_value() const {
aoqi@0 3175 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
aoqi@0 3176 assert((const_oop() != NULL), "should be called only for constant object");
aoqi@0 3177 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
aoqi@0 3178 BasicType bt = constant.basic_type();
aoqi@0 3179 switch (bt) {
aoqi@0 3180 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
aoqi@0 3181 case T_INT: return TypeInt::make(constant.as_int());
aoqi@0 3182 case T_CHAR: return TypeInt::make(constant.as_char());
aoqi@0 3183 case T_BYTE: return TypeInt::make(constant.as_byte());
aoqi@0 3184 case T_SHORT: return TypeInt::make(constant.as_short());
aoqi@0 3185 case T_FLOAT: return TypeF::make(constant.as_float());
aoqi@0 3186 case T_DOUBLE: return TypeD::make(constant.as_double());
aoqi@0 3187 case T_LONG: return TypeLong::make(constant.as_long());
aoqi@0 3188 default: break;
aoqi@0 3189 }
aoqi@0 3190 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
aoqi@0 3191 return NULL;
aoqi@0 3192 }
aoqi@0 3193
aoqi@0 3194 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 3195 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 3196 if( ptr == _ptr ) return this;
aoqi@0 3197 // Reconstruct _sig info here since not a problem with later lazy
aoqi@0 3198 // construction, _sig will show up on demand.
aoqi@0 3199 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3200 }
aoqi@0 3201
aoqi@0 3202
aoqi@0 3203 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 3204 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 3205 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 3206 if (!UseExactTypes) return this;
aoqi@0 3207 if (!_klass->is_loaded()) return this;
aoqi@0 3208 ciInstanceKlass* ik = _klass->as_instance_klass();
aoqi@0 3209 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
aoqi@0 3210 if( ik->is_interface() ) return this; // cannot set xk
aoqi@0 3211 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3212 }
aoqi@0 3213
aoqi@0 3214 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 3215 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 3216 if( instance_id == _instance_id ) return this;
aoqi@0 3217 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
aoqi@0 3218 }
aoqi@0 3219
aoqi@0 3220 //------------------------------xmeet_unloaded---------------------------------
aoqi@0 3221 // Compute the MEET of two InstPtrs when at least one is unloaded.
aoqi@0 3222 // Assume classes are different since called after check for same name/class-loader
aoqi@0 3223 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
aoqi@0 3224 int off = meet_offset(tinst->offset());
aoqi@0 3225 PTR ptr = meet_ptr(tinst->ptr());
aoqi@0 3226 int instance_id = meet_instance_id(tinst->instance_id());
aoqi@0 3227 const TypeOopPtr* speculative = xmeet_speculative(tinst);
aoqi@0 3228 int depth = meet_inline_depth(tinst->inline_depth());
aoqi@0 3229
aoqi@0 3230 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
aoqi@0 3231 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
aoqi@0 3232 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
aoqi@0 3233 //
aoqi@0 3234 // Meet unloaded class with java/lang/Object
aoqi@0 3235 //
aoqi@0 3236 // Meet
aoqi@0 3237 // | Unloaded Class
aoqi@0 3238 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
aoqi@0 3239 // ===================================================================
aoqi@0 3240 // TOP | ..........................Unloaded......................|
aoqi@0 3241 // AnyNull | U-AN |................Unloaded......................|
aoqi@0 3242 // Constant | ... O-NN .................................. | O-BOT |
aoqi@0 3243 // NotNull | ... O-NN .................................. | O-BOT |
aoqi@0 3244 // BOTTOM | ........................Object-BOTTOM ..................|
aoqi@0 3245 //
aoqi@0 3246 assert(loaded->ptr() != TypePtr::Null, "insanity check");
aoqi@0 3247 //
aoqi@0 3248 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
aoqi@0 3249 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
aoqi@0 3250 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
aoqi@0 3251 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
aoqi@0 3252 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
aoqi@0 3253 else { return TypeInstPtr::NOTNULL; }
aoqi@0 3254 }
aoqi@0 3255 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
aoqi@0 3256
aoqi@0 3257 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
aoqi@0 3258 }
aoqi@0 3259
aoqi@0 3260 // Both are unloaded, not the same class, not Object
aoqi@0 3261 // Or meet unloaded with a different loaded class, not java/lang/Object
aoqi@0 3262 if( ptr != TypePtr::BotPTR ) {
aoqi@0 3263 return TypeInstPtr::NOTNULL;
aoqi@0 3264 }
aoqi@0 3265 return TypeInstPtr::BOTTOM;
aoqi@0 3266 }
aoqi@0 3267
aoqi@0 3268
aoqi@0 3269 //------------------------------meet-------------------------------------------
aoqi@0 3270 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 3271 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
aoqi@0 3272 // Perform a fast test for common case; meeting the same types together.
aoqi@0 3273 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 3274
aoqi@0 3275 // Current "this->_base" is Pointer
aoqi@0 3276 switch (t->base()) { // switch on original type
aoqi@0 3277
aoqi@0 3278 case Int: // Mixing ints & oops happens when javac
aoqi@0 3279 case Long: // reuses local variables
aoqi@0 3280 case FloatTop:
aoqi@0 3281 case FloatCon:
aoqi@0 3282 case FloatBot:
aoqi@0 3283 case DoubleTop:
aoqi@0 3284 case DoubleCon:
aoqi@0 3285 case DoubleBot:
aoqi@0 3286 case NarrowOop:
aoqi@0 3287 case NarrowKlass:
aoqi@0 3288 case Bottom: // Ye Olde Default
aoqi@0 3289 return Type::BOTTOM;
aoqi@0 3290 case Top:
aoqi@0 3291 return this;
aoqi@0 3292
aoqi@0 3293 default: // All else is a mistake
aoqi@0 3294 typerr(t);
aoqi@0 3295
aoqi@0 3296 case MetadataPtr:
aoqi@0 3297 case KlassPtr:
aoqi@0 3298 case RawPtr: return TypePtr::BOTTOM;
aoqi@0 3299
aoqi@0 3300 case AryPtr: { // All arrays inherit from Object class
aoqi@0 3301 const TypeAryPtr *tp = t->is_aryptr();
aoqi@0 3302 int offset = meet_offset(tp->offset());
aoqi@0 3303 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3304 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3305 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3306 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3307 switch (ptr) {
aoqi@0 3308 case TopPTR:
aoqi@0 3309 case AnyNull: // Fall 'down' to dual of object klass
aoqi@0 3310 // For instances when a subclass meets a superclass we fall
aoqi@0 3311 // below the centerline when the superclass is exact. We need to
aoqi@0 3312 // do the same here.
aoqi@0 3313 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
aoqi@0 3314 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
aoqi@0 3315 } else {
aoqi@0 3316 // cannot subclass, so the meet has to fall badly below the centerline
aoqi@0 3317 ptr = NotNull;
aoqi@0 3318 instance_id = InstanceBot;
aoqi@0 3319 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
aoqi@0 3320 }
aoqi@0 3321 case Constant:
aoqi@0 3322 case NotNull:
aoqi@0 3323 case BotPTR: // Fall down to object klass
aoqi@0 3324 // LCA is object_klass, but if we subclass from the top we can do better
aoqi@0 3325 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
aoqi@0 3326 // If 'this' (InstPtr) is above the centerline and it is Object class
aoqi@0 3327 // then we can subclass in the Java class hierarchy.
aoqi@0 3328 // For instances when a subclass meets a superclass we fall
aoqi@0 3329 // below the centerline when the superclass is exact. We need
aoqi@0 3330 // to do the same here.
aoqi@0 3331 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
aoqi@0 3332 // that is, tp's array type is a subtype of my klass
aoqi@0 3333 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
aoqi@0 3334 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
aoqi@0 3335 }
aoqi@0 3336 }
aoqi@0 3337 // The other case cannot happen, since I cannot be a subtype of an array.
aoqi@0 3338 // The meet falls down to Object class below centerline.
aoqi@0 3339 if( ptr == Constant )
aoqi@0 3340 ptr = NotNull;
aoqi@0 3341 instance_id = InstanceBot;
aoqi@0 3342 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
aoqi@0 3343 default: typerr(t);
aoqi@0 3344 }
aoqi@0 3345 }
aoqi@0 3346
aoqi@0 3347 case OopPtr: { // Meeting to OopPtrs
aoqi@0 3348 // Found a OopPtr type vs self-InstPtr type
aoqi@0 3349 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 3350 int offset = meet_offset(tp->offset());
aoqi@0 3351 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3352 switch (tp->ptr()) {
aoqi@0 3353 case TopPTR:
aoqi@0 3354 case AnyNull: {
aoqi@0 3355 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3356 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3357 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3358 return make(ptr, klass(), klass_is_exact(),
aoqi@0 3359 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
aoqi@0 3360 }
aoqi@0 3361 case NotNull:
aoqi@0 3362 case BotPTR: {
aoqi@0 3363 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3364 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3365 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3366 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
aoqi@0 3367 }
aoqi@0 3368 default: typerr(t);
aoqi@0 3369 }
aoqi@0 3370 }
aoqi@0 3371
aoqi@0 3372 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 3373 // Found an AnyPtr type vs self-InstPtr type
aoqi@0 3374 const TypePtr *tp = t->is_ptr();
aoqi@0 3375 int offset = meet_offset(tp->offset());
aoqi@0 3376 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3377 switch (tp->ptr()) {
aoqi@0 3378 case Null:
aoqi@0 3379 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3380 // else fall through to AnyNull
aoqi@0 3381 case TopPTR:
aoqi@0 3382 case AnyNull: {
aoqi@0 3383 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3384 const TypeOopPtr* speculative = _speculative;
aoqi@0 3385 return make(ptr, klass(), klass_is_exact(),
aoqi@0 3386 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
aoqi@0 3387 }
aoqi@0 3388 case NotNull:
aoqi@0 3389 case BotPTR:
aoqi@0 3390 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3391 default: typerr(t);
aoqi@0 3392 }
aoqi@0 3393 }
aoqi@0 3394
aoqi@0 3395 /*
aoqi@0 3396 A-top }
aoqi@0 3397 / | \ } Tops
aoqi@0 3398 B-top A-any C-top }
aoqi@0 3399 | / | \ | } Any-nulls
aoqi@0 3400 B-any | C-any }
aoqi@0 3401 | | |
aoqi@0 3402 B-con A-con C-con } constants; not comparable across classes
aoqi@0 3403 | | |
aoqi@0 3404 B-not | C-not }
aoqi@0 3405 | \ | / | } not-nulls
aoqi@0 3406 B-bot A-not C-bot }
aoqi@0 3407 \ | / } Bottoms
aoqi@0 3408 A-bot }
aoqi@0 3409 */
aoqi@0 3410
aoqi@0 3411 case InstPtr: { // Meeting 2 Oops?
aoqi@0 3412 // Found an InstPtr sub-type vs self-InstPtr type
aoqi@0 3413 const TypeInstPtr *tinst = t->is_instptr();
aoqi@0 3414 int off = meet_offset( tinst->offset() );
aoqi@0 3415 PTR ptr = meet_ptr( tinst->ptr() );
aoqi@0 3416 int instance_id = meet_instance_id(tinst->instance_id());
aoqi@0 3417 const TypeOopPtr* speculative = xmeet_speculative(tinst);
aoqi@0 3418 int depth = meet_inline_depth(tinst->inline_depth());
aoqi@0 3419
aoqi@0 3420 // Check for easy case; klasses are equal (and perhaps not loaded!)
aoqi@0 3421 // If we have constants, then we created oops so classes are loaded
aoqi@0 3422 // and we can handle the constants further down. This case handles
aoqi@0 3423 // both-not-loaded or both-loaded classes
aoqi@0 3424 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
aoqi@0 3425 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
aoqi@0 3426 }
aoqi@0 3427
aoqi@0 3428 // Classes require inspection in the Java klass hierarchy. Must be loaded.
aoqi@0 3429 ciKlass* tinst_klass = tinst->klass();
aoqi@0 3430 ciKlass* this_klass = this->klass();
aoqi@0 3431 bool tinst_xk = tinst->klass_is_exact();
aoqi@0 3432 bool this_xk = this->klass_is_exact();
aoqi@0 3433 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
aoqi@0 3434 // One of these classes has not been loaded
aoqi@0 3435 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
aoqi@0 3436 #ifndef PRODUCT
aoqi@0 3437 if( PrintOpto && Verbose ) {
aoqi@0 3438 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
aoqi@0 3439 tty->print(" this == "); this->dump(); tty->cr();
aoqi@0 3440 tty->print(" tinst == "); tinst->dump(); tty->cr();
aoqi@0 3441 }
aoqi@0 3442 #endif
aoqi@0 3443 return unloaded_meet;
aoqi@0 3444 }
aoqi@0 3445
aoqi@0 3446 // Handle mixing oops and interfaces first.
aoqi@0 3447 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
aoqi@0 3448 tinst_klass == ciEnv::current()->Object_klass())) {
aoqi@0 3449 ciKlass *tmp = tinst_klass; // Swap interface around
aoqi@0 3450 tinst_klass = this_klass;
aoqi@0 3451 this_klass = tmp;
aoqi@0 3452 bool tmp2 = tinst_xk;
aoqi@0 3453 tinst_xk = this_xk;
aoqi@0 3454 this_xk = tmp2;
aoqi@0 3455 }
aoqi@0 3456 if (tinst_klass->is_interface() &&
aoqi@0 3457 !(this_klass->is_interface() ||
aoqi@0 3458 // Treat java/lang/Object as an honorary interface,
aoqi@0 3459 // because we need a bottom for the interface hierarchy.
aoqi@0 3460 this_klass == ciEnv::current()->Object_klass())) {
aoqi@0 3461 // Oop meets interface!
aoqi@0 3462
aoqi@0 3463 // See if the oop subtypes (implements) interface.
aoqi@0 3464 ciKlass *k;
aoqi@0 3465 bool xk;
aoqi@0 3466 if( this_klass->is_subtype_of( tinst_klass ) ) {
aoqi@0 3467 // Oop indeed subtypes. Now keep oop or interface depending
aoqi@0 3468 // on whether we are both above the centerline or either is
aoqi@0 3469 // below the centerline. If we are on the centerline
aoqi@0 3470 // (e.g., Constant vs. AnyNull interface), use the constant.
aoqi@0 3471 k = below_centerline(ptr) ? tinst_klass : this_klass;
aoqi@0 3472 // If we are keeping this_klass, keep its exactness too.
aoqi@0 3473 xk = below_centerline(ptr) ? tinst_xk : this_xk;
aoqi@0 3474 } else { // Does not implement, fall to Object
aoqi@0 3475 // Oop does not implement interface, so mixing falls to Object
aoqi@0 3476 // just like the verifier does (if both are above the
aoqi@0 3477 // centerline fall to interface)
aoqi@0 3478 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
aoqi@0 3479 xk = above_centerline(ptr) ? tinst_xk : false;
aoqi@0 3480 // Watch out for Constant vs. AnyNull interface.
aoqi@0 3481 if (ptr == Constant) ptr = NotNull; // forget it was a constant
aoqi@0 3482 instance_id = InstanceBot;
aoqi@0 3483 }
aoqi@0 3484 ciObject* o = NULL; // the Constant value, if any
aoqi@0 3485 if (ptr == Constant) {
aoqi@0 3486 // Find out which constant.
aoqi@0 3487 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
aoqi@0 3488 }
aoqi@0 3489 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
aoqi@0 3490 }
aoqi@0 3491
aoqi@0 3492 // Either oop vs oop or interface vs interface or interface vs Object
aoqi@0 3493
aoqi@0 3494 // !!! Here's how the symmetry requirement breaks down into invariants:
aoqi@0 3495 // If we split one up & one down AND they subtype, take the down man.
aoqi@0 3496 // If we split one up & one down AND they do NOT subtype, "fall hard".
aoqi@0 3497 // If both are up and they subtype, take the subtype class.
aoqi@0 3498 // If both are up and they do NOT subtype, "fall hard".
aoqi@0 3499 // If both are down and they subtype, take the supertype class.
aoqi@0 3500 // If both are down and they do NOT subtype, "fall hard".
aoqi@0 3501 // Constants treated as down.
aoqi@0 3502
aoqi@0 3503 // Now, reorder the above list; observe that both-down+subtype is also
aoqi@0 3504 // "fall hard"; "fall hard" becomes the default case:
aoqi@0 3505 // If we split one up & one down AND they subtype, take the down man.
aoqi@0 3506 // If both are up and they subtype, take the subtype class.
aoqi@0 3507
aoqi@0 3508 // If both are down and they subtype, "fall hard".
aoqi@0 3509 // If both are down and they do NOT subtype, "fall hard".
aoqi@0 3510 // If both are up and they do NOT subtype, "fall hard".
aoqi@0 3511 // If we split one up & one down AND they do NOT subtype, "fall hard".
aoqi@0 3512
aoqi@0 3513 // If a proper subtype is exact, and we return it, we return it exactly.
aoqi@0 3514 // If a proper supertype is exact, there can be no subtyping relationship!
aoqi@0 3515 // If both types are equal to the subtype, exactness is and-ed below the
aoqi@0 3516 // centerline and or-ed above it. (N.B. Constants are always exact.)
aoqi@0 3517
aoqi@0 3518 // Check for subtyping:
aoqi@0 3519 ciKlass *subtype = NULL;
aoqi@0 3520 bool subtype_exact = false;
aoqi@0 3521 if( tinst_klass->equals(this_klass) ) {
aoqi@0 3522 subtype = this_klass;
aoqi@0 3523 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
aoqi@0 3524 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
aoqi@0 3525 subtype = this_klass; // Pick subtyping class
aoqi@0 3526 subtype_exact = this_xk;
aoqi@0 3527 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
aoqi@0 3528 subtype = tinst_klass; // Pick subtyping class
aoqi@0 3529 subtype_exact = tinst_xk;
aoqi@0 3530 }
aoqi@0 3531
aoqi@0 3532 if( subtype ) {
aoqi@0 3533 if( above_centerline(ptr) ) { // both are up?
aoqi@0 3534 this_klass = tinst_klass = subtype;
aoqi@0 3535 this_xk = tinst_xk = subtype_exact;
aoqi@0 3536 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
aoqi@0 3537 this_klass = tinst_klass; // tinst is down; keep down man
aoqi@0 3538 this_xk = tinst_xk;
aoqi@0 3539 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
aoqi@0 3540 tinst_klass = this_klass; // this is down; keep down man
aoqi@0 3541 tinst_xk = this_xk;
aoqi@0 3542 } else {
aoqi@0 3543 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
aoqi@0 3544 }
aoqi@0 3545 }
aoqi@0 3546
aoqi@0 3547 // Check for classes now being equal
aoqi@0 3548 if (tinst_klass->equals(this_klass)) {
aoqi@0 3549 // If the klasses are equal, the constants may still differ. Fall to
aoqi@0 3550 // NotNull if they do (neither constant is NULL; that is a special case
aoqi@0 3551 // handled elsewhere).
aoqi@0 3552 ciObject* o = NULL; // Assume not constant when done
aoqi@0 3553 ciObject* this_oop = const_oop();
aoqi@0 3554 ciObject* tinst_oop = tinst->const_oop();
aoqi@0 3555 if( ptr == Constant ) {
aoqi@0 3556 if (this_oop != NULL && tinst_oop != NULL &&
aoqi@0 3557 this_oop->equals(tinst_oop) )
aoqi@0 3558 o = this_oop;
aoqi@0 3559 else if (above_centerline(this ->_ptr))
aoqi@0 3560 o = tinst_oop;
aoqi@0 3561 else if (above_centerline(tinst ->_ptr))
aoqi@0 3562 o = this_oop;
aoqi@0 3563 else
aoqi@0 3564 ptr = NotNull;
aoqi@0 3565 }
aoqi@0 3566 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
aoqi@0 3567 } // Else classes are not equal
aoqi@0 3568
aoqi@0 3569 // Since klasses are different, we require a LCA in the Java
aoqi@0 3570 // class hierarchy - which means we have to fall to at least NotNull.
aoqi@0 3571 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
aoqi@0 3572 ptr = NotNull;
aoqi@0 3573 instance_id = InstanceBot;
aoqi@0 3574
aoqi@0 3575 // Now we find the LCA of Java classes
aoqi@0 3576 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
aoqi@0 3577 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
aoqi@0 3578 } // End of case InstPtr
aoqi@0 3579
aoqi@0 3580 } // End of switch
aoqi@0 3581 return this; // Return the double constant
aoqi@0 3582 }
aoqi@0 3583
aoqi@0 3584
aoqi@0 3585 //------------------------java_mirror_type--------------------------------------
aoqi@0 3586 ciType* TypeInstPtr::java_mirror_type() const {
aoqi@0 3587 // must be a singleton type
aoqi@0 3588 if( const_oop() == NULL ) return NULL;
aoqi@0 3589
aoqi@0 3590 // must be of type java.lang.Class
aoqi@0 3591 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
aoqi@0 3592
aoqi@0 3593 return const_oop()->as_instance()->java_mirror_type();
aoqi@0 3594 }
aoqi@0 3595
aoqi@0 3596
aoqi@0 3597 //------------------------------xdual------------------------------------------
aoqi@0 3598 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
aoqi@0 3599 // inheritance mechanism.
aoqi@0 3600 const Type *TypeInstPtr::xdual() const {
aoqi@0 3601 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
aoqi@0 3602 }
aoqi@0 3603
aoqi@0 3604 //------------------------------eq---------------------------------------------
aoqi@0 3605 // Structural equality check for Type representations
aoqi@0 3606 bool TypeInstPtr::eq( const Type *t ) const {
aoqi@0 3607 const TypeInstPtr *p = t->is_instptr();
aoqi@0 3608 return
aoqi@0 3609 klass()->equals(p->klass()) &&
aoqi@0 3610 TypeOopPtr::eq(p); // Check sub-type stuff
aoqi@0 3611 }
aoqi@0 3612
aoqi@0 3613 //------------------------------hash-------------------------------------------
aoqi@0 3614 // Type-specific hashing function.
aoqi@0 3615 int TypeInstPtr::hash(void) const {
aoqi@0 3616 int hash = klass()->hash() + TypeOopPtr::hash();
aoqi@0 3617 return hash;
aoqi@0 3618 }
aoqi@0 3619
aoqi@0 3620 //------------------------------dump2------------------------------------------
aoqi@0 3621 // Dump oop Type
aoqi@0 3622 #ifndef PRODUCT
aoqi@0 3623 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 3624 // Print the name of the klass.
aoqi@0 3625 klass()->print_name_on(st);
aoqi@0 3626
aoqi@0 3627 switch( _ptr ) {
aoqi@0 3628 case Constant:
aoqi@0 3629 // TO DO: Make CI print the hex address of the underlying oop.
aoqi@0 3630 if (WizardMode || Verbose) {
aoqi@0 3631 const_oop()->print_oop(st);
aoqi@0 3632 }
aoqi@0 3633 case BotPTR:
aoqi@0 3634 if (!WizardMode && !Verbose) {
aoqi@0 3635 if( _klass_is_exact ) st->print(":exact");
aoqi@0 3636 break;
aoqi@0 3637 }
aoqi@0 3638 case TopPTR:
aoqi@0 3639 case AnyNull:
aoqi@0 3640 case NotNull:
aoqi@0 3641 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 3642 if( _klass_is_exact ) st->print(":exact");
aoqi@0 3643 break;
aoqi@0 3644 }
aoqi@0 3645
aoqi@0 3646 if( _offset ) { // Dump offset, if any
aoqi@0 3647 if( _offset == OffsetBot ) st->print("+any");
aoqi@0 3648 else if( _offset == OffsetTop ) st->print("+unknown");
aoqi@0 3649 else st->print("+%d", _offset);
aoqi@0 3650 }
aoqi@0 3651
aoqi@0 3652 st->print(" *");
aoqi@0 3653 if (_instance_id == InstanceTop)
aoqi@0 3654 st->print(",iid=top");
aoqi@0 3655 else if (_instance_id != InstanceBot)
aoqi@0 3656 st->print(",iid=%d",_instance_id);
aoqi@0 3657
aoqi@0 3658 dump_inline_depth(st);
aoqi@0 3659 dump_speculative(st);
aoqi@0 3660 }
aoqi@0 3661 #endif
aoqi@0 3662
aoqi@0 3663 //------------------------------add_offset-------------------------------------
aoqi@0 3664 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
aoqi@0 3665 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
aoqi@0 3666 }
aoqi@0 3667
aoqi@0 3668 const Type *TypeInstPtr::remove_speculative() const {
aoqi@0 3669 if (_speculative == NULL) {
aoqi@0 3670 return this;
aoqi@0 3671 }
aoqi@0 3672 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 3673 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
aoqi@0 3674 }
aoqi@0 3675
aoqi@0 3676 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
aoqi@0 3677 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 3678 return this;
aoqi@0 3679 }
aoqi@0 3680 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
aoqi@0 3681 }
aoqi@0 3682
aoqi@0 3683 //=============================================================================
aoqi@0 3684 // Convenience common pre-built types.
aoqi@0 3685 const TypeAryPtr *TypeAryPtr::RANGE;
aoqi@0 3686 const TypeAryPtr *TypeAryPtr::OOPS;
aoqi@0 3687 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
aoqi@0 3688 const TypeAryPtr *TypeAryPtr::BYTES;
aoqi@0 3689 const TypeAryPtr *TypeAryPtr::SHORTS;
aoqi@0 3690 const TypeAryPtr *TypeAryPtr::CHARS;
aoqi@0 3691 const TypeAryPtr *TypeAryPtr::INTS;
aoqi@0 3692 const TypeAryPtr *TypeAryPtr::LONGS;
aoqi@0 3693 const TypeAryPtr *TypeAryPtr::FLOATS;
aoqi@0 3694 const TypeAryPtr *TypeAryPtr::DOUBLES;
aoqi@0 3695
aoqi@0 3696 //------------------------------make-------------------------------------------
aoqi@0 3697 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
aoqi@0 3698 assert(!(k == NULL && ary->_elem->isa_int()),
aoqi@0 3699 "integral arrays must be pre-equipped with a class");
aoqi@0 3700 if (!xk) xk = ary->ary_must_be_exact();
aoqi@0 3701 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3702 if (!UseExactTypes) xk = (ptr == Constant);
aoqi@0 3703 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
aoqi@0 3704 }
aoqi@0 3705
aoqi@0 3706 //------------------------------make-------------------------------------------
aoqi@0 3707 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
aoqi@0 3708 assert(!(k == NULL && ary->_elem->isa_int()),
aoqi@0 3709 "integral arrays must be pre-equipped with a class");
aoqi@0 3710 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
aoqi@0 3711 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
aoqi@0 3712 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3713 if (!UseExactTypes) xk = (ptr == Constant);
aoqi@0 3714 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
aoqi@0 3715 }
aoqi@0 3716
aoqi@0 3717 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 3718 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 3719 if( ptr == _ptr ) return this;
aoqi@0 3720 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3721 }
aoqi@0 3722
aoqi@0 3723
aoqi@0 3724 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 3725 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 3726 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 3727 if (!UseExactTypes) return this;
aoqi@0 3728 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
aoqi@0 3729 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3730 }
aoqi@0 3731
aoqi@0 3732 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 3733 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 3734 if( instance_id == _instance_id ) return this;
aoqi@0 3735 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
aoqi@0 3736 }
aoqi@0 3737
aoqi@0 3738 //-----------------------------narrow_size_type-------------------------------
aoqi@0 3739 // Local cache for arrayOopDesc::max_array_length(etype),
aoqi@0 3740 // which is kind of slow (and cached elsewhere by other users).
aoqi@0 3741 static jint max_array_length_cache[T_CONFLICT+1];
aoqi@0 3742 static jint max_array_length(BasicType etype) {
aoqi@0 3743 jint& cache = max_array_length_cache[etype];
aoqi@0 3744 jint res = cache;
aoqi@0 3745 if (res == 0) {
aoqi@0 3746 switch (etype) {
aoqi@0 3747 case T_NARROWOOP:
aoqi@0 3748 etype = T_OBJECT;
aoqi@0 3749 break;
aoqi@0 3750 case T_NARROWKLASS:
aoqi@0 3751 case T_CONFLICT:
aoqi@0 3752 case T_ILLEGAL:
aoqi@0 3753 case T_VOID:
aoqi@0 3754 etype = T_BYTE; // will produce conservatively high value
aoqi@0 3755 }
aoqi@0 3756 cache = res = arrayOopDesc::max_array_length(etype);
aoqi@0 3757 }
aoqi@0 3758 return res;
aoqi@0 3759 }
aoqi@0 3760
aoqi@0 3761 // Narrow the given size type to the index range for the given array base type.
aoqi@0 3762 // Return NULL if the resulting int type becomes empty.
aoqi@0 3763 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
aoqi@0 3764 jint hi = size->_hi;
aoqi@0 3765 jint lo = size->_lo;
aoqi@0 3766 jint min_lo = 0;
aoqi@0 3767 jint max_hi = max_array_length(elem()->basic_type());
aoqi@0 3768 //if (index_not_size) --max_hi; // type of a valid array index, FTR
aoqi@0 3769 bool chg = false;
aoqi@0 3770 if (lo < min_lo) {
aoqi@0 3771 lo = min_lo;
aoqi@0 3772 if (size->is_con()) {
aoqi@0 3773 hi = lo;
aoqi@0 3774 }
aoqi@0 3775 chg = true;
aoqi@0 3776 }
aoqi@0 3777 if (hi > max_hi) {
aoqi@0 3778 hi = max_hi;
aoqi@0 3779 if (size->is_con()) {
aoqi@0 3780 lo = hi;
aoqi@0 3781 }
aoqi@0 3782 chg = true;
aoqi@0 3783 }
aoqi@0 3784 // Negative length arrays will produce weird intermediate dead fast-path code
aoqi@0 3785 if (lo > hi)
aoqi@0 3786 return TypeInt::ZERO;
aoqi@0 3787 if (!chg)
aoqi@0 3788 return size;
aoqi@0 3789 return TypeInt::make(lo, hi, Type::WidenMin);
aoqi@0 3790 }
aoqi@0 3791
aoqi@0 3792 //-------------------------------cast_to_size----------------------------------
aoqi@0 3793 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
aoqi@0 3794 assert(new_size != NULL, "");
aoqi@0 3795 new_size = narrow_size_type(new_size);
aoqi@0 3796 if (new_size == size()) return this;
aoqi@0 3797 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
aoqi@0 3798 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3799 }
aoqi@0 3800
aoqi@0 3801
aoqi@0 3802 //------------------------------cast_to_stable---------------------------------
aoqi@0 3803 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
aoqi@0 3804 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
aoqi@0 3805 return this;
aoqi@0 3806
aoqi@0 3807 const Type* elem = this->elem();
aoqi@0 3808 const TypePtr* elem_ptr = elem->make_ptr();
aoqi@0 3809
aoqi@0 3810 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
aoqi@0 3811 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
aoqi@0 3812 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
aoqi@0 3813 }
aoqi@0 3814
aoqi@0 3815 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
aoqi@0 3816
aoqi@0 3817 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
aoqi@0 3818 }
aoqi@0 3819
aoqi@0 3820 //-----------------------------stable_dimension--------------------------------
aoqi@0 3821 int TypeAryPtr::stable_dimension() const {
aoqi@0 3822 if (!is_stable()) return 0;
aoqi@0 3823 int dim = 1;
aoqi@0 3824 const TypePtr* elem_ptr = elem()->make_ptr();
aoqi@0 3825 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
aoqi@0 3826 dim += elem_ptr->is_aryptr()->stable_dimension();
aoqi@0 3827 return dim;
aoqi@0 3828 }
aoqi@0 3829
aoqi@0 3830 //------------------------------eq---------------------------------------------
aoqi@0 3831 // Structural equality check for Type representations
aoqi@0 3832 bool TypeAryPtr::eq( const Type *t ) const {
aoqi@0 3833 const TypeAryPtr *p = t->is_aryptr();
aoqi@0 3834 return
aoqi@0 3835 _ary == p->_ary && // Check array
aoqi@0 3836 TypeOopPtr::eq(p); // Check sub-parts
aoqi@0 3837 }
aoqi@0 3838
aoqi@0 3839 //------------------------------hash-------------------------------------------
aoqi@0 3840 // Type-specific hashing function.
aoqi@0 3841 int TypeAryPtr::hash(void) const {
aoqi@0 3842 return (intptr_t)_ary + TypeOopPtr::hash();
aoqi@0 3843 }
aoqi@0 3844
aoqi@0 3845 //------------------------------meet-------------------------------------------
aoqi@0 3846 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 3847 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
aoqi@0 3848 // Perform a fast test for common case; meeting the same types together.
aoqi@0 3849 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 3850 // Current "this->_base" is Pointer
aoqi@0 3851 switch (t->base()) { // switch on original type
aoqi@0 3852
aoqi@0 3853 // Mixing ints & oops happens when javac reuses local variables
aoqi@0 3854 case Int:
aoqi@0 3855 case Long:
aoqi@0 3856 case FloatTop:
aoqi@0 3857 case FloatCon:
aoqi@0 3858 case FloatBot:
aoqi@0 3859 case DoubleTop:
aoqi@0 3860 case DoubleCon:
aoqi@0 3861 case DoubleBot:
aoqi@0 3862 case NarrowOop:
aoqi@0 3863 case NarrowKlass:
aoqi@0 3864 case Bottom: // Ye Olde Default
aoqi@0 3865 return Type::BOTTOM;
aoqi@0 3866 case Top:
aoqi@0 3867 return this;
aoqi@0 3868
aoqi@0 3869 default: // All else is a mistake
aoqi@0 3870 typerr(t);
aoqi@0 3871
aoqi@0 3872 case OopPtr: { // Meeting to OopPtrs
aoqi@0 3873 // Found a OopPtr type vs self-AryPtr type
aoqi@0 3874 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 3875 int offset = meet_offset(tp->offset());
aoqi@0 3876 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3877 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3878 switch (tp->ptr()) {
aoqi@0 3879 case TopPTR:
aoqi@0 3880 case AnyNull: {
aoqi@0 3881 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3882 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3883 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 3884 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 3885 }
aoqi@0 3886 case BotPTR:
aoqi@0 3887 case NotNull: {
aoqi@0 3888 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3889 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3890 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
aoqi@0 3891 }
aoqi@0 3892 default: ShouldNotReachHere();
aoqi@0 3893 }
aoqi@0 3894 }
aoqi@0 3895
aoqi@0 3896 case AnyPtr: { // Meeting two AnyPtrs
aoqi@0 3897 // Found an AnyPtr type vs self-AryPtr type
aoqi@0 3898 const TypePtr *tp = t->is_ptr();
aoqi@0 3899 int offset = meet_offset(tp->offset());
aoqi@0 3900 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3901 switch (tp->ptr()) {
aoqi@0 3902 case TopPTR:
aoqi@0 3903 return this;
aoqi@0 3904 case BotPTR:
aoqi@0 3905 case NotNull:
aoqi@0 3906 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3907 case Null:
aoqi@0 3908 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3909 // else fall through to AnyNull
aoqi@0 3910 case AnyNull: {
aoqi@0 3911 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3912 const TypeOopPtr* speculative = _speculative;
aoqi@0 3913 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 3914 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
aoqi@0 3915 }
aoqi@0 3916 default: ShouldNotReachHere();
aoqi@0 3917 }
aoqi@0 3918 }
aoqi@0 3919
aoqi@0 3920 case MetadataPtr:
aoqi@0 3921 case KlassPtr:
aoqi@0 3922 case RawPtr: return TypePtr::BOTTOM;
aoqi@0 3923
aoqi@0 3924 case AryPtr: { // Meeting 2 references?
aoqi@0 3925 const TypeAryPtr *tap = t->is_aryptr();
aoqi@0 3926 int off = meet_offset(tap->offset());
aoqi@0 3927 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
aoqi@0 3928 PTR ptr = meet_ptr(tap->ptr());
aoqi@0 3929 int instance_id = meet_instance_id(tap->instance_id());
aoqi@0 3930 const TypeOopPtr* speculative = xmeet_speculative(tap);
aoqi@0 3931 int depth = meet_inline_depth(tap->inline_depth());
aoqi@0 3932 ciKlass* lazy_klass = NULL;
aoqi@0 3933 if (tary->_elem->isa_int()) {
aoqi@0 3934 // Integral array element types have irrelevant lattice relations.
aoqi@0 3935 // It is the klass that determines array layout, not the element type.
aoqi@0 3936 if (_klass == NULL)
aoqi@0 3937 lazy_klass = tap->_klass;
aoqi@0 3938 else if (tap->_klass == NULL || tap->_klass == _klass) {
aoqi@0 3939 lazy_klass = _klass;
aoqi@0 3940 } else {
aoqi@0 3941 // Something like byte[int+] meets char[int+].
aoqi@0 3942 // This must fall to bottom, not (int[-128..65535])[int+].
aoqi@0 3943 instance_id = InstanceBot;
aoqi@0 3944 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
aoqi@0 3945 }
aoqi@0 3946 } else // Non integral arrays.
aoqi@0 3947 // Must fall to bottom if exact klasses in upper lattice
aoqi@0 3948 // are not equal or super klass is exact.
aoqi@0 3949 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
aoqi@0 3950 // meet with top[] and bottom[] are processed further down:
aoqi@0 3951 tap->_klass != NULL && this->_klass != NULL &&
aoqi@0 3952 // both are exact and not equal:
aoqi@0 3953 ((tap->_klass_is_exact && this->_klass_is_exact) ||
aoqi@0 3954 // 'tap' is exact and super or unrelated:
aoqi@0 3955 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
aoqi@0 3956 // 'this' is exact and super or unrelated:
aoqi@0 3957 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
aoqi@0 3958 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
aoqi@0 3959 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
aoqi@0 3960 }
aoqi@0 3961
aoqi@0 3962 bool xk = false;
aoqi@0 3963 switch (tap->ptr()) {
aoqi@0 3964 case AnyNull:
aoqi@0 3965 case TopPTR:
aoqi@0 3966 // Compute new klass on demand, do not use tap->_klass
aoqi@0 3967 if (below_centerline(this->_ptr)) {
aoqi@0 3968 xk = this->_klass_is_exact;
aoqi@0 3969 } else {
aoqi@0 3970 xk = (tap->_klass_is_exact | this->_klass_is_exact);
aoqi@0 3971 }
aoqi@0 3972 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 3973 case Constant: {
aoqi@0 3974 ciObject* o = const_oop();
aoqi@0 3975 if( _ptr == Constant ) {
aoqi@0 3976 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
aoqi@0 3977 xk = (klass() == tap->klass());
aoqi@0 3978 ptr = NotNull;
aoqi@0 3979 o = NULL;
aoqi@0 3980 instance_id = InstanceBot;
aoqi@0 3981 } else {
aoqi@0 3982 xk = true;
aoqi@0 3983 }
aoqi@0 3984 } else if(above_centerline(_ptr)) {
aoqi@0 3985 o = tap->const_oop();
aoqi@0 3986 xk = true;
aoqi@0 3987 } else {
aoqi@0 3988 // Only precise for identical arrays
aoqi@0 3989 xk = this->_klass_is_exact && (klass() == tap->klass());
aoqi@0 3990 }
aoqi@0 3991 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 3992 }
aoqi@0 3993 case NotNull:
aoqi@0 3994 case BotPTR:
aoqi@0 3995 // Compute new klass on demand, do not use tap->_klass
aoqi@0 3996 if (above_centerline(this->_ptr))
aoqi@0 3997 xk = tap->_klass_is_exact;
aoqi@0 3998 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
aoqi@0 3999 (klass() == tap->klass()); // Only precise for identical arrays
aoqi@0 4000 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 4001 default: ShouldNotReachHere();
aoqi@0 4002 }
aoqi@0 4003 }
aoqi@0 4004
aoqi@0 4005 // All arrays inherit from Object class
aoqi@0 4006 case InstPtr: {
aoqi@0 4007 const TypeInstPtr *tp = t->is_instptr();
aoqi@0 4008 int offset = meet_offset(tp->offset());
aoqi@0 4009 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4010 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 4011 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 4012 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 4013 switch (ptr) {
aoqi@0 4014 case TopPTR:
aoqi@0 4015 case AnyNull: // Fall 'down' to dual of object klass
aoqi@0 4016 // For instances when a subclass meets a superclass we fall
aoqi@0 4017 // below the centerline when the superclass is exact. We need to
aoqi@0 4018 // do the same here.
aoqi@0 4019 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
aoqi@0 4020 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 4021 } else {
aoqi@0 4022 // cannot subclass, so the meet has to fall badly below the centerline
aoqi@0 4023 ptr = NotNull;
aoqi@0 4024 instance_id = InstanceBot;
aoqi@0 4025 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
aoqi@0 4026 }
aoqi@0 4027 case Constant:
aoqi@0 4028 case NotNull:
aoqi@0 4029 case BotPTR: // Fall down to object klass
aoqi@0 4030 // LCA is object_klass, but if we subclass from the top we can do better
aoqi@0 4031 if (above_centerline(tp->ptr())) {
aoqi@0 4032 // If 'tp' is above the centerline and it is Object class
aoqi@0 4033 // then we can subclass in the Java class hierarchy.
aoqi@0 4034 // For instances when a subclass meets a superclass we fall
aoqi@0 4035 // below the centerline when the superclass is exact. We need
aoqi@0 4036 // to do the same here.
aoqi@0 4037 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
aoqi@0 4038 // that is, my array type is a subtype of 'tp' klass
aoqi@0 4039 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 4040 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 4041 }
aoqi@0 4042 }
aoqi@0 4043 // The other case cannot happen, since t cannot be a subtype of an array.
aoqi@0 4044 // The meet falls down to Object class below centerline.
aoqi@0 4045 if( ptr == Constant )
aoqi@0 4046 ptr = NotNull;
aoqi@0 4047 instance_id = InstanceBot;
aoqi@0 4048 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
aoqi@0 4049 default: typerr(t);
aoqi@0 4050 }
aoqi@0 4051 }
aoqi@0 4052 }
aoqi@0 4053 return this; // Lint noise
aoqi@0 4054 }
aoqi@0 4055
aoqi@0 4056 //------------------------------xdual------------------------------------------
aoqi@0 4057 // Dual: compute field-by-field dual
aoqi@0 4058 const Type *TypeAryPtr::xdual() const {
aoqi@0 4059 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
aoqi@0 4060 }
aoqi@0 4061
aoqi@0 4062 //----------------------interface_vs_oop---------------------------------------
aoqi@0 4063 #ifdef ASSERT
aoqi@0 4064 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
aoqi@0 4065 const TypeAryPtr* t_aryptr = t->isa_aryptr();
aoqi@0 4066 if (t_aryptr) {
aoqi@0 4067 return _ary->interface_vs_oop(t_aryptr->_ary);
aoqi@0 4068 }
aoqi@0 4069 return false;
aoqi@0 4070 }
aoqi@0 4071 #endif
aoqi@0 4072
aoqi@0 4073 //------------------------------dump2------------------------------------------
aoqi@0 4074 #ifndef PRODUCT
aoqi@0 4075 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4076 _ary->dump2(d,depth,st);
aoqi@0 4077 switch( _ptr ) {
aoqi@0 4078 case Constant:
aoqi@0 4079 const_oop()->print(st);
aoqi@0 4080 break;
aoqi@0 4081 case BotPTR:
aoqi@0 4082 if (!WizardMode && !Verbose) {
aoqi@0 4083 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4084 break;
aoqi@0 4085 }
aoqi@0 4086 case TopPTR:
aoqi@0 4087 case AnyNull:
aoqi@0 4088 case NotNull:
aoqi@0 4089 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 4090 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4091 break;
aoqi@0 4092 }
aoqi@0 4093
aoqi@0 4094 if( _offset != 0 ) {
aoqi@0 4095 int header_size = objArrayOopDesc::header_size() * wordSize;
aoqi@0 4096 if( _offset == OffsetTop ) st->print("+undefined");
aoqi@0 4097 else if( _offset == OffsetBot ) st->print("+any");
aoqi@0 4098 else if( _offset < header_size ) st->print("+%d", _offset);
aoqi@0 4099 else {
aoqi@0 4100 BasicType basic_elem_type = elem()->basic_type();
aoqi@0 4101 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
aoqi@0 4102 int elem_size = type2aelembytes(basic_elem_type);
aoqi@0 4103 st->print("[%d]", (_offset - array_base)/elem_size);
aoqi@0 4104 }
aoqi@0 4105 }
aoqi@0 4106 st->print(" *");
aoqi@0 4107 if (_instance_id == InstanceTop)
aoqi@0 4108 st->print(",iid=top");
aoqi@0 4109 else if (_instance_id != InstanceBot)
aoqi@0 4110 st->print(",iid=%d",_instance_id);
aoqi@0 4111
aoqi@0 4112 dump_inline_depth(st);
aoqi@0 4113 dump_speculative(st);
aoqi@0 4114 }
aoqi@0 4115 #endif
aoqi@0 4116
aoqi@0 4117 bool TypeAryPtr::empty(void) const {
aoqi@0 4118 if (_ary->empty()) return true;
aoqi@0 4119 return TypeOopPtr::empty();
aoqi@0 4120 }
aoqi@0 4121
aoqi@0 4122 //------------------------------add_offset-------------------------------------
aoqi@0 4123 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
aoqi@0 4124 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
aoqi@0 4125 }
aoqi@0 4126
aoqi@0 4127 const Type *TypeAryPtr::remove_speculative() const {
aoqi@0 4128 if (_speculative == NULL) {
aoqi@0 4129 return this;
aoqi@0 4130 }
aoqi@0 4131 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 4132 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
aoqi@0 4133 }
aoqi@0 4134
aoqi@0 4135 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
aoqi@0 4136 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 4137 return this;
aoqi@0 4138 }
aoqi@0 4139 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
aoqi@0 4140 }
aoqi@0 4141
aoqi@0 4142 //=============================================================================
aoqi@0 4143
aoqi@0 4144 //------------------------------hash-------------------------------------------
aoqi@0 4145 // Type-specific hashing function.
aoqi@0 4146 int TypeNarrowPtr::hash(void) const {
aoqi@0 4147 return _ptrtype->hash() + 7;
aoqi@0 4148 }
aoqi@0 4149
aoqi@0 4150 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
aoqi@0 4151 return _ptrtype->singleton();
aoqi@0 4152 }
aoqi@0 4153
aoqi@0 4154 bool TypeNarrowPtr::empty(void) const {
aoqi@0 4155 return _ptrtype->empty();
aoqi@0 4156 }
aoqi@0 4157
aoqi@0 4158 intptr_t TypeNarrowPtr::get_con() const {
aoqi@0 4159 return _ptrtype->get_con();
aoqi@0 4160 }
aoqi@0 4161
aoqi@0 4162 bool TypeNarrowPtr::eq( const Type *t ) const {
aoqi@0 4163 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
aoqi@0 4164 if (tc != NULL) {
aoqi@0 4165 if (_ptrtype->base() != tc->_ptrtype->base()) {
aoqi@0 4166 return false;
aoqi@0 4167 }
aoqi@0 4168 return tc->_ptrtype->eq(_ptrtype);
aoqi@0 4169 }
aoqi@0 4170 return false;
aoqi@0 4171 }
aoqi@0 4172
aoqi@0 4173 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
aoqi@0 4174 const TypePtr* odual = _ptrtype->dual()->is_ptr();
aoqi@0 4175 return make_same_narrowptr(odual);
aoqi@0 4176 }
aoqi@0 4177
aoqi@0 4178
aoqi@0 4179 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4180 if (isa_same_narrowptr(kills)) {
aoqi@0 4181 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
aoqi@0 4182 if (ft->empty())
aoqi@0 4183 return Type::TOP; // Canonical empty value
aoqi@0 4184 if (ft->isa_ptr()) {
aoqi@0 4185 return make_hash_same_narrowptr(ft->isa_ptr());
aoqi@0 4186 }
aoqi@0 4187 return ft;
aoqi@0 4188 } else if (kills->isa_ptr()) {
aoqi@0 4189 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
aoqi@0 4190 if (ft->empty())
aoqi@0 4191 return Type::TOP; // Canonical empty value
aoqi@0 4192 return ft;
aoqi@0 4193 } else {
aoqi@0 4194 return Type::TOP;
aoqi@0 4195 }
aoqi@0 4196 }
aoqi@0 4197
aoqi@0 4198 //------------------------------xmeet------------------------------------------
aoqi@0 4199 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4200 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
aoqi@0 4201 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4202 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4203
aoqi@0 4204 if (t->base() == base()) {
aoqi@0 4205 const Type* result = _ptrtype->xmeet(t->make_ptr());
aoqi@0 4206 if (result->isa_ptr()) {
aoqi@0 4207 return make_hash_same_narrowptr(result->is_ptr());
aoqi@0 4208 }
aoqi@0 4209 return result;
aoqi@0 4210 }
aoqi@0 4211
aoqi@0 4212 // Current "this->_base" is NarrowKlass or NarrowOop
aoqi@0 4213 switch (t->base()) { // switch on original type
aoqi@0 4214
aoqi@0 4215 case Int: // Mixing ints & oops happens when javac
aoqi@0 4216 case Long: // reuses local variables
aoqi@0 4217 case FloatTop:
aoqi@0 4218 case FloatCon:
aoqi@0 4219 case FloatBot:
aoqi@0 4220 case DoubleTop:
aoqi@0 4221 case DoubleCon:
aoqi@0 4222 case DoubleBot:
aoqi@0 4223 case AnyPtr:
aoqi@0 4224 case RawPtr:
aoqi@0 4225 case OopPtr:
aoqi@0 4226 case InstPtr:
aoqi@0 4227 case AryPtr:
aoqi@0 4228 case MetadataPtr:
aoqi@0 4229 case KlassPtr:
aoqi@0 4230 case NarrowOop:
aoqi@0 4231 case NarrowKlass:
aoqi@0 4232
aoqi@0 4233 case Bottom: // Ye Olde Default
aoqi@0 4234 return Type::BOTTOM;
aoqi@0 4235 case Top:
aoqi@0 4236 return this;
aoqi@0 4237
aoqi@0 4238 default: // All else is a mistake
aoqi@0 4239 typerr(t);
aoqi@0 4240
aoqi@0 4241 } // End of switch
aoqi@0 4242
aoqi@0 4243 return this;
aoqi@0 4244 }
aoqi@0 4245
aoqi@0 4246 #ifndef PRODUCT
aoqi@0 4247 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4248 _ptrtype->dump2(d, depth, st);
aoqi@0 4249 }
aoqi@0 4250 #endif
aoqi@0 4251
aoqi@0 4252 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
aoqi@0 4253 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
aoqi@0 4254
aoqi@0 4255
aoqi@0 4256 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
aoqi@0 4257 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
aoqi@0 4258 }
aoqi@0 4259
aoqi@0 4260
aoqi@0 4261 #ifndef PRODUCT
aoqi@0 4262 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4263 st->print("narrowoop: ");
aoqi@0 4264 TypeNarrowPtr::dump2(d, depth, st);
aoqi@0 4265 }
aoqi@0 4266 #endif
aoqi@0 4267
aoqi@0 4268 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
aoqi@0 4269
aoqi@0 4270 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
aoqi@0 4271 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
aoqi@0 4272 }
aoqi@0 4273
aoqi@0 4274 #ifndef PRODUCT
aoqi@0 4275 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4276 st->print("narrowklass: ");
aoqi@0 4277 TypeNarrowPtr::dump2(d, depth, st);
aoqi@0 4278 }
aoqi@0 4279 #endif
aoqi@0 4280
aoqi@0 4281
aoqi@0 4282 //------------------------------eq---------------------------------------------
aoqi@0 4283 // Structural equality check for Type representations
aoqi@0 4284 bool TypeMetadataPtr::eq( const Type *t ) const {
aoqi@0 4285 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
aoqi@0 4286 ciMetadata* one = metadata();
aoqi@0 4287 ciMetadata* two = a->metadata();
aoqi@0 4288 if (one == NULL || two == NULL) {
aoqi@0 4289 return (one == two) && TypePtr::eq(t);
aoqi@0 4290 } else {
aoqi@0 4291 return one->equals(two) && TypePtr::eq(t);
aoqi@0 4292 }
aoqi@0 4293 }
aoqi@0 4294
aoqi@0 4295 //------------------------------hash-------------------------------------------
aoqi@0 4296 // Type-specific hashing function.
aoqi@0 4297 int TypeMetadataPtr::hash(void) const {
aoqi@0 4298 return
aoqi@0 4299 (metadata() ? metadata()->hash() : 0) +
aoqi@0 4300 TypePtr::hash();
aoqi@0 4301 }
aoqi@0 4302
aoqi@0 4303 //------------------------------singleton--------------------------------------
aoqi@0 4304 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4305 // constants
aoqi@0 4306 bool TypeMetadataPtr::singleton(void) const {
aoqi@0 4307 // detune optimizer to not generate constant metadta + constant offset as a constant!
aoqi@0 4308 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 4309 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 4310 }
aoqi@0 4311
aoqi@0 4312 //------------------------------add_offset-------------------------------------
aoqi@0 4313 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
aoqi@0 4314 return make( _ptr, _metadata, xadd_offset(offset));
aoqi@0 4315 }
aoqi@0 4316
aoqi@0 4317 //-----------------------------filter------------------------------------------
aoqi@0 4318 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 4319 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4320 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
aoqi@0 4321 if (ft == NULL || ft->empty())
aoqi@0 4322 return Type::TOP; // Canonical empty value
aoqi@0 4323 return ft;
aoqi@0 4324 }
aoqi@0 4325
aoqi@0 4326 //------------------------------get_con----------------------------------------
aoqi@0 4327 intptr_t TypeMetadataPtr::get_con() const {
aoqi@0 4328 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 4329 assert( _offset >= 0, "" );
aoqi@0 4330
aoqi@0 4331 if (_offset != 0) {
aoqi@0 4332 // After being ported to the compiler interface, the compiler no longer
aoqi@0 4333 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 4334 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 4335 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 4336 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 4337 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 4338 // but this assertion here is to help prevent its occurence.
aoqi@0 4339 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 4340 ShouldNotReachHere();
aoqi@0 4341 }
aoqi@0 4342
aoqi@0 4343 return (intptr_t)metadata()->constant_encoding();
aoqi@0 4344 }
aoqi@0 4345
aoqi@0 4346 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 4347 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 4348 if( ptr == _ptr ) return this;
aoqi@0 4349 return make(ptr, metadata(), _offset);
aoqi@0 4350 }
aoqi@0 4351
aoqi@0 4352 //------------------------------meet-------------------------------------------
aoqi@0 4353 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4354 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
aoqi@0 4355 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4356 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4357
aoqi@0 4358 // Current "this->_base" is OopPtr
aoqi@0 4359 switch (t->base()) { // switch on original type
aoqi@0 4360
aoqi@0 4361 case Int: // Mixing ints & oops happens when javac
aoqi@0 4362 case Long: // reuses local variables
aoqi@0 4363 case FloatTop:
aoqi@0 4364 case FloatCon:
aoqi@0 4365 case FloatBot:
aoqi@0 4366 case DoubleTop:
aoqi@0 4367 case DoubleCon:
aoqi@0 4368 case DoubleBot:
aoqi@0 4369 case NarrowOop:
aoqi@0 4370 case NarrowKlass:
aoqi@0 4371 case Bottom: // Ye Olde Default
aoqi@0 4372 return Type::BOTTOM;
aoqi@0 4373 case Top:
aoqi@0 4374 return this;
aoqi@0 4375
aoqi@0 4376 default: // All else is a mistake
aoqi@0 4377 typerr(t);
aoqi@0 4378
aoqi@0 4379 case AnyPtr: {
aoqi@0 4380 // Found an AnyPtr type vs self-OopPtr type
aoqi@0 4381 const TypePtr *tp = t->is_ptr();
aoqi@0 4382 int offset = meet_offset(tp->offset());
aoqi@0 4383 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4384 switch (tp->ptr()) {
aoqi@0 4385 case Null:
aoqi@0 4386 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4387 // else fall through:
aoqi@0 4388 case TopPTR:
aoqi@0 4389 case AnyNull: {
aoqi@0 4390 return make(ptr, _metadata, offset);
aoqi@0 4391 }
aoqi@0 4392 case BotPTR:
aoqi@0 4393 case NotNull:
aoqi@0 4394 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4395 default: typerr(t);
aoqi@0 4396 }
aoqi@0 4397 }
aoqi@0 4398
aoqi@0 4399 case RawPtr:
aoqi@0 4400 case KlassPtr:
aoqi@0 4401 case OopPtr:
aoqi@0 4402 case InstPtr:
aoqi@0 4403 case AryPtr:
aoqi@0 4404 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 4405
aoqi@0 4406 case MetadataPtr: {
aoqi@0 4407 const TypeMetadataPtr *tp = t->is_metadataptr();
aoqi@0 4408 int offset = meet_offset(tp->offset());
aoqi@0 4409 PTR tptr = tp->ptr();
aoqi@0 4410 PTR ptr = meet_ptr(tptr);
aoqi@0 4411 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
aoqi@0 4412 if (tptr == TopPTR || _ptr == TopPTR ||
aoqi@0 4413 metadata()->equals(tp->metadata())) {
aoqi@0 4414 return make(ptr, md, offset);
aoqi@0 4415 }
aoqi@0 4416 // metadata is different
aoqi@0 4417 if( ptr == Constant ) { // Cannot be equal constants, so...
aoqi@0 4418 if( tptr == Constant && _ptr != Constant) return t;
aoqi@0 4419 if( _ptr == Constant && tptr != Constant) return this;
aoqi@0 4420 ptr = NotNull; // Fall down in lattice
aoqi@0 4421 }
aoqi@0 4422 return make(ptr, NULL, offset);
aoqi@0 4423 break;
aoqi@0 4424 }
aoqi@0 4425 } // End of switch
aoqi@0 4426 return this; // Return the double constant
aoqi@0 4427 }
aoqi@0 4428
aoqi@0 4429
aoqi@0 4430 //------------------------------xdual------------------------------------------
aoqi@0 4431 // Dual of a pure metadata pointer.
aoqi@0 4432 const Type *TypeMetadataPtr::xdual() const {
aoqi@0 4433 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
aoqi@0 4434 }
aoqi@0 4435
aoqi@0 4436 //------------------------------dump2------------------------------------------
aoqi@0 4437 #ifndef PRODUCT
aoqi@0 4438 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4439 st->print("metadataptr:%s", ptr_msg[_ptr]);
aoqi@0 4440 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
aoqi@0 4441 switch( _offset ) {
aoqi@0 4442 case OffsetTop: st->print("+top"); break;
aoqi@0 4443 case OffsetBot: st->print("+any"); break;
aoqi@0 4444 case 0: break;
aoqi@0 4445 default: st->print("+%d",_offset); break;
aoqi@0 4446 }
aoqi@0 4447 }
aoqi@0 4448 #endif
aoqi@0 4449
aoqi@0 4450
aoqi@0 4451 //=============================================================================
aoqi@0 4452 // Convenience common pre-built type.
aoqi@0 4453 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
aoqi@0 4454
aoqi@0 4455 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
aoqi@0 4456 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
aoqi@0 4457 }
aoqi@0 4458
aoqi@0 4459 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
aoqi@0 4460 return make(Constant, m, 0);
aoqi@0 4461 }
aoqi@0 4462 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
aoqi@0 4463 return make(Constant, m, 0);
aoqi@0 4464 }
aoqi@0 4465
aoqi@0 4466 //------------------------------make-------------------------------------------
aoqi@0 4467 // Create a meta data constant
aoqi@0 4468 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
aoqi@0 4469 assert(m == NULL || !m->is_klass(), "wrong type");
aoqi@0 4470 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
aoqi@0 4471 }
aoqi@0 4472
aoqi@0 4473
aoqi@0 4474 //=============================================================================
aoqi@0 4475 // Convenience common pre-built types.
aoqi@0 4476
aoqi@0 4477 // Not-null object klass or below
aoqi@0 4478 const TypeKlassPtr *TypeKlassPtr::OBJECT;
aoqi@0 4479 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
aoqi@0 4480
aoqi@0 4481 //------------------------------TypeKlassPtr-----------------------------------
aoqi@0 4482 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
aoqi@0 4483 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
aoqi@0 4484 }
aoqi@0 4485
aoqi@0 4486 //------------------------------make-------------------------------------------
aoqi@0 4487 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
aoqi@0 4488 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
aoqi@0 4489 assert( k != NULL, "Expect a non-NULL klass");
aoqi@0 4490 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
aoqi@0 4491 TypeKlassPtr *r =
aoqi@0 4492 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
aoqi@0 4493
aoqi@0 4494 return r;
aoqi@0 4495 }
aoqi@0 4496
aoqi@0 4497 //------------------------------eq---------------------------------------------
aoqi@0 4498 // Structural equality check for Type representations
aoqi@0 4499 bool TypeKlassPtr::eq( const Type *t ) const {
aoqi@0 4500 const TypeKlassPtr *p = t->is_klassptr();
aoqi@0 4501 return
aoqi@0 4502 klass()->equals(p->klass()) &&
aoqi@0 4503 TypePtr::eq(p);
aoqi@0 4504 }
aoqi@0 4505
aoqi@0 4506 //------------------------------hash-------------------------------------------
aoqi@0 4507 // Type-specific hashing function.
aoqi@0 4508 int TypeKlassPtr::hash(void) const {
aoqi@0 4509 return klass()->hash() + TypePtr::hash();
aoqi@0 4510 }
aoqi@0 4511
aoqi@0 4512 //------------------------------singleton--------------------------------------
aoqi@0 4513 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4514 // constants
aoqi@0 4515 bool TypeKlassPtr::singleton(void) const {
aoqi@0 4516 // detune optimizer to not generate constant klass + constant offset as a constant!
aoqi@0 4517 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 4518 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 4519 }
aoqi@0 4520
aoqi@0 4521 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 4522 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4523 // logic here mirrors the one from TypeOopPtr::filter. See comments
aoqi@0 4524 // there.
aoqi@0 4525 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 4526 const TypeKlassPtr* ftkp = ft->isa_klassptr();
aoqi@0 4527 const TypeKlassPtr* ktkp = kills->isa_klassptr();
aoqi@0 4528
aoqi@0 4529 if (ft->empty()) {
aoqi@0 4530 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
aoqi@0 4531 return kills; // Uplift to interface
aoqi@0 4532
aoqi@0 4533 return Type::TOP; // Canonical empty value
aoqi@0 4534 }
aoqi@0 4535
aoqi@0 4536 // Interface klass type could be exact in opposite to interface type,
aoqi@0 4537 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
aoqi@0 4538 if (ftkp != NULL && ktkp != NULL &&
aoqi@0 4539 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
aoqi@0 4540 !ftkp->klass_is_exact() && // Keep exact interface klass
aoqi@0 4541 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
aoqi@0 4542 return ktkp->cast_to_ptr_type(ftkp->ptr());
aoqi@0 4543 }
aoqi@0 4544
aoqi@0 4545 return ft;
aoqi@0 4546 }
aoqi@0 4547
aoqi@0 4548 //----------------------compute_klass------------------------------------------
aoqi@0 4549 // Compute the defining klass for this class
aoqi@0 4550 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
aoqi@0 4551 // Compute _klass based on element type.
aoqi@0 4552 ciKlass* k_ary = NULL;
aoqi@0 4553 const TypeInstPtr *tinst;
aoqi@0 4554 const TypeAryPtr *tary;
aoqi@0 4555 const Type* el = elem();
aoqi@0 4556 if (el->isa_narrowoop()) {
aoqi@0 4557 el = el->make_ptr();
aoqi@0 4558 }
aoqi@0 4559
aoqi@0 4560 // Get element klass
aoqi@0 4561 if ((tinst = el->isa_instptr()) != NULL) {
aoqi@0 4562 // Compute array klass from element klass
aoqi@0 4563 k_ary = ciObjArrayKlass::make(tinst->klass());
aoqi@0 4564 } else if ((tary = el->isa_aryptr()) != NULL) {
aoqi@0 4565 // Compute array klass from element klass
aoqi@0 4566 ciKlass* k_elem = tary->klass();
aoqi@0 4567 // If element type is something like bottom[], k_elem will be null.
aoqi@0 4568 if (k_elem != NULL)
aoqi@0 4569 k_ary = ciObjArrayKlass::make(k_elem);
aoqi@0 4570 } else if ((el->base() == Type::Top) ||
aoqi@0 4571 (el->base() == Type::Bottom)) {
aoqi@0 4572 // element type of Bottom occurs from meet of basic type
aoqi@0 4573 // and object; Top occurs when doing join on Bottom.
aoqi@0 4574 // Leave k_ary at NULL.
aoqi@0 4575 } else {
aoqi@0 4576 // Cannot compute array klass directly from basic type,
aoqi@0 4577 // since subtypes of TypeInt all have basic type T_INT.
aoqi@0 4578 #ifdef ASSERT
aoqi@0 4579 if (verify && el->isa_int()) {
aoqi@0 4580 // Check simple cases when verifying klass.
aoqi@0 4581 BasicType bt = T_ILLEGAL;
aoqi@0 4582 if (el == TypeInt::BYTE) {
aoqi@0 4583 bt = T_BYTE;
aoqi@0 4584 } else if (el == TypeInt::SHORT) {
aoqi@0 4585 bt = T_SHORT;
aoqi@0 4586 } else if (el == TypeInt::CHAR) {
aoqi@0 4587 bt = T_CHAR;
aoqi@0 4588 } else if (el == TypeInt::INT) {
aoqi@0 4589 bt = T_INT;
aoqi@0 4590 } else {
aoqi@0 4591 return _klass; // just return specified klass
aoqi@0 4592 }
aoqi@0 4593 return ciTypeArrayKlass::make(bt);
aoqi@0 4594 }
aoqi@0 4595 #endif
aoqi@0 4596 assert(!el->isa_int(),
aoqi@0 4597 "integral arrays must be pre-equipped with a class");
aoqi@0 4598 // Compute array klass directly from basic type
aoqi@0 4599 k_ary = ciTypeArrayKlass::make(el->basic_type());
aoqi@0 4600 }
aoqi@0 4601 return k_ary;
aoqi@0 4602 }
aoqi@0 4603
aoqi@0 4604 //------------------------------klass------------------------------------------
aoqi@0 4605 // Return the defining klass for this class
aoqi@0 4606 ciKlass* TypeAryPtr::klass() const {
aoqi@0 4607 if( _klass ) return _klass; // Return cached value, if possible
aoqi@0 4608
aoqi@0 4609 // Oops, need to compute _klass and cache it
aoqi@0 4610 ciKlass* k_ary = compute_klass();
aoqi@0 4611
aoqi@0 4612 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
aoqi@0 4613 // The _klass field acts as a cache of the underlying
aoqi@0 4614 // ciKlass for this array type. In order to set the field,
aoqi@0 4615 // we need to cast away const-ness.
aoqi@0 4616 //
aoqi@0 4617 // IMPORTANT NOTE: we *never* set the _klass field for the
aoqi@0 4618 // type TypeAryPtr::OOPS. This Type is shared between all
aoqi@0 4619 // active compilations. However, the ciKlass which represents
aoqi@0 4620 // this Type is *not* shared between compilations, so caching
aoqi@0 4621 // this value would result in fetching a dangling pointer.
aoqi@0 4622 //
aoqi@0 4623 // Recomputing the underlying ciKlass for each request is
aoqi@0 4624 // a bit less efficient than caching, but calls to
aoqi@0 4625 // TypeAryPtr::OOPS->klass() are not common enough to matter.
aoqi@0 4626 ((TypeAryPtr*)this)->_klass = k_ary;
aoqi@0 4627 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
aoqi@0 4628 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
aoqi@0 4629 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
aoqi@0 4630 }
aoqi@0 4631 }
aoqi@0 4632 return k_ary;
aoqi@0 4633 }
aoqi@0 4634
aoqi@0 4635
aoqi@0 4636 //------------------------------add_offset-------------------------------------
aoqi@0 4637 // Access internals of klass object
aoqi@0 4638 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
aoqi@0 4639 return make( _ptr, klass(), xadd_offset(offset) );
aoqi@0 4640 }
aoqi@0 4641
aoqi@0 4642 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 4643 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 4644 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
aoqi@0 4645 if( ptr == _ptr ) return this;
aoqi@0 4646 return make(ptr, _klass, _offset);
aoqi@0 4647 }
aoqi@0 4648
aoqi@0 4649
aoqi@0 4650 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 4651 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 4652 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 4653 if (!UseExactTypes) return this;
aoqi@0 4654 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
aoqi@0 4655 }
aoqi@0 4656
aoqi@0 4657
aoqi@0 4658 //-----------------------------as_instance_type--------------------------------
aoqi@0 4659 // Corresponding type for an instance of the given class.
aoqi@0 4660 // It will be NotNull, and exact if and only if the klass type is exact.
aoqi@0 4661 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
aoqi@0 4662 ciKlass* k = klass();
aoqi@0 4663 bool xk = klass_is_exact();
aoqi@0 4664 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
aoqi@0 4665 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
aoqi@0 4666 guarantee(toop != NULL, "need type for given klass");
aoqi@0 4667 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
aoqi@0 4668 return toop->cast_to_exactness(xk)->is_oopptr();
aoqi@0 4669 }
aoqi@0 4670
aoqi@0 4671
aoqi@0 4672 //------------------------------xmeet------------------------------------------
aoqi@0 4673 // Compute the MEET of two types, return a new Type object.
aoqi@0 4674 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
aoqi@0 4675 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4676 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4677
aoqi@0 4678 // Current "this->_base" is Pointer
aoqi@0 4679 switch (t->base()) { // switch on original type
aoqi@0 4680
aoqi@0 4681 case Int: // Mixing ints & oops happens when javac
aoqi@0 4682 case Long: // reuses local variables
aoqi@0 4683 case FloatTop:
aoqi@0 4684 case FloatCon:
aoqi@0 4685 case FloatBot:
aoqi@0 4686 case DoubleTop:
aoqi@0 4687 case DoubleCon:
aoqi@0 4688 case DoubleBot:
aoqi@0 4689 case NarrowOop:
aoqi@0 4690 case NarrowKlass:
aoqi@0 4691 case Bottom: // Ye Olde Default
aoqi@0 4692 return Type::BOTTOM;
aoqi@0 4693 case Top:
aoqi@0 4694 return this;
aoqi@0 4695
aoqi@0 4696 default: // All else is a mistake
aoqi@0 4697 typerr(t);
aoqi@0 4698
aoqi@0 4699 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 4700 // Found an AnyPtr type vs self-KlassPtr type
aoqi@0 4701 const TypePtr *tp = t->is_ptr();
aoqi@0 4702 int offset = meet_offset(tp->offset());
aoqi@0 4703 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4704 switch (tp->ptr()) {
aoqi@0 4705 case TopPTR:
aoqi@0 4706 return this;
aoqi@0 4707 case Null:
aoqi@0 4708 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
aoqi@0 4709 case AnyNull:
aoqi@0 4710 return make( ptr, klass(), offset );
aoqi@0 4711 case BotPTR:
aoqi@0 4712 case NotNull:
aoqi@0 4713 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4714 default: typerr(t);
aoqi@0 4715 }
aoqi@0 4716 }
aoqi@0 4717
aoqi@0 4718 case RawPtr:
aoqi@0 4719 case MetadataPtr:
aoqi@0 4720 case OopPtr:
aoqi@0 4721 case AryPtr: // Meet with AryPtr
aoqi@0 4722 case InstPtr: // Meet with InstPtr
aoqi@0 4723 return TypePtr::BOTTOM;
aoqi@0 4724
aoqi@0 4725 //
aoqi@0 4726 // A-top }
aoqi@0 4727 // / | \ } Tops
aoqi@0 4728 // B-top A-any C-top }
aoqi@0 4729 // | / | \ | } Any-nulls
aoqi@0 4730 // B-any | C-any }
aoqi@0 4731 // | | |
aoqi@0 4732 // B-con A-con C-con } constants; not comparable across classes
aoqi@0 4733 // | | |
aoqi@0 4734 // B-not | C-not }
aoqi@0 4735 // | \ | / | } not-nulls
aoqi@0 4736 // B-bot A-not C-bot }
aoqi@0 4737 // \ | / } Bottoms
aoqi@0 4738 // A-bot }
aoqi@0 4739 //
aoqi@0 4740
aoqi@0 4741 case KlassPtr: { // Meet two KlassPtr types
aoqi@0 4742 const TypeKlassPtr *tkls = t->is_klassptr();
aoqi@0 4743 int off = meet_offset(tkls->offset());
aoqi@0 4744 PTR ptr = meet_ptr(tkls->ptr());
aoqi@0 4745
aoqi@0 4746 // Check for easy case; klasses are equal (and perhaps not loaded!)
aoqi@0 4747 // If we have constants, then we created oops so classes are loaded
aoqi@0 4748 // and we can handle the constants further down. This case handles
aoqi@0 4749 // not-loaded classes
aoqi@0 4750 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
aoqi@0 4751 return make( ptr, klass(), off );
aoqi@0 4752 }
aoqi@0 4753
aoqi@0 4754 // Classes require inspection in the Java klass hierarchy. Must be loaded.
aoqi@0 4755 ciKlass* tkls_klass = tkls->klass();
aoqi@0 4756 ciKlass* this_klass = this->klass();
aoqi@0 4757 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
aoqi@0 4758 assert( this_klass->is_loaded(), "This class should have been loaded.");
aoqi@0 4759
aoqi@0 4760 // If 'this' type is above the centerline and is a superclass of the
aoqi@0 4761 // other, we can treat 'this' as having the same type as the other.
aoqi@0 4762 if ((above_centerline(this->ptr())) &&
aoqi@0 4763 tkls_klass->is_subtype_of(this_klass)) {
aoqi@0 4764 this_klass = tkls_klass;
aoqi@0 4765 }
aoqi@0 4766 // If 'tinst' type is above the centerline and is a superclass of the
aoqi@0 4767 // other, we can treat 'tinst' as having the same type as the other.
aoqi@0 4768 if ((above_centerline(tkls->ptr())) &&
aoqi@0 4769 this_klass->is_subtype_of(tkls_klass)) {
aoqi@0 4770 tkls_klass = this_klass;
aoqi@0 4771 }
aoqi@0 4772
aoqi@0 4773 // Check for classes now being equal
aoqi@0 4774 if (tkls_klass->equals(this_klass)) {
aoqi@0 4775 // If the klasses are equal, the constants may still differ. Fall to
aoqi@0 4776 // NotNull if they do (neither constant is NULL; that is a special case
aoqi@0 4777 // handled elsewhere).
aoqi@0 4778 if( ptr == Constant ) {
aoqi@0 4779 if (this->_ptr == Constant && tkls->_ptr == Constant &&
aoqi@0 4780 this->klass()->equals(tkls->klass()));
aoqi@0 4781 else if (above_centerline(this->ptr()));
aoqi@0 4782 else if (above_centerline(tkls->ptr()));
aoqi@0 4783 else
aoqi@0 4784 ptr = NotNull;
aoqi@0 4785 }
aoqi@0 4786 return make( ptr, this_klass, off );
aoqi@0 4787 } // Else classes are not equal
aoqi@0 4788
aoqi@0 4789 // Since klasses are different, we require the LCA in the Java
aoqi@0 4790 // class hierarchy - which means we have to fall to at least NotNull.
aoqi@0 4791 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
aoqi@0 4792 ptr = NotNull;
aoqi@0 4793 // Now we find the LCA of Java classes
aoqi@0 4794 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
aoqi@0 4795 return make( ptr, k, off );
aoqi@0 4796 } // End of case KlassPtr
aoqi@0 4797
aoqi@0 4798 } // End of switch
aoqi@0 4799 return this; // Return the double constant
aoqi@0 4800 }
aoqi@0 4801
aoqi@0 4802 //------------------------------xdual------------------------------------------
aoqi@0 4803 // Dual: compute field-by-field dual
aoqi@0 4804 const Type *TypeKlassPtr::xdual() const {
aoqi@0 4805 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
aoqi@0 4806 }
aoqi@0 4807
aoqi@0 4808 //------------------------------get_con----------------------------------------
aoqi@0 4809 intptr_t TypeKlassPtr::get_con() const {
aoqi@0 4810 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 4811 assert( _offset >= 0, "" );
aoqi@0 4812
aoqi@0 4813 if (_offset != 0) {
aoqi@0 4814 // After being ported to the compiler interface, the compiler no longer
aoqi@0 4815 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 4816 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 4817 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 4818 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 4819 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 4820 // but this assertion here is to help prevent its occurence.
aoqi@0 4821 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 4822 ShouldNotReachHere();
aoqi@0 4823 }
aoqi@0 4824
aoqi@0 4825 return (intptr_t)klass()->constant_encoding();
aoqi@0 4826 }
aoqi@0 4827 //------------------------------dump2------------------------------------------
aoqi@0 4828 // Dump Klass Type
aoqi@0 4829 #ifndef PRODUCT
aoqi@0 4830 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4831 switch( _ptr ) {
aoqi@0 4832 case Constant:
aoqi@0 4833 st->print("precise ");
aoqi@0 4834 case NotNull:
aoqi@0 4835 {
aoqi@0 4836 const char *name = klass()->name()->as_utf8();
aoqi@0 4837 if( name ) {
aoqi@0 4838 st->print("klass %s: " INTPTR_FORMAT, name, klass());
aoqi@0 4839 } else {
aoqi@0 4840 ShouldNotReachHere();
aoqi@0 4841 }
aoqi@0 4842 }
aoqi@0 4843 case BotPTR:
aoqi@0 4844 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
aoqi@0 4845 case TopPTR:
aoqi@0 4846 case AnyNull:
aoqi@0 4847 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 4848 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4849 break;
aoqi@0 4850 }
aoqi@0 4851
aoqi@0 4852 if( _offset ) { // Dump offset, if any
aoqi@0 4853 if( _offset == OffsetBot ) { st->print("+any"); }
aoqi@0 4854 else if( _offset == OffsetTop ) { st->print("+unknown"); }
aoqi@0 4855 else { st->print("+%d", _offset); }
aoqi@0 4856 }
aoqi@0 4857
aoqi@0 4858 st->print(" *");
aoqi@0 4859 }
aoqi@0 4860 #endif
aoqi@0 4861
aoqi@0 4862
aoqi@0 4863
aoqi@0 4864 //=============================================================================
aoqi@0 4865 // Convenience common pre-built types.
aoqi@0 4866
aoqi@0 4867 //------------------------------make-------------------------------------------
aoqi@0 4868 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
aoqi@0 4869 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
aoqi@0 4870 }
aoqi@0 4871
aoqi@0 4872 //------------------------------make-------------------------------------------
aoqi@0 4873 const TypeFunc *TypeFunc::make(ciMethod* method) {
aoqi@0 4874 Compile* C = Compile::current();
aoqi@0 4875 const TypeFunc* tf = C->last_tf(method); // check cache
aoqi@0 4876 if (tf != NULL) return tf; // The hit rate here is almost 50%.
aoqi@0 4877 const TypeTuple *domain;
aoqi@0 4878 if (method->is_static()) {
aoqi@0 4879 domain = TypeTuple::make_domain(NULL, method->signature());
aoqi@0 4880 } else {
aoqi@0 4881 domain = TypeTuple::make_domain(method->holder(), method->signature());
aoqi@0 4882 }
aoqi@0 4883 const TypeTuple *range = TypeTuple::make_range(method->signature());
aoqi@0 4884 tf = TypeFunc::make(domain, range);
aoqi@0 4885 C->set_last_tf(method, tf); // fill cache
aoqi@0 4886 return tf;
aoqi@0 4887 }
aoqi@0 4888
aoqi@0 4889 //------------------------------meet-------------------------------------------
aoqi@0 4890 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4891 const Type *TypeFunc::xmeet( const Type *t ) const {
aoqi@0 4892 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4893 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4894
aoqi@0 4895 // Current "this->_base" is Func
aoqi@0 4896 switch (t->base()) { // switch on original type
aoqi@0 4897
aoqi@0 4898 case Bottom: // Ye Olde Default
aoqi@0 4899 return t;
aoqi@0 4900
aoqi@0 4901 default: // All else is a mistake
aoqi@0 4902 typerr(t);
aoqi@0 4903
aoqi@0 4904 case Top:
aoqi@0 4905 break;
aoqi@0 4906 }
aoqi@0 4907 return this; // Return the double constant
aoqi@0 4908 }
aoqi@0 4909
aoqi@0 4910 //------------------------------xdual------------------------------------------
aoqi@0 4911 // Dual: compute field-by-field dual
aoqi@0 4912 const Type *TypeFunc::xdual() const {
aoqi@0 4913 return this;
aoqi@0 4914 }
aoqi@0 4915
aoqi@0 4916 //------------------------------eq---------------------------------------------
aoqi@0 4917 // Structural equality check for Type representations
aoqi@0 4918 bool TypeFunc::eq( const Type *t ) const {
aoqi@0 4919 const TypeFunc *a = (const TypeFunc*)t;
aoqi@0 4920 return _domain == a->_domain &&
aoqi@0 4921 _range == a->_range;
aoqi@0 4922 }
aoqi@0 4923
aoqi@0 4924 //------------------------------hash-------------------------------------------
aoqi@0 4925 // Type-specific hashing function.
aoqi@0 4926 int TypeFunc::hash(void) const {
aoqi@0 4927 return (intptr_t)_domain + (intptr_t)_range;
aoqi@0 4928 }
aoqi@0 4929
aoqi@0 4930 //------------------------------dump2------------------------------------------
aoqi@0 4931 // Dump Function Type
aoqi@0 4932 #ifndef PRODUCT
aoqi@0 4933 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4934 if( _range->_cnt <= Parms )
aoqi@0 4935 st->print("void");
aoqi@0 4936 else {
aoqi@0 4937 uint i;
aoqi@0 4938 for (i = Parms; i < _range->_cnt-1; i++) {
aoqi@0 4939 _range->field_at(i)->dump2(d,depth,st);
aoqi@0 4940 st->print("/");
aoqi@0 4941 }
aoqi@0 4942 _range->field_at(i)->dump2(d,depth,st);
aoqi@0 4943 }
aoqi@0 4944 st->print(" ");
aoqi@0 4945 st->print("( ");
aoqi@0 4946 if( !depth || d[this] ) { // Check for recursive dump
aoqi@0 4947 st->print("...)");
aoqi@0 4948 return;
aoqi@0 4949 }
aoqi@0 4950 d.Insert((void*)this,(void*)this); // Stop recursion
aoqi@0 4951 if (Parms < _domain->_cnt)
aoqi@0 4952 _domain->field_at(Parms)->dump2(d,depth-1,st);
aoqi@0 4953 for (uint i = Parms+1; i < _domain->_cnt; i++) {
aoqi@0 4954 st->print(", ");
aoqi@0 4955 _domain->field_at(i)->dump2(d,depth-1,st);
aoqi@0 4956 }
aoqi@0 4957 st->print(" )");
aoqi@0 4958 }
aoqi@0 4959 #endif
aoqi@0 4960
aoqi@0 4961 //------------------------------singleton--------------------------------------
aoqi@0 4962 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4963 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 4964 // or a single symbol.
aoqi@0 4965 bool TypeFunc::singleton(void) const {
aoqi@0 4966 return false; // Never a singleton
aoqi@0 4967 }
aoqi@0 4968
aoqi@0 4969 bool TypeFunc::empty(void) const {
aoqi@0 4970 return false; // Never empty
aoqi@0 4971 }
aoqi@0 4972
aoqi@0 4973
aoqi@0 4974 BasicType TypeFunc::return_type() const{
aoqi@0 4975 if (range()->cnt() == TypeFunc::Parms) {
aoqi@0 4976 return T_VOID;
aoqi@0 4977 }
aoqi@0 4978 return range()->field_at(TypeFunc::Parms)->basic_type();
aoqi@0 4979 }

mercurial