src/share/vm/opto/lcm.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1586
1271af4ec18c
child 1907
c18cbe5936b8
child 1930
3657cb01ffc5
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

duke@435 1 /*
xdono@1014 2 * Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Optimization - Graph Style
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_lcm.cpp.incl"
duke@435 29
duke@435 30 //------------------------------implicit_null_check----------------------------
duke@435 31 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 32 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 33 // I can generate a memory op if there is not one nearby.
duke@435 34 // The proj is the control projection for the not-null case.
duke@435 35 // The val is the pointer being checked for nullness.
duke@435 36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
duke@435 37 // Assume if null check need for 0 offset then always needed
duke@435 38 // Intel solaris doesn't support any null checks yet and no
duke@435 39 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 40 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 41
duke@435 42 // Make sure the ptr-is-null path appears to be uncommon!
duke@435 43 float f = end()->as_MachIf()->_prob;
duke@435 44 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 45 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 46
duke@435 47 uint bidx = 0; // Capture index of value into memop
duke@435 48 bool was_store; // Memory op is a store op
duke@435 49
duke@435 50 // Get the successor block for if the test ptr is non-null
duke@435 51 Block* not_null_block; // this one goes with the proj
duke@435 52 Block* null_block;
duke@435 53 if (_nodes[_nodes.size()-1] == proj) {
duke@435 54 null_block = _succs[0];
duke@435 55 not_null_block = _succs[1];
duke@435 56 } else {
duke@435 57 assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
duke@435 58 not_null_block = _succs[0];
duke@435 59 null_block = _succs[1];
duke@435 60 }
kvn@767 61 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 62 null_block = null_block->_succs[0];
kvn@767 63 }
duke@435 64
duke@435 65 // Search the exception block for an uncommon trap.
duke@435 66 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 67 // we need an uncommon trap. Briefly, we need a way to
duke@435 68 // detect failure of this optimization, as in 6366351.)
duke@435 69 {
duke@435 70 bool found_trap = false;
duke@435 71 for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
duke@435 72 Node* nn = null_block->_nodes[i1];
duke@435 73 if (nn->is_MachCall() &&
duke@435 74 nn->as_MachCall()->entry_point() ==
duke@435 75 SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
duke@435 76 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 77 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 78 jint tr_con = trtype->is_int()->get_con();
duke@435 79 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 80 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 81 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 82 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 83 && action != Deoptimization::Action_none) {
duke@435 84 // This uncommon trap is sure to recompile, eventually.
duke@435 85 // When that happens, C->too_many_traps will prevent
duke@435 86 // this transformation from happening again.
duke@435 87 found_trap = true;
duke@435 88 }
duke@435 89 }
duke@435 90 break;
duke@435 91 }
duke@435 92 }
duke@435 93 if (!found_trap) {
duke@435 94 // We did not find an uncommon trap.
duke@435 95 return;
duke@435 96 }
duke@435 97 }
duke@435 98
duke@435 99 // Search the successor block for a load or store who's base value is also
duke@435 100 // the tested value. There may be several.
duke@435 101 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 102 MachNode *best = NULL; // Best found so far
duke@435 103 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 104 Node *m = val->out(i);
duke@435 105 if( !m->is_Mach() ) continue;
duke@435 106 MachNode *mach = m->as_Mach();
duke@435 107 was_store = false;
duke@435 108 switch( mach->ideal_Opcode() ) {
duke@435 109 case Op_LoadB:
twisti@993 110 case Op_LoadUS:
duke@435 111 case Op_LoadD:
duke@435 112 case Op_LoadF:
duke@435 113 case Op_LoadI:
duke@435 114 case Op_LoadL:
duke@435 115 case Op_LoadP:
coleenp@548 116 case Op_LoadN:
duke@435 117 case Op_LoadS:
duke@435 118 case Op_LoadKlass:
kvn@599 119 case Op_LoadNKlass:
duke@435 120 case Op_LoadRange:
duke@435 121 case Op_LoadD_unaligned:
duke@435 122 case Op_LoadL_unaligned:
kvn@1586 123 assert(mach->in(2) == val, "should be address");
duke@435 124 break;
duke@435 125 case Op_StoreB:
duke@435 126 case Op_StoreC:
duke@435 127 case Op_StoreCM:
duke@435 128 case Op_StoreD:
duke@435 129 case Op_StoreF:
duke@435 130 case Op_StoreI:
duke@435 131 case Op_StoreL:
duke@435 132 case Op_StoreP:
coleenp@548 133 case Op_StoreN:
duke@435 134 was_store = true; // Memory op is a store op
duke@435 135 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 136 // If the value being nul-checked is in another slot, it means we
duke@435 137 // are storing the checked value, which does NOT check the value!
duke@435 138 if( mach->in(2) != val ) continue;
duke@435 139 break; // Found a memory op?
duke@435 140 case Op_StrComp:
cfang@1116 141 case Op_StrEquals:
cfang@1116 142 case Op_StrIndexOf:
rasbold@604 143 case Op_AryEq:
duke@435 144 // Not a legit memory op for implicit null check regardless of
duke@435 145 // embedded loads
duke@435 146 continue;
duke@435 147 default: // Also check for embedded loads
duke@435 148 if( !mach->needs_anti_dependence_check() )
duke@435 149 continue; // Not an memory op; skip it
kvn@1586 150 {
kvn@1586 151 // Check that value is used in memory address.
kvn@1586 152 Node* base;
kvn@1586 153 Node* index;
kvn@1586 154 const MachOper* oper = mach->memory_inputs(base, index);
kvn@1586 155 if (oper == NULL || oper == (MachOper*)-1) {
kvn@1586 156 continue; // Not an memory op; skip it
kvn@1586 157 }
kvn@1586 158 if (val == base ||
kvn@1586 159 val == index && val->bottom_type()->isa_narrowoop()) {
kvn@1586 160 break; // Found it
kvn@1586 161 } else {
kvn@1586 162 continue; // Skip it
kvn@1586 163 }
kvn@1586 164 }
duke@435 165 break;
duke@435 166 }
duke@435 167 // check if the offset is not too high for implicit exception
duke@435 168 {
duke@435 169 intptr_t offset = 0;
duke@435 170 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 171 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 172 if (base == NULL || base == NodeSentinel) {
kvn@767 173 // Narrow oop address doesn't have base, only index
kvn@767 174 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 175 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 176 continue; // Give up if offset is beyond page size
duke@435 177 // cannot reason about it; is probably not implicit null exception
duke@435 178 } else {
kvn@1077 179 const TypePtr* tptr;
kvn@1077 180 if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
kvn@1077 181 // 32-bits narrow oop can be the base of address expressions
kvn@1077 182 tptr = base->bottom_type()->make_ptr();
kvn@1077 183 } else {
kvn@1077 184 // only regular oops are expected here
kvn@1077 185 tptr = base->bottom_type()->is_ptr();
kvn@1077 186 }
duke@435 187 // Give up if offset is not a compile-time constant
duke@435 188 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 189 continue;
duke@435 190 offset += tptr->_offset; // correct if base is offseted
duke@435 191 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 192 continue; // Give up is reference is beyond 4K page size
duke@435 193 }
duke@435 194 }
duke@435 195
duke@435 196 // Check ctrl input to see if the null-check dominates the memory op
duke@435 197 Block *cb = cfg->_bbs[mach->_idx];
duke@435 198 cb = cb->_idom; // Always hoist at least 1 block
duke@435 199 if( !was_store ) { // Stores can be hoisted only one block
duke@435 200 while( cb->_dom_depth > (_dom_depth + 1))
duke@435 201 cb = cb->_idom; // Hoist loads as far as we want
duke@435 202 // The non-null-block should dominate the memory op, too. Live
duke@435 203 // range spilling will insert a spill in the non-null-block if it is
duke@435 204 // needs to spill the memory op for an implicit null check.
duke@435 205 if (cb->_dom_depth == (_dom_depth + 1)) {
duke@435 206 if (cb != not_null_block) continue;
duke@435 207 cb = cb->_idom;
duke@435 208 }
duke@435 209 }
duke@435 210 if( cb != this ) continue;
duke@435 211
duke@435 212 // Found a memory user; see if it can be hoisted to check-block
duke@435 213 uint vidx = 0; // Capture index of value into memop
duke@435 214 uint j;
duke@435 215 for( j = mach->req()-1; j > 0; j-- ) {
duke@435 216 if( mach->in(j) == val ) vidx = j;
duke@435 217 // Block of memory-op input
duke@435 218 Block *inb = cfg->_bbs[mach->in(j)->_idx];
duke@435 219 Block *b = this; // Start from nul check
duke@435 220 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 221 b = b->_idom; // search upwards for input
duke@435 222 // See if input dominates null check
duke@435 223 if( b != inb )
duke@435 224 break;
duke@435 225 }
duke@435 226 if( j > 0 )
duke@435 227 continue;
duke@435 228 Block *mb = cfg->_bbs[mach->_idx];
duke@435 229 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 230 // Give up hoisting if we have to move the store past any load.
duke@435 231 if( was_store ) {
duke@435 232 Block *b = mb; // Start searching here for a local load
duke@435 233 // mach use (faulting) trying to hoist
duke@435 234 // n might be blocker to hoisting
duke@435 235 while( b != this ) {
duke@435 236 uint k;
duke@435 237 for( k = 1; k < b->_nodes.size(); k++ ) {
duke@435 238 Node *n = b->_nodes[k];
duke@435 239 if( n->needs_anti_dependence_check() &&
duke@435 240 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 241 break; // Found anti-dependent load
duke@435 242 }
duke@435 243 if( k < b->_nodes.size() )
duke@435 244 break; // Found anti-dependent load
duke@435 245 // Make sure control does not do a merge (would have to check allpaths)
duke@435 246 if( b->num_preds() != 2 ) break;
duke@435 247 b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
duke@435 248 }
duke@435 249 if( b != this ) continue;
duke@435 250 }
duke@435 251
duke@435 252 // Make sure this memory op is not already being used for a NullCheck
duke@435 253 Node *e = mb->end();
duke@435 254 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 255 continue; // Already being used as a NULL check
duke@435 256
duke@435 257 // Found a candidate! Pick one with least dom depth - the highest
duke@435 258 // in the dom tree should be closest to the null check.
duke@435 259 if( !best ||
duke@435 260 cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
duke@435 261 best = mach;
duke@435 262 bidx = vidx;
duke@435 263
duke@435 264 }
duke@435 265 }
duke@435 266 // No candidate!
duke@435 267 if( !best ) return;
duke@435 268
duke@435 269 // ---- Found an implicit null check
duke@435 270 extern int implicit_null_checks;
duke@435 271 implicit_null_checks++;
duke@435 272
duke@435 273 // Hoist the memory candidate up to the end of the test block.
duke@435 274 Block *old_block = cfg->_bbs[best->_idx];
duke@435 275 old_block->find_remove(best);
duke@435 276 add_inst(best);
duke@435 277 cfg->_bbs.map(best->_idx,this);
duke@435 278
duke@435 279 // Move the control dependence
duke@435 280 if (best->in(0) && best->in(0) == old_block->_nodes[0])
duke@435 281 best->set_req(0, _nodes[0]);
duke@435 282
duke@435 283 // Check for flag-killing projections that also need to be hoisted
duke@435 284 // Should be DU safe because no edge updates.
duke@435 285 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 286 Node* n = best->fast_out(j);
duke@435 287 if( n->Opcode() == Op_MachProj ) {
duke@435 288 cfg->_bbs[n->_idx]->find_remove(n);
duke@435 289 add_inst(n);
duke@435 290 cfg->_bbs.map(n->_idx,this);
duke@435 291 }
duke@435 292 }
duke@435 293
duke@435 294 Compile *C = cfg->C;
duke@435 295 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 296 // One of two graph shapes got matched:
duke@435 297 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 298 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 299 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 300 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 301 // We need to flip the projections to keep the same semantics.
duke@435 302 if( proj->Opcode() == Op_IfTrue ) {
duke@435 303 // Swap order of projections in basic block to swap branch targets
duke@435 304 Node *tmp1 = _nodes[end_idx()+1];
duke@435 305 Node *tmp2 = _nodes[end_idx()+2];
duke@435 306 _nodes.map(end_idx()+1, tmp2);
duke@435 307 _nodes.map(end_idx()+2, tmp1);
duke@435 308 Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
duke@435 309 tmp1->replace_by(tmp);
duke@435 310 tmp2->replace_by(tmp1);
duke@435 311 tmp->replace_by(tmp2);
duke@435 312 tmp->destruct();
duke@435 313 }
duke@435 314
duke@435 315 // Remove the existing null check; use a new implicit null check instead.
duke@435 316 // Since schedule-local needs precise def-use info, we need to correct
duke@435 317 // it as well.
duke@435 318 Node *old_tst = proj->in(0);
duke@435 319 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
duke@435 320 _nodes.map(end_idx(),nul_chk);
duke@435 321 cfg->_bbs.map(nul_chk->_idx,this);
duke@435 322 // Redirect users of old_test to nul_chk
duke@435 323 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 324 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 325 // Clean-up any dead code
duke@435 326 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 327 old_tst->set_req(i3, NULL);
duke@435 328
duke@435 329 cfg->latency_from_uses(nul_chk);
duke@435 330 cfg->latency_from_uses(best);
duke@435 331 }
duke@435 332
duke@435 333
duke@435 334 //------------------------------select-----------------------------------------
duke@435 335 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 336 // one choice, then use it. Projections take top priority for correctness
duke@435 337 // reasons - if I see a projection, then it is next. There are a number of
duke@435 338 // other special cases, for instructions that consume condition codes, et al.
duke@435 339 // These are chosen immediately. Some instructions are required to immediately
duke@435 340 // precede the last instruction in the block, and these are taken last. Of the
duke@435 341 // remaining cases (most), choose the instruction with the greatest latency
duke@435 342 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 343 // routine). If there is a tie, choose the instruction with the most inputs.
duke@435 344 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 345
duke@435 346 // If only a single entry on the stack, use it
duke@435 347 uint cnt = worklist.size();
duke@435 348 if (cnt == 1) {
duke@435 349 Node *n = worklist[0];
duke@435 350 worklist.map(0,worklist.pop());
duke@435 351 return n;
duke@435 352 }
duke@435 353
duke@435 354 uint choice = 0; // Bigger is most important
duke@435 355 uint latency = 0; // Bigger is scheduled first
duke@435 356 uint score = 0; // Bigger is better
kvn@688 357 int idx = -1; // Index in worklist
duke@435 358
duke@435 359 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 360 // Order in worklist is used to break ties.
duke@435 361 // See caller for how this is used to delay scheduling
duke@435 362 // of induction variable increments to after the other
duke@435 363 // uses of the phi are scheduled.
duke@435 364 Node *n = worklist[i]; // Get Node on worklist
duke@435 365
duke@435 366 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 367 if( n->is_Proj() || // Projections always win
duke@435 368 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 369 iop == Op_CreateEx || // Create-exception must start block
duke@435 370 iop == Op_CheckCastPP
duke@435 371 ) {
duke@435 372 worklist.map(i,worklist.pop());
duke@435 373 return n;
duke@435 374 }
duke@435 375
duke@435 376 // Final call in a block must be adjacent to 'catch'
duke@435 377 Node *e = end();
duke@435 378 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 379 continue;
duke@435 380
duke@435 381 // Memory op for an implicit null check has to be at the end of the block
duke@435 382 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 383 continue;
duke@435 384
duke@435 385 uint n_choice = 2;
duke@435 386
duke@435 387 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 388 // branch is the last instruction in the basic block) force it to the
duke@435 389 // end of the basic block
duke@435 390 if ( must_clone[iop] ) {
duke@435 391 // See if any use is a branch
duke@435 392 bool found_machif = false;
duke@435 393
duke@435 394 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 395 Node* use = n->fast_out(j);
duke@435 396
duke@435 397 // The use is a conditional branch, make them adjacent
duke@435 398 if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
duke@435 399 found_machif = true;
duke@435 400 break;
duke@435 401 }
duke@435 402
duke@435 403 // More than this instruction pending for successor to be ready,
duke@435 404 // don't choose this if other opportunities are ready
duke@435 405 if (ready_cnt[use->_idx] > 1)
duke@435 406 n_choice = 1;
duke@435 407 }
duke@435 408
duke@435 409 // loop terminated, prefer not to use this instruction
duke@435 410 if (found_machif)
duke@435 411 continue;
duke@435 412 }
duke@435 413
duke@435 414 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 415 // condition code. If so, choose this first
duke@435 416 for (uint j = 0; j < n->req() ; j++) {
duke@435 417 Node *inn = n->in(j);
duke@435 418 if (inn) {
duke@435 419 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 420 n_choice = 3;
duke@435 421 break;
duke@435 422 }
duke@435 423 }
duke@435 424 }
duke@435 425
duke@435 426 // MachTemps should be scheduled last so they are near their uses
duke@435 427 if (n->is_MachTemp()) {
duke@435 428 n_choice = 1;
duke@435 429 }
duke@435 430
duke@435 431 uint n_latency = cfg->_node_latency.at_grow(n->_idx);
duke@435 432 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 433
duke@435 434 // Keep best latency found
duke@435 435 if( choice < n_choice ||
duke@435 436 ( choice == n_choice &&
duke@435 437 ( latency < n_latency ||
duke@435 438 ( latency == n_latency &&
duke@435 439 ( score < n_score ))))) {
duke@435 440 choice = n_choice;
duke@435 441 latency = n_latency;
duke@435 442 score = n_score;
duke@435 443 idx = i; // Also keep index in worklist
duke@435 444 }
duke@435 445 } // End of for all ready nodes in worklist
duke@435 446
kvn@688 447 assert(idx >= 0, "index should be set");
kvn@688 448 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 449
kvn@688 450 worklist.map((uint)idx, worklist.pop()); // Compress worklist
duke@435 451 return n;
duke@435 452 }
duke@435 453
duke@435 454
duke@435 455 //------------------------------set_next_call----------------------------------
duke@435 456 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
duke@435 457 if( next_call.test_set(n->_idx) ) return;
duke@435 458 for( uint i=0; i<n->len(); i++ ) {
duke@435 459 Node *m = n->in(i);
duke@435 460 if( !m ) continue; // must see all nodes in block that precede call
duke@435 461 if( bbs[m->_idx] == this )
duke@435 462 set_next_call( m, next_call, bbs );
duke@435 463 }
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------needed_for_next_call---------------------------
duke@435 467 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 468 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 469 // next subroutine call get priority - basically it moves things NOT needed
duke@435 470 // for the next call till after the call. This prevents me from trying to
duke@435 471 // carry lots of stuff live across a call.
duke@435 472 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
duke@435 473 // Find the next control-defining Node in this block
duke@435 474 Node* call = NULL;
duke@435 475 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 476 Node* m = this_call->fast_out(i);
duke@435 477 if( bbs[m->_idx] == this && // Local-block user
duke@435 478 m != this_call && // Not self-start node
duke@435 479 m->is_Call() )
duke@435 480 call = m;
duke@435 481 break;
duke@435 482 }
duke@435 483 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 484 // Set next-call for all inputs to this call
duke@435 485 set_next_call(call, next_call, bbs);
duke@435 486 }
duke@435 487
duke@435 488 //------------------------------sched_call-------------------------------------
duke@435 489 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
duke@435 490 RegMask regs;
duke@435 491
duke@435 492 // Schedule all the users of the call right now. All the users are
duke@435 493 // projection Nodes, so they must be scheduled next to the call.
duke@435 494 // Collect all the defined registers.
duke@435 495 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 496 Node* n = mcall->fast_out(i);
duke@435 497 assert( n->Opcode()==Op_MachProj, "" );
duke@435 498 --ready_cnt[n->_idx];
duke@435 499 assert( !ready_cnt[n->_idx], "" );
duke@435 500 // Schedule next to call
duke@435 501 _nodes.map(node_cnt++, n);
duke@435 502 // Collect defined registers
duke@435 503 regs.OR(n->out_RegMask());
duke@435 504 // Check for scheduling the next control-definer
duke@435 505 if( n->bottom_type() == Type::CONTROL )
duke@435 506 // Warm up next pile of heuristic bits
duke@435 507 needed_for_next_call(n, next_call, bbs);
duke@435 508
duke@435 509 // Children of projections are now all ready
duke@435 510 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 511 Node* m = n->fast_out(j); // Get user
duke@435 512 if( bbs[m->_idx] != this ) continue;
duke@435 513 if( m->is_Phi() ) continue;
duke@435 514 if( !--ready_cnt[m->_idx] )
duke@435 515 worklist.push(m);
duke@435 516 }
duke@435 517
duke@435 518 }
duke@435 519
duke@435 520 // Act as if the call defines the Frame Pointer.
duke@435 521 // Certainly the FP is alive and well after the call.
duke@435 522 regs.Insert(matcher.c_frame_pointer());
duke@435 523
duke@435 524 // Set all registers killed and not already defined by the call.
duke@435 525 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 526 int op = mcall->ideal_Opcode();
duke@435 527 MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
duke@435 528 bbs.map(proj->_idx,this);
duke@435 529 _nodes.insert(node_cnt++, proj);
duke@435 530
duke@435 531 // Select the right register save policy.
duke@435 532 const char * save_policy;
duke@435 533 switch (op) {
duke@435 534 case Op_CallRuntime:
duke@435 535 case Op_CallLeaf:
duke@435 536 case Op_CallLeafNoFP:
duke@435 537 // Calling C code so use C calling convention
duke@435 538 save_policy = matcher._c_reg_save_policy;
duke@435 539 break;
duke@435 540
duke@435 541 case Op_CallStaticJava:
duke@435 542 case Op_CallDynamicJava:
duke@435 543 // Calling Java code so use Java calling convention
duke@435 544 save_policy = matcher._register_save_policy;
duke@435 545 break;
duke@435 546
duke@435 547 default:
duke@435 548 ShouldNotReachHere();
duke@435 549 }
duke@435 550
duke@435 551 // When using CallRuntime mark SOE registers as killed by the call
duke@435 552 // so values that could show up in the RegisterMap aren't live in a
duke@435 553 // callee saved register since the register wouldn't know where to
duke@435 554 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 555 // have debug info on them. Strictly speaking this only needs to be
duke@435 556 // done for oops since idealreg2debugmask takes care of debug info
duke@435 557 // references but there no way to handle oops differently than other
duke@435 558 // pointers as far as the kill mask goes.
duke@435 559 bool exclude_soe = op == Op_CallRuntime;
duke@435 560
twisti@1572 561 // If the call is a MethodHandle invoke, we need to exclude the
twisti@1572 562 // register which is used to save the SP value over MH invokes from
twisti@1572 563 // the mask. Otherwise this register could be used for
twisti@1572 564 // deoptimization information.
twisti@1572 565 if (op == Op_CallStaticJava) {
twisti@1572 566 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
twisti@1572 567 if (mcallstaticjava->_method_handle_invoke)
twisti@1572 568 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
twisti@1572 569 }
twisti@1572 570
duke@435 571 // Fill in the kill mask for the call
duke@435 572 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
duke@435 573 if( !regs.Member(r) ) { // Not already defined by the call
duke@435 574 // Save-on-call register?
duke@435 575 if ((save_policy[r] == 'C') ||
duke@435 576 (save_policy[r] == 'A') ||
duke@435 577 ((save_policy[r] == 'E') && exclude_soe)) {
duke@435 578 proj->_rout.Insert(r);
duke@435 579 }
duke@435 580 }
duke@435 581 }
duke@435 582
duke@435 583 return node_cnt;
duke@435 584 }
duke@435 585
duke@435 586
duke@435 587 //------------------------------schedule_local---------------------------------
duke@435 588 // Topological sort within a block. Someday become a real scheduler.
duke@435 589 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
duke@435 590 // Already "sorted" are the block start Node (as the first entry), and
duke@435 591 // the block-ending Node and any trailing control projections. We leave
duke@435 592 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 593 // Node. Everything else gets topo-sorted.
duke@435 594
duke@435 595 #ifndef PRODUCT
duke@435 596 if (cfg->trace_opto_pipelining()) {
duke@435 597 tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
duke@435 598 for (uint i = 0;i < _nodes.size();i++) {
duke@435 599 tty->print("# ");
duke@435 600 _nodes[i]->fast_dump();
duke@435 601 }
duke@435 602 tty->print_cr("#");
duke@435 603 }
duke@435 604 #endif
duke@435 605
duke@435 606 // RootNode is already sorted
duke@435 607 if( _nodes.size() == 1 ) return true;
duke@435 608
duke@435 609 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
duke@435 610 uint node_cnt = end_idx();
duke@435 611 uint phi_cnt = 1;
duke@435 612 uint i;
duke@435 613 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
duke@435 614 Node *n = _nodes[i];
duke@435 615 if( n->is_Phi() || // Found a PhiNode or ParmNode
duke@435 616 (n->is_Proj() && n->in(0) == head()) ) {
duke@435 617 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
duke@435 618 _nodes.map(i,_nodes[phi_cnt]);
duke@435 619 _nodes.map(phi_cnt++,n); // swap Phi/Parm up front
duke@435 620 } else { // All others
duke@435 621 // Count block-local inputs to 'n'
duke@435 622 uint cnt = n->len(); // Input count
duke@435 623 uint local = 0;
duke@435 624 for( uint j=0; j<cnt; j++ ) {
duke@435 625 Node *m = n->in(j);
duke@435 626 if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
duke@435 627 local++; // One more block-local input
duke@435 628 }
duke@435 629 ready_cnt[n->_idx] = local; // Count em up
duke@435 630
duke@435 631 // A few node types require changing a required edge to a precedence edge
duke@435 632 // before allocation.
ysr@777 633 if( UseConcMarkSweepGC || UseG1GC ) {
duke@435 634 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
duke@435 635 // Note: Required edges with an index greater than oper_input_base
duke@435 636 // are not supported by the allocator.
duke@435 637 // Note2: Can only depend on unmatched edge being last,
duke@435 638 // can not depend on its absolute position.
duke@435 639 Node *oop_store = n->in(n->req() - 1);
duke@435 640 n->del_req(n->req() - 1);
duke@435 641 n->add_prec(oop_store);
duke@435 642 assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
duke@435 643 }
duke@435 644 }
kvn@1535 645 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
kvn@1535 646 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
kvn@1535 647 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
kvn@688 648 // MemBarAcquire could be created without Precedent edge.
kvn@688 649 // del_req() replaces the specified edge with the last input edge
kvn@688 650 // and then removes the last edge. If the specified edge > number of
kvn@688 651 // edges the last edge will be moved outside of the input edges array
kvn@688 652 // and the edge will be lost. This is why this code should be
kvn@688 653 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 654 Node *x = n->in(TypeFunc::Parms);
duke@435 655 n->del_req(TypeFunc::Parms);
duke@435 656 n->add_prec(x);
duke@435 657 }
duke@435 658 }
duke@435 659 }
duke@435 660 for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
duke@435 661 ready_cnt[_nodes[i2]->_idx] = 0;
duke@435 662
duke@435 663 // All the prescheduled guys do not hold back internal nodes
duke@435 664 uint i3;
duke@435 665 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
duke@435 666 Node *n = _nodes[i3]; // Get pre-scheduled
duke@435 667 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 668 Node* m = n->fast_out(j);
duke@435 669 if( cfg->_bbs[m->_idx] ==this ) // Local-block user
duke@435 670 ready_cnt[m->_idx]--; // Fix ready count
duke@435 671 }
duke@435 672 }
duke@435 673
duke@435 674 Node_List delay;
duke@435 675 // Make a worklist
duke@435 676 Node_List worklist;
duke@435 677 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
duke@435 678 Node *m = _nodes[i4];
duke@435 679 if( !ready_cnt[m->_idx] ) { // Zero ready count?
duke@435 680 if (m->is_iteratively_computed()) {
duke@435 681 // Push induction variable increments last to allow other uses
duke@435 682 // of the phi to be scheduled first. The select() method breaks
duke@435 683 // ties in scheduling by worklist order.
duke@435 684 delay.push(m);
never@560 685 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 686 // Force the CreateEx to the top of the list so it's processed
never@560 687 // first and ends up at the start of the block.
never@560 688 worklist.insert(0, m);
duke@435 689 } else {
duke@435 690 worklist.push(m); // Then on to worklist!
duke@435 691 }
duke@435 692 }
duke@435 693 }
duke@435 694 while (delay.size()) {
duke@435 695 Node* d = delay.pop();
duke@435 696 worklist.push(d);
duke@435 697 }
duke@435 698
duke@435 699 // Warm up the 'next_call' heuristic bits
duke@435 700 needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
duke@435 701
duke@435 702 #ifndef PRODUCT
duke@435 703 if (cfg->trace_opto_pipelining()) {
duke@435 704 for (uint j=0; j<_nodes.size(); j++) {
duke@435 705 Node *n = _nodes[j];
duke@435 706 int idx = n->_idx;
duke@435 707 tty->print("# ready cnt:%3d ", ready_cnt[idx]);
duke@435 708 tty->print("latency:%3d ", cfg->_node_latency.at_grow(idx));
duke@435 709 tty->print("%4d: %s\n", idx, n->Name());
duke@435 710 }
duke@435 711 }
duke@435 712 #endif
duke@435 713
duke@435 714 // Pull from worklist and schedule
duke@435 715 while( worklist.size() ) { // Worklist is not ready
duke@435 716
duke@435 717 #ifndef PRODUCT
duke@435 718 if (cfg->trace_opto_pipelining()) {
duke@435 719 tty->print("# ready list:");
duke@435 720 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 721 Node *n = worklist[i]; // Get Node on worklist
duke@435 722 tty->print(" %d", n->_idx);
duke@435 723 }
duke@435 724 tty->cr();
duke@435 725 }
duke@435 726 #endif
duke@435 727
duke@435 728 // Select and pop a ready guy from worklist
duke@435 729 Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
duke@435 730 _nodes.map(phi_cnt++,n); // Schedule him next
duke@435 731
duke@435 732 #ifndef PRODUCT
duke@435 733 if (cfg->trace_opto_pipelining()) {
duke@435 734 tty->print("# select %d: %s", n->_idx, n->Name());
duke@435 735 tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
duke@435 736 n->dump();
duke@435 737 if (Verbose) {
duke@435 738 tty->print("# ready list:");
duke@435 739 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 740 Node *n = worklist[i]; // Get Node on worklist
duke@435 741 tty->print(" %d", n->_idx);
duke@435 742 }
duke@435 743 tty->cr();
duke@435 744 }
duke@435 745 }
duke@435 746
duke@435 747 #endif
duke@435 748 if( n->is_MachCall() ) {
duke@435 749 MachCallNode *mcall = n->as_MachCall();
duke@435 750 phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 751 continue;
duke@435 752 }
duke@435 753 // Children are now all ready
duke@435 754 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 755 Node* m = n->fast_out(i5); // Get user
duke@435 756 if( cfg->_bbs[m->_idx] != this ) continue;
duke@435 757 if( m->is_Phi() ) continue;
duke@435 758 if( !--ready_cnt[m->_idx] )
duke@435 759 worklist.push(m);
duke@435 760 }
duke@435 761 }
duke@435 762
duke@435 763 if( phi_cnt != end_idx() ) {
duke@435 764 // did not schedule all. Retry, Bailout, or Die
duke@435 765 Compile* C = matcher.C;
duke@435 766 if (C->subsume_loads() == true && !C->failing()) {
duke@435 767 // Retry with subsume_loads == false
duke@435 768 // If this is the first failure, the sentinel string will "stick"
duke@435 769 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 770 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 771 }
duke@435 772 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 773 return false;
duke@435 774 }
duke@435 775
duke@435 776 #ifndef PRODUCT
duke@435 777 if (cfg->trace_opto_pipelining()) {
duke@435 778 tty->print_cr("#");
duke@435 779 tty->print_cr("# after schedule_local");
duke@435 780 for (uint i = 0;i < _nodes.size();i++) {
duke@435 781 tty->print("# ");
duke@435 782 _nodes[i]->fast_dump();
duke@435 783 }
duke@435 784 tty->cr();
duke@435 785 }
duke@435 786 #endif
duke@435 787
duke@435 788
duke@435 789 return true;
duke@435 790 }
duke@435 791
duke@435 792 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 793 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 794 for (uint l = 0; l < use->len(); l++) {
duke@435 795 if (use->in(l) == old_def) {
duke@435 796 if (l < use->req()) {
duke@435 797 use->set_req(l, new_def);
duke@435 798 } else {
duke@435 799 use->rm_prec(l);
duke@435 800 use->add_prec(new_def);
duke@435 801 l--;
duke@435 802 }
duke@435 803 }
duke@435 804 }
duke@435 805 }
duke@435 806
duke@435 807 //------------------------------catch_cleanup_find_cloned_def------------------
duke@435 808 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 809 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 810
duke@435 811 // The use is some block below the Catch. Find and return the clone of the def
duke@435 812 // that dominates the use. If there is no clone in a dominating block, then
duke@435 813 // create a phi for the def in a dominating block.
duke@435 814
duke@435 815 // Find which successor block dominates this use. The successor
duke@435 816 // blocks must all be single-entry (from the Catch only; I will have
duke@435 817 // split blocks to make this so), hence they all dominate.
duke@435 818 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 819 use_blk = use_blk->_idom;
duke@435 820
duke@435 821 // Find the successor
duke@435 822 Node *fixup = NULL;
duke@435 823
duke@435 824 uint j;
duke@435 825 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 826 if( use_blk == def_blk->_succs[j] )
duke@435 827 break;
duke@435 828
duke@435 829 if( j == def_blk->_num_succs ) {
duke@435 830 // Block at same level in dom-tree is not a successor. It needs a
duke@435 831 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 832 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 833 for(uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 834 inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
duke@435 835 }
duke@435 836
duke@435 837 // Check to see if the use_blk already has an identical phi inserted.
duke@435 838 // If it exists, it will be at the first position since all uses of a
duke@435 839 // def are processed together.
duke@435 840 Node *phi = use_blk->_nodes[1];
duke@435 841 if( phi->is_Phi() ) {
duke@435 842 fixup = phi;
duke@435 843 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 844 if (phi->in(k) != inputs[k]) {
duke@435 845 // Not a match
duke@435 846 fixup = NULL;
duke@435 847 break;
duke@435 848 }
duke@435 849 }
duke@435 850 }
duke@435 851
duke@435 852 // If an existing PhiNode was not found, make a new one.
duke@435 853 if (fixup == NULL) {
duke@435 854 Node *new_phi = PhiNode::make(use_blk->head(), def);
duke@435 855 use_blk->_nodes.insert(1, new_phi);
duke@435 856 bbs.map(new_phi->_idx, use_blk);
duke@435 857 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 858 new_phi->set_req(k, inputs[k]);
duke@435 859 }
duke@435 860 fixup = new_phi;
duke@435 861 }
duke@435 862
duke@435 863 } else {
duke@435 864 // Found the use just below the Catch. Make it use the clone.
duke@435 865 fixup = use_blk->_nodes[n_clone_idx];
duke@435 866 }
duke@435 867
duke@435 868 return fixup;
duke@435 869 }
duke@435 870
duke@435 871 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 872 // Fix all input edges in use that reference "def". The use is in the same
duke@435 873 // block as the def and both have been cloned in each successor block.
duke@435 874 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 875
duke@435 876 // Both the use and def have been cloned. For each successor block,
duke@435 877 // get the clone of the use, and make its input the clone of the def
duke@435 878 // found in that block.
duke@435 879
duke@435 880 uint use_idx = blk->find_node(use);
duke@435 881 uint offset_idx = use_idx - beg;
duke@435 882 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 883 // Get clone in each successor block
duke@435 884 Block *sb = blk->_succs[k];
duke@435 885 Node *clone = sb->_nodes[offset_idx+1];
duke@435 886 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 887
duke@435 888 // Make use-clone reference the def-clone
duke@435 889 catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
duke@435 890 }
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------catch_cleanup_inter_block---------------------
duke@435 894 // Fix all input edges in use that reference "def". The use is in a different
duke@435 895 // block than the def.
duke@435 896 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 897 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 898
duke@435 899 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
duke@435 900 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 901 }
duke@435 902
duke@435 903 //------------------------------call_catch_cleanup-----------------------------
duke@435 904 // If we inserted any instructions between a Call and his CatchNode,
duke@435 905 // clone the instructions on all paths below the Catch.
duke@435 906 void Block::call_catch_cleanup(Block_Array &bbs) {
duke@435 907
duke@435 908 // End of region to clone
duke@435 909 uint end = end_idx();
duke@435 910 if( !_nodes[end]->is_Catch() ) return;
duke@435 911 // Start of region to clone
duke@435 912 uint beg = end;
duke@435 913 while( _nodes[beg-1]->Opcode() != Op_MachProj ||
duke@435 914 !_nodes[beg-1]->in(0)->is_Call() ) {
duke@435 915 beg--;
duke@435 916 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 917 }
duke@435 918 // Range of inserted instructions is [beg, end)
duke@435 919 if( beg == end ) return;
duke@435 920
duke@435 921 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 922 // 'end' indices.
duke@435 923 for( uint i = 0; i < _num_succs; i++ ) {
duke@435 924 Block *sb = _succs[i];
duke@435 925 // Clone the entire area; ignoring the edge fixup for now.
duke@435 926 for( uint j = end; j > beg; j-- ) {
duke@435 927 Node *clone = _nodes[j-1]->clone();
duke@435 928 sb->_nodes.insert( 1, clone );
duke@435 929 bbs.map(clone->_idx,sb);
duke@435 930 }
duke@435 931 }
duke@435 932
duke@435 933
duke@435 934 // Fixup edges. Check the def-use info per cloned Node
duke@435 935 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 936 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
duke@435 937 Node *n = _nodes[i2]; // Node that got cloned
duke@435 938 // Need DU safe iterator because of edge manipulation in calls.
duke@435 939 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 940 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 941 out->push(n->fast_out(j1));
duke@435 942 }
duke@435 943 uint max = out->size();
duke@435 944 for (uint j = 0; j < max; j++) {// For all users
duke@435 945 Node *use = out->pop();
duke@435 946 Block *buse = bbs[use->_idx];
duke@435 947 if( use->is_Phi() ) {
duke@435 948 for( uint k = 1; k < use->req(); k++ )
duke@435 949 if( use->in(k) == n ) {
duke@435 950 Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
duke@435 951 use->set_req(k, fixup);
duke@435 952 }
duke@435 953 } else {
duke@435 954 if (this == buse) {
duke@435 955 catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
duke@435 956 } else {
duke@435 957 catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
duke@435 958 }
duke@435 959 }
duke@435 960 } // End for all users
duke@435 961
duke@435 962 } // End of for all Nodes in cloned area
duke@435 963
duke@435 964 // Remove the now-dead cloned ops
duke@435 965 for(uint i3 = beg; i3 < end; i3++ ) {
duke@435 966 _nodes[beg]->disconnect_inputs(NULL);
duke@435 967 _nodes.remove(beg);
duke@435 968 }
duke@435 969
duke@435 970 // If the successor blocks have a CreateEx node, move it back to the top
duke@435 971 for(uint i4 = 0; i4 < _num_succs; i4++ ) {
duke@435 972 Block *sb = _succs[i4];
duke@435 973 uint new_cnt = end - beg;
duke@435 974 // Remove any newly created, but dead, nodes.
duke@435 975 for( uint j = new_cnt; j > 0; j-- ) {
duke@435 976 Node *n = sb->_nodes[j];
duke@435 977 if (n->outcnt() == 0 &&
duke@435 978 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
duke@435 979 n->disconnect_inputs(NULL);
duke@435 980 sb->_nodes.remove(j);
duke@435 981 new_cnt--;
duke@435 982 }
duke@435 983 }
duke@435 984 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 985 if (new_cnt > 0) {
duke@435 986 Node *cex = sb->_nodes[1+new_cnt];
duke@435 987 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 988 sb->_nodes.remove(1+new_cnt);
duke@435 989 sb->_nodes.insert(1,cex);
duke@435 990 }
duke@435 991 }
duke@435 992 }
duke@435 993 }

mercurial