src/share/vm/opto/subnode.cpp

Tue, 15 May 2012 10:10:23 +0200

author
roland
date
Tue, 15 May 2012 10:10:23 +0200
changeset 3787
6759698e3140
parent 3407
35acf8f0a2e4
child 3834
8f6ce6f1049b
permissions
-rw-r--r--

7133857: exp() and pow() should use the x87 ISA on x86
Summary: use x87 instructions to implement exp() and pow() in interpreter/c1/c2.
Reviewed-by: kvn, never, twisti

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/connode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/matcher.hpp"
stefank@2314 34 #include "opto/mulnode.hpp"
stefank@2314 35 #include "opto/opcodes.hpp"
stefank@2314 36 #include "opto/phaseX.hpp"
stefank@2314 37 #include "opto/subnode.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
stefank@2314 39
duke@435 40 // Portions of code courtesy of Clifford Click
duke@435 41
duke@435 42 // Optimization - Graph Style
duke@435 43
duke@435 44 #include "math.h"
duke@435 45
duke@435 46 //=============================================================================
duke@435 47 //------------------------------Identity---------------------------------------
duke@435 48 // If right input is a constant 0, return the left input.
duke@435 49 Node *SubNode::Identity( PhaseTransform *phase ) {
duke@435 50 assert(in(1) != this, "Must already have called Value");
duke@435 51 assert(in(2) != this, "Must already have called Value");
duke@435 52
duke@435 53 // Remove double negation
duke@435 54 const Type *zero = add_id();
duke@435 55 if( phase->type( in(1) )->higher_equal( zero ) &&
duke@435 56 in(2)->Opcode() == Opcode() &&
duke@435 57 phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
duke@435 58 return in(2)->in(2);
duke@435 59 }
duke@435 60
never@647 61 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
duke@435 62 if( in(1)->Opcode() == Op_AddI ) {
duke@435 63 if( phase->eqv(in(1)->in(2),in(2)) )
duke@435 64 return in(1)->in(1);
never@647 65 if (phase->eqv(in(1)->in(1),in(2)))
never@647 66 return in(1)->in(2);
never@647 67
duke@435 68 // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
duke@435 69 // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
duke@435 70 // are originally used, although the optimizer sometimes jiggers things).
duke@435 71 // This folding through an O2 removes a loop-exit use of a loop-varying
duke@435 72 // value and generally lowers register pressure in and around the loop.
duke@435 73 if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
duke@435 74 phase->eqv(in(1)->in(2)->in(1),in(2)) )
duke@435 75 return in(1)->in(1);
duke@435 76 }
duke@435 77
duke@435 78 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
duke@435 79 }
duke@435 80
duke@435 81 //------------------------------Value------------------------------------------
duke@435 82 // A subtract node differences it's two inputs.
duke@435 83 const Type *SubNode::Value( PhaseTransform *phase ) const {
duke@435 84 const Node* in1 = in(1);
duke@435 85 const Node* in2 = in(2);
duke@435 86 // Either input is TOP ==> the result is TOP
duke@435 87 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 88 if( t1 == Type::TOP ) return Type::TOP;
duke@435 89 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 90 if( t2 == Type::TOP ) return Type::TOP;
duke@435 91
duke@435 92 // Not correct for SubFnode and AddFNode (must check for infinity)
duke@435 93 // Equal? Subtract is zero
kvn@3407 94 if (in1->eqv_uncast(in2)) return add_id();
duke@435 95
duke@435 96 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 97 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
duke@435 98 return bottom_type();
duke@435 99
duke@435 100 return sub(t1,t2); // Local flavor of type subtraction
duke@435 101
duke@435 102 }
duke@435 103
duke@435 104 //=============================================================================
duke@435 105
duke@435 106 //------------------------------Helper function--------------------------------
duke@435 107 static bool ok_to_convert(Node* inc, Node* iv) {
duke@435 108 // Do not collapse (x+c0)-y if "+" is a loop increment, because the
duke@435 109 // "-" is loop invariant and collapsing extends the live-range of "x"
duke@435 110 // to overlap with the "+", forcing another register to be used in
duke@435 111 // the loop.
duke@435 112 // This test will be clearer with '&&' (apply DeMorgan's rule)
duke@435 113 // but I like the early cutouts that happen here.
duke@435 114 const PhiNode *phi;
duke@435 115 if( ( !inc->in(1)->is_Phi() ||
duke@435 116 !(phi=inc->in(1)->as_Phi()) ||
duke@435 117 phi->is_copy() ||
duke@435 118 !phi->region()->is_CountedLoop() ||
duke@435 119 inc != phi->region()->as_CountedLoop()->incr() )
duke@435 120 &&
duke@435 121 // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
duke@435 122 // because "x" maybe invariant.
duke@435 123 ( !iv->is_loop_iv() )
duke@435 124 ) {
duke@435 125 return true;
duke@435 126 } else {
duke@435 127 return false;
duke@435 128 }
duke@435 129 }
duke@435 130 //------------------------------Ideal------------------------------------------
duke@435 131 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 132 Node *in1 = in(1);
duke@435 133 Node *in2 = in(2);
duke@435 134 uint op1 = in1->Opcode();
duke@435 135 uint op2 = in2->Opcode();
duke@435 136
duke@435 137 #ifdef ASSERT
duke@435 138 // Check for dead loop
duke@435 139 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 140 ( op1 == Op_AddI || op1 == Op_SubI ) &&
duke@435 141 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 142 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 143 assert(false, "dead loop in SubINode::Ideal");
duke@435 144 #endif
duke@435 145
duke@435 146 const Type *t2 = phase->type( in2 );
duke@435 147 if( t2 == Type::TOP ) return NULL;
duke@435 148 // Convert "x-c0" into "x+ -c0".
duke@435 149 if( t2->base() == Type::Int ){ // Might be bottom or top...
duke@435 150 const TypeInt *i = t2->is_int();
duke@435 151 if( i->is_con() )
duke@435 152 return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
duke@435 153 }
duke@435 154
duke@435 155 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 156 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 157 // if "y" is a loop induction variable.
duke@435 158 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
duke@435 159 const Type *tadd = phase->type( in1->in(2) );
duke@435 160 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 161 Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
duke@435 162 return new (phase->C, 3) AddINode( sub2, in1->in(2) );
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 168 // Need the same check as in above optimization but reversed.
duke@435 169 if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
duke@435 170 Node* in21 = in2->in(1);
duke@435 171 Node* in22 = in2->in(2);
duke@435 172 const TypeInt* tcon = phase->type(in22)->isa_int();
duke@435 173 if (tcon != NULL && tcon->is_con()) {
duke@435 174 Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
duke@435 175 Node* neg_c0 = phase->intcon(- tcon->get_con());
duke@435 176 return new (phase->C, 3) AddINode(sub2, neg_c0);
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180 const Type *t1 = phase->type( in1 );
duke@435 181 if( t1 == Type::TOP ) return NULL;
duke@435 182
duke@435 183 #ifdef ASSERT
duke@435 184 // Check for dead loop
duke@435 185 if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
duke@435 186 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 187 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 188 assert(false, "dead loop in SubINode::Ideal");
duke@435 189 #endif
duke@435 190
duke@435 191 // Convert "x - (x+y)" into "-y"
duke@435 192 if( op2 == Op_AddI &&
duke@435 193 phase->eqv( in1, in2->in(1) ) )
duke@435 194 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
duke@435 195 // Convert "(x-y) - x" into "-y"
duke@435 196 if( op1 == Op_SubI &&
duke@435 197 phase->eqv( in1->in(1), in2 ) )
duke@435 198 return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
duke@435 199 // Convert "x - (y+x)" into "-y"
duke@435 200 if( op2 == Op_AddI &&
duke@435 201 phase->eqv( in1, in2->in(2) ) )
duke@435 202 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
duke@435 203
duke@435 204 // Convert "0 - (x-y)" into "y-x"
duke@435 205 if( t1 == TypeInt::ZERO && op2 == Op_SubI )
duke@435 206 return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
duke@435 207
duke@435 208 // Convert "0 - (x+con)" into "-con-x"
duke@435 209 jint con;
duke@435 210 if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
duke@435 211 (con = in2->in(2)->find_int_con(0)) != 0 )
duke@435 212 return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
duke@435 213
duke@435 214 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 215 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
duke@435 216 return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
duke@435 217
duke@435 218 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 219 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
duke@435 220 return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
duke@435 221
kvn@835 222 // Convert "(A+X) - (X+B)" into "A - B"
kvn@835 223 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
kvn@835 224 return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
kvn@835 225
kvn@835 226 // Convert "(X+A) - (B+X)" into "A - B"
kvn@835 227 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
kvn@835 228 return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
kvn@835 229
duke@435 230 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
duke@435 231 // nicer to optimize than subtract.
duke@435 232 if( op2 == Op_SubI && in2->outcnt() == 1) {
duke@435 233 Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
duke@435 234 return new (phase->C, 3) SubINode( add1, in2->in(1) );
duke@435 235 }
duke@435 236
duke@435 237 return NULL;
duke@435 238 }
duke@435 239
duke@435 240 //------------------------------sub--------------------------------------------
duke@435 241 // A subtract node differences it's two inputs.
duke@435 242 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 243 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 244 const TypeInt *r1 = t2->is_int();
duke@435 245 int32 lo = r0->_lo - r1->_hi;
duke@435 246 int32 hi = r0->_hi - r1->_lo;
duke@435 247
duke@435 248 // We next check for 32-bit overflow.
duke@435 249 // If that happens, we just assume all integers are possible.
duke@435 250 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 251 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 252 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 253 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 254 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 255 else // Overflow; assume all integers
duke@435 256 return TypeInt::INT;
duke@435 257 }
duke@435 258
duke@435 259 //=============================================================================
duke@435 260 //------------------------------Ideal------------------------------------------
duke@435 261 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 262 Node *in1 = in(1);
duke@435 263 Node *in2 = in(2);
duke@435 264 uint op1 = in1->Opcode();
duke@435 265 uint op2 = in2->Opcode();
duke@435 266
duke@435 267 #ifdef ASSERT
duke@435 268 // Check for dead loop
duke@435 269 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
duke@435 270 ( op1 == Op_AddL || op1 == Op_SubL ) &&
duke@435 271 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
duke@435 272 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
duke@435 273 assert(false, "dead loop in SubLNode::Ideal");
duke@435 274 #endif
duke@435 275
duke@435 276 if( phase->type( in2 ) == Type::TOP ) return NULL;
duke@435 277 const TypeLong *i = phase->type( in2 )->isa_long();
duke@435 278 // Convert "x-c0" into "x+ -c0".
duke@435 279 if( i && // Might be bottom or top...
duke@435 280 i->is_con() )
duke@435 281 return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
duke@435 282
duke@435 283 // Convert "(x+c0) - y" into (x-y) + c0"
duke@435 284 // Do not collapse (x+c0)-y if "+" is a loop increment or
duke@435 285 // if "y" is a loop induction variable.
duke@435 286 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
duke@435 287 Node *in11 = in1->in(1);
duke@435 288 const Type *tadd = phase->type( in1->in(2) );
duke@435 289 if( tadd->singleton() && tadd != Type::TOP ) {
duke@435 290 Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
duke@435 291 return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 // Convert "x - (y+c0)" into "(x-y) - c0"
duke@435 296 // Need the same check as in above optimization but reversed.
duke@435 297 if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
duke@435 298 Node* in21 = in2->in(1);
duke@435 299 Node* in22 = in2->in(2);
duke@435 300 const TypeLong* tcon = phase->type(in22)->isa_long();
duke@435 301 if (tcon != NULL && tcon->is_con()) {
duke@435 302 Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
duke@435 303 Node* neg_c0 = phase->longcon(- tcon->get_con());
duke@435 304 return new (phase->C, 3) AddLNode(sub2, neg_c0);
duke@435 305 }
duke@435 306 }
duke@435 307
duke@435 308 const Type *t1 = phase->type( in1 );
duke@435 309 if( t1 == Type::TOP ) return NULL;
duke@435 310
duke@435 311 #ifdef ASSERT
duke@435 312 // Check for dead loop
duke@435 313 if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
duke@435 314 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
duke@435 315 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
duke@435 316 assert(false, "dead loop in SubLNode::Ideal");
duke@435 317 #endif
duke@435 318
duke@435 319 // Convert "x - (x+y)" into "-y"
duke@435 320 if( op2 == Op_AddL &&
duke@435 321 phase->eqv( in1, in2->in(1) ) )
duke@435 322 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
duke@435 323 // Convert "x - (y+x)" into "-y"
duke@435 324 if( op2 == Op_AddL &&
duke@435 325 phase->eqv( in1, in2->in(2) ) )
duke@435 326 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
duke@435 327
duke@435 328 // Convert "0 - (x-y)" into "y-x"
duke@435 329 if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
duke@435 330 return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
duke@435 331
duke@435 332 // Convert "(X+A) - (X+B)" into "A - B"
duke@435 333 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
duke@435 334 return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
duke@435 335
duke@435 336 // Convert "(A+X) - (B+X)" into "A - B"
duke@435 337 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
duke@435 338 return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
duke@435 339
duke@435 340 // Convert "A-(B-C)" into (A+C)-B"
duke@435 341 if( op2 == Op_SubL && in2->outcnt() == 1) {
duke@435 342 Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
duke@435 343 return new (phase->C, 3) SubLNode( add1, in2->in(1) );
duke@435 344 }
duke@435 345
duke@435 346 return NULL;
duke@435 347 }
duke@435 348
duke@435 349 //------------------------------sub--------------------------------------------
duke@435 350 // A subtract node differences it's two inputs.
duke@435 351 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 352 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 353 const TypeLong *r1 = t2->is_long();
duke@435 354 jlong lo = r0->_lo - r1->_hi;
duke@435 355 jlong hi = r0->_hi - r1->_lo;
duke@435 356
duke@435 357 // We next check for 32-bit overflow.
duke@435 358 // If that happens, we just assume all integers are possible.
duke@435 359 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
duke@435 360 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
duke@435 361 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
duke@435 362 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
duke@435 363 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
duke@435 364 else // Overflow; assume all integers
duke@435 365 return TypeLong::LONG;
duke@435 366 }
duke@435 367
duke@435 368 //=============================================================================
duke@435 369 //------------------------------Value------------------------------------------
duke@435 370 // A subtract node differences its two inputs.
duke@435 371 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
duke@435 372 const Node* in1 = in(1);
duke@435 373 const Node* in2 = in(2);
duke@435 374 // Either input is TOP ==> the result is TOP
duke@435 375 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 376 if( t1 == Type::TOP ) return Type::TOP;
duke@435 377 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 378 if( t2 == Type::TOP ) return Type::TOP;
duke@435 379
duke@435 380 // if both operands are infinity of same sign, the result is NaN; do
duke@435 381 // not replace with zero
duke@435 382 if( (t1->is_finite() && t2->is_finite()) ) {
duke@435 383 if( phase->eqv(in1, in2) ) return add_id();
duke@435 384 }
duke@435 385
duke@435 386 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 387 const Type *bot = bottom_type();
duke@435 388 if( (t1 == bot) || (t2 == bot) ||
duke@435 389 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 390 return bot;
duke@435 391
duke@435 392 return sub(t1,t2); // Local flavor of type subtraction
duke@435 393 }
duke@435 394
duke@435 395
duke@435 396 //=============================================================================
duke@435 397 //------------------------------Ideal------------------------------------------
duke@435 398 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 399 const Type *t2 = phase->type( in(2) );
duke@435 400 // Convert "x-c0" into "x+ -c0".
duke@435 401 if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
duke@435 402 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
duke@435 403 }
duke@435 404
duke@435 405 // Not associative because of boundary conditions (infinity)
duke@435 406 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 407 // Convert "x - (x+y)" into "-y"
duke@435 408 if( in(2)->is_Add() &&
duke@435 409 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 410 return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
duke@435 411 }
duke@435 412
duke@435 413 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
duke@435 414 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
duke@435 415 //if( phase->type(in(1)) == TypeF::ZERO )
duke@435 416 //return new (phase->C, 2) NegFNode(in(2));
duke@435 417
duke@435 418 return NULL;
duke@435 419 }
duke@435 420
duke@435 421 //------------------------------sub--------------------------------------------
duke@435 422 // A subtract node differences its two inputs.
duke@435 423 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 424 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 425 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
duke@435 426 return TypeF::make( t1->getf() - t2->getf() );
duke@435 427 }
duke@435 428 else if( g_isnan(t1->getf()) ) {
duke@435 429 return t1;
duke@435 430 }
duke@435 431 else if( g_isnan(t2->getf()) ) {
duke@435 432 return t2;
duke@435 433 }
duke@435 434 else {
duke@435 435 return Type::FLOAT;
duke@435 436 }
duke@435 437 }
duke@435 438
duke@435 439 //=============================================================================
duke@435 440 //------------------------------Ideal------------------------------------------
duke@435 441 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 442 const Type *t2 = phase->type( in(2) );
duke@435 443 // Convert "x-c0" into "x+ -c0".
duke@435 444 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
duke@435 445 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
duke@435 446 }
duke@435 447
duke@435 448 // Not associative because of boundary conditions (infinity)
duke@435 449 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 450 // Convert "x - (x+y)" into "-y"
duke@435 451 if( in(2)->is_Add() &&
duke@435 452 phase->eqv(in(1),in(2)->in(1) ) )
duke@435 453 return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
duke@435 454 }
duke@435 455
duke@435 456 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
duke@435 457 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
duke@435 458 //if( phase->type(in(1)) == TypeD::ZERO )
duke@435 459 //return new (phase->C, 2) NegDNode(in(2));
duke@435 460
duke@435 461 return NULL;
duke@435 462 }
duke@435 463
duke@435 464 //------------------------------sub--------------------------------------------
duke@435 465 // A subtract node differences its two inputs.
duke@435 466 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 467 // no folding if one of operands is infinity or NaN, do not do constant folding
duke@435 468 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
duke@435 469 return TypeD::make( t1->getd() - t2->getd() );
duke@435 470 }
duke@435 471 else if( g_isnan(t1->getd()) ) {
duke@435 472 return t1;
duke@435 473 }
duke@435 474 else if( g_isnan(t2->getd()) ) {
duke@435 475 return t2;
duke@435 476 }
duke@435 477 else {
duke@435 478 return Type::DOUBLE;
duke@435 479 }
duke@435 480 }
duke@435 481
duke@435 482 //=============================================================================
duke@435 483 //------------------------------Idealize---------------------------------------
duke@435 484 // Unlike SubNodes, compare must still flatten return value to the
duke@435 485 // range -1, 0, 1.
duke@435 486 // And optimizations like those for (X + Y) - X fail if overflow happens.
duke@435 487 Node *CmpNode::Identity( PhaseTransform *phase ) {
duke@435 488 return this;
duke@435 489 }
duke@435 490
duke@435 491 //=============================================================================
duke@435 492 //------------------------------cmp--------------------------------------------
duke@435 493 // Simplify a CmpI (compare 2 integers) node, based on local information.
duke@435 494 // If both inputs are constants, compare them.
duke@435 495 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
duke@435 496 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 497 const TypeInt *r1 = t2->is_int();
duke@435 498
duke@435 499 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 500 return TypeInt::CC_LT;
duke@435 501 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 502 return TypeInt::CC_GT;
duke@435 503
duke@435 504 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 505 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 506 return TypeInt::CC_EQ; // Equal results.
duke@435 507 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 508 return TypeInt::CC_LE;
duke@435 509 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 510 return TypeInt::CC_GE;
duke@435 511 return TypeInt::CC; // else use worst case results
duke@435 512 }
duke@435 513
duke@435 514 // Simplify a CmpU (compare 2 integers) node, based on local information.
duke@435 515 // If both inputs are constants, compare them.
duke@435 516 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 517 assert(!t1->isa_ptr(), "obsolete usage of CmpU");
duke@435 518
duke@435 519 // comparing two unsigned ints
duke@435 520 const TypeInt *r0 = t1->is_int(); // Handy access
duke@435 521 const TypeInt *r1 = t2->is_int();
duke@435 522
duke@435 523 // Current installed version
duke@435 524 // Compare ranges for non-overlap
duke@435 525 juint lo0 = r0->_lo;
duke@435 526 juint hi0 = r0->_hi;
duke@435 527 juint lo1 = r1->_lo;
duke@435 528 juint hi1 = r1->_hi;
duke@435 529
duke@435 530 // If either one has both negative and positive values,
duke@435 531 // it therefore contains both 0 and -1, and since [0..-1] is the
duke@435 532 // full unsigned range, the type must act as an unsigned bottom.
duke@435 533 bool bot0 = ((jint)(lo0 ^ hi0) < 0);
duke@435 534 bool bot1 = ((jint)(lo1 ^ hi1) < 0);
duke@435 535
duke@435 536 if (bot0 || bot1) {
duke@435 537 // All unsigned values are LE -1 and GE 0.
duke@435 538 if (lo0 == 0 && hi0 == 0) {
duke@435 539 return TypeInt::CC_LE; // 0 <= bot
duke@435 540 } else if (lo1 == 0 && hi1 == 0) {
duke@435 541 return TypeInt::CC_GE; // bot >= 0
duke@435 542 }
duke@435 543 } else {
duke@435 544 // We can use ranges of the form [lo..hi] if signs are the same.
duke@435 545 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
duke@435 546 // results are reversed, '-' > '+' for unsigned compare
duke@435 547 if (hi0 < lo1) {
duke@435 548 return TypeInt::CC_LT; // smaller
duke@435 549 } else if (lo0 > hi1) {
duke@435 550 return TypeInt::CC_GT; // greater
duke@435 551 } else if (hi0 == lo1 && lo0 == hi1) {
duke@435 552 return TypeInt::CC_EQ; // Equal results
duke@435 553 } else if (lo0 >= hi1) {
duke@435 554 return TypeInt::CC_GE;
duke@435 555 } else if (hi0 <= lo1) {
duke@435 556 // Check for special case in Hashtable::get. (See below.)
duke@435 557 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 558 in(1)->Opcode() == Op_ModI &&
duke@435 559 in(1)->in(2) == in(2) )
duke@435 560 return TypeInt::CC_LT;
duke@435 561 return TypeInt::CC_LE;
duke@435 562 }
duke@435 563 }
duke@435 564 // Check for special case in Hashtable::get - the hash index is
duke@435 565 // mod'ed to the table size so the following range check is useless.
duke@435 566 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
duke@435 567 // to be positive.
duke@435 568 // (This is a gross hack, since the sub method never
duke@435 569 // looks at the structure of the node in any other case.)
duke@435 570 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
duke@435 571 in(1)->Opcode() == Op_ModI &&
duke@435 572 in(1)->in(2)->uncast() == in(2)->uncast())
duke@435 573 return TypeInt::CC_LT;
duke@435 574 return TypeInt::CC; // else use worst case results
duke@435 575 }
duke@435 576
duke@435 577 //------------------------------Idealize---------------------------------------
duke@435 578 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 579 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
duke@435 580 switch (in(1)->Opcode()) {
duke@435 581 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
duke@435 582 return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
duke@435 583 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
duke@435 584 return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
duke@435 585 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
duke@435 586 return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
duke@435 587 //case Op_SubI:
duke@435 588 // If (x - y) cannot overflow, then ((x - y) <?> 0)
duke@435 589 // can be turned into (x <?> y).
duke@435 590 // This is handled (with more general cases) by Ideal_sub_algebra.
duke@435 591 }
duke@435 592 }
duke@435 593 return NULL; // No change
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 //=============================================================================
duke@435 598 // Simplify a CmpL (compare 2 longs ) node, based on local information.
duke@435 599 // If both inputs are constants, compare them.
duke@435 600 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 601 const TypeLong *r0 = t1->is_long(); // Handy access
duke@435 602 const TypeLong *r1 = t2->is_long();
duke@435 603
duke@435 604 if( r0->_hi < r1->_lo ) // Range is always low?
duke@435 605 return TypeInt::CC_LT;
duke@435 606 else if( r0->_lo > r1->_hi ) // Range is always high?
duke@435 607 return TypeInt::CC_GT;
duke@435 608
duke@435 609 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
duke@435 610 assert(r0->get_con() == r1->get_con(), "must be equal");
duke@435 611 return TypeInt::CC_EQ; // Equal results.
duke@435 612 } else if( r0->_hi == r1->_lo ) // Range is never high?
duke@435 613 return TypeInt::CC_LE;
duke@435 614 else if( r0->_lo == r1->_hi ) // Range is never low?
duke@435 615 return TypeInt::CC_GE;
duke@435 616 return TypeInt::CC; // else use worst case results
duke@435 617 }
duke@435 618
duke@435 619 //=============================================================================
duke@435 620 //------------------------------sub--------------------------------------------
duke@435 621 // Simplify an CmpP (compare 2 pointers) node, based on local information.
duke@435 622 // If both inputs are constants, compare them.
duke@435 623 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
duke@435 624 const TypePtr *r0 = t1->is_ptr(); // Handy access
duke@435 625 const TypePtr *r1 = t2->is_ptr();
duke@435 626
duke@435 627 // Undefined inputs makes for an undefined result
duke@435 628 if( TypePtr::above_centerline(r0->_ptr) ||
duke@435 629 TypePtr::above_centerline(r1->_ptr) )
duke@435 630 return Type::TOP;
duke@435 631
duke@435 632 if (r0 == r1 && r0->singleton()) {
duke@435 633 // Equal pointer constants (klasses, nulls, etc.)
duke@435 634 return TypeInt::CC_EQ;
duke@435 635 }
duke@435 636
duke@435 637 // See if it is 2 unrelated classes.
duke@435 638 const TypeOopPtr* p0 = r0->isa_oopptr();
duke@435 639 const TypeOopPtr* p1 = r1->isa_oopptr();
duke@435 640 if (p0 && p1) {
kvn@468 641 Node* in1 = in(1)->uncast();
kvn@468 642 Node* in2 = in(2)->uncast();
kvn@468 643 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
kvn@468 644 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
kvn@468 645 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
kvn@468 646 return TypeInt::CC_GT; // different pointers
kvn@468 647 }
duke@435 648 ciKlass* klass0 = p0->klass();
duke@435 649 bool xklass0 = p0->klass_is_exact();
duke@435 650 ciKlass* klass1 = p1->klass();
duke@435 651 bool xklass1 = p1->klass_is_exact();
duke@435 652 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
duke@435 653 if (klass0 && klass1 &&
duke@435 654 kps != 1 && // both or neither are klass pointers
never@1103 655 klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
kvn@1218 656 klass1->is_loaded() && !klass1->is_interface() &&
kvn@1218 657 (!klass0->is_obj_array_klass() ||
kvn@1218 658 !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
kvn@1218 659 (!klass1->is_obj_array_klass() ||
kvn@1218 660 !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
rasbold@731 661 bool unrelated_classes = false;
duke@435 662 // See if neither subclasses the other, or if the class on top
rasbold@731 663 // is precise. In either of these cases, the compare is known
rasbold@731 664 // to fail if at least one of the pointers is provably not null.
duke@435 665 if (klass0->equals(klass1) || // if types are unequal but klasses are
duke@435 666 !klass0->is_java_klass() || // types not part of Java language?
duke@435 667 !klass1->is_java_klass()) { // types not part of Java language?
duke@435 668 // Do nothing; we know nothing for imprecise types
duke@435 669 } else if (klass0->is_subtype_of(klass1)) {
rasbold@731 670 // If klass1's type is PRECISE, then classes are unrelated.
rasbold@731 671 unrelated_classes = xklass1;
duke@435 672 } else if (klass1->is_subtype_of(klass0)) {
rasbold@731 673 // If klass0's type is PRECISE, then classes are unrelated.
rasbold@731 674 unrelated_classes = xklass0;
duke@435 675 } else { // Neither subtypes the other
rasbold@731 676 unrelated_classes = true;
rasbold@731 677 }
rasbold@731 678 if (unrelated_classes) {
rasbold@731 679 // The oops classes are known to be unrelated. If the joined PTRs of
rasbold@731 680 // two oops is not Null and not Bottom, then we are sure that one
rasbold@731 681 // of the two oops is non-null, and the comparison will always fail.
rasbold@731 682 TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
rasbold@731 683 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
rasbold@731 684 return TypeInt::CC_GT;
rasbold@731 685 }
duke@435 686 }
duke@435 687 }
duke@435 688 }
duke@435 689
duke@435 690 // Known constants can be compared exactly
duke@435 691 // Null can be distinguished from any NotNull pointers
duke@435 692 // Unknown inputs makes an unknown result
duke@435 693 if( r0->singleton() ) {
duke@435 694 intptr_t bits0 = r0->get_con();
duke@435 695 if( r1->singleton() )
duke@435 696 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
duke@435 697 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 698 } else if( r1->singleton() ) {
duke@435 699 intptr_t bits1 = r1->get_con();
duke@435 700 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
duke@435 701 } else
duke@435 702 return TypeInt::CC;
duke@435 703 }
duke@435 704
duke@435 705 //------------------------------Ideal------------------------------------------
duke@435 706 // Check for the case of comparing an unknown klass loaded from the primary
duke@435 707 // super-type array vs a known klass with no subtypes. This amounts to
duke@435 708 // checking to see an unknown klass subtypes a known klass with no subtypes;
duke@435 709 // this only happens on an exact match. We can shorten this test by 1 load.
duke@435 710 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
duke@435 711 // Constant pointer on right?
duke@435 712 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
duke@435 713 if (t2 == NULL || !t2->klass_is_exact())
duke@435 714 return NULL;
duke@435 715 // Get the constant klass we are comparing to.
duke@435 716 ciKlass* superklass = t2->klass();
duke@435 717
duke@435 718 // Now check for LoadKlass on left.
duke@435 719 Node* ldk1 = in(1);
kvn@728 720 if (ldk1->is_DecodeN()) {
kvn@728 721 ldk1 = ldk1->in(1);
kvn@728 722 if (ldk1->Opcode() != Op_LoadNKlass )
kvn@728 723 return NULL;
kvn@728 724 } else if (ldk1->Opcode() != Op_LoadKlass )
duke@435 725 return NULL;
duke@435 726 // Take apart the address of the LoadKlass:
duke@435 727 Node* adr1 = ldk1->in(MemNode::Address);
duke@435 728 intptr_t con2 = 0;
duke@435 729 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
duke@435 730 if (ldk2 == NULL)
duke@435 731 return NULL;
duke@435 732 if (con2 == oopDesc::klass_offset_in_bytes()) {
duke@435 733 // We are inspecting an object's concrete class.
duke@435 734 // Short-circuit the check if the query is abstract.
duke@435 735 if (superklass->is_interface() ||
duke@435 736 superklass->is_abstract()) {
duke@435 737 // Make it come out always false:
duke@435 738 this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
duke@435 739 return this;
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743 // Check for a LoadKlass from primary supertype array.
duke@435 744 // Any nested loadklass from loadklass+con must be from the p.s. array.
kvn@728 745 if (ldk2->is_DecodeN()) {
kvn@728 746 // Keep ldk2 as DecodeN since it could be used in CmpP below.
kvn@728 747 if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
kvn@728 748 return NULL;
kvn@728 749 } else if (ldk2->Opcode() != Op_LoadKlass)
duke@435 750 return NULL;
duke@435 751
duke@435 752 // Verify that we understand the situation
duke@435 753 if (con2 != (intptr_t) superklass->super_check_offset())
duke@435 754 return NULL; // Might be element-klass loading from array klass
duke@435 755
duke@435 756 // If 'superklass' has no subklasses and is not an interface, then we are
duke@435 757 // assured that the only input which will pass the type check is
duke@435 758 // 'superklass' itself.
duke@435 759 //
duke@435 760 // We could be more liberal here, and allow the optimization on interfaces
duke@435 761 // which have a single implementor. This would require us to increase the
duke@435 762 // expressiveness of the add_dependency() mechanism.
duke@435 763 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
duke@435 764
duke@435 765 // Object arrays must have their base element have no subtypes
duke@435 766 while (superklass->is_obj_array_klass()) {
duke@435 767 ciType* elem = superklass->as_obj_array_klass()->element_type();
duke@435 768 superklass = elem->as_klass();
duke@435 769 }
duke@435 770 if (superklass->is_instance_klass()) {
duke@435 771 ciInstanceKlass* ik = superklass->as_instance_klass();
duke@435 772 if (ik->has_subklass() || ik->is_interface()) return NULL;
duke@435 773 // Add a dependency if there is a chance that a subclass will be added later.
duke@435 774 if (!ik->is_final()) {
duke@435 775 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 776 }
duke@435 777 }
duke@435 778
duke@435 779 // Bypass the dependent load, and compare directly
duke@435 780 this->set_req(1,ldk2);
duke@435 781
duke@435 782 return this;
duke@435 783 }
duke@435 784
duke@435 785 //=============================================================================
coleenp@548 786 //------------------------------sub--------------------------------------------
coleenp@548 787 // Simplify an CmpN (compare 2 pointers) node, based on local information.
coleenp@548 788 // If both inputs are constants, compare them.
coleenp@548 789 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
kvn@656 790 const TypePtr *r0 = t1->make_ptr(); // Handy access
kvn@656 791 const TypePtr *r1 = t2->make_ptr();
coleenp@548 792
coleenp@548 793 // Undefined inputs makes for an undefined result
coleenp@548 794 if( TypePtr::above_centerline(r0->_ptr) ||
coleenp@548 795 TypePtr::above_centerline(r1->_ptr) )
coleenp@548 796 return Type::TOP;
coleenp@548 797
coleenp@548 798 if (r0 == r1 && r0->singleton()) {
coleenp@548 799 // Equal pointer constants (klasses, nulls, etc.)
coleenp@548 800 return TypeInt::CC_EQ;
coleenp@548 801 }
coleenp@548 802
coleenp@548 803 // See if it is 2 unrelated classes.
coleenp@548 804 const TypeOopPtr* p0 = r0->isa_oopptr();
coleenp@548 805 const TypeOopPtr* p1 = r1->isa_oopptr();
coleenp@548 806 if (p0 && p1) {
coleenp@548 807 ciKlass* klass0 = p0->klass();
coleenp@548 808 bool xklass0 = p0->klass_is_exact();
coleenp@548 809 ciKlass* klass1 = p1->klass();
coleenp@548 810 bool xklass1 = p1->klass_is_exact();
coleenp@548 811 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
coleenp@548 812 if (klass0 && klass1 &&
coleenp@548 813 kps != 1 && // both or neither are klass pointers
coleenp@548 814 !klass0->is_interface() && // do not trust interfaces
coleenp@548 815 !klass1->is_interface()) {
rasbold@731 816 bool unrelated_classes = false;
coleenp@548 817 // See if neither subclasses the other, or if the class on top
rasbold@731 818 // is precise. In either of these cases, the compare is known
rasbold@731 819 // to fail if at least one of the pointers is provably not null.
coleenp@548 820 if (klass0->equals(klass1) || // if types are unequal but klasses are
coleenp@548 821 !klass0->is_java_klass() || // types not part of Java language?
coleenp@548 822 !klass1->is_java_klass()) { // types not part of Java language?
coleenp@548 823 // Do nothing; we know nothing for imprecise types
coleenp@548 824 } else if (klass0->is_subtype_of(klass1)) {
rasbold@731 825 // If klass1's type is PRECISE, then classes are unrelated.
rasbold@731 826 unrelated_classes = xklass1;
coleenp@548 827 } else if (klass1->is_subtype_of(klass0)) {
rasbold@731 828 // If klass0's type is PRECISE, then classes are unrelated.
rasbold@731 829 unrelated_classes = xklass0;
coleenp@548 830 } else { // Neither subtypes the other
rasbold@731 831 unrelated_classes = true;
rasbold@731 832 }
rasbold@731 833 if (unrelated_classes) {
rasbold@731 834 // The oops classes are known to be unrelated. If the joined PTRs of
rasbold@731 835 // two oops is not Null and not Bottom, then we are sure that one
rasbold@731 836 // of the two oops is non-null, and the comparison will always fail.
rasbold@731 837 TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
rasbold@731 838 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
rasbold@731 839 return TypeInt::CC_GT;
rasbold@731 840 }
coleenp@548 841 }
coleenp@548 842 }
coleenp@548 843 }
coleenp@548 844
coleenp@548 845 // Known constants can be compared exactly
coleenp@548 846 // Null can be distinguished from any NotNull pointers
coleenp@548 847 // Unknown inputs makes an unknown result
coleenp@548 848 if( r0->singleton() ) {
coleenp@548 849 intptr_t bits0 = r0->get_con();
coleenp@548 850 if( r1->singleton() )
coleenp@548 851 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
coleenp@548 852 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 853 } else if( r1->singleton() ) {
coleenp@548 854 intptr_t bits1 = r1->get_con();
coleenp@548 855 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
coleenp@548 856 } else
coleenp@548 857 return TypeInt::CC;
coleenp@548 858 }
coleenp@548 859
coleenp@548 860 //------------------------------Ideal------------------------------------------
coleenp@548 861 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
coleenp@548 862 return NULL;
coleenp@548 863 }
coleenp@548 864
coleenp@548 865 //=============================================================================
duke@435 866 //------------------------------Value------------------------------------------
duke@435 867 // Simplify an CmpF (compare 2 floats ) node, based on local information.
duke@435 868 // If both inputs are constants, compare them.
duke@435 869 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
duke@435 870 const Node* in1 = in(1);
duke@435 871 const Node* in2 = in(2);
duke@435 872 // Either input is TOP ==> the result is TOP
duke@435 873 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 874 if( t1 == Type::TOP ) return Type::TOP;
duke@435 875 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 876 if( t2 == Type::TOP ) return Type::TOP;
duke@435 877
duke@435 878 // Not constants? Don't know squat - even if they are the same
duke@435 879 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 880 const TypeF *tf1 = t1->isa_float_constant();
duke@435 881 const TypeF *tf2 = t2->isa_float_constant();
duke@435 882 if( !tf1 || !tf2 ) return TypeInt::CC;
duke@435 883
duke@435 884 // This implements the Java bytecode fcmpl, so unordered returns -1.
duke@435 885 if( tf1->is_nan() || tf2->is_nan() )
duke@435 886 return TypeInt::CC_LT;
duke@435 887
duke@435 888 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
duke@435 889 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
duke@435 890 assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
duke@435 891 return TypeInt::CC_EQ;
duke@435 892 }
duke@435 893
duke@435 894
duke@435 895 //=============================================================================
duke@435 896 //------------------------------Value------------------------------------------
duke@435 897 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
duke@435 898 // If both inputs are constants, compare them.
duke@435 899 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
duke@435 900 const Node* in1 = in(1);
duke@435 901 const Node* in2 = in(2);
duke@435 902 // Either input is TOP ==> the result is TOP
duke@435 903 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
duke@435 904 if( t1 == Type::TOP ) return Type::TOP;
duke@435 905 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
duke@435 906 if( t2 == Type::TOP ) return Type::TOP;
duke@435 907
duke@435 908 // Not constants? Don't know squat - even if they are the same
duke@435 909 // value! If they are NaN's they compare to LT instead of EQ.
duke@435 910 const TypeD *td1 = t1->isa_double_constant();
duke@435 911 const TypeD *td2 = t2->isa_double_constant();
duke@435 912 if( !td1 || !td2 ) return TypeInt::CC;
duke@435 913
duke@435 914 // This implements the Java bytecode dcmpl, so unordered returns -1.
duke@435 915 if( td1->is_nan() || td2->is_nan() )
duke@435 916 return TypeInt::CC_LT;
duke@435 917
duke@435 918 if( td1->_d < td2->_d ) return TypeInt::CC_LT;
duke@435 919 if( td1->_d > td2->_d ) return TypeInt::CC_GT;
duke@435 920 assert( td1->_d == td2->_d, "do not understand FP behavior" );
duke@435 921 return TypeInt::CC_EQ;
duke@435 922 }
duke@435 923
duke@435 924 //------------------------------Ideal------------------------------------------
duke@435 925 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 926 // Check if we can change this to a CmpF and remove a ConvD2F operation.
duke@435 927 // Change (CMPD (F2D (float)) (ConD value))
duke@435 928 // To (CMPF (float) (ConF value))
duke@435 929 // Valid when 'value' does not lose precision as a float.
duke@435 930 // Benefits: eliminates conversion, does not require 24-bit mode
duke@435 931
duke@435 932 // NaNs prevent commuting operands. This transform works regardless of the
duke@435 933 // order of ConD and ConvF2D inputs by preserving the original order.
duke@435 934 int idx_f2d = 1; // ConvF2D on left side?
duke@435 935 if( in(idx_f2d)->Opcode() != Op_ConvF2D )
duke@435 936 idx_f2d = 2; // No, swap to check for reversed args
duke@435 937 int idx_con = 3-idx_f2d; // Check for the constant on other input
duke@435 938
duke@435 939 if( ConvertCmpD2CmpF &&
duke@435 940 in(idx_f2d)->Opcode() == Op_ConvF2D &&
duke@435 941 in(idx_con)->Opcode() == Op_ConD ) {
duke@435 942 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
duke@435 943 double t2_value_as_double = t2->_d;
duke@435 944 float t2_value_as_float = (float)t2_value_as_double;
duke@435 945 if( t2_value_as_double == (double)t2_value_as_float ) {
duke@435 946 // Test value can be represented as a float
duke@435 947 // Eliminate the conversion to double and create new comparison
duke@435 948 Node *new_in1 = in(idx_f2d)->in(1);
duke@435 949 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
duke@435 950 if( idx_f2d != 1 ) { // Must flip args to match original order
duke@435 951 Node *tmp = new_in1;
duke@435 952 new_in1 = new_in2;
duke@435 953 new_in2 = tmp;
duke@435 954 }
duke@435 955 CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
duke@435 956 ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
duke@435 957 : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
duke@435 958 return new_cmp; // Changed to CmpFNode
duke@435 959 }
duke@435 960 // Testing value required the precision of a double
duke@435 961 }
duke@435 962 return NULL; // No change
duke@435 963 }
duke@435 964
duke@435 965
duke@435 966 //=============================================================================
duke@435 967 //------------------------------cc2logical-------------------------------------
duke@435 968 // Convert a condition code type to a logical type
duke@435 969 const Type *BoolTest::cc2logical( const Type *CC ) const {
duke@435 970 if( CC == Type::TOP ) return Type::TOP;
duke@435 971 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
duke@435 972 const TypeInt *ti = CC->is_int();
duke@435 973 if( ti->is_con() ) { // Only 1 kind of condition codes set?
duke@435 974 // Match low order 2 bits
duke@435 975 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
duke@435 976 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
duke@435 977 return TypeInt::make(tmp); // Boolean result
duke@435 978 }
duke@435 979
duke@435 980 if( CC == TypeInt::CC_GE ) {
duke@435 981 if( _test == ge ) return TypeInt::ONE;
duke@435 982 if( _test == lt ) return TypeInt::ZERO;
duke@435 983 }
duke@435 984 if( CC == TypeInt::CC_LE ) {
duke@435 985 if( _test == le ) return TypeInt::ONE;
duke@435 986 if( _test == gt ) return TypeInt::ZERO;
duke@435 987 }
duke@435 988
duke@435 989 return TypeInt::BOOL;
duke@435 990 }
duke@435 991
duke@435 992 //------------------------------dump_spec-------------------------------------
duke@435 993 // Print special per-node info
duke@435 994 #ifndef PRODUCT
duke@435 995 void BoolTest::dump_on(outputStream *st) const {
duke@435 996 const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
duke@435 997 st->print(msg[_test]);
duke@435 998 }
duke@435 999 #endif
duke@435 1000
duke@435 1001 //=============================================================================
duke@435 1002 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
duke@435 1003 uint BoolNode::size_of() const { return sizeof(BoolNode); }
duke@435 1004
duke@435 1005 //------------------------------operator==-------------------------------------
duke@435 1006 uint BoolNode::cmp( const Node &n ) const {
duke@435 1007 const BoolNode *b = (const BoolNode *)&n; // Cast up
duke@435 1008 return (_test._test == b->_test._test);
duke@435 1009 }
duke@435 1010
duke@435 1011 //------------------------------clone_cmp--------------------------------------
duke@435 1012 // Clone a compare/bool tree
duke@435 1013 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
duke@435 1014 Node *ncmp = cmp->clone();
duke@435 1015 ncmp->set_req(1,cmp1);
duke@435 1016 ncmp->set_req(2,cmp2);
duke@435 1017 ncmp = gvn->transform( ncmp );
duke@435 1018 return new (gvn->C, 2) BoolNode( ncmp, test );
duke@435 1019 }
duke@435 1020
duke@435 1021 //-------------------------------make_predicate--------------------------------
duke@435 1022 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
duke@435 1023 if (test_value->is_Con()) return test_value;
duke@435 1024 if (test_value->is_Bool()) return test_value;
duke@435 1025 Compile* C = phase->C;
duke@435 1026 if (test_value->is_CMove() &&
duke@435 1027 test_value->in(CMoveNode::Condition)->is_Bool()) {
duke@435 1028 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
duke@435 1029 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
duke@435 1030 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
duke@435 1031 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
duke@435 1032 return bol;
duke@435 1033 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
duke@435 1034 return phase->transform( bol->negate(phase) );
duke@435 1035 }
duke@435 1036 // Else fall through. The CMove gets in the way of the test.
duke@435 1037 // It should be the case that make_predicate(bol->as_int_value()) == bol.
duke@435 1038 }
duke@435 1039 Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
duke@435 1040 cmp = phase->transform(cmp);
duke@435 1041 Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
duke@435 1042 return phase->transform(bol);
duke@435 1043 }
duke@435 1044
duke@435 1045 //--------------------------------as_int_value---------------------------------
duke@435 1046 Node* BoolNode::as_int_value(PhaseGVN* phase) {
duke@435 1047 // Inverse to make_predicate. The CMove probably boils down to a Conv2B.
duke@435 1048 Node* cmov = CMoveNode::make(phase->C, NULL, this,
duke@435 1049 phase->intcon(0), phase->intcon(1),
duke@435 1050 TypeInt::BOOL);
duke@435 1051 return phase->transform(cmov);
duke@435 1052 }
duke@435 1053
duke@435 1054 //----------------------------------negate-------------------------------------
duke@435 1055 BoolNode* BoolNode::negate(PhaseGVN* phase) {
duke@435 1056 Compile* C = phase->C;
duke@435 1057 return new (C, 2) BoolNode(in(1), _test.negate());
duke@435 1058 }
duke@435 1059
duke@435 1060
duke@435 1061 //------------------------------Ideal------------------------------------------
duke@435 1062 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1063 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
duke@435 1064 // This moves the constant to the right. Helps value-numbering.
duke@435 1065 Node *cmp = in(1);
duke@435 1066 if( !cmp->is_Sub() ) return NULL;
duke@435 1067 int cop = cmp->Opcode();
duke@435 1068 if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
duke@435 1069 Node *cmp1 = cmp->in(1);
duke@435 1070 Node *cmp2 = cmp->in(2);
duke@435 1071 if( !cmp1 ) return NULL;
duke@435 1072
duke@435 1073 // Constant on left?
duke@435 1074 Node *con = cmp1;
duke@435 1075 uint op2 = cmp2->Opcode();
duke@435 1076 // Move constants to the right of compare's to canonicalize.
duke@435 1077 // Do not muck with Opaque1 nodes, as this indicates a loop
duke@435 1078 // guard that cannot change shape.
duke@435 1079 if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
duke@435 1080 // Because of NaN's, CmpD and CmpF are not commutative
duke@435 1081 cop != Op_CmpD && cop != Op_CmpF &&
duke@435 1082 // Protect against swapping inputs to a compare when it is used by a
duke@435 1083 // counted loop exit, which requires maintaining the loop-limit as in(2)
duke@435 1084 !is_counted_loop_exit_test() ) {
duke@435 1085 // Ok, commute the constant to the right of the cmp node.
duke@435 1086 // Clone the Node, getting a new Node of the same class
duke@435 1087 cmp = cmp->clone();
duke@435 1088 // Swap inputs to the clone
duke@435 1089 cmp->swap_edges(1, 2);
duke@435 1090 cmp = phase->transform( cmp );
duke@435 1091 return new (phase->C, 2) BoolNode( cmp, _test.commute() );
duke@435 1092 }
duke@435 1093
duke@435 1094 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
duke@435 1095 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the
duke@435 1096 // test instead.
duke@435 1097 int cmp1_op = cmp1->Opcode();
duke@435 1098 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
duke@435 1099 if (cmp2_type == NULL) return NULL;
duke@435 1100 Node* j_xor = cmp1;
duke@435 1101 if( cmp2_type == TypeInt::ZERO &&
duke@435 1102 cmp1_op == Op_XorI &&
duke@435 1103 j_xor->in(1) != j_xor && // An xor of itself is dead
kvn@2940 1104 phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
duke@435 1105 phase->type( j_xor->in(2) ) == TypeInt::ONE &&
duke@435 1106 (_test._test == BoolTest::eq ||
duke@435 1107 _test._test == BoolTest::ne) ) {
duke@435 1108 Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
duke@435 1109 return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
duke@435 1110 }
duke@435 1111
duke@435 1112 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
duke@435 1113 // This is a standard idiom for branching on a boolean value.
duke@435 1114 Node *c2b = cmp1;
duke@435 1115 if( cmp2_type == TypeInt::ZERO &&
duke@435 1116 cmp1_op == Op_Conv2B &&
duke@435 1117 (_test._test == BoolTest::eq ||
duke@435 1118 _test._test == BoolTest::ne) ) {
duke@435 1119 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
duke@435 1120 ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
duke@435 1121 : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
duke@435 1122 );
duke@435 1123 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1124 }
duke@435 1125
duke@435 1126 // Comparing a SubI against a zero is equal to comparing the SubI
duke@435 1127 // arguments directly. This only works for eq and ne comparisons
duke@435 1128 // due to possible integer overflow.
duke@435 1129 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
duke@435 1130 (cop == Op_CmpI) &&
duke@435 1131 (cmp1->Opcode() == Op_SubI) &&
duke@435 1132 ( cmp2_type == TypeInt::ZERO ) ) {
duke@435 1133 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
duke@435 1134 return new (phase->C, 2) BoolNode( ncmp, _test._test );
duke@435 1135 }
duke@435 1136
duke@435 1137 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
duke@435 1138 // most general case because negating 0x80000000 does nothing. Needed for
duke@435 1139 // the CmpF3/SubI/CmpI idiom.
duke@435 1140 if( cop == Op_CmpI &&
duke@435 1141 cmp1->Opcode() == Op_SubI &&
duke@435 1142 cmp2_type == TypeInt::ZERO &&
duke@435 1143 phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
duke@435 1144 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
duke@435 1145 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
duke@435 1146 return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
duke@435 1147 }
duke@435 1148
duke@435 1149 // The transformation below is not valid for either signed or unsigned
duke@435 1150 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
duke@435 1151 // This transformation can be resurrected when we are able to
duke@435 1152 // make inferences about the range of values being subtracted from
duke@435 1153 // (or added to) relative to the wraparound point.
duke@435 1154 //
duke@435 1155 // // Remove +/-1's if possible.
duke@435 1156 // // "X <= Y-1" becomes "X < Y"
duke@435 1157 // // "X+1 <= Y" becomes "X < Y"
duke@435 1158 // // "X < Y+1" becomes "X <= Y"
duke@435 1159 // // "X-1 < Y" becomes "X <= Y"
duke@435 1160 // // Do not this to compares off of the counted-loop-end. These guys are
duke@435 1161 // // checking the trip counter and they want to use the post-incremented
duke@435 1162 // // counter. If they use the PRE-incremented counter, then the counter has
duke@435 1163 // // to be incremented in a private block on a loop backedge.
duke@435 1164 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
duke@435 1165 // return NULL;
duke@435 1166 // #ifndef PRODUCT
duke@435 1167 // // Do not do this in a wash GVN pass during verification.
duke@435 1168 // // Gets triggered by too many simple optimizations to be bothered with
duke@435 1169 // // re-trying it again and again.
duke@435 1170 // if( !phase->allow_progress() ) return NULL;
duke@435 1171 // #endif
duke@435 1172 // // Not valid for unsigned compare because of corner cases in involving zero.
duke@435 1173 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
duke@435 1174 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
duke@435 1175 // // "0 <=u Y" is always true).
duke@435 1176 // if( cmp->Opcode() == Op_CmpU ) return NULL;
duke@435 1177 // int cmp2_op = cmp2->Opcode();
duke@435 1178 // if( _test._test == BoolTest::le ) {
duke@435 1179 // if( cmp1_op == Op_AddI &&
duke@435 1180 // phase->type( cmp1->in(2) ) == TypeInt::ONE )
duke@435 1181 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
duke@435 1182 // else if( cmp2_op == Op_AddI &&
duke@435 1183 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
duke@435 1184 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
duke@435 1185 // } else if( _test._test == BoolTest::lt ) {
duke@435 1186 // if( cmp1_op == Op_AddI &&
duke@435 1187 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
duke@435 1188 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
duke@435 1189 // else if( cmp2_op == Op_AddI &&
duke@435 1190 // phase->type( cmp2->in(2) ) == TypeInt::ONE )
duke@435 1191 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
duke@435 1192 // }
duke@435 1193
duke@435 1194 return NULL;
duke@435 1195 }
duke@435 1196
duke@435 1197 //------------------------------Value------------------------------------------
duke@435 1198 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
duke@435 1199 // based on local information. If the input is constant, do it.
duke@435 1200 const Type *BoolNode::Value( PhaseTransform *phase ) const {
duke@435 1201 return _test.cc2logical( phase->type( in(1) ) );
duke@435 1202 }
duke@435 1203
duke@435 1204 //------------------------------dump_spec--------------------------------------
duke@435 1205 // Dump special per-node info
duke@435 1206 #ifndef PRODUCT
duke@435 1207 void BoolNode::dump_spec(outputStream *st) const {
duke@435 1208 st->print("[");
duke@435 1209 _test.dump_on(st);
duke@435 1210 st->print("]");
duke@435 1211 }
duke@435 1212 #endif
duke@435 1213
duke@435 1214 //------------------------------is_counted_loop_exit_test--------------------------------------
duke@435 1215 // Returns true if node is used by a counted loop node.
duke@435 1216 bool BoolNode::is_counted_loop_exit_test() {
duke@435 1217 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
duke@435 1218 Node* use = fast_out(i);
duke@435 1219 if (use->is_CountedLoopEnd()) {
duke@435 1220 return true;
duke@435 1221 }
duke@435 1222 }
duke@435 1223 return false;
duke@435 1224 }
duke@435 1225
duke@435 1226 //=============================================================================
duke@435 1227 //------------------------------Value------------------------------------------
duke@435 1228 // Compute sqrt
duke@435 1229 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
duke@435 1230 const Type *t1 = phase->type( in(1) );
duke@435 1231 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1232 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1233 double d = t1->getd();
duke@435 1234 if( d < 0.0 ) return Type::DOUBLE;
duke@435 1235 return TypeD::make( sqrt( d ) );
duke@435 1236 }
duke@435 1237
duke@435 1238 //=============================================================================
duke@435 1239 //------------------------------Value------------------------------------------
duke@435 1240 // Compute cos
duke@435 1241 const Type *CosDNode::Value( PhaseTransform *phase ) const {
duke@435 1242 const Type *t1 = phase->type( in(1) );
duke@435 1243 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1244 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1245 double d = t1->getd();
never@1609 1246 return TypeD::make( StubRoutines::intrinsic_cos( d ) );
duke@435 1247 }
duke@435 1248
duke@435 1249 //=============================================================================
duke@435 1250 //------------------------------Value------------------------------------------
duke@435 1251 // Compute sin
duke@435 1252 const Type *SinDNode::Value( PhaseTransform *phase ) const {
duke@435 1253 const Type *t1 = phase->type( in(1) );
duke@435 1254 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1255 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1256 double d = t1->getd();
never@1609 1257 return TypeD::make( StubRoutines::intrinsic_sin( d ) );
duke@435 1258 }
duke@435 1259
duke@435 1260 //=============================================================================
duke@435 1261 //------------------------------Value------------------------------------------
duke@435 1262 // Compute tan
duke@435 1263 const Type *TanDNode::Value( PhaseTransform *phase ) const {
duke@435 1264 const Type *t1 = phase->type( in(1) );
duke@435 1265 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1266 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1267 double d = t1->getd();
never@1609 1268 return TypeD::make( StubRoutines::intrinsic_tan( d ) );
duke@435 1269 }
duke@435 1270
duke@435 1271 //=============================================================================
duke@435 1272 //------------------------------Value------------------------------------------
duke@435 1273 // Compute log
duke@435 1274 const Type *LogDNode::Value( PhaseTransform *phase ) const {
duke@435 1275 const Type *t1 = phase->type( in(1) );
duke@435 1276 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1277 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1278 double d = t1->getd();
never@1609 1279 return TypeD::make( StubRoutines::intrinsic_log( d ) );
duke@435 1280 }
duke@435 1281
duke@435 1282 //=============================================================================
duke@435 1283 //------------------------------Value------------------------------------------
duke@435 1284 // Compute log10
duke@435 1285 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
duke@435 1286 const Type *t1 = phase->type( in(1) );
duke@435 1287 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1288 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1289 double d = t1->getd();
never@1609 1290 return TypeD::make( StubRoutines::intrinsic_log10( d ) );
duke@435 1291 }
duke@435 1292
duke@435 1293 //=============================================================================
duke@435 1294 //------------------------------Value------------------------------------------
duke@435 1295 // Compute exp
duke@435 1296 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
duke@435 1297 const Type *t1 = phase->type( in(1) );
duke@435 1298 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1299 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1300 double d = t1->getd();
never@1609 1301 return TypeD::make( StubRoutines::intrinsic_exp( d ) );
duke@435 1302 }
duke@435 1303
duke@435 1304
duke@435 1305 //=============================================================================
duke@435 1306 //------------------------------Value------------------------------------------
duke@435 1307 // Compute pow
duke@435 1308 const Type *PowDNode::Value( PhaseTransform *phase ) const {
duke@435 1309 const Type *t1 = phase->type( in(1) );
duke@435 1310 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1311 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1312 const Type *t2 = phase->type( in(2) );
duke@435 1313 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1314 if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
duke@435 1315 double d1 = t1->getd();
duke@435 1316 double d2 = t2->getd();
never@1609 1317 return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
duke@435 1318 }

mercurial