src/share/vm/opto/lcm.cpp

Wed, 20 Apr 2011 18:29:35 -0700

author
kvn
date
Wed, 20 Apr 2011 18:29:35 -0700
changeset 2810
66b0e2371912
parent 2708
1d1603768966
child 2784
92add02409c9
permissions
-rw-r--r--

7026700: regression in 6u24-rev-b23: Crash in C2 compiler in PhaseIdealLoop::build_loop_late_post
Summary: memory slices should be always created for non-static fields after allocation
Reviewed-by: never

duke@435 1 /*
trims@2708 2 * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/block.hpp"
stefank@2314 28 #include "opto/c2compiler.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/machnode.hpp"
stefank@2314 32 #include "opto/runtime.hpp"
stefank@2314 33 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 34 # include "adfiles/ad_x86_32.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 37 # include "adfiles/ad_x86_64.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 40 # include "adfiles/ad_sparc.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 43 # include "adfiles/ad_zero.hpp"
stefank@2314 44 #endif
roland@2683 45 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 46 # include "adfiles/ad_arm.hpp"
roland@2683 47 #endif
stefank@2314 48
duke@435 49 // Optimization - Graph Style
duke@435 50
duke@435 51 //------------------------------implicit_null_check----------------------------
duke@435 52 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 53 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 54 // I can generate a memory op if there is not one nearby.
duke@435 55 // The proj is the control projection for the not-null case.
kvn@1930 56 // The val is the pointer being checked for nullness or
kvn@1930 57 // decodeHeapOop_not_null node if it did not fold into address.
duke@435 58 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
duke@435 59 // Assume if null check need for 0 offset then always needed
duke@435 60 // Intel solaris doesn't support any null checks yet and no
duke@435 61 // mechanism exists (yet) to set the switches at an os_cpu level
duke@435 62 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
duke@435 63
duke@435 64 // Make sure the ptr-is-null path appears to be uncommon!
duke@435 65 float f = end()->as_MachIf()->_prob;
duke@435 66 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
duke@435 67 if( f > PROB_UNLIKELY_MAG(4) ) return;
duke@435 68
duke@435 69 uint bidx = 0; // Capture index of value into memop
duke@435 70 bool was_store; // Memory op is a store op
duke@435 71
duke@435 72 // Get the successor block for if the test ptr is non-null
duke@435 73 Block* not_null_block; // this one goes with the proj
duke@435 74 Block* null_block;
duke@435 75 if (_nodes[_nodes.size()-1] == proj) {
duke@435 76 null_block = _succs[0];
duke@435 77 not_null_block = _succs[1];
duke@435 78 } else {
duke@435 79 assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
duke@435 80 not_null_block = _succs[0];
duke@435 81 null_block = _succs[1];
duke@435 82 }
kvn@767 83 while (null_block->is_Empty() == Block::empty_with_goto) {
kvn@767 84 null_block = null_block->_succs[0];
kvn@767 85 }
duke@435 86
duke@435 87 // Search the exception block for an uncommon trap.
duke@435 88 // (See Parse::do_if and Parse::do_ifnull for the reason
duke@435 89 // we need an uncommon trap. Briefly, we need a way to
duke@435 90 // detect failure of this optimization, as in 6366351.)
duke@435 91 {
duke@435 92 bool found_trap = false;
duke@435 93 for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
duke@435 94 Node* nn = null_block->_nodes[i1];
duke@435 95 if (nn->is_MachCall() &&
twisti@2103 96 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
duke@435 97 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
duke@435 98 if (trtype->isa_int() && trtype->is_int()->is_con()) {
duke@435 99 jint tr_con = trtype->is_int()->get_con();
duke@435 100 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
duke@435 101 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
duke@435 102 assert((int)reason < (int)BitsPerInt, "recode bit map");
duke@435 103 if (is_set_nth_bit(allowed_reasons, (int) reason)
duke@435 104 && action != Deoptimization::Action_none) {
duke@435 105 // This uncommon trap is sure to recompile, eventually.
duke@435 106 // When that happens, C->too_many_traps will prevent
duke@435 107 // this transformation from happening again.
duke@435 108 found_trap = true;
duke@435 109 }
duke@435 110 }
duke@435 111 break;
duke@435 112 }
duke@435 113 }
duke@435 114 if (!found_trap) {
duke@435 115 // We did not find an uncommon trap.
duke@435 116 return;
duke@435 117 }
duke@435 118 }
duke@435 119
kvn@1930 120 // Check for decodeHeapOop_not_null node which did not fold into address
kvn@1930 121 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 122 val = (Node*)(((intptr_t)val) & ~1);
kvn@1930 123
kvn@1930 124 assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
kvn@1930 125 (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
kvn@1930 126
duke@435 127 // Search the successor block for a load or store who's base value is also
duke@435 128 // the tested value. There may be several.
duke@435 129 Node_List *out = new Node_List(Thread::current()->resource_area());
duke@435 130 MachNode *best = NULL; // Best found so far
duke@435 131 for (DUIterator i = val->outs(); val->has_out(i); i++) {
duke@435 132 Node *m = val->out(i);
duke@435 133 if( !m->is_Mach() ) continue;
duke@435 134 MachNode *mach = m->as_Mach();
duke@435 135 was_store = false;
kvn@2048 136 int iop = mach->ideal_Opcode();
kvn@2048 137 switch( iop ) {
duke@435 138 case Op_LoadB:
twisti@993 139 case Op_LoadUS:
duke@435 140 case Op_LoadD:
duke@435 141 case Op_LoadF:
duke@435 142 case Op_LoadI:
duke@435 143 case Op_LoadL:
duke@435 144 case Op_LoadP:
coleenp@548 145 case Op_LoadN:
duke@435 146 case Op_LoadS:
duke@435 147 case Op_LoadKlass:
kvn@599 148 case Op_LoadNKlass:
duke@435 149 case Op_LoadRange:
duke@435 150 case Op_LoadD_unaligned:
duke@435 151 case Op_LoadL_unaligned:
kvn@1586 152 assert(mach->in(2) == val, "should be address");
duke@435 153 break;
duke@435 154 case Op_StoreB:
duke@435 155 case Op_StoreC:
duke@435 156 case Op_StoreCM:
duke@435 157 case Op_StoreD:
duke@435 158 case Op_StoreF:
duke@435 159 case Op_StoreI:
duke@435 160 case Op_StoreL:
duke@435 161 case Op_StoreP:
coleenp@548 162 case Op_StoreN:
duke@435 163 was_store = true; // Memory op is a store op
duke@435 164 // Stores will have their address in slot 2 (memory in slot 1).
duke@435 165 // If the value being nul-checked is in another slot, it means we
duke@435 166 // are storing the checked value, which does NOT check the value!
duke@435 167 if( mach->in(2) != val ) continue;
duke@435 168 break; // Found a memory op?
duke@435 169 case Op_StrComp:
cfang@1116 170 case Op_StrEquals:
cfang@1116 171 case Op_StrIndexOf:
rasbold@604 172 case Op_AryEq:
duke@435 173 // Not a legit memory op for implicit null check regardless of
duke@435 174 // embedded loads
duke@435 175 continue;
duke@435 176 default: // Also check for embedded loads
duke@435 177 if( !mach->needs_anti_dependence_check() )
duke@435 178 continue; // Not an memory op; skip it
kvn@2048 179 if( must_clone[iop] ) {
kvn@2048 180 // Do not move nodes which produce flags because
kvn@2048 181 // RA will try to clone it to place near branch and
kvn@2048 182 // it will cause recompilation, see clone_node().
kvn@2048 183 continue;
kvn@2048 184 }
kvn@1586 185 {
kvn@1930 186 // Check that value is used in memory address in
kvn@1930 187 // instructions with embedded load (CmpP val1,(val2+off)).
kvn@1586 188 Node* base;
kvn@1586 189 Node* index;
kvn@1586 190 const MachOper* oper = mach->memory_inputs(base, index);
kvn@1586 191 if (oper == NULL || oper == (MachOper*)-1) {
kvn@1586 192 continue; // Not an memory op; skip it
kvn@1586 193 }
kvn@1586 194 if (val == base ||
kvn@1586 195 val == index && val->bottom_type()->isa_narrowoop()) {
kvn@1586 196 break; // Found it
kvn@1586 197 } else {
kvn@1586 198 continue; // Skip it
kvn@1586 199 }
kvn@1586 200 }
duke@435 201 break;
duke@435 202 }
duke@435 203 // check if the offset is not too high for implicit exception
duke@435 204 {
duke@435 205 intptr_t offset = 0;
duke@435 206 const TypePtr *adr_type = NULL; // Do not need this return value here
duke@435 207 const Node* base = mach->get_base_and_disp(offset, adr_type);
duke@435 208 if (base == NULL || base == NodeSentinel) {
kvn@767 209 // Narrow oop address doesn't have base, only index
kvn@767 210 if( val->bottom_type()->isa_narrowoop() &&
kvn@767 211 MacroAssembler::needs_explicit_null_check(offset) )
kvn@767 212 continue; // Give up if offset is beyond page size
duke@435 213 // cannot reason about it; is probably not implicit null exception
duke@435 214 } else {
kvn@1077 215 const TypePtr* tptr;
kvn@1077 216 if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
kvn@1077 217 // 32-bits narrow oop can be the base of address expressions
kvn@1077 218 tptr = base->bottom_type()->make_ptr();
kvn@1077 219 } else {
kvn@1077 220 // only regular oops are expected here
kvn@1077 221 tptr = base->bottom_type()->is_ptr();
kvn@1077 222 }
duke@435 223 // Give up if offset is not a compile-time constant
duke@435 224 if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
duke@435 225 continue;
duke@435 226 offset += tptr->_offset; // correct if base is offseted
duke@435 227 if( MacroAssembler::needs_explicit_null_check(offset) )
duke@435 228 continue; // Give up is reference is beyond 4K page size
duke@435 229 }
duke@435 230 }
duke@435 231
duke@435 232 // Check ctrl input to see if the null-check dominates the memory op
duke@435 233 Block *cb = cfg->_bbs[mach->_idx];
duke@435 234 cb = cb->_idom; // Always hoist at least 1 block
duke@435 235 if( !was_store ) { // Stores can be hoisted only one block
duke@435 236 while( cb->_dom_depth > (_dom_depth + 1))
duke@435 237 cb = cb->_idom; // Hoist loads as far as we want
duke@435 238 // The non-null-block should dominate the memory op, too. Live
duke@435 239 // range spilling will insert a spill in the non-null-block if it is
duke@435 240 // needs to spill the memory op for an implicit null check.
duke@435 241 if (cb->_dom_depth == (_dom_depth + 1)) {
duke@435 242 if (cb != not_null_block) continue;
duke@435 243 cb = cb->_idom;
duke@435 244 }
duke@435 245 }
duke@435 246 if( cb != this ) continue;
duke@435 247
duke@435 248 // Found a memory user; see if it can be hoisted to check-block
duke@435 249 uint vidx = 0; // Capture index of value into memop
duke@435 250 uint j;
duke@435 251 for( j = mach->req()-1; j > 0; j-- ) {
kvn@1930 252 if( mach->in(j) == val ) {
kvn@1930 253 vidx = j;
kvn@1930 254 // Ignore DecodeN val which could be hoisted to where needed.
kvn@1930 255 if( is_decoden ) continue;
kvn@1930 256 }
duke@435 257 // Block of memory-op input
duke@435 258 Block *inb = cfg->_bbs[mach->in(j)->_idx];
duke@435 259 Block *b = this; // Start from nul check
duke@435 260 while( b != inb && b->_dom_depth > inb->_dom_depth )
duke@435 261 b = b->_idom; // search upwards for input
duke@435 262 // See if input dominates null check
duke@435 263 if( b != inb )
duke@435 264 break;
duke@435 265 }
duke@435 266 if( j > 0 )
duke@435 267 continue;
duke@435 268 Block *mb = cfg->_bbs[mach->_idx];
duke@435 269 // Hoisting stores requires more checks for the anti-dependence case.
duke@435 270 // Give up hoisting if we have to move the store past any load.
duke@435 271 if( was_store ) {
duke@435 272 Block *b = mb; // Start searching here for a local load
duke@435 273 // mach use (faulting) trying to hoist
duke@435 274 // n might be blocker to hoisting
duke@435 275 while( b != this ) {
duke@435 276 uint k;
duke@435 277 for( k = 1; k < b->_nodes.size(); k++ ) {
duke@435 278 Node *n = b->_nodes[k];
duke@435 279 if( n->needs_anti_dependence_check() &&
duke@435 280 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
duke@435 281 break; // Found anti-dependent load
duke@435 282 }
duke@435 283 if( k < b->_nodes.size() )
duke@435 284 break; // Found anti-dependent load
duke@435 285 // Make sure control does not do a merge (would have to check allpaths)
duke@435 286 if( b->num_preds() != 2 ) break;
duke@435 287 b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
duke@435 288 }
duke@435 289 if( b != this ) continue;
duke@435 290 }
duke@435 291
duke@435 292 // Make sure this memory op is not already being used for a NullCheck
duke@435 293 Node *e = mb->end();
duke@435 294 if( e->is_MachNullCheck() && e->in(1) == mach )
duke@435 295 continue; // Already being used as a NULL check
duke@435 296
duke@435 297 // Found a candidate! Pick one with least dom depth - the highest
duke@435 298 // in the dom tree should be closest to the null check.
duke@435 299 if( !best ||
duke@435 300 cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
duke@435 301 best = mach;
duke@435 302 bidx = vidx;
duke@435 303
duke@435 304 }
duke@435 305 }
duke@435 306 // No candidate!
duke@435 307 if( !best ) return;
duke@435 308
duke@435 309 // ---- Found an implicit null check
duke@435 310 extern int implicit_null_checks;
duke@435 311 implicit_null_checks++;
duke@435 312
kvn@1930 313 if( is_decoden ) {
kvn@1930 314 // Check if we need to hoist decodeHeapOop_not_null first.
kvn@1930 315 Block *valb = cfg->_bbs[val->_idx];
kvn@1930 316 if( this != valb && this->_dom_depth < valb->_dom_depth ) {
kvn@1930 317 // Hoist it up to the end of the test block.
kvn@1930 318 valb->find_remove(val);
kvn@1930 319 this->add_inst(val);
kvn@1930 320 cfg->_bbs.map(val->_idx,this);
kvn@1930 321 // DecodeN on x86 may kill flags. Check for flag-killing projections
kvn@1930 322 // that also need to be hoisted.
kvn@1930 323 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
kvn@1930 324 Node* n = val->fast_out(j);
kvn@1930 325 if( n->Opcode() == Op_MachProj ) {
kvn@1930 326 cfg->_bbs[n->_idx]->find_remove(n);
kvn@1930 327 this->add_inst(n);
kvn@1930 328 cfg->_bbs.map(n->_idx,this);
kvn@1930 329 }
kvn@1930 330 }
kvn@1930 331 }
kvn@1930 332 }
duke@435 333 // Hoist the memory candidate up to the end of the test block.
duke@435 334 Block *old_block = cfg->_bbs[best->_idx];
duke@435 335 old_block->find_remove(best);
duke@435 336 add_inst(best);
duke@435 337 cfg->_bbs.map(best->_idx,this);
duke@435 338
duke@435 339 // Move the control dependence
duke@435 340 if (best->in(0) && best->in(0) == old_block->_nodes[0])
duke@435 341 best->set_req(0, _nodes[0]);
duke@435 342
duke@435 343 // Check for flag-killing projections that also need to be hoisted
duke@435 344 // Should be DU safe because no edge updates.
duke@435 345 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
duke@435 346 Node* n = best->fast_out(j);
duke@435 347 if( n->Opcode() == Op_MachProj ) {
duke@435 348 cfg->_bbs[n->_idx]->find_remove(n);
duke@435 349 add_inst(n);
duke@435 350 cfg->_bbs.map(n->_idx,this);
duke@435 351 }
duke@435 352 }
duke@435 353
duke@435 354 Compile *C = cfg->C;
duke@435 355 // proj==Op_True --> ne test; proj==Op_False --> eq test.
duke@435 356 // One of two graph shapes got matched:
duke@435 357 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
duke@435 358 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
duke@435 359 // NULL checks are always branch-if-eq. If we see a IfTrue projection
duke@435 360 // then we are replacing a 'ne' test with a 'eq' NULL check test.
duke@435 361 // We need to flip the projections to keep the same semantics.
duke@435 362 if( proj->Opcode() == Op_IfTrue ) {
duke@435 363 // Swap order of projections in basic block to swap branch targets
duke@435 364 Node *tmp1 = _nodes[end_idx()+1];
duke@435 365 Node *tmp2 = _nodes[end_idx()+2];
duke@435 366 _nodes.map(end_idx()+1, tmp2);
duke@435 367 _nodes.map(end_idx()+2, tmp1);
duke@435 368 Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
duke@435 369 tmp1->replace_by(tmp);
duke@435 370 tmp2->replace_by(tmp1);
duke@435 371 tmp->replace_by(tmp2);
duke@435 372 tmp->destruct();
duke@435 373 }
duke@435 374
duke@435 375 // Remove the existing null check; use a new implicit null check instead.
duke@435 376 // Since schedule-local needs precise def-use info, we need to correct
duke@435 377 // it as well.
duke@435 378 Node *old_tst = proj->in(0);
duke@435 379 MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
duke@435 380 _nodes.map(end_idx(),nul_chk);
duke@435 381 cfg->_bbs.map(nul_chk->_idx,this);
duke@435 382 // Redirect users of old_test to nul_chk
duke@435 383 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
duke@435 384 old_tst->last_out(i2)->set_req(0, nul_chk);
duke@435 385 // Clean-up any dead code
duke@435 386 for (uint i3 = 0; i3 < old_tst->req(); i3++)
duke@435 387 old_tst->set_req(i3, NULL);
duke@435 388
duke@435 389 cfg->latency_from_uses(nul_chk);
duke@435 390 cfg->latency_from_uses(best);
duke@435 391 }
duke@435 392
duke@435 393
duke@435 394 //------------------------------select-----------------------------------------
duke@435 395 // Select a nice fellow from the worklist to schedule next. If there is only
duke@435 396 // one choice, then use it. Projections take top priority for correctness
duke@435 397 // reasons - if I see a projection, then it is next. There are a number of
duke@435 398 // other special cases, for instructions that consume condition codes, et al.
duke@435 399 // These are chosen immediately. Some instructions are required to immediately
duke@435 400 // precede the last instruction in the block, and these are taken last. Of the
duke@435 401 // remaining cases (most), choose the instruction with the greatest latency
duke@435 402 // (that is, the most number of pseudo-cycles required to the end of the
duke@435 403 // routine). If there is a tie, choose the instruction with the most inputs.
duke@435 404 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
duke@435 405
duke@435 406 // If only a single entry on the stack, use it
duke@435 407 uint cnt = worklist.size();
duke@435 408 if (cnt == 1) {
duke@435 409 Node *n = worklist[0];
duke@435 410 worklist.map(0,worklist.pop());
duke@435 411 return n;
duke@435 412 }
duke@435 413
duke@435 414 uint choice = 0; // Bigger is most important
duke@435 415 uint latency = 0; // Bigger is scheduled first
duke@435 416 uint score = 0; // Bigger is better
kvn@688 417 int idx = -1; // Index in worklist
duke@435 418
duke@435 419 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
duke@435 420 // Order in worklist is used to break ties.
duke@435 421 // See caller for how this is used to delay scheduling
duke@435 422 // of induction variable increments to after the other
duke@435 423 // uses of the phi are scheduled.
duke@435 424 Node *n = worklist[i]; // Get Node on worklist
duke@435 425
duke@435 426 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
duke@435 427 if( n->is_Proj() || // Projections always win
duke@435 428 n->Opcode()== Op_Con || // So does constant 'Top'
duke@435 429 iop == Op_CreateEx || // Create-exception must start block
duke@435 430 iop == Op_CheckCastPP
duke@435 431 ) {
duke@435 432 worklist.map(i,worklist.pop());
duke@435 433 return n;
duke@435 434 }
duke@435 435
duke@435 436 // Final call in a block must be adjacent to 'catch'
duke@435 437 Node *e = end();
duke@435 438 if( e->is_Catch() && e->in(0)->in(0) == n )
duke@435 439 continue;
duke@435 440
duke@435 441 // Memory op for an implicit null check has to be at the end of the block
duke@435 442 if( e->is_MachNullCheck() && e->in(1) == n )
duke@435 443 continue;
duke@435 444
duke@435 445 uint n_choice = 2;
duke@435 446
duke@435 447 // See if this instruction is consumed by a branch. If so, then (as the
duke@435 448 // branch is the last instruction in the basic block) force it to the
duke@435 449 // end of the basic block
duke@435 450 if ( must_clone[iop] ) {
duke@435 451 // See if any use is a branch
duke@435 452 bool found_machif = false;
duke@435 453
duke@435 454 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 455 Node* use = n->fast_out(j);
duke@435 456
duke@435 457 // The use is a conditional branch, make them adjacent
duke@435 458 if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
duke@435 459 found_machif = true;
duke@435 460 break;
duke@435 461 }
duke@435 462
duke@435 463 // More than this instruction pending for successor to be ready,
duke@435 464 // don't choose this if other opportunities are ready
duke@435 465 if (ready_cnt[use->_idx] > 1)
duke@435 466 n_choice = 1;
duke@435 467 }
duke@435 468
duke@435 469 // loop terminated, prefer not to use this instruction
duke@435 470 if (found_machif)
duke@435 471 continue;
duke@435 472 }
duke@435 473
duke@435 474 // See if this has a predecessor that is "must_clone", i.e. sets the
duke@435 475 // condition code. If so, choose this first
duke@435 476 for (uint j = 0; j < n->req() ; j++) {
duke@435 477 Node *inn = n->in(j);
duke@435 478 if (inn) {
duke@435 479 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
duke@435 480 n_choice = 3;
duke@435 481 break;
duke@435 482 }
duke@435 483 }
duke@435 484 }
duke@435 485
duke@435 486 // MachTemps should be scheduled last so they are near their uses
duke@435 487 if (n->is_MachTemp()) {
duke@435 488 n_choice = 1;
duke@435 489 }
duke@435 490
kvn@2040 491 uint n_latency = cfg->_node_latency->at_grow(n->_idx);
duke@435 492 uint n_score = n->req(); // Many inputs get high score to break ties
duke@435 493
duke@435 494 // Keep best latency found
duke@435 495 if( choice < n_choice ||
duke@435 496 ( choice == n_choice &&
duke@435 497 ( latency < n_latency ||
duke@435 498 ( latency == n_latency &&
duke@435 499 ( score < n_score ))))) {
duke@435 500 choice = n_choice;
duke@435 501 latency = n_latency;
duke@435 502 score = n_score;
duke@435 503 idx = i; // Also keep index in worklist
duke@435 504 }
duke@435 505 } // End of for all ready nodes in worklist
duke@435 506
kvn@688 507 assert(idx >= 0, "index should be set");
kvn@688 508 Node *n = worklist[(uint)idx]; // Get the winner
duke@435 509
kvn@688 510 worklist.map((uint)idx, worklist.pop()); // Compress worklist
duke@435 511 return n;
duke@435 512 }
duke@435 513
duke@435 514
duke@435 515 //------------------------------set_next_call----------------------------------
duke@435 516 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
duke@435 517 if( next_call.test_set(n->_idx) ) return;
duke@435 518 for( uint i=0; i<n->len(); i++ ) {
duke@435 519 Node *m = n->in(i);
duke@435 520 if( !m ) continue; // must see all nodes in block that precede call
duke@435 521 if( bbs[m->_idx] == this )
duke@435 522 set_next_call( m, next_call, bbs );
duke@435 523 }
duke@435 524 }
duke@435 525
duke@435 526 //------------------------------needed_for_next_call---------------------------
duke@435 527 // Set the flag 'next_call' for each Node that is needed for the next call to
duke@435 528 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
duke@435 529 // next subroutine call get priority - basically it moves things NOT needed
duke@435 530 // for the next call till after the call. This prevents me from trying to
duke@435 531 // carry lots of stuff live across a call.
duke@435 532 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
duke@435 533 // Find the next control-defining Node in this block
duke@435 534 Node* call = NULL;
duke@435 535 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
duke@435 536 Node* m = this_call->fast_out(i);
duke@435 537 if( bbs[m->_idx] == this && // Local-block user
duke@435 538 m != this_call && // Not self-start node
duke@435 539 m->is_Call() )
duke@435 540 call = m;
duke@435 541 break;
duke@435 542 }
duke@435 543 if (call == NULL) return; // No next call (e.g., block end is near)
duke@435 544 // Set next-call for all inputs to this call
duke@435 545 set_next_call(call, next_call, bbs);
duke@435 546 }
duke@435 547
duke@435 548 //------------------------------sched_call-------------------------------------
duke@435 549 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
duke@435 550 RegMask regs;
duke@435 551
duke@435 552 // Schedule all the users of the call right now. All the users are
duke@435 553 // projection Nodes, so they must be scheduled next to the call.
duke@435 554 // Collect all the defined registers.
duke@435 555 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
duke@435 556 Node* n = mcall->fast_out(i);
duke@435 557 assert( n->Opcode()==Op_MachProj, "" );
duke@435 558 --ready_cnt[n->_idx];
duke@435 559 assert( !ready_cnt[n->_idx], "" );
duke@435 560 // Schedule next to call
duke@435 561 _nodes.map(node_cnt++, n);
duke@435 562 // Collect defined registers
duke@435 563 regs.OR(n->out_RegMask());
duke@435 564 // Check for scheduling the next control-definer
duke@435 565 if( n->bottom_type() == Type::CONTROL )
duke@435 566 // Warm up next pile of heuristic bits
duke@435 567 needed_for_next_call(n, next_call, bbs);
duke@435 568
duke@435 569 // Children of projections are now all ready
duke@435 570 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 571 Node* m = n->fast_out(j); // Get user
duke@435 572 if( bbs[m->_idx] != this ) continue;
duke@435 573 if( m->is_Phi() ) continue;
duke@435 574 if( !--ready_cnt[m->_idx] )
duke@435 575 worklist.push(m);
duke@435 576 }
duke@435 577
duke@435 578 }
duke@435 579
duke@435 580 // Act as if the call defines the Frame Pointer.
duke@435 581 // Certainly the FP is alive and well after the call.
duke@435 582 regs.Insert(matcher.c_frame_pointer());
duke@435 583
duke@435 584 // Set all registers killed and not already defined by the call.
duke@435 585 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 586 int op = mcall->ideal_Opcode();
duke@435 587 MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
duke@435 588 bbs.map(proj->_idx,this);
duke@435 589 _nodes.insert(node_cnt++, proj);
duke@435 590
duke@435 591 // Select the right register save policy.
duke@435 592 const char * save_policy;
duke@435 593 switch (op) {
duke@435 594 case Op_CallRuntime:
duke@435 595 case Op_CallLeaf:
duke@435 596 case Op_CallLeafNoFP:
duke@435 597 // Calling C code so use C calling convention
duke@435 598 save_policy = matcher._c_reg_save_policy;
duke@435 599 break;
duke@435 600
duke@435 601 case Op_CallStaticJava:
duke@435 602 case Op_CallDynamicJava:
duke@435 603 // Calling Java code so use Java calling convention
duke@435 604 save_policy = matcher._register_save_policy;
duke@435 605 break;
duke@435 606
duke@435 607 default:
duke@435 608 ShouldNotReachHere();
duke@435 609 }
duke@435 610
duke@435 611 // When using CallRuntime mark SOE registers as killed by the call
duke@435 612 // so values that could show up in the RegisterMap aren't live in a
duke@435 613 // callee saved register since the register wouldn't know where to
duke@435 614 // find them. CallLeaf and CallLeafNoFP are ok because they can't
duke@435 615 // have debug info on them. Strictly speaking this only needs to be
duke@435 616 // done for oops since idealreg2debugmask takes care of debug info
duke@435 617 // references but there no way to handle oops differently than other
duke@435 618 // pointers as far as the kill mask goes.
duke@435 619 bool exclude_soe = op == Op_CallRuntime;
duke@435 620
twisti@1572 621 // If the call is a MethodHandle invoke, we need to exclude the
twisti@1572 622 // register which is used to save the SP value over MH invokes from
twisti@1572 623 // the mask. Otherwise this register could be used for
twisti@1572 624 // deoptimization information.
twisti@1572 625 if (op == Op_CallStaticJava) {
twisti@1572 626 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
twisti@1572 627 if (mcallstaticjava->_method_handle_invoke)
twisti@1572 628 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
twisti@1572 629 }
twisti@1572 630
duke@435 631 // Fill in the kill mask for the call
duke@435 632 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
duke@435 633 if( !regs.Member(r) ) { // Not already defined by the call
duke@435 634 // Save-on-call register?
duke@435 635 if ((save_policy[r] == 'C') ||
duke@435 636 (save_policy[r] == 'A') ||
duke@435 637 ((save_policy[r] == 'E') && exclude_soe)) {
duke@435 638 proj->_rout.Insert(r);
duke@435 639 }
duke@435 640 }
duke@435 641 }
duke@435 642
duke@435 643 return node_cnt;
duke@435 644 }
duke@435 645
duke@435 646
duke@435 647 //------------------------------schedule_local---------------------------------
duke@435 648 // Topological sort within a block. Someday become a real scheduler.
duke@435 649 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
duke@435 650 // Already "sorted" are the block start Node (as the first entry), and
duke@435 651 // the block-ending Node and any trailing control projections. We leave
duke@435 652 // these alone. PhiNodes and ParmNodes are made to follow the block start
duke@435 653 // Node. Everything else gets topo-sorted.
duke@435 654
duke@435 655 #ifndef PRODUCT
duke@435 656 if (cfg->trace_opto_pipelining()) {
duke@435 657 tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
duke@435 658 for (uint i = 0;i < _nodes.size();i++) {
duke@435 659 tty->print("# ");
duke@435 660 _nodes[i]->fast_dump();
duke@435 661 }
duke@435 662 tty->print_cr("#");
duke@435 663 }
duke@435 664 #endif
duke@435 665
duke@435 666 // RootNode is already sorted
duke@435 667 if( _nodes.size() == 1 ) return true;
duke@435 668
duke@435 669 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
duke@435 670 uint node_cnt = end_idx();
duke@435 671 uint phi_cnt = 1;
duke@435 672 uint i;
duke@435 673 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
duke@435 674 Node *n = _nodes[i];
duke@435 675 if( n->is_Phi() || // Found a PhiNode or ParmNode
duke@435 676 (n->is_Proj() && n->in(0) == head()) ) {
duke@435 677 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
duke@435 678 _nodes.map(i,_nodes[phi_cnt]);
duke@435 679 _nodes.map(phi_cnt++,n); // swap Phi/Parm up front
duke@435 680 } else { // All others
duke@435 681 // Count block-local inputs to 'n'
duke@435 682 uint cnt = n->len(); // Input count
duke@435 683 uint local = 0;
duke@435 684 for( uint j=0; j<cnt; j++ ) {
duke@435 685 Node *m = n->in(j);
duke@435 686 if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
duke@435 687 local++; // One more block-local input
duke@435 688 }
duke@435 689 ready_cnt[n->_idx] = local; // Count em up
duke@435 690
duke@435 691 // A few node types require changing a required edge to a precedence edge
duke@435 692 // before allocation.
ysr@777 693 if( UseConcMarkSweepGC || UseG1GC ) {
duke@435 694 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
duke@435 695 // Note: Required edges with an index greater than oper_input_base
duke@435 696 // are not supported by the allocator.
duke@435 697 // Note2: Can only depend on unmatched edge being last,
duke@435 698 // can not depend on its absolute position.
duke@435 699 Node *oop_store = n->in(n->req() - 1);
duke@435 700 n->del_req(n->req() - 1);
duke@435 701 n->add_prec(oop_store);
duke@435 702 assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
duke@435 703 }
duke@435 704 }
kvn@1535 705 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
kvn@1535 706 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
kvn@1535 707 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
kvn@688 708 // MemBarAcquire could be created without Precedent edge.
kvn@688 709 // del_req() replaces the specified edge with the last input edge
kvn@688 710 // and then removes the last edge. If the specified edge > number of
kvn@688 711 // edges the last edge will be moved outside of the input edges array
kvn@688 712 // and the edge will be lost. This is why this code should be
kvn@688 713 // executed only when Precedent (== TypeFunc::Parms) edge is present.
duke@435 714 Node *x = n->in(TypeFunc::Parms);
duke@435 715 n->del_req(TypeFunc::Parms);
duke@435 716 n->add_prec(x);
duke@435 717 }
duke@435 718 }
duke@435 719 }
duke@435 720 for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
duke@435 721 ready_cnt[_nodes[i2]->_idx] = 0;
duke@435 722
duke@435 723 // All the prescheduled guys do not hold back internal nodes
duke@435 724 uint i3;
duke@435 725 for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
duke@435 726 Node *n = _nodes[i3]; // Get pre-scheduled
duke@435 727 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
duke@435 728 Node* m = n->fast_out(j);
duke@435 729 if( cfg->_bbs[m->_idx] ==this ) // Local-block user
duke@435 730 ready_cnt[m->_idx]--; // Fix ready count
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 Node_List delay;
duke@435 735 // Make a worklist
duke@435 736 Node_List worklist;
duke@435 737 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
duke@435 738 Node *m = _nodes[i4];
duke@435 739 if( !ready_cnt[m->_idx] ) { // Zero ready count?
duke@435 740 if (m->is_iteratively_computed()) {
duke@435 741 // Push induction variable increments last to allow other uses
duke@435 742 // of the phi to be scheduled first. The select() method breaks
duke@435 743 // ties in scheduling by worklist order.
duke@435 744 delay.push(m);
never@560 745 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
never@560 746 // Force the CreateEx to the top of the list so it's processed
never@560 747 // first and ends up at the start of the block.
never@560 748 worklist.insert(0, m);
duke@435 749 } else {
duke@435 750 worklist.push(m); // Then on to worklist!
duke@435 751 }
duke@435 752 }
duke@435 753 }
duke@435 754 while (delay.size()) {
duke@435 755 Node* d = delay.pop();
duke@435 756 worklist.push(d);
duke@435 757 }
duke@435 758
duke@435 759 // Warm up the 'next_call' heuristic bits
duke@435 760 needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
duke@435 761
duke@435 762 #ifndef PRODUCT
duke@435 763 if (cfg->trace_opto_pipelining()) {
duke@435 764 for (uint j=0; j<_nodes.size(); j++) {
duke@435 765 Node *n = _nodes[j];
duke@435 766 int idx = n->_idx;
duke@435 767 tty->print("# ready cnt:%3d ", ready_cnt[idx]);
kvn@2040 768 tty->print("latency:%3d ", cfg->_node_latency->at_grow(idx));
duke@435 769 tty->print("%4d: %s\n", idx, n->Name());
duke@435 770 }
duke@435 771 }
duke@435 772 #endif
duke@435 773
duke@435 774 // Pull from worklist and schedule
duke@435 775 while( worklist.size() ) { // Worklist is not ready
duke@435 776
duke@435 777 #ifndef PRODUCT
duke@435 778 if (cfg->trace_opto_pipelining()) {
duke@435 779 tty->print("# ready list:");
duke@435 780 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 781 Node *n = worklist[i]; // Get Node on worklist
duke@435 782 tty->print(" %d", n->_idx);
duke@435 783 }
duke@435 784 tty->cr();
duke@435 785 }
duke@435 786 #endif
duke@435 787
duke@435 788 // Select and pop a ready guy from worklist
duke@435 789 Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
duke@435 790 _nodes.map(phi_cnt++,n); // Schedule him next
duke@435 791
duke@435 792 #ifndef PRODUCT
duke@435 793 if (cfg->trace_opto_pipelining()) {
duke@435 794 tty->print("# select %d: %s", n->_idx, n->Name());
kvn@2040 795 tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
duke@435 796 n->dump();
duke@435 797 if (Verbose) {
duke@435 798 tty->print("# ready list:");
duke@435 799 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
duke@435 800 Node *n = worklist[i]; // Get Node on worklist
duke@435 801 tty->print(" %d", n->_idx);
duke@435 802 }
duke@435 803 tty->cr();
duke@435 804 }
duke@435 805 }
duke@435 806
duke@435 807 #endif
duke@435 808 if( n->is_MachCall() ) {
duke@435 809 MachCallNode *mcall = n->as_MachCall();
duke@435 810 phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
duke@435 811 continue;
duke@435 812 }
duke@435 813 // Children are now all ready
duke@435 814 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
duke@435 815 Node* m = n->fast_out(i5); // Get user
duke@435 816 if( cfg->_bbs[m->_idx] != this ) continue;
duke@435 817 if( m->is_Phi() ) continue;
duke@435 818 if( !--ready_cnt[m->_idx] )
duke@435 819 worklist.push(m);
duke@435 820 }
duke@435 821 }
duke@435 822
duke@435 823 if( phi_cnt != end_idx() ) {
duke@435 824 // did not schedule all. Retry, Bailout, or Die
duke@435 825 Compile* C = matcher.C;
duke@435 826 if (C->subsume_loads() == true && !C->failing()) {
duke@435 827 // Retry with subsume_loads == false
duke@435 828 // If this is the first failure, the sentinel string will "stick"
duke@435 829 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 830 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 831 }
duke@435 832 // assert( phi_cnt == end_idx(), "did not schedule all" );
duke@435 833 return false;
duke@435 834 }
duke@435 835
duke@435 836 #ifndef PRODUCT
duke@435 837 if (cfg->trace_opto_pipelining()) {
duke@435 838 tty->print_cr("#");
duke@435 839 tty->print_cr("# after schedule_local");
duke@435 840 for (uint i = 0;i < _nodes.size();i++) {
duke@435 841 tty->print("# ");
duke@435 842 _nodes[i]->fast_dump();
duke@435 843 }
duke@435 844 tty->cr();
duke@435 845 }
duke@435 846 #endif
duke@435 847
duke@435 848
duke@435 849 return true;
duke@435 850 }
duke@435 851
duke@435 852 //--------------------------catch_cleanup_fix_all_inputs-----------------------
duke@435 853 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
duke@435 854 for (uint l = 0; l < use->len(); l++) {
duke@435 855 if (use->in(l) == old_def) {
duke@435 856 if (l < use->req()) {
duke@435 857 use->set_req(l, new_def);
duke@435 858 } else {
duke@435 859 use->rm_prec(l);
duke@435 860 use->add_prec(new_def);
duke@435 861 l--;
duke@435 862 }
duke@435 863 }
duke@435 864 }
duke@435 865 }
duke@435 866
duke@435 867 //------------------------------catch_cleanup_find_cloned_def------------------
duke@435 868 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 869 assert( use_blk != def_blk, "Inter-block cleanup only");
duke@435 870
duke@435 871 // The use is some block below the Catch. Find and return the clone of the def
duke@435 872 // that dominates the use. If there is no clone in a dominating block, then
duke@435 873 // create a phi for the def in a dominating block.
duke@435 874
duke@435 875 // Find which successor block dominates this use. The successor
duke@435 876 // blocks must all be single-entry (from the Catch only; I will have
duke@435 877 // split blocks to make this so), hence they all dominate.
duke@435 878 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
duke@435 879 use_blk = use_blk->_idom;
duke@435 880
duke@435 881 // Find the successor
duke@435 882 Node *fixup = NULL;
duke@435 883
duke@435 884 uint j;
duke@435 885 for( j = 0; j < def_blk->_num_succs; j++ )
duke@435 886 if( use_blk == def_blk->_succs[j] )
duke@435 887 break;
duke@435 888
duke@435 889 if( j == def_blk->_num_succs ) {
duke@435 890 // Block at same level in dom-tree is not a successor. It needs a
duke@435 891 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
duke@435 892 Node_Array inputs = new Node_List(Thread::current()->resource_area());
duke@435 893 for(uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 894 inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
duke@435 895 }
duke@435 896
duke@435 897 // Check to see if the use_blk already has an identical phi inserted.
duke@435 898 // If it exists, it will be at the first position since all uses of a
duke@435 899 // def are processed together.
duke@435 900 Node *phi = use_blk->_nodes[1];
duke@435 901 if( phi->is_Phi() ) {
duke@435 902 fixup = phi;
duke@435 903 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 904 if (phi->in(k) != inputs[k]) {
duke@435 905 // Not a match
duke@435 906 fixup = NULL;
duke@435 907 break;
duke@435 908 }
duke@435 909 }
duke@435 910 }
duke@435 911
duke@435 912 // If an existing PhiNode was not found, make a new one.
duke@435 913 if (fixup == NULL) {
duke@435 914 Node *new_phi = PhiNode::make(use_blk->head(), def);
duke@435 915 use_blk->_nodes.insert(1, new_phi);
duke@435 916 bbs.map(new_phi->_idx, use_blk);
duke@435 917 for (uint k = 1; k < use_blk->num_preds(); k++) {
duke@435 918 new_phi->set_req(k, inputs[k]);
duke@435 919 }
duke@435 920 fixup = new_phi;
duke@435 921 }
duke@435 922
duke@435 923 } else {
duke@435 924 // Found the use just below the Catch. Make it use the clone.
duke@435 925 fixup = use_blk->_nodes[n_clone_idx];
duke@435 926 }
duke@435 927
duke@435 928 return fixup;
duke@435 929 }
duke@435 930
duke@435 931 //--------------------------catch_cleanup_intra_block--------------------------
duke@435 932 // Fix all input edges in use that reference "def". The use is in the same
duke@435 933 // block as the def and both have been cloned in each successor block.
duke@435 934 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
duke@435 935
duke@435 936 // Both the use and def have been cloned. For each successor block,
duke@435 937 // get the clone of the use, and make its input the clone of the def
duke@435 938 // found in that block.
duke@435 939
duke@435 940 uint use_idx = blk->find_node(use);
duke@435 941 uint offset_idx = use_idx - beg;
duke@435 942 for( uint k = 0; k < blk->_num_succs; k++ ) {
duke@435 943 // Get clone in each successor block
duke@435 944 Block *sb = blk->_succs[k];
duke@435 945 Node *clone = sb->_nodes[offset_idx+1];
duke@435 946 assert( clone->Opcode() == use->Opcode(), "" );
duke@435 947
duke@435 948 // Make use-clone reference the def-clone
duke@435 949 catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
duke@435 950 }
duke@435 951 }
duke@435 952
duke@435 953 //------------------------------catch_cleanup_inter_block---------------------
duke@435 954 // Fix all input edges in use that reference "def". The use is in a different
duke@435 955 // block than the def.
duke@435 956 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
duke@435 957 if( !use_blk ) return; // Can happen if the use is a precedence edge
duke@435 958
duke@435 959 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
duke@435 960 catch_cleanup_fix_all_inputs(use, def, new_def);
duke@435 961 }
duke@435 962
duke@435 963 //------------------------------call_catch_cleanup-----------------------------
duke@435 964 // If we inserted any instructions between a Call and his CatchNode,
duke@435 965 // clone the instructions on all paths below the Catch.
duke@435 966 void Block::call_catch_cleanup(Block_Array &bbs) {
duke@435 967
duke@435 968 // End of region to clone
duke@435 969 uint end = end_idx();
duke@435 970 if( !_nodes[end]->is_Catch() ) return;
duke@435 971 // Start of region to clone
duke@435 972 uint beg = end;
duke@435 973 while( _nodes[beg-1]->Opcode() != Op_MachProj ||
duke@435 974 !_nodes[beg-1]->in(0)->is_Call() ) {
duke@435 975 beg--;
duke@435 976 assert(beg > 0,"Catch cleanup walking beyond block boundary");
duke@435 977 }
duke@435 978 // Range of inserted instructions is [beg, end)
duke@435 979 if( beg == end ) return;
duke@435 980
duke@435 981 // Clone along all Catch output paths. Clone area between the 'beg' and
duke@435 982 // 'end' indices.
duke@435 983 for( uint i = 0; i < _num_succs; i++ ) {
duke@435 984 Block *sb = _succs[i];
duke@435 985 // Clone the entire area; ignoring the edge fixup for now.
duke@435 986 for( uint j = end; j > beg; j-- ) {
kvn@2048 987 // It is safe here to clone a node with anti_dependence
kvn@2048 988 // since clones dominate on each path.
duke@435 989 Node *clone = _nodes[j-1]->clone();
duke@435 990 sb->_nodes.insert( 1, clone );
duke@435 991 bbs.map(clone->_idx,sb);
duke@435 992 }
duke@435 993 }
duke@435 994
duke@435 995
duke@435 996 // Fixup edges. Check the def-use info per cloned Node
duke@435 997 for(uint i2 = beg; i2 < end; i2++ ) {
duke@435 998 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
duke@435 999 Node *n = _nodes[i2]; // Node that got cloned
duke@435 1000 // Need DU safe iterator because of edge manipulation in calls.
duke@435 1001 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
duke@435 1002 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
duke@435 1003 out->push(n->fast_out(j1));
duke@435 1004 }
duke@435 1005 uint max = out->size();
duke@435 1006 for (uint j = 0; j < max; j++) {// For all users
duke@435 1007 Node *use = out->pop();
duke@435 1008 Block *buse = bbs[use->_idx];
duke@435 1009 if( use->is_Phi() ) {
duke@435 1010 for( uint k = 1; k < use->req(); k++ )
duke@435 1011 if( use->in(k) == n ) {
duke@435 1012 Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
duke@435 1013 use->set_req(k, fixup);
duke@435 1014 }
duke@435 1015 } else {
duke@435 1016 if (this == buse) {
duke@435 1017 catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
duke@435 1018 } else {
duke@435 1019 catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
duke@435 1020 }
duke@435 1021 }
duke@435 1022 } // End for all users
duke@435 1023
duke@435 1024 } // End of for all Nodes in cloned area
duke@435 1025
duke@435 1026 // Remove the now-dead cloned ops
duke@435 1027 for(uint i3 = beg; i3 < end; i3++ ) {
duke@435 1028 _nodes[beg]->disconnect_inputs(NULL);
duke@435 1029 _nodes.remove(beg);
duke@435 1030 }
duke@435 1031
duke@435 1032 // If the successor blocks have a CreateEx node, move it back to the top
duke@435 1033 for(uint i4 = 0; i4 < _num_succs; i4++ ) {
duke@435 1034 Block *sb = _succs[i4];
duke@435 1035 uint new_cnt = end - beg;
duke@435 1036 // Remove any newly created, but dead, nodes.
duke@435 1037 for( uint j = new_cnt; j > 0; j-- ) {
duke@435 1038 Node *n = sb->_nodes[j];
duke@435 1039 if (n->outcnt() == 0 &&
duke@435 1040 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
duke@435 1041 n->disconnect_inputs(NULL);
duke@435 1042 sb->_nodes.remove(j);
duke@435 1043 new_cnt--;
duke@435 1044 }
duke@435 1045 }
duke@435 1046 // If any newly created nodes remain, move the CreateEx node to the top
duke@435 1047 if (new_cnt > 0) {
duke@435 1048 Node *cex = sb->_nodes[1+new_cnt];
duke@435 1049 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 1050 sb->_nodes.remove(1+new_cnt);
duke@435 1051 sb->_nodes.insert(1,cex);
duke@435 1052 }
duke@435 1053 }
duke@435 1054 }
duke@435 1055 }

mercurial