src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 09 Aug 2010 05:41:05 -0700

author
jcoomes
date
Mon, 09 Aug 2010 05:41:05 -0700
changeset 2064
5f429ee79634
parent 2062
0ce1569c90e5
child 2314
f95d63e2154a
permissions
-rw-r--r--

6966222: G1: simplify TaskQueue overflow handling
Reviewed-by: tonyp, ysr

ysr@777 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 26 // characteristics of the collector. Examples include:
ysr@777 27 // * choice of collection set.
ysr@777 28 // * when to collect.
ysr@777 29
ysr@777 30 class HeapRegion;
ysr@777 31 class CollectionSetChooser;
ysr@777 32
ysr@777 33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 34 // over and over again and introducing subtle problems through small typos and
ysr@777 35 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 36 // sequnce into the following two classes and the methods that access it.
ysr@777 37
ysr@777 38 #define define_num_seq(name) \
ysr@777 39 private: \
ysr@777 40 NumberSeq _all_##name##_times_ms; \
ysr@777 41 public: \
ysr@777 42 void record_##name##_time_ms(double ms) { \
ysr@777 43 _all_##name##_times_ms.add(ms); \
ysr@777 44 } \
ysr@777 45 NumberSeq* get_##name##_seq() { \
ysr@777 46 return &_all_##name##_times_ms; \
ysr@777 47 }
ysr@777 48
ysr@777 49 class MainBodySummary;
ysr@777 50
apetrusenko@984 51 class PauseSummary: public CHeapObj {
ysr@777 52 define_num_seq(total)
ysr@777 53 define_num_seq(other)
ysr@777 54
ysr@777 55 public:
ysr@777 56 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 57 };
ysr@777 58
apetrusenko@984 59 class MainBodySummary: public CHeapObj {
ysr@777 60 define_num_seq(satb_drain) // optional
ysr@777 61 define_num_seq(parallel) // parallel only
ysr@777 62 define_num_seq(ext_root_scan)
ysr@777 63 define_num_seq(mark_stack_scan)
ysr@777 64 define_num_seq(update_rs)
ysr@777 65 define_num_seq(scan_rs)
ysr@777 66 define_num_seq(obj_copy)
ysr@777 67 define_num_seq(termination) // parallel only
ysr@777 68 define_num_seq(parallel_other) // parallel only
ysr@777 69 define_num_seq(mark_closure)
ysr@777 70 define_num_seq(clear_ct) // parallel only
ysr@777 71 };
ysr@777 72
apetrusenko@1112 73 class Summary: public PauseSummary,
apetrusenko@1112 74 public MainBodySummary {
ysr@777 75 public:
ysr@777 76 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 77 };
ysr@777 78
ysr@777 79 class G1CollectorPolicy: public CollectorPolicy {
ysr@777 80 protected:
ysr@777 81 // The number of pauses during the execution.
ysr@777 82 long _n_pauses;
ysr@777 83
ysr@777 84 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 85 // has been set, or 1 otherwise
ysr@777 86 int _parallel_gc_threads;
ysr@777 87
ysr@777 88 enum SomePrivateConstants {
tonyp@1377 89 NumPrevPausesForHeuristics = 10
ysr@777 90 };
ysr@777 91
ysr@777 92 G1MMUTracker* _mmu_tracker;
ysr@777 93
ysr@777 94 void initialize_flags();
ysr@777 95
ysr@777 96 void initialize_all() {
ysr@777 97 initialize_flags();
ysr@777 98 initialize_size_info();
ysr@777 99 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 100 }
ysr@777 101
ysr@777 102 virtual size_t default_init_heap_size() {
ysr@777 103 // Pick some reasonable default.
ysr@777 104 return 8*M;
ysr@777 105 }
ysr@777 106
ysr@777 107 double _cur_collection_start_sec;
ysr@777 108 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 109 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 110 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 111 double _cur_collection_par_time_ms;
ysr@777 112 double _cur_satb_drain_time_ms;
ysr@777 113 double _cur_clear_ct_time_ms;
ysr@777 114 bool _satb_drain_time_set;
ysr@777 115
johnc@1325 116 #ifndef PRODUCT
johnc@1325 117 // Card Table Count Cache stats
johnc@1325 118 double _min_clear_cc_time_ms; // min
johnc@1325 119 double _max_clear_cc_time_ms; // max
johnc@1325 120 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 121 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 122 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 123 #endif
johnc@1325 124
ysr@777 125 double _cur_CH_strong_roots_end_sec;
ysr@777 126 double _cur_CH_strong_roots_dur_ms;
ysr@777 127 double _cur_G1_strong_roots_end_sec;
ysr@777 128 double _cur_G1_strong_roots_dur_ms;
ysr@777 129
ysr@777 130 // Statistics for recent GC pauses. See below for how indexed.
ysr@777 131 TruncatedSeq* _recent_CH_strong_roots_times_ms;
ysr@777 132 TruncatedSeq* _recent_G1_strong_roots_times_ms;
ysr@777 133 TruncatedSeq* _recent_evac_times_ms;
ysr@777 134 // These exclude marking times.
ysr@777 135 TruncatedSeq* _recent_pause_times_ms;
ysr@777 136 TruncatedSeq* _recent_gc_times_ms;
ysr@777 137
ysr@777 138 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 139 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 140
ysr@777 141 TruncatedSeq* _recent_rs_sizes;
ysr@777 142
ysr@777 143 TruncatedSeq* _concurrent_mark_init_times_ms;
ysr@777 144 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 145 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 146
apetrusenko@1112 147 Summary* _summary;
ysr@777 148
ysr@777 149 NumberSeq* _all_pause_times_ms;
ysr@777 150 NumberSeq* _all_full_gc_times_ms;
ysr@777 151 double _stop_world_start;
ysr@777 152 NumberSeq* _all_stop_world_times_ms;
ysr@777 153 NumberSeq* _all_yield_times_ms;
ysr@777 154
ysr@777 155 size_t _region_num_young;
ysr@777 156 size_t _region_num_tenured;
ysr@777 157 size_t _prev_region_num_young;
ysr@777 158 size_t _prev_region_num_tenured;
ysr@777 159
ysr@777 160 NumberSeq* _all_mod_union_times_ms;
ysr@777 161
ysr@777 162 int _aux_num;
ysr@777 163 NumberSeq* _all_aux_times_ms;
ysr@777 164 double* _cur_aux_start_times_ms;
ysr@777 165 double* _cur_aux_times_ms;
ysr@777 166 bool* _cur_aux_times_set;
ysr@777 167
tonyp@1966 168 double* _par_last_gc_worker_start_times_ms;
ysr@777 169 double* _par_last_ext_root_scan_times_ms;
ysr@777 170 double* _par_last_mark_stack_scan_times_ms;
ysr@777 171 double* _par_last_update_rs_times_ms;
ysr@777 172 double* _par_last_update_rs_processed_buffers;
ysr@777 173 double* _par_last_scan_rs_times_ms;
ysr@777 174 double* _par_last_obj_copy_times_ms;
ysr@777 175 double* _par_last_termination_times_ms;
tonyp@1966 176 double* _par_last_termination_attempts;
tonyp@1966 177 double* _par_last_gc_worker_end_times_ms;
ysr@777 178
ysr@777 179 // indicates that we are in young GC mode
ysr@777 180 bool _in_young_gc_mode;
ysr@777 181
ysr@777 182 // indicates whether we are in full young or partially young GC mode
ysr@777 183 bool _full_young_gcs;
ysr@777 184
ysr@777 185 // if true, then it tries to dynamically adjust the length of the
ysr@777 186 // young list
ysr@777 187 bool _adaptive_young_list_length;
ysr@777 188 size_t _young_list_min_length;
ysr@777 189 size_t _young_list_target_length;
ysr@777 190 size_t _young_list_fixed_length;
ysr@777 191
ysr@777 192 size_t _young_cset_length;
ysr@777 193 bool _last_young_gc_full;
ysr@777 194
ysr@777 195 unsigned _full_young_pause_num;
ysr@777 196 unsigned _partial_young_pause_num;
ysr@777 197
ysr@777 198 bool _during_marking;
ysr@777 199 bool _in_marking_window;
ysr@777 200 bool _in_marking_window_im;
ysr@777 201
ysr@777 202 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 203 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 204 // add here any more surv rate groups
ysr@777 205
tonyp@1791 206 double _gc_overhead_perc;
tonyp@1791 207
ysr@777 208 bool during_marking() {
ysr@777 209 return _during_marking;
ysr@777 210 }
ysr@777 211
ysr@777 212 // <NEW PREDICTION>
ysr@777 213
ysr@777 214 private:
ysr@777 215 enum PredictionConstants {
ysr@777 216 TruncatedSeqLength = 10
ysr@777 217 };
ysr@777 218
ysr@777 219 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 220 double _prev_collection_pause_end_ms;
ysr@777 221
ysr@777 222 TruncatedSeq* _pending_card_diff_seq;
ysr@777 223 TruncatedSeq* _rs_length_diff_seq;
ysr@777 224 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 225 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 226 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 227 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 228 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 229 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 230 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 231 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 232 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 233
ysr@777 234 TruncatedSeq* _pending_cards_seq;
ysr@777 235 TruncatedSeq* _scanned_cards_seq;
ysr@777 236 TruncatedSeq* _rs_lengths_seq;
ysr@777 237
ysr@777 238 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 239
ysr@777 240 TruncatedSeq* _young_gc_eff_seq;
ysr@777 241
ysr@777 242 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 243
ysr@777 244 size_t _recorded_young_regions;
ysr@777 245 size_t _recorded_non_young_regions;
ysr@777 246 size_t _recorded_region_num;
ysr@777 247
ysr@777 248 size_t _free_regions_at_end_of_collection;
ysr@777 249
ysr@777 250 size_t _recorded_rs_lengths;
ysr@777 251 size_t _max_rs_lengths;
ysr@777 252
ysr@777 253 size_t _recorded_marked_bytes;
ysr@777 254 size_t _recorded_young_bytes;
ysr@777 255
ysr@777 256 size_t _predicted_pending_cards;
ysr@777 257 size_t _predicted_cards_scanned;
ysr@777 258 size_t _predicted_rs_lengths;
ysr@777 259 size_t _predicted_bytes_to_copy;
ysr@777 260
ysr@777 261 double _predicted_survival_ratio;
ysr@777 262 double _predicted_rs_update_time_ms;
ysr@777 263 double _predicted_rs_scan_time_ms;
ysr@777 264 double _predicted_object_copy_time_ms;
ysr@777 265 double _predicted_constant_other_time_ms;
ysr@777 266 double _predicted_young_other_time_ms;
ysr@777 267 double _predicted_non_young_other_time_ms;
ysr@777 268 double _predicted_pause_time_ms;
ysr@777 269
ysr@777 270 double _vtime_diff_ms;
ysr@777 271
ysr@777 272 double _recorded_young_free_cset_time_ms;
ysr@777 273 double _recorded_non_young_free_cset_time_ms;
ysr@777 274
ysr@777 275 double _sigma;
ysr@777 276 double _expensive_region_limit_ms;
ysr@777 277
ysr@777 278 size_t _rs_lengths_prediction;
ysr@777 279
ysr@777 280 size_t _known_garbage_bytes;
ysr@777 281 double _known_garbage_ratio;
ysr@777 282
ysr@777 283 double sigma() {
ysr@777 284 return _sigma;
ysr@777 285 }
ysr@777 286
ysr@777 287 // A function that prevents us putting too much stock in small sample
ysr@777 288 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 289 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 290 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 291 double confidence_factor(int samples) {
ysr@777 292 if (samples > 4) return 1.0;
ysr@777 293 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 294 }
ysr@777 295
ysr@777 296 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 297 return seq->davg() - sigma() * seq->dsd();
ysr@777 298 }
ysr@777 299
ysr@777 300 #ifndef PRODUCT
ysr@777 301 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 302 #endif // PRODUCT
ysr@777 303
iveresov@1546 304 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 305 double update_rs_processed_buffers,
iveresov@1546 306 double goal_ms);
iveresov@1546 307
ysr@777 308 protected:
ysr@777 309 double _pause_time_target_ms;
ysr@777 310 double _recorded_young_cset_choice_time_ms;
ysr@777 311 double _recorded_non_young_cset_choice_time_ms;
ysr@777 312 bool _within_target;
ysr@777 313 size_t _pending_cards;
ysr@777 314 size_t _max_pending_cards;
ysr@777 315
ysr@777 316 public:
ysr@777 317
ysr@777 318 void set_region_short_lived(HeapRegion* hr) {
ysr@777 319 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 320 }
ysr@777 321
ysr@777 322 void set_region_survivors(HeapRegion* hr) {
ysr@777 323 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 324 }
ysr@777 325
ysr@777 326 #ifndef PRODUCT
ysr@777 327 bool verify_young_ages();
ysr@777 328 #endif // PRODUCT
ysr@777 329
ysr@777 330 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 331 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 332 seq->davg() * confidence_factor(seq->num()));
ysr@777 333 }
ysr@777 334
ysr@777 335 size_t young_cset_length() {
ysr@777 336 return _young_cset_length;
ysr@777 337 }
ysr@777 338
ysr@777 339 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 340 _max_rs_lengths = rs_lengths;
ysr@777 341 }
ysr@777 342
ysr@777 343 size_t predict_pending_card_diff() {
ysr@777 344 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 345 if (prediction < 0.00001)
ysr@777 346 return 0;
ysr@777 347 else
ysr@777 348 return (size_t) prediction;
ysr@777 349 }
ysr@777 350
ysr@777 351 size_t predict_pending_cards() {
ysr@777 352 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 353 size_t diff = predict_pending_card_diff();
ysr@777 354 size_t prediction;
ysr@777 355 if (diff > max_pending_card_num)
ysr@777 356 prediction = max_pending_card_num;
ysr@777 357 else
ysr@777 358 prediction = max_pending_card_num - diff;
ysr@777 359
ysr@777 360 return prediction;
ysr@777 361 }
ysr@777 362
ysr@777 363 size_t predict_rs_length_diff() {
ysr@777 364 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 365 }
ysr@777 366
ysr@777 367 double predict_alloc_rate_ms() {
ysr@777 368 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 369 }
ysr@777 370
ysr@777 371 double predict_cost_per_card_ms() {
ysr@777 372 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 373 }
ysr@777 374
ysr@777 375 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 376 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 377 }
ysr@777 378
ysr@777 379 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 380 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 381 }
ysr@777 382
ysr@777 383 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 384 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 385 return predict_fully_young_cards_per_entry_ratio();
ysr@777 386 else
ysr@777 387 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 388 }
ysr@777 389
ysr@777 390 size_t predict_young_card_num(size_t rs_length) {
ysr@777 391 return (size_t) ((double) rs_length *
ysr@777 392 predict_fully_young_cards_per_entry_ratio());
ysr@777 393 }
ysr@777 394
ysr@777 395 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 396 return (size_t) ((double) rs_length *
ysr@777 397 predict_partially_young_cards_per_entry_ratio());
ysr@777 398 }
ysr@777 399
ysr@777 400 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 401 if (full_young_gcs())
ysr@777 402 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 403 else
ysr@777 404 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 405 }
ysr@777 406
ysr@777 407 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 408 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 409 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 410 else
ysr@777 411 return (double) card_num *
ysr@777 412 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 413 }
ysr@777 414
ysr@777 415 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 416 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 417 return 1.1 * (double) bytes_to_copy *
ysr@777 418 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 419 else
ysr@777 420 return (double) bytes_to_copy *
ysr@777 421 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 422 }
ysr@777 423
ysr@777 424 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 425 if (_in_marking_window && !_in_marking_window_im)
ysr@777 426 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 427 else
ysr@777 428 return (double) bytes_to_copy *
ysr@777 429 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 430 }
ysr@777 431
ysr@777 432 double predict_constant_other_time_ms() {
ysr@777 433 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 434 }
ysr@777 435
ysr@777 436 double predict_young_other_time_ms(size_t young_num) {
ysr@777 437 return
ysr@777 438 (double) young_num *
ysr@777 439 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 440 }
ysr@777 441
ysr@777 442 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 443 return
ysr@777 444 (double) non_young_num *
ysr@777 445 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 446 }
ysr@777 447
ysr@777 448 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 449
ysr@777 450 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 451 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 452 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 453 size_t scanned_cards);
ysr@777 454 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 455 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 456
johnc@1829 457 // for use by: calculate_young_list_target_length(rs_length)
johnc@1829 458 bool predict_will_fit(size_t young_region_num,
johnc@1829 459 double base_time_ms,
johnc@1829 460 size_t init_free_regions,
johnc@1829 461 double target_pause_time_ms);
ysr@777 462
ysr@777 463 void start_recording_regions();
johnc@1829 464 void record_cset_region_info(HeapRegion* hr, bool young);
johnc@1829 465 void record_non_young_cset_region(HeapRegion* hr);
johnc@1829 466
johnc@1829 467 void set_recorded_young_regions(size_t n_regions);
johnc@1829 468 void set_recorded_young_bytes(size_t bytes);
johnc@1829 469 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 470 void set_predicted_bytes_to_copy(size_t bytes);
johnc@1829 471
ysr@777 472 void end_recording_regions();
ysr@777 473
ysr@777 474 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 475 _vtime_diff_ms = vtime_diff_ms;
ysr@777 476 }
ysr@777 477
ysr@777 478 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 479 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 480 }
ysr@777 481
ysr@777 482 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 483 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 484 }
ysr@777 485
ysr@777 486 double predict_young_gc_eff() {
ysr@777 487 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 488 }
ysr@777 489
apetrusenko@980 490 double predict_survivor_regions_evac_time();
apetrusenko@980 491
ysr@777 492 // </NEW PREDICTION>
ysr@777 493
ysr@777 494 public:
ysr@777 495 void cset_regions_freed() {
ysr@777 496 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 497 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 498 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 499 // also call it on any more surv rate groups
ysr@777 500 }
ysr@777 501
ysr@777 502 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 503 _known_garbage_bytes = known_garbage_bytes;
ysr@777 504 size_t heap_bytes = _g1->capacity();
ysr@777 505 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 506 }
ysr@777 507
ysr@777 508 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 509 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 510
ysr@777 511 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 512 size_t heap_bytes = _g1->capacity();
ysr@777 513 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 514 }
ysr@777 515
ysr@777 516 G1MMUTracker* mmu_tracker() {
ysr@777 517 return _mmu_tracker;
ysr@777 518 }
ysr@777 519
tonyp@2011 520 double max_pause_time_ms() {
tonyp@2011 521 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 522 }
tonyp@2011 523
ysr@777 524 double predict_init_time_ms() {
ysr@777 525 return get_new_prediction(_concurrent_mark_init_times_ms);
ysr@777 526 }
ysr@777 527
ysr@777 528 double predict_remark_time_ms() {
ysr@777 529 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 530 }
ysr@777 531
ysr@777 532 double predict_cleanup_time_ms() {
ysr@777 533 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 534 }
ysr@777 535
ysr@777 536 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 537 // "yg_age".
apetrusenko@980 538 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 539 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 540 if (seq->num() == 0)
ysr@777 541 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 542 guarantee( seq->num() > 0, "invariant" );
ysr@777 543 double pred = get_new_prediction(seq);
ysr@777 544 if (pred > 1.0)
ysr@777 545 pred = 1.0;
ysr@777 546 return pred;
ysr@777 547 }
ysr@777 548
apetrusenko@980 549 double predict_yg_surv_rate(int age) {
apetrusenko@980 550 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 551 }
apetrusenko@980 552
ysr@777 553 double accum_yg_surv_rate_pred(int age) {
ysr@777 554 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 555 }
ysr@777 556
ysr@777 557 protected:
tonyp@1966 558 void print_stats(int level, const char* str, double value);
tonyp@1966 559 void print_stats(int level, const char* str, int value);
tonyp@1966 560
tonyp@1966 561 void print_par_stats(int level, const char* str, double* data) {
ysr@777 562 print_par_stats(level, str, data, true);
ysr@777 563 }
tonyp@1966 564 void print_par_stats(int level, const char* str, double* data, bool summary);
tonyp@1966 565 void print_par_sizes(int level, const char* str, double* data, bool summary);
ysr@777 566
ysr@777 567 void check_other_times(int level,
ysr@777 568 NumberSeq* other_times_ms,
ysr@777 569 NumberSeq* calc_other_times_ms) const;
ysr@777 570
ysr@777 571 void print_summary (PauseSummary* stats) const;
ysr@777 572
ysr@777 573 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 574 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 575
ysr@777 576 double avg_value (double* data);
ysr@777 577 double max_value (double* data);
ysr@777 578 double sum_of_values (double* data);
ysr@777 579 double max_sum (double* data1, double* data2);
ysr@777 580
ysr@777 581 int _last_satb_drain_processed_buffers;
ysr@777 582 int _last_update_rs_processed_buffers;
ysr@777 583 double _last_pause_time_ms;
ysr@777 584
ysr@777 585 size_t _bytes_in_to_space_before_gc;
ysr@777 586 size_t _bytes_in_to_space_after_gc;
ysr@777 587 size_t bytes_in_to_space_during_gc() {
ysr@777 588 return
ysr@777 589 _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
ysr@777 590 }
ysr@777 591 size_t _bytes_in_collection_set_before_gc;
ysr@777 592 // Used to count used bytes in CS.
ysr@777 593 friend class CountCSClosure;
ysr@777 594
ysr@777 595 // Statistics kept per GC stoppage, pause or full.
ysr@777 596 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 597
ysr@777 598 // We track markings.
ysr@777 599 int _num_markings;
ysr@777 600 double _mark_thread_startup_sec; // Time at startup of marking thread
ysr@777 601
ysr@777 602 // Add a new GC of the given duration and end time to the record.
ysr@777 603 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 604
ysr@777 605 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 606 // current collection set. Set from the incrementally built collection
johnc@1829 607 // set at the start of the pause.
ysr@777 608 HeapRegion* _collection_set;
johnc@1829 609
johnc@1829 610 // The number of regions in the collection set. Set from the incrementally
johnc@1829 611 // built collection set at the start of an evacuation pause.
ysr@777 612 size_t _collection_set_size;
johnc@1829 613
johnc@1829 614 // The number of bytes in the collection set before the pause. Set from
johnc@1829 615 // the incrementally built collection set at the start of an evacuation
johnc@1829 616 // pause.
ysr@777 617 size_t _collection_set_bytes_used_before;
ysr@777 618
johnc@1829 619 // The associated information that is maintained while the incremental
johnc@1829 620 // collection set is being built with young regions. Used to populate
johnc@1829 621 // the recorded info for the evacuation pause.
johnc@1829 622
johnc@1829 623 enum CSetBuildType {
johnc@1829 624 Active, // We are actively building the collection set
johnc@1829 625 Inactive // We are not actively building the collection set
johnc@1829 626 };
johnc@1829 627
johnc@1829 628 CSetBuildType _inc_cset_build_state;
johnc@1829 629
johnc@1829 630 // The head of the incrementally built collection set.
johnc@1829 631 HeapRegion* _inc_cset_head;
johnc@1829 632
johnc@1829 633 // The tail of the incrementally built collection set.
johnc@1829 634 HeapRegion* _inc_cset_tail;
johnc@1829 635
johnc@1829 636 // The number of regions in the incrementally built collection set.
johnc@1829 637 // Used to set _collection_set_size at the start of an evacuation
johnc@1829 638 // pause.
johnc@1829 639 size_t _inc_cset_size;
johnc@1829 640
johnc@1829 641 // Used as the index in the surving young words structure
johnc@1829 642 // which tracks the amount of space, for each young region,
johnc@1829 643 // that survives the pause.
johnc@1829 644 size_t _inc_cset_young_index;
johnc@1829 645
johnc@1829 646 // The number of bytes in the incrementally built collection set.
johnc@1829 647 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 648 // an evacuation pause.
johnc@1829 649 size_t _inc_cset_bytes_used_before;
johnc@1829 650
johnc@1829 651 // Used to record the highest end of heap region in collection set
johnc@1829 652 HeapWord* _inc_cset_max_finger;
johnc@1829 653
johnc@1829 654 // The number of recorded used bytes in the young regions
johnc@1829 655 // of the collection set. This is the sum of the used() bytes
johnc@1829 656 // of retired young regions in the collection set.
johnc@1829 657 size_t _inc_cset_recorded_young_bytes;
johnc@1829 658
johnc@1829 659 // The RSet lengths recorded for regions in the collection set
johnc@1829 660 // (updated by the periodic sampling of the regions in the
johnc@1829 661 // young list/collection set).
johnc@1829 662 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 663
johnc@1829 664 // The predicted elapsed time it will take to collect the regions
johnc@1829 665 // in the collection set (updated by the periodic sampling of the
johnc@1829 666 // regions in the young list/collection set).
johnc@1829 667 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 668
johnc@1829 669 // The predicted bytes to copy for the regions in the collection
johnc@1829 670 // set (updated by the periodic sampling of the regions in the
johnc@1829 671 // young list/collection set).
johnc@1829 672 size_t _inc_cset_predicted_bytes_to_copy;
johnc@1829 673
ysr@777 674 // Info about marking.
ysr@777 675 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
ysr@777 676
ysr@777 677 // The number of collection pauses at the end of the last mark.
ysr@777 678 size_t _n_pauses_at_mark_end;
ysr@777 679
ysr@777 680 // Stash a pointer to the g1 heap.
ysr@777 681 G1CollectedHeap* _g1;
ysr@777 682
ysr@777 683 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 684 double recent_avg_time_for_pauses_ms();
ysr@777 685
ysr@777 686 // The average time in ms for processing CollectedHeap strong roots, per
ysr@777 687 // collection pause, averaged over recent pauses.
ysr@777 688 double recent_avg_time_for_CH_strong_ms();
ysr@777 689
ysr@777 690 // The average time in ms for processing the G1 remembered set, per
ysr@777 691 // pause, averaged over recent pauses.
ysr@777 692 double recent_avg_time_for_G1_strong_ms();
ysr@777 693
ysr@777 694 // The average time in ms for "evacuating followers", per pause, averaged
ysr@777 695 // over recent pauses.
ysr@777 696 double recent_avg_time_for_evac_ms();
ysr@777 697
ysr@777 698 // The number of "recent" GCs recorded in the number sequences
ysr@777 699 int number_of_recent_gcs();
ysr@777 700
ysr@777 701 // The average survival ratio, computed by the total number of bytes
ysr@777 702 // suriviving / total number of bytes before collection over the last
ysr@777 703 // several recent pauses.
ysr@777 704 double recent_avg_survival_fraction();
ysr@777 705 // The survival fraction of the most recent pause; if there have been no
ysr@777 706 // pauses, returns 1.0.
ysr@777 707 double last_survival_fraction();
ysr@777 708
ysr@777 709 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 710 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 711 // This is conservative in several ways:
ysr@777 712 // If there have been few pauses, it will assume a potential high
ysr@777 713 // variance, and err on the side of caution.
ysr@777 714 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 715 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 716 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 717 // "work" version is a utility function; young is restricted to young regions.
ysr@777 718 double conservative_avg_survival_fraction_work(double avg,
ysr@777 719 double latest);
ysr@777 720
ysr@777 721 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 722 // surviving and the total number of bytes before collection, resp.,
ysr@777 723 // over the last evereal recent pauses
ysr@777 724 // Returns the survival rate for the category in the most recent pause.
ysr@777 725 // If there have been no pauses, returns 1.0.
ysr@777 726 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 727 TruncatedSeq* before);
ysr@777 728
ysr@777 729 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 730 // surviving and the total number of bytes before collection, resp.,
ysr@777 731 // over the last several recent pauses
ysr@777 732 // Returns the average survival ration over the last several recent pauses
ysr@777 733 // If there have been no pauses, return 1.0
ysr@777 734 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 735 TruncatedSeq* before);
ysr@777 736
ysr@777 737 double conservative_avg_survival_fraction() {
ysr@777 738 double avg = recent_avg_survival_fraction();
ysr@777 739 double latest = last_survival_fraction();
ysr@777 740 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 741 }
ysr@777 742
ysr@777 743 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 744 double _recent_avg_pause_time_ratio;
ysr@777 745
ysr@777 746 double recent_avg_pause_time_ratio() {
ysr@777 747 return _recent_avg_pause_time_ratio;
ysr@777 748 }
ysr@777 749
ysr@777 750 // Number of pauses between concurrent marking.
ysr@777 751 size_t _pauses_btwn_concurrent_mark;
ysr@777 752
ysr@777 753 size_t _n_marks_since_last_pause;
ysr@777 754
tonyp@1794 755 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 756 // whether we will start a marking cycle during the next pause. If
tonyp@1794 757 // we decide that we want to do that, we will set this parameter to
tonyp@1794 758 // true. So, this parameter will stay true between the end of a
tonyp@1794 759 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 760 // the next one, see the comments on the next field) when we decide
tonyp@1794 761 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 762 // work.
tonyp@1794 763 volatile bool _initiate_conc_mark_if_possible;
ysr@777 764
tonyp@1794 765 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 766 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 767 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 768 // that the concurrent marking thread is still finishing up the
tonyp@1794 769 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 770 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 771 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 772 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 773 // initiation decision for the next pause. When we eventually decide
tonyp@1794 774 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 775 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 776 // the condition that indicates that a pause is doing the
tonyp@1794 777 // initial-mark work.
tonyp@1794 778 volatile bool _during_initial_mark_pause;
tonyp@1794 779
ysr@777 780 bool _should_revert_to_full_young_gcs;
ysr@777 781 bool _last_full_young_gc;
ysr@777 782
ysr@777 783 // This set of variables tracks the collector efficiency, in order to
ysr@777 784 // determine whether we should initiate a new marking.
ysr@777 785 double _cur_mark_stop_world_time_ms;
ysr@777 786 double _mark_init_start_sec;
ysr@777 787 double _mark_remark_start_sec;
ysr@777 788 double _mark_cleanup_start_sec;
ysr@777 789 double _mark_closure_time_ms;
ysr@777 790
ysr@777 791 void calculate_young_list_min_length();
johnc@1829 792 void calculate_young_list_target_length();
johnc@1829 793 void calculate_young_list_target_length(size_t rs_lengths);
ysr@777 794
ysr@777 795 public:
ysr@777 796
ysr@777 797 G1CollectorPolicy();
ysr@777 798
ysr@777 799 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 800
ysr@777 801 virtual CollectorPolicy::Name kind() {
ysr@777 802 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 803 }
ysr@777 804
ysr@777 805 void check_prediction_validity();
ysr@777 806
ysr@777 807 size_t bytes_in_collection_set() {
ysr@777 808 return _bytes_in_collection_set_before_gc;
ysr@777 809 }
ysr@777 810
ysr@777 811 size_t bytes_in_to_space() {
ysr@777 812 return bytes_in_to_space_during_gc();
ysr@777 813 }
ysr@777 814
ysr@777 815 unsigned calc_gc_alloc_time_stamp() {
ysr@777 816 return _all_pause_times_ms->num() + 1;
ysr@777 817 }
ysr@777 818
ysr@777 819 protected:
ysr@777 820
ysr@777 821 // Count the number of bytes used in the CS.
ysr@777 822 void count_CS_bytes_used();
ysr@777 823
ysr@777 824 // Together these do the base cleanup-recording work. Subclasses might
ysr@777 825 // want to put something between them.
ysr@777 826 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
ysr@777 827 size_t max_live_bytes);
ysr@777 828 void record_concurrent_mark_cleanup_end_work2();
ysr@777 829
ysr@777 830 public:
ysr@777 831
ysr@777 832 virtual void init();
ysr@777 833
apetrusenko@980 834 // Create jstat counters for the policy.
apetrusenko@980 835 virtual void initialize_gc_policy_counters();
apetrusenko@980 836
ysr@777 837 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 838 bool is_tlab,
ysr@777 839 bool* gc_overhead_limit_was_exceeded);
ysr@777 840
ysr@777 841 // This method controls how a collector handles one or more
ysr@777 842 // of its generations being fully allocated.
ysr@777 843 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 844 bool is_tlab);
ysr@777 845
ysr@777 846 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 847
ysr@777 848 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 849
ysr@777 850 // The number of collection pauses so far.
ysr@777 851 long n_pauses() const { return _n_pauses; }
ysr@777 852
ysr@777 853 // Update the heuristic info to record a collection pause of the given
ysr@777 854 // start time, where the given number of bytes were used at the start.
ysr@777 855 // This may involve changing the desired size of a collection set.
ysr@777 856
ysr@777 857 virtual void record_stop_world_start();
ysr@777 858
ysr@777 859 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 860 size_t start_used);
ysr@777 861
ysr@777 862 // Must currently be called while the world is stopped.
ysr@777 863 virtual void record_concurrent_mark_init_start();
ysr@777 864 virtual void record_concurrent_mark_init_end();
ysr@777 865 void record_concurrent_mark_init_end_pre(double
ysr@777 866 mark_init_elapsed_time_ms);
ysr@777 867
ysr@777 868 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 869
ysr@777 870 virtual void record_concurrent_mark_remark_start();
ysr@777 871 virtual void record_concurrent_mark_remark_end();
ysr@777 872
ysr@777 873 virtual void record_concurrent_mark_cleanup_start();
ysr@777 874 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 875 size_t max_live_bytes);
ysr@777 876 virtual void record_concurrent_mark_cleanup_completed();
ysr@777 877
ysr@777 878 virtual void record_concurrent_pause();
ysr@777 879 virtual void record_concurrent_pause_end();
ysr@777 880
ysr@777 881 virtual void record_collection_pause_end_CH_strong_roots();
ysr@777 882 virtual void record_collection_pause_end_G1_strong_roots();
ysr@777 883
tonyp@2062 884 virtual void record_collection_pause_end();
ysr@777 885
ysr@777 886 // Record the fact that a full collection occurred.
ysr@777 887 virtual void record_full_collection_start();
ysr@777 888 virtual void record_full_collection_end();
ysr@777 889
tonyp@1966 890 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 891 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 892 }
tonyp@1966 893
ysr@777 894 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 895 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 896 }
ysr@777 897
ysr@777 898 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 899 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 900 }
ysr@777 901
ysr@777 902 void record_satb_drain_time(double ms) {
ysr@777 903 _cur_satb_drain_time_ms = ms;
ysr@777 904 _satb_drain_time_set = true;
ysr@777 905 }
ysr@777 906
ysr@777 907 void record_satb_drain_processed_buffers (int processed_buffers) {
ysr@777 908 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 909 }
ysr@777 910
ysr@777 911 void record_mod_union_time(double ms) {
ysr@777 912 _all_mod_union_times_ms->add(ms);
ysr@777 913 }
ysr@777 914
ysr@777 915 void record_update_rs_time(int thread, double ms) {
ysr@777 916 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 917 }
ysr@777 918
ysr@777 919 void record_update_rs_processed_buffers (int thread,
ysr@777 920 double processed_buffers) {
ysr@777 921 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 922 }
ysr@777 923
ysr@777 924 void record_scan_rs_time(int thread, double ms) {
ysr@777 925 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 926 }
ysr@777 927
ysr@777 928 void reset_obj_copy_time(int thread) {
ysr@777 929 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 930 }
ysr@777 931
ysr@777 932 void reset_obj_copy_time() {
ysr@777 933 reset_obj_copy_time(0);
ysr@777 934 }
ysr@777 935
ysr@777 936 void record_obj_copy_time(int thread, double ms) {
ysr@777 937 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 938 }
ysr@777 939
tonyp@1966 940 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 941 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 942 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 943 }
ysr@777 944
tonyp@1966 945 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 946 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 947 }
ysr@777 948
tonyp@1030 949 void record_pause_time_ms(double ms) {
ysr@777 950 _last_pause_time_ms = ms;
ysr@777 951 }
ysr@777 952
ysr@777 953 void record_clear_ct_time(double ms) {
ysr@777 954 _cur_clear_ct_time_ms = ms;
ysr@777 955 }
ysr@777 956
ysr@777 957 void record_par_time(double ms) {
ysr@777 958 _cur_collection_par_time_ms = ms;
ysr@777 959 }
ysr@777 960
ysr@777 961 void record_aux_start_time(int i) {
ysr@777 962 guarantee(i < _aux_num, "should be within range");
ysr@777 963 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 964 }
ysr@777 965
ysr@777 966 void record_aux_end_time(int i) {
ysr@777 967 guarantee(i < _aux_num, "should be within range");
ysr@777 968 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 969 _cur_aux_times_set[i] = true;
ysr@777 970 _cur_aux_times_ms[i] += ms;
ysr@777 971 }
ysr@777 972
johnc@1325 973 #ifndef PRODUCT
johnc@1325 974 void record_cc_clear_time(double ms) {
johnc@1325 975 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 976 _min_clear_cc_time_ms = ms;
johnc@1325 977 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 978 _max_clear_cc_time_ms = ms;
johnc@1325 979 _cur_clear_cc_time_ms = ms;
johnc@1325 980 _cum_clear_cc_time_ms += ms;
johnc@1325 981 _num_cc_clears++;
johnc@1325 982 }
johnc@1325 983 #endif
johnc@1325 984
ysr@777 985 // Record the fact that "bytes" bytes allocated in a region.
ysr@777 986 void record_before_bytes(size_t bytes);
ysr@777 987 void record_after_bytes(size_t bytes);
ysr@777 988
ysr@777 989 // Returns "true" if this is a good time to do a collection pause.
ysr@777 990 // The "word_size" argument, if non-zero, indicates the size of an
ysr@777 991 // allocation request that is prompting this query.
ysr@777 992 virtual bool should_do_collection_pause(size_t word_size) = 0;
ysr@777 993
ysr@777 994 // Choose a new collection set. Marks the chosen regions as being
ysr@777 995 // "in_collection_set", and links them together. The head and number of
ysr@777 996 // the collection set are available via access methods.
tonyp@2062 997 virtual void choose_collection_set(double target_pause_time_ms) = 0;
ysr@777 998
ysr@777 999 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1000 // current collection set.
ysr@777 1001 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1002
johnc@1829 1003 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 1004
ysr@777 1005 // The number of elements in the current collection set.
ysr@777 1006 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1007
ysr@777 1008 // Add "hr" to the CS.
ysr@777 1009 void add_to_collection_set(HeapRegion* hr);
ysr@777 1010
johnc@1829 1011 // Incremental CSet Support
johnc@1829 1012
johnc@1829 1013 // The head of the incrementally built collection set.
johnc@1829 1014 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 1015
johnc@1829 1016 // The tail of the incrementally built collection set.
johnc@1829 1017 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 1018
johnc@1829 1019 // The number of elements in the incrementally built collection set.
johnc@1829 1020 size_t inc_cset_size() { return _inc_cset_size; }
johnc@1829 1021
johnc@1829 1022 // Initialize incremental collection set info.
johnc@1829 1023 void start_incremental_cset_building();
johnc@1829 1024
johnc@1829 1025 void clear_incremental_cset() {
johnc@1829 1026 _inc_cset_head = NULL;
johnc@1829 1027 _inc_cset_tail = NULL;
johnc@1829 1028 }
johnc@1829 1029
johnc@1829 1030 // Stop adding regions to the incremental collection set
johnc@1829 1031 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 1032
johnc@1829 1033 // Add/remove information about hr to the aggregated information
johnc@1829 1034 // for the incrementally built collection set.
johnc@1829 1035 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 1036 void remove_from_incremental_cset_info(HeapRegion* hr);
johnc@1829 1037
johnc@1829 1038 // Update information about hr in the aggregated information for
johnc@1829 1039 // the incrementally built collection set.
johnc@1829 1040 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 1041
johnc@1829 1042 private:
johnc@1829 1043 // Update the incremental cset information when adding a region
johnc@1829 1044 // (should not be called directly).
johnc@1829 1045 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 1046
johnc@1829 1047 public:
johnc@1829 1048 // Add hr to the LHS of the incremental collection set.
johnc@1829 1049 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1050
johnc@1829 1051 // Add hr to the RHS of the incremental collection set.
johnc@1829 1052 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1053
johnc@1829 1054 #ifndef PRODUCT
johnc@1829 1055 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1056 #endif // !PRODUCT
johnc@1829 1057
tonyp@1794 1058 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1059 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1060 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1061
tonyp@1794 1062 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1063 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1064 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1065
tonyp@2011 1066 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1067 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1068 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1069 // progress or not is stable.
tonyp@2011 1070 bool force_initial_mark_if_outside_cycle();
tonyp@2011 1071
tonyp@1794 1072 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1073 // has to be the first thing that the pause does). If
tonyp@1794 1074 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1075 // marking thread has completed its work during the previous cycle,
tonyp@1794 1076 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1077 // the initial-mark work and start a marking cycle.
tonyp@1794 1078 void decide_on_conc_mark_initiation();
ysr@777 1079
ysr@777 1080 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1081 // exceeded the desired limit, return an amount to expand by.
ysr@777 1082 virtual size_t expansion_amount();
ysr@777 1083
ysr@777 1084 // note start of mark thread
ysr@777 1085 void note_start_of_mark_thread();
ysr@777 1086
ysr@777 1087 // The marked bytes of the "r" has changed; reclassify it's desirability
ysr@777 1088 // for marking. Also asserts that "r" is eligible for a CS.
ysr@777 1089 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
ysr@777 1090
ysr@777 1091 #ifndef PRODUCT
ysr@777 1092 // Check any appropriate marked bytes info, asserting false if
ysr@777 1093 // something's wrong, else returning "true".
ysr@777 1094 virtual bool assertMarkedBytesDataOK() = 0;
ysr@777 1095 #endif
ysr@777 1096
ysr@777 1097 // Print tracing information.
ysr@777 1098 void print_tracing_info() const;
ysr@777 1099
ysr@777 1100 // Print stats on young survival ratio
ysr@777 1101 void print_yg_surv_rate_info() const;
ysr@777 1102
apetrusenko@980 1103 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1104 if (is_survivors) {
apetrusenko@980 1105 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1106 } else {
apetrusenko@980 1107 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1108 }
ysr@777 1109 // do that for any other surv rate groups
ysr@777 1110 }
ysr@777 1111
ysr@777 1112 bool should_add_next_region_to_young_list();
ysr@777 1113
ysr@777 1114 bool in_young_gc_mode() {
ysr@777 1115 return _in_young_gc_mode;
ysr@777 1116 }
ysr@777 1117 void set_in_young_gc_mode(bool in_young_gc_mode) {
ysr@777 1118 _in_young_gc_mode = in_young_gc_mode;
ysr@777 1119 }
ysr@777 1120
ysr@777 1121 bool full_young_gcs() {
ysr@777 1122 return _full_young_gcs;
ysr@777 1123 }
ysr@777 1124 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1125 _full_young_gcs = full_young_gcs;
ysr@777 1126 }
ysr@777 1127
ysr@777 1128 bool adaptive_young_list_length() {
ysr@777 1129 return _adaptive_young_list_length;
ysr@777 1130 }
ysr@777 1131 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1132 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1133 }
ysr@777 1134
ysr@777 1135 inline double get_gc_eff_factor() {
ysr@777 1136 double ratio = _known_garbage_ratio;
ysr@777 1137
ysr@777 1138 double square = ratio * ratio;
ysr@777 1139 // square = square * square;
ysr@777 1140 double ret = square * 9.0 + 1.0;
ysr@777 1141 #if 0
ysr@777 1142 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1143 #endif // 0
ysr@777 1144 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1145 return ret;
ysr@777 1146 }
ysr@777 1147
ysr@777 1148 //
ysr@777 1149 // Survivor regions policy.
ysr@777 1150 //
ysr@777 1151 protected:
ysr@777 1152
ysr@777 1153 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1154 // maximum amount of suvivors regions.
ysr@777 1155 int _tenuring_threshold;
ysr@777 1156
apetrusenko@980 1157 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1158 size_t _max_survivor_regions;
apetrusenko@980 1159
apetrusenko@980 1160 // The amount of survor regions after a collection.
apetrusenko@980 1161 size_t _recorded_survivor_regions;
apetrusenko@980 1162 // List of survivor regions.
apetrusenko@980 1163 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1164 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1165
apetrusenko@980 1166 ageTable _survivors_age_table;
apetrusenko@980 1167
ysr@777 1168 public:
ysr@777 1169
ysr@777 1170 inline GCAllocPurpose
ysr@777 1171 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1172 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1173 return GCAllocForSurvived;
ysr@777 1174 } else {
ysr@777 1175 return GCAllocForTenured;
ysr@777 1176 }
ysr@777 1177 }
ysr@777 1178
ysr@777 1179 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1180 return purpose == GCAllocForSurvived;
ysr@777 1181 }
ysr@777 1182
ysr@777 1183 inline GCAllocPurpose alternative_purpose(int purpose) {
ysr@777 1184 return GCAllocForTenured;
ysr@777 1185 }
ysr@777 1186
apetrusenko@980 1187 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1188
apetrusenko@980 1189 size_t max_regions(int purpose);
ysr@777 1190
ysr@777 1191 // The limit on regions for a particular purpose is reached.
ysr@777 1192 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1193 if (purpose == GCAllocForSurvived) {
ysr@777 1194 _tenuring_threshold = 0;
ysr@777 1195 }
ysr@777 1196 }
ysr@777 1197
ysr@777 1198 void note_start_adding_survivor_regions() {
ysr@777 1199 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1200 }
ysr@777 1201
ysr@777 1202 void note_stop_adding_survivor_regions() {
ysr@777 1203 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1204 }
apetrusenko@980 1205
apetrusenko@980 1206 void record_survivor_regions(size_t regions,
apetrusenko@980 1207 HeapRegion* head,
apetrusenko@980 1208 HeapRegion* tail) {
apetrusenko@980 1209 _recorded_survivor_regions = regions;
apetrusenko@980 1210 _recorded_survivor_head = head;
apetrusenko@980 1211 _recorded_survivor_tail = tail;
apetrusenko@980 1212 }
apetrusenko@980 1213
tonyp@1273 1214 size_t recorded_survivor_regions() {
tonyp@1273 1215 return _recorded_survivor_regions;
tonyp@1273 1216 }
tonyp@1273 1217
apetrusenko@980 1218 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1219 {
apetrusenko@980 1220 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1221 }
apetrusenko@980 1222
apetrusenko@980 1223 // Calculates survivor space parameters.
apetrusenko@980 1224 void calculate_survivors_policy();
apetrusenko@980 1225
ysr@777 1226 };
ysr@777 1227
ysr@777 1228 // This encapsulates a particular strategy for a g1 Collector.
ysr@777 1229 //
ysr@777 1230 // Start a concurrent mark when our heap size is n bytes
ysr@777 1231 // greater then our heap size was at the last concurrent
ysr@777 1232 // mark. Where n is a function of the CMSTriggerRatio
ysr@777 1233 // and the MinHeapFreeRatio.
ysr@777 1234 //
ysr@777 1235 // Start a g1 collection pause when we have allocated the
ysr@777 1236 // average number of bytes currently being freed in
ysr@777 1237 // a collection, but only if it is at least one region
ysr@777 1238 // full
ysr@777 1239 //
ysr@777 1240 // Resize Heap based on desired
ysr@777 1241 // allocation space, where desired allocation space is
ysr@777 1242 // a function of survival rate and desired future to size.
ysr@777 1243 //
ysr@777 1244 // Choose collection set by first picking all older regions
ysr@777 1245 // which have a survival rate which beats our projected young
ysr@777 1246 // survival rate. Then fill out the number of needed regions
ysr@777 1247 // with young regions.
ysr@777 1248
ysr@777 1249 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
ysr@777 1250 CollectionSetChooser* _collectionSetChooser;
ysr@777 1251 // If the estimated is less then desirable, resize if possible.
ysr@777 1252 void expand_if_possible(size_t numRegions);
ysr@777 1253
tonyp@2062 1254 virtual void choose_collection_set(double target_pause_time_ms);
ysr@777 1255 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 1256 size_t start_used);
ysr@777 1257 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 1258 size_t max_live_bytes);
ysr@777 1259 virtual void record_full_collection_end();
ysr@777 1260
ysr@777 1261 public:
ysr@777 1262 G1CollectorPolicy_BestRegionsFirst() {
ysr@777 1263 _collectionSetChooser = new CollectionSetChooser();
ysr@777 1264 }
tonyp@2062 1265 void record_collection_pause_end();
ysr@777 1266 bool should_do_collection_pause(size_t word_size);
ysr@777 1267 // This is not needed any more, after the CSet choosing code was
ysr@777 1268 // changed to use the pause prediction work. But let's leave the
ysr@777 1269 // hook in just in case.
ysr@777 1270 void note_change_in_marked_bytes(HeapRegion* r) { }
ysr@777 1271 #ifndef PRODUCT
ysr@777 1272 bool assertMarkedBytesDataOK();
ysr@777 1273 #endif
ysr@777 1274 };
ysr@777 1275
ysr@777 1276 // This should move to some place more general...
ysr@777 1277
ysr@777 1278 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1279 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1280 // sequence.
ysr@777 1281 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1282 double n_d = (double)n;
ysr@777 1283 double avg = sum/n_d;
ysr@777 1284 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1285 }
ysr@777 1286
ysr@777 1287 // Local Variables: ***
ysr@777 1288 // c-indentation-style: gnu ***
ysr@777 1289 // End: ***

mercurial