src/share/vm/gc_implementation/g1/concurrentMark.cpp

Tue, 25 Sep 2012 07:05:55 -0700

author
jmasa
date
Tue, 25 Sep 2012 07:05:55 -0700
changeset 4097
5baec2e69518
parent 4061
859cd1a76f8a
child 4123
988bf00cc564
permissions
-rw-r--r--

7200615: NPG: optimized VM build is broken
Reviewed-by: kvn

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
tonyp@2968 27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
stefank@2314 28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
tonyp@3114 31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
brutisso@3710 32 #include "gc_implementation/g1/g1Log.hpp"
tonyp@2968 33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
stefank@2314 34 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@3416 35 #include "gc_implementation/g1/heapRegion.inline.hpp"
stefank@2314 36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
stefank@2314 37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
kamg@2445 38 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 39 #include "memory/genOopClosures.inline.hpp"
stefank@2314 40 #include "memory/referencePolicy.hpp"
stefank@2314 41 #include "memory/resourceArea.hpp"
stefank@2314 42 #include "oops/oop.inline.hpp"
stefank@2314 43 #include "runtime/handles.inline.hpp"
stefank@2314 44 #include "runtime/java.hpp"
zgu@3900 45 #include "services/memTracker.hpp"
ysr@777 46
brutisso@3455 47 // Concurrent marking bit map wrapper
ysr@777 48
johnc@3292 49 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
ysr@777 50 _bm((uintptr_t*)NULL,0),
ysr@777 51 _shifter(shifter) {
ysr@777 52 _bmStartWord = (HeapWord*)(rs.base());
ysr@777 53 _bmWordSize = rs.size()/HeapWordSize; // rs.size() is in bytes
ysr@777 54 ReservedSpace brs(ReservedSpace::allocation_align_size_up(
ysr@777 55 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
ysr@777 56
zgu@3900 57 MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
zgu@3900 58
brutisso@3455 59 guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
ysr@777 60 // For now we'll just commit all of the bit map up fromt.
ysr@777 61 // Later on we'll try to be more parsimonious with swap.
ysr@777 62 guarantee(_virtual_space.initialize(brs, brs.size()),
brutisso@3455 63 "couldn't reseve backing store for concurrent marking bit map");
ysr@777 64 assert(_virtual_space.committed_size() == brs.size(),
brutisso@3455 65 "didn't reserve backing store for all of concurrent marking bit map?");
ysr@777 66 _bm.set_map((uintptr_t*)_virtual_space.low());
ysr@777 67 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
ysr@777 68 _bmWordSize, "inconsistency in bit map sizing");
ysr@777 69 _bm.set_size(_bmWordSize >> _shifter);
ysr@777 70 }
ysr@777 71
ysr@777 72 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
ysr@777 73 HeapWord* limit) const {
ysr@777 74 // First we must round addr *up* to a possible object boundary.
ysr@777 75 addr = (HeapWord*)align_size_up((intptr_t)addr,
ysr@777 76 HeapWordSize << _shifter);
ysr@777 77 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 78 if (limit == NULL) {
tonyp@2973 79 limit = _bmStartWord + _bmWordSize;
tonyp@2973 80 }
ysr@777 81 size_t limitOffset = heapWordToOffset(limit);
ysr@777 82 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
ysr@777 83 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 84 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 85 assert(nextAddr == limit || isMarked(nextAddr),
ysr@777 86 "get_next_one postcondition");
ysr@777 87 return nextAddr;
ysr@777 88 }
ysr@777 89
ysr@777 90 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 91 HeapWord* limit) const {
ysr@777 92 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 93 if (limit == NULL) {
tonyp@2973 94 limit = _bmStartWord + _bmWordSize;
tonyp@2973 95 }
ysr@777 96 size_t limitOffset = heapWordToOffset(limit);
ysr@777 97 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
ysr@777 98 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 99 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 100 assert(nextAddr == limit || !isMarked(nextAddr),
ysr@777 101 "get_next_one postcondition");
ysr@777 102 return nextAddr;
ysr@777 103 }
ysr@777 104
ysr@777 105 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
ysr@777 106 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
ysr@777 107 return (int) (diff >> _shifter);
ysr@777 108 }
ysr@777 109
ysr@777 110 #ifndef PRODUCT
ysr@777 111 bool CMBitMapRO::covers(ReservedSpace rs) const {
ysr@777 112 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
brutisso@4061 113 assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
ysr@777 114 "size inconsistency");
ysr@777 115 return _bmStartWord == (HeapWord*)(rs.base()) &&
ysr@777 116 _bmWordSize == rs.size()>>LogHeapWordSize;
ysr@777 117 }
ysr@777 118 #endif
ysr@777 119
ysr@777 120 void CMBitMap::clearAll() {
ysr@777 121 _bm.clear();
ysr@777 122 return;
ysr@777 123 }
ysr@777 124
ysr@777 125 void CMBitMap::markRange(MemRegion mr) {
ysr@777 126 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 127 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 128 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
ysr@777 129 ((HeapWord *) mr.end())),
ysr@777 130 "markRange memory region end is not card aligned");
ysr@777 131 // convert address range into offset range
ysr@777 132 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 133 heapWordToOffset(mr.end()), true);
ysr@777 134 }
ysr@777 135
ysr@777 136 void CMBitMap::clearRange(MemRegion mr) {
ysr@777 137 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 138 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 139 // convert address range into offset range
ysr@777 140 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 141 heapWordToOffset(mr.end()), false);
ysr@777 142 }
ysr@777 143
ysr@777 144 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
ysr@777 145 HeapWord* end_addr) {
ysr@777 146 HeapWord* start = getNextMarkedWordAddress(addr);
ysr@777 147 start = MIN2(start, end_addr);
ysr@777 148 HeapWord* end = getNextUnmarkedWordAddress(start);
ysr@777 149 end = MIN2(end, end_addr);
ysr@777 150 assert(start <= end, "Consistency check");
ysr@777 151 MemRegion mr(start, end);
ysr@777 152 if (!mr.is_empty()) {
ysr@777 153 clearRange(mr);
ysr@777 154 }
ysr@777 155 return mr;
ysr@777 156 }
ysr@777 157
ysr@777 158 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
ysr@777 159 _base(NULL), _cm(cm)
ysr@777 160 #ifdef ASSERT
ysr@777 161 , _drain_in_progress(false)
ysr@777 162 , _drain_in_progress_yields(false)
ysr@777 163 #endif
ysr@777 164 {}
ysr@777 165
ysr@777 166 void CMMarkStack::allocate(size_t size) {
zgu@3900 167 _base = NEW_C_HEAP_ARRAY(oop, size, mtGC);
tonyp@2973 168 if (_base == NULL) {
tonyp@3416 169 vm_exit_during_initialization("Failed to allocate CM region mark stack");
tonyp@2973 170 }
ysr@777 171 _index = 0;
ysr@777 172 _capacity = (jint) size;
tonyp@3416 173 _saved_index = -1;
ysr@777 174 NOT_PRODUCT(_max_depth = 0);
ysr@777 175 }
ysr@777 176
ysr@777 177 CMMarkStack::~CMMarkStack() {
tonyp@2973 178 if (_base != NULL) {
zgu@3900 179 FREE_C_HEAP_ARRAY(oop, _base, mtGC);
tonyp@2973 180 }
ysr@777 181 }
ysr@777 182
ysr@777 183 void CMMarkStack::par_push(oop ptr) {
ysr@777 184 while (true) {
ysr@777 185 if (isFull()) {
ysr@777 186 _overflow = true;
ysr@777 187 return;
ysr@777 188 }
ysr@777 189 // Otherwise...
ysr@777 190 jint index = _index;
ysr@777 191 jint next_index = index+1;
ysr@777 192 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 193 if (res == index) {
ysr@777 194 _base[index] = ptr;
ysr@777 195 // Note that we don't maintain this atomically. We could, but it
ysr@777 196 // doesn't seem necessary.
ysr@777 197 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 198 return;
ysr@777 199 }
ysr@777 200 // Otherwise, we need to try again.
ysr@777 201 }
ysr@777 202 }
ysr@777 203
ysr@777 204 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
ysr@777 205 while (true) {
ysr@777 206 if (isFull()) {
ysr@777 207 _overflow = true;
ysr@777 208 return;
ysr@777 209 }
ysr@777 210 // Otherwise...
ysr@777 211 jint index = _index;
ysr@777 212 jint next_index = index + n;
ysr@777 213 if (next_index > _capacity) {
ysr@777 214 _overflow = true;
ysr@777 215 return;
ysr@777 216 }
ysr@777 217 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 218 if (res == index) {
ysr@777 219 for (int i = 0; i < n; i++) {
ysr@777 220 int ind = index + i;
ysr@777 221 assert(ind < _capacity, "By overflow test above.");
ysr@777 222 _base[ind] = ptr_arr[i];
ysr@777 223 }
ysr@777 224 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 225 return;
ysr@777 226 }
ysr@777 227 // Otherwise, we need to try again.
ysr@777 228 }
ysr@777 229 }
ysr@777 230
ysr@777 231
ysr@777 232 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
ysr@777 233 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 234 jint start = _index;
ysr@777 235 jint next_index = start + n;
ysr@777 236 if (next_index > _capacity) {
ysr@777 237 _overflow = true;
ysr@777 238 return;
ysr@777 239 }
ysr@777 240 // Otherwise.
ysr@777 241 _index = next_index;
ysr@777 242 for (int i = 0; i < n; i++) {
ysr@777 243 int ind = start + i;
tonyp@1458 244 assert(ind < _capacity, "By overflow test above.");
ysr@777 245 _base[ind] = ptr_arr[i];
ysr@777 246 }
ysr@777 247 }
ysr@777 248
ysr@777 249
ysr@777 250 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
ysr@777 251 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 252 jint index = _index;
ysr@777 253 if (index == 0) {
ysr@777 254 *n = 0;
ysr@777 255 return false;
ysr@777 256 } else {
ysr@777 257 int k = MIN2(max, index);
ysr@777 258 jint new_ind = index - k;
ysr@777 259 for (int j = 0; j < k; j++) {
ysr@777 260 ptr_arr[j] = _base[new_ind + j];
ysr@777 261 }
ysr@777 262 _index = new_ind;
ysr@777 263 *n = k;
ysr@777 264 return true;
ysr@777 265 }
ysr@777 266 }
ysr@777 267
ysr@777 268 template<class OopClosureClass>
ysr@777 269 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
ysr@777 270 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
ysr@777 271 || SafepointSynchronize::is_at_safepoint(),
ysr@777 272 "Drain recursion must be yield-safe.");
ysr@777 273 bool res = true;
ysr@777 274 debug_only(_drain_in_progress = true);
ysr@777 275 debug_only(_drain_in_progress_yields = yield_after);
ysr@777 276 while (!isEmpty()) {
ysr@777 277 oop newOop = pop();
ysr@777 278 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
ysr@777 279 assert(newOop->is_oop(), "Expected an oop");
ysr@777 280 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
ysr@777 281 "only grey objects on this stack");
ysr@777 282 newOop->oop_iterate(cl);
ysr@777 283 if (yield_after && _cm->do_yield_check()) {
tonyp@2973 284 res = false;
tonyp@2973 285 break;
ysr@777 286 }
ysr@777 287 }
ysr@777 288 debug_only(_drain_in_progress = false);
ysr@777 289 return res;
ysr@777 290 }
ysr@777 291
tonyp@3416 292 void CMMarkStack::note_start_of_gc() {
tonyp@3416 293 assert(_saved_index == -1,
tonyp@3416 294 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
tonyp@3416 295 _saved_index = _index;
tonyp@3416 296 }
tonyp@3416 297
tonyp@3416 298 void CMMarkStack::note_end_of_gc() {
tonyp@3416 299 // This is intentionally a guarantee, instead of an assert. If we
tonyp@3416 300 // accidentally add something to the mark stack during GC, it
tonyp@3416 301 // will be a correctness issue so it's better if we crash. we'll
tonyp@3416 302 // only check this once per GC anyway, so it won't be a performance
tonyp@3416 303 // issue in any way.
tonyp@3416 304 guarantee(_saved_index == _index,
tonyp@3416 305 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 306 _saved_index = -1;
tonyp@3416 307 }
tonyp@3416 308
ysr@777 309 void CMMarkStack::oops_do(OopClosure* f) {
tonyp@3416 310 assert(_saved_index == _index,
tonyp@3416 311 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 312 for (int i = 0; i < _index; i += 1) {
ysr@777 313 f->do_oop(&_base[i]);
ysr@777 314 }
ysr@777 315 }
ysr@777 316
ysr@777 317 bool ConcurrentMark::not_yet_marked(oop obj) const {
coleenp@4037 318 return _g1h->is_obj_ill(obj);
ysr@777 319 }
ysr@777 320
tonyp@3464 321 CMRootRegions::CMRootRegions() :
tonyp@3464 322 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
tonyp@3464 323 _should_abort(false), _next_survivor(NULL) { }
tonyp@3464 324
tonyp@3464 325 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
tonyp@3464 326 _young_list = g1h->young_list();
tonyp@3464 327 _cm = cm;
tonyp@3464 328 }
tonyp@3464 329
tonyp@3464 330 void CMRootRegions::prepare_for_scan() {
tonyp@3464 331 assert(!scan_in_progress(), "pre-condition");
tonyp@3464 332
tonyp@3464 333 // Currently, only survivors can be root regions.
tonyp@3464 334 assert(_next_survivor == NULL, "pre-condition");
tonyp@3464 335 _next_survivor = _young_list->first_survivor_region();
tonyp@3464 336 _scan_in_progress = (_next_survivor != NULL);
tonyp@3464 337 _should_abort = false;
tonyp@3464 338 }
tonyp@3464 339
tonyp@3464 340 HeapRegion* CMRootRegions::claim_next() {
tonyp@3464 341 if (_should_abort) {
tonyp@3464 342 // If someone has set the should_abort flag, we return NULL to
tonyp@3464 343 // force the caller to bail out of their loop.
tonyp@3464 344 return NULL;
tonyp@3464 345 }
tonyp@3464 346
tonyp@3464 347 // Currently, only survivors can be root regions.
tonyp@3464 348 HeapRegion* res = _next_survivor;
tonyp@3464 349 if (res != NULL) {
tonyp@3464 350 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 351 // Read it again in case it changed while we were waiting for the lock.
tonyp@3464 352 res = _next_survivor;
tonyp@3464 353 if (res != NULL) {
tonyp@3464 354 if (res == _young_list->last_survivor_region()) {
tonyp@3464 355 // We just claimed the last survivor so store NULL to indicate
tonyp@3464 356 // that we're done.
tonyp@3464 357 _next_survivor = NULL;
tonyp@3464 358 } else {
tonyp@3464 359 _next_survivor = res->get_next_young_region();
tonyp@3464 360 }
tonyp@3464 361 } else {
tonyp@3464 362 // Someone else claimed the last survivor while we were trying
tonyp@3464 363 // to take the lock so nothing else to do.
tonyp@3464 364 }
tonyp@3464 365 }
tonyp@3464 366 assert(res == NULL || res->is_survivor(), "post-condition");
tonyp@3464 367
tonyp@3464 368 return res;
tonyp@3464 369 }
tonyp@3464 370
tonyp@3464 371 void CMRootRegions::scan_finished() {
tonyp@3464 372 assert(scan_in_progress(), "pre-condition");
tonyp@3464 373
tonyp@3464 374 // Currently, only survivors can be root regions.
tonyp@3464 375 if (!_should_abort) {
tonyp@3464 376 assert(_next_survivor == NULL, "we should have claimed all survivors");
tonyp@3464 377 }
tonyp@3464 378 _next_survivor = NULL;
tonyp@3464 379
tonyp@3464 380 {
tonyp@3464 381 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 382 _scan_in_progress = false;
tonyp@3464 383 RootRegionScan_lock->notify_all();
tonyp@3464 384 }
tonyp@3464 385 }
tonyp@3464 386
tonyp@3464 387 bool CMRootRegions::wait_until_scan_finished() {
tonyp@3464 388 if (!scan_in_progress()) return false;
tonyp@3464 389
tonyp@3464 390 {
tonyp@3464 391 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 392 while (scan_in_progress()) {
tonyp@3464 393 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
tonyp@3464 394 }
tonyp@3464 395 }
tonyp@3464 396 return true;
tonyp@3464 397 }
tonyp@3464 398
ysr@777 399 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 400 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 401 #endif // _MSC_VER
ysr@777 402
jmasa@3357 403 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
jmasa@3357 404 return MAX2((n_par_threads + 2) / 4, 1U);
jmasa@3294 405 }
jmasa@3294 406
tonyp@3713 407 ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
ysr@777 408 _markBitMap1(rs, MinObjAlignment - 1),
ysr@777 409 _markBitMap2(rs, MinObjAlignment - 1),
ysr@777 410
ysr@777 411 _parallel_marking_threads(0),
jmasa@3294 412 _max_parallel_marking_threads(0),
ysr@777 413 _sleep_factor(0.0),
ysr@777 414 _marking_task_overhead(1.0),
ysr@777 415 _cleanup_sleep_factor(0.0),
ysr@777 416 _cleanup_task_overhead(1.0),
tonyp@2472 417 _cleanup_list("Cleanup List"),
tonyp@3713 418 _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
ysr@777 419 _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
ysr@777 420 CardTableModRefBS::card_shift,
ysr@777 421 false /* in_resource_area*/),
johnc@3463 422
ysr@777 423 _prevMarkBitMap(&_markBitMap1),
ysr@777 424 _nextMarkBitMap(&_markBitMap2),
ysr@777 425
ysr@777 426 _markStack(this),
ysr@777 427 // _finger set in set_non_marking_state
ysr@777 428
jmasa@3357 429 _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
ysr@777 430 // _active_tasks set in set_non_marking_state
ysr@777 431 // _tasks set inside the constructor
ysr@777 432 _task_queues(new CMTaskQueueSet((int) _max_task_num)),
ysr@777 433 _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
ysr@777 434
ysr@777 435 _has_overflown(false),
ysr@777 436 _concurrent(false),
tonyp@1054 437 _has_aborted(false),
tonyp@1054 438 _restart_for_overflow(false),
tonyp@1054 439 _concurrent_marking_in_progress(false),
ysr@777 440
ysr@777 441 // _verbose_level set below
ysr@777 442
ysr@777 443 _init_times(),
ysr@777 444 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
ysr@777 445 _cleanup_times(),
ysr@777 446 _total_counting_time(0.0),
ysr@777 447 _total_rs_scrub_time(0.0),
johnc@3463 448
johnc@3463 449 _parallel_workers(NULL),
johnc@3463 450
johnc@3463 451 _count_card_bitmaps(NULL),
johnc@3463 452 _count_marked_bytes(NULL) {
tonyp@2973 453 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
tonyp@2973 454 if (verbose_level < no_verbose) {
ysr@777 455 verbose_level = no_verbose;
tonyp@2973 456 }
tonyp@2973 457 if (verbose_level > high_verbose) {
ysr@777 458 verbose_level = high_verbose;
tonyp@2973 459 }
ysr@777 460 _verbose_level = verbose_level;
ysr@777 461
tonyp@2973 462 if (verbose_low()) {
ysr@777 463 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
ysr@777 464 "heap end = "PTR_FORMAT, _heap_start, _heap_end);
tonyp@2973 465 }
ysr@777 466
jmasa@1719 467 _markStack.allocate(MarkStackSize);
ysr@777 468
ysr@777 469 // Create & start a ConcurrentMark thread.
ysr@1280 470 _cmThread = new ConcurrentMarkThread(this);
ysr@1280 471 assert(cmThread() != NULL, "CM Thread should have been created");
ysr@1280 472 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
ysr@1280 473
ysr@777 474 _g1h = G1CollectedHeap::heap();
ysr@777 475 assert(CGC_lock != NULL, "Where's the CGC_lock?");
ysr@777 476 assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
ysr@777 477 assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
ysr@777 478
ysr@777 479 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@1717 480 satb_qs.set_buffer_size(G1SATBBufferSize);
ysr@777 481
tonyp@3464 482 _root_regions.init(_g1h, this);
tonyp@3464 483
zgu@3900 484 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num, mtGC);
zgu@3900 485 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num, mtGC);
zgu@3900 486
zgu@3900 487 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_task_num, mtGC);
zgu@3900 488 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num, mtGC);
johnc@3463 489
johnc@3463 490 BitMap::idx_t card_bm_size = _card_bm.size();
johnc@3463 491
ysr@777 492 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
ysr@777 493 _active_tasks = _max_task_num;
ysr@777 494 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 495 CMTaskQueue* task_queue = new CMTaskQueue();
ysr@777 496 task_queue->initialize();
ysr@777 497 _task_queues->register_queue(i, task_queue);
ysr@777 498
johnc@3463 499 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
zgu@3900 500 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions, mtGC);
johnc@3463 501
johnc@3463 502 _tasks[i] = new CMTask(i, this,
johnc@3463 503 _count_marked_bytes[i],
johnc@3463 504 &_count_card_bitmaps[i],
johnc@3463 505 task_queue, _task_queues);
johnc@3463 506
ysr@777 507 _accum_task_vtime[i] = 0.0;
ysr@777 508 }
ysr@777 509
johnc@3463 510 // Calculate the card number for the bottom of the heap. Used
johnc@3463 511 // in biasing indexes into the accounting card bitmaps.
johnc@3463 512 _heap_bottom_card_num =
johnc@3463 513 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
johnc@3463 514 CardTableModRefBS::card_shift);
johnc@3463 515
johnc@3463 516 // Clear all the liveness counting data
johnc@3463 517 clear_all_count_data();
johnc@3463 518
jmasa@1719 519 if (ConcGCThreads > ParallelGCThreads) {
jmasa@1719 520 vm_exit_during_initialization("Can't have more ConcGCThreads "
ysr@777 521 "than ParallelGCThreads.");
ysr@777 522 }
ysr@777 523 if (ParallelGCThreads == 0) {
ysr@777 524 // if we are not running with any parallel GC threads we will not
ysr@777 525 // spawn any marking threads either
jmasa@3294 526 _parallel_marking_threads = 0;
jmasa@3294 527 _max_parallel_marking_threads = 0;
jmasa@3294 528 _sleep_factor = 0.0;
jmasa@3294 529 _marking_task_overhead = 1.0;
ysr@777 530 } else {
jmasa@1719 531 if (ConcGCThreads > 0) {
jmasa@1719 532 // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
ysr@777 533 // if both are set
ysr@777 534
jmasa@3357 535 _parallel_marking_threads = (uint) ConcGCThreads;
jmasa@3294 536 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 537 _sleep_factor = 0.0;
ysr@777 538 _marking_task_overhead = 1.0;
johnc@1186 539 } else if (G1MarkingOverheadPercent > 0) {
ysr@777 540 // we will calculate the number of parallel marking threads
ysr@777 541 // based on a target overhead with respect to the soft real-time
ysr@777 542 // goal
ysr@777 543
johnc@1186 544 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
ysr@777 545 double overall_cm_overhead =
johnc@1186 546 (double) MaxGCPauseMillis * marking_overhead /
johnc@1186 547 (double) GCPauseIntervalMillis;
ysr@777 548 double cpu_ratio = 1.0 / (double) os::processor_count();
ysr@777 549 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
ysr@777 550 double marking_task_overhead =
ysr@777 551 overall_cm_overhead / marking_thread_num *
ysr@777 552 (double) os::processor_count();
ysr@777 553 double sleep_factor =
ysr@777 554 (1.0 - marking_task_overhead) / marking_task_overhead;
ysr@777 555
jmasa@3357 556 _parallel_marking_threads = (uint) marking_thread_num;
jmasa@3294 557 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 558 _sleep_factor = sleep_factor;
ysr@777 559 _marking_task_overhead = marking_task_overhead;
ysr@777 560 } else {
jmasa@3357 561 _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
jmasa@3294 562 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 563 _sleep_factor = 0.0;
ysr@777 564 _marking_task_overhead = 1.0;
ysr@777 565 }
ysr@777 566
tonyp@2973 567 if (parallel_marking_threads() > 1) {
ysr@777 568 _cleanup_task_overhead = 1.0;
tonyp@2973 569 } else {
ysr@777 570 _cleanup_task_overhead = marking_task_overhead();
tonyp@2973 571 }
ysr@777 572 _cleanup_sleep_factor =
ysr@777 573 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
ysr@777 574
ysr@777 575 #if 0
ysr@777 576 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
ysr@777 577 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
ysr@777 578 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
ysr@777 579 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
ysr@777 580 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
ysr@777 581 #endif
ysr@777 582
tonyp@1458 583 guarantee(parallel_marking_threads() > 0, "peace of mind");
jmasa@2188 584 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
jmasa@3357 585 _max_parallel_marking_threads, false, true);
jmasa@2188 586 if (_parallel_workers == NULL) {
ysr@777 587 vm_exit_during_initialization("Failed necessary allocation.");
jmasa@2188 588 } else {
jmasa@2188 589 _parallel_workers->initialize_workers();
jmasa@2188 590 }
ysr@777 591 }
ysr@777 592
ysr@777 593 // so that the call below can read a sensible value
ysr@777 594 _heap_start = (HeapWord*) rs.base();
ysr@777 595 set_non_marking_state();
ysr@777 596 }
ysr@777 597
ysr@777 598 void ConcurrentMark::update_g1_committed(bool force) {
ysr@777 599 // If concurrent marking is not in progress, then we do not need to
tonyp@3691 600 // update _heap_end.
tonyp@2973 601 if (!concurrent_marking_in_progress() && !force) return;
ysr@777 602
ysr@777 603 MemRegion committed = _g1h->g1_committed();
tonyp@1458 604 assert(committed.start() == _heap_start, "start shouldn't change");
ysr@777 605 HeapWord* new_end = committed.end();
ysr@777 606 if (new_end > _heap_end) {
ysr@777 607 // The heap has been expanded.
ysr@777 608
ysr@777 609 _heap_end = new_end;
ysr@777 610 }
ysr@777 611 // Notice that the heap can also shrink. However, this only happens
ysr@777 612 // during a Full GC (at least currently) and the entire marking
ysr@777 613 // phase will bail out and the task will not be restarted. So, let's
ysr@777 614 // do nothing.
ysr@777 615 }
ysr@777 616
ysr@777 617 void ConcurrentMark::reset() {
ysr@777 618 // Starting values for these two. This should be called in a STW
ysr@777 619 // phase. CM will be notified of any future g1_committed expansions
ysr@777 620 // will be at the end of evacuation pauses, when tasks are
ysr@777 621 // inactive.
ysr@777 622 MemRegion committed = _g1h->g1_committed();
ysr@777 623 _heap_start = committed.start();
ysr@777 624 _heap_end = committed.end();
ysr@777 625
tonyp@1458 626 // Separated the asserts so that we know which one fires.
tonyp@1458 627 assert(_heap_start != NULL, "heap bounds should look ok");
tonyp@1458 628 assert(_heap_end != NULL, "heap bounds should look ok");
tonyp@1458 629 assert(_heap_start < _heap_end, "heap bounds should look ok");
ysr@777 630
ysr@777 631 // reset all the marking data structures and any necessary flags
ysr@777 632 clear_marking_state();
ysr@777 633
tonyp@2973 634 if (verbose_low()) {
ysr@777 635 gclog_or_tty->print_cr("[global] resetting");
tonyp@2973 636 }
ysr@777 637
ysr@777 638 // We do reset all of them, since different phases will use
ysr@777 639 // different number of active threads. So, it's easiest to have all
ysr@777 640 // of them ready.
johnc@2190 641 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 642 _tasks[i]->reset(_nextMarkBitMap);
johnc@2190 643 }
ysr@777 644
ysr@777 645 // we need this to make sure that the flag is on during the evac
ysr@777 646 // pause with initial mark piggy-backed
ysr@777 647 set_concurrent_marking_in_progress();
ysr@777 648 }
ysr@777 649
jmasa@3357 650 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
tonyp@1458 651 assert(active_tasks <= _max_task_num, "we should not have more");
ysr@777 652
ysr@777 653 _active_tasks = active_tasks;
ysr@777 654 // Need to update the three data structures below according to the
ysr@777 655 // number of active threads for this phase.
ysr@777 656 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
ysr@777 657 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 658 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 659
ysr@777 660 _concurrent = concurrent;
ysr@777 661 // We propagate this to all tasks, not just the active ones.
ysr@777 662 for (int i = 0; i < (int) _max_task_num; ++i)
ysr@777 663 _tasks[i]->set_concurrent(concurrent);
ysr@777 664
ysr@777 665 if (concurrent) {
ysr@777 666 set_concurrent_marking_in_progress();
ysr@777 667 } else {
ysr@777 668 // We currently assume that the concurrent flag has been set to
ysr@777 669 // false before we start remark. At this point we should also be
ysr@777 670 // in a STW phase.
tonyp@1458 671 assert(!concurrent_marking_in_progress(), "invariant");
tonyp@1458 672 assert(_finger == _heap_end, "only way to get here");
ysr@777 673 update_g1_committed(true);
ysr@777 674 }
ysr@777 675 }
ysr@777 676
ysr@777 677 void ConcurrentMark::set_non_marking_state() {
ysr@777 678 // We set the global marking state to some default values when we're
ysr@777 679 // not doing marking.
ysr@777 680 clear_marking_state();
ysr@777 681 _active_tasks = 0;
ysr@777 682 clear_concurrent_marking_in_progress();
ysr@777 683 }
ysr@777 684
ysr@777 685 ConcurrentMark::~ConcurrentMark() {
stefank@3364 686 // The ConcurrentMark instance is never freed.
stefank@3364 687 ShouldNotReachHere();
ysr@777 688 }
ysr@777 689
ysr@777 690 void ConcurrentMark::clearNextBitmap() {
tonyp@1794 691 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@1794 692 G1CollectorPolicy* g1p = g1h->g1_policy();
tonyp@1794 693
tonyp@1794 694 // Make sure that the concurrent mark thread looks to still be in
tonyp@1794 695 // the current cycle.
tonyp@1794 696 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 697
tonyp@1794 698 // We are finishing up the current cycle by clearing the next
tonyp@1794 699 // marking bitmap and getting it ready for the next cycle. During
tonyp@1794 700 // this time no other cycle can start. So, let's make sure that this
tonyp@1794 701 // is the case.
tonyp@1794 702 guarantee(!g1h->mark_in_progress(), "invariant");
tonyp@1794 703
tonyp@1794 704 // clear the mark bitmap (no grey objects to start with).
tonyp@1794 705 // We need to do this in chunks and offer to yield in between
tonyp@1794 706 // each chunk.
tonyp@1794 707 HeapWord* start = _nextMarkBitMap->startWord();
tonyp@1794 708 HeapWord* end = _nextMarkBitMap->endWord();
tonyp@1794 709 HeapWord* cur = start;
tonyp@1794 710 size_t chunkSize = M;
tonyp@1794 711 while (cur < end) {
tonyp@1794 712 HeapWord* next = cur + chunkSize;
tonyp@2973 713 if (next > end) {
tonyp@1794 714 next = end;
tonyp@2973 715 }
tonyp@1794 716 MemRegion mr(cur,next);
tonyp@1794 717 _nextMarkBitMap->clearRange(mr);
tonyp@1794 718 cur = next;
tonyp@1794 719 do_yield_check();
tonyp@1794 720
tonyp@1794 721 // Repeat the asserts from above. We'll do them as asserts here to
tonyp@1794 722 // minimize their overhead on the product. However, we'll have
tonyp@1794 723 // them as guarantees at the beginning / end of the bitmap
tonyp@1794 724 // clearing to get some checking in the product.
tonyp@1794 725 assert(cmThread()->during_cycle(), "invariant");
tonyp@1794 726 assert(!g1h->mark_in_progress(), "invariant");
tonyp@1794 727 }
tonyp@1794 728
johnc@3463 729 // Clear the liveness counting data
johnc@3463 730 clear_all_count_data();
johnc@3463 731
tonyp@1794 732 // Repeat the asserts from above.
tonyp@1794 733 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 734 guarantee(!g1h->mark_in_progress(), "invariant");
ysr@777 735 }
ysr@777 736
ysr@777 737 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
ysr@777 738 public:
ysr@777 739 bool doHeapRegion(HeapRegion* r) {
ysr@777 740 if (!r->continuesHumongous()) {
tonyp@3416 741 r->note_start_of_marking();
ysr@777 742 }
ysr@777 743 return false;
ysr@777 744 }
ysr@777 745 };
ysr@777 746
ysr@777 747 void ConcurrentMark::checkpointRootsInitialPre() {
ysr@777 748 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 749 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 750
ysr@777 751 _has_aborted = false;
ysr@777 752
jcoomes@1902 753 #ifndef PRODUCT
tonyp@1479 754 if (G1PrintReachableAtInitialMark) {
tonyp@1823 755 print_reachable("at-cycle-start",
johnc@2969 756 VerifyOption_G1UsePrevMarking, true /* all */);
tonyp@1479 757 }
jcoomes@1902 758 #endif
ysr@777 759
ysr@777 760 // Initialise marking structures. This has to be done in a STW phase.
ysr@777 761 reset();
tonyp@3416 762
tonyp@3416 763 // For each region note start of marking.
tonyp@3416 764 NoteStartOfMarkHRClosure startcl;
tonyp@3416 765 g1h->heap_region_iterate(&startcl);
ysr@777 766 }
ysr@777 767
ysr@777 768
ysr@777 769 void ConcurrentMark::checkpointRootsInitialPost() {
ysr@777 770 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 771
tonyp@2848 772 // If we force an overflow during remark, the remark operation will
tonyp@2848 773 // actually abort and we'll restart concurrent marking. If we always
tonyp@2848 774 // force an oveflow during remark we'll never actually complete the
tonyp@2848 775 // marking phase. So, we initilize this here, at the start of the
tonyp@2848 776 // cycle, so that at the remaining overflow number will decrease at
tonyp@2848 777 // every remark and we'll eventually not need to cause one.
tonyp@2848 778 force_overflow_stw()->init();
tonyp@2848 779
johnc@3175 780 // Start Concurrent Marking weak-reference discovery.
johnc@3175 781 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3175 782 // enable ("weak") refs discovery
johnc@3175 783 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 784 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
ysr@777 785
ysr@777 786 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1752 787 // This is the start of the marking cycle, we're expected all
tonyp@1752 788 // threads to have SATB queues with active set to false.
tonyp@1752 789 satb_mq_set.set_active_all_threads(true, /* new active value */
tonyp@1752 790 false /* expected_active */);
ysr@777 791
tonyp@3464 792 _root_regions.prepare_for_scan();
tonyp@3464 793
ysr@777 794 // update_g1_committed() will be called at the end of an evac pause
ysr@777 795 // when marking is on. So, it's also called at the end of the
ysr@777 796 // initial-mark pause to update the heap end, if the heap expands
ysr@777 797 // during it. No need to call it here.
ysr@777 798 }
ysr@777 799
ysr@777 800 /*
tonyp@2848 801 * Notice that in the next two methods, we actually leave the STS
tonyp@2848 802 * during the barrier sync and join it immediately afterwards. If we
tonyp@2848 803 * do not do this, the following deadlock can occur: one thread could
tonyp@2848 804 * be in the barrier sync code, waiting for the other thread to also
tonyp@2848 805 * sync up, whereas another one could be trying to yield, while also
tonyp@2848 806 * waiting for the other threads to sync up too.
tonyp@2848 807 *
tonyp@2848 808 * Note, however, that this code is also used during remark and in
tonyp@2848 809 * this case we should not attempt to leave / enter the STS, otherwise
tonyp@2848 810 * we'll either hit an asseert (debug / fastdebug) or deadlock
tonyp@2848 811 * (product). So we should only leave / enter the STS if we are
tonyp@2848 812 * operating concurrently.
tonyp@2848 813 *
tonyp@2848 814 * Because the thread that does the sync barrier has left the STS, it
tonyp@2848 815 * is possible to be suspended for a Full GC or an evacuation pause
tonyp@2848 816 * could occur. This is actually safe, since the entering the sync
tonyp@2848 817 * barrier is one of the last things do_marking_step() does, and it
tonyp@2848 818 * doesn't manipulate any data structures afterwards.
tonyp@2848 819 */
ysr@777 820
ysr@777 821 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
tonyp@2973 822 if (verbose_low()) {
ysr@777 823 gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
tonyp@2973 824 }
ysr@777 825
tonyp@2848 826 if (concurrent()) {
tonyp@2848 827 ConcurrentGCThread::stsLeave();
tonyp@2848 828 }
ysr@777 829 _first_overflow_barrier_sync.enter();
tonyp@2848 830 if (concurrent()) {
tonyp@2848 831 ConcurrentGCThread::stsJoin();
tonyp@2848 832 }
ysr@777 833 // at this point everyone should have synced up and not be doing any
ysr@777 834 // more work
ysr@777 835
tonyp@2973 836 if (verbose_low()) {
ysr@777 837 gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
tonyp@2973 838 }
ysr@777 839
ysr@777 840 // let task 0 do this
ysr@777 841 if (task_num == 0) {
ysr@777 842 // task 0 is responsible for clearing the global data structures
tonyp@2848 843 // We should be here because of an overflow. During STW we should
tonyp@2848 844 // not clear the overflow flag since we rely on it being true when
tonyp@2848 845 // we exit this method to abort the pause and restart concurent
tonyp@2848 846 // marking.
tonyp@2848 847 clear_marking_state(concurrent() /* clear_overflow */);
tonyp@2848 848 force_overflow()->update();
ysr@777 849
brutisso@3710 850 if (G1Log::fine()) {
ysr@777 851 gclog_or_tty->date_stamp(PrintGCDateStamps);
ysr@777 852 gclog_or_tty->stamp(PrintGCTimeStamps);
ysr@777 853 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
ysr@777 854 }
ysr@777 855 }
ysr@777 856
ysr@777 857 // after this, each task should reset its own data structures then
ysr@777 858 // then go into the second barrier
ysr@777 859 }
ysr@777 860
ysr@777 861 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
tonyp@2973 862 if (verbose_low()) {
ysr@777 863 gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
tonyp@2973 864 }
ysr@777 865
tonyp@2848 866 if (concurrent()) {
tonyp@2848 867 ConcurrentGCThread::stsLeave();
tonyp@2848 868 }
ysr@777 869 _second_overflow_barrier_sync.enter();
tonyp@2848 870 if (concurrent()) {
tonyp@2848 871 ConcurrentGCThread::stsJoin();
tonyp@2848 872 }
ysr@777 873 // at this point everything should be re-initialised and ready to go
ysr@777 874
tonyp@2973 875 if (verbose_low()) {
ysr@777 876 gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
tonyp@2973 877 }
ysr@777 878 }
ysr@777 879
tonyp@2848 880 #ifndef PRODUCT
tonyp@2848 881 void ForceOverflowSettings::init() {
tonyp@2848 882 _num_remaining = G1ConcMarkForceOverflow;
tonyp@2848 883 _force = false;
tonyp@2848 884 update();
tonyp@2848 885 }
tonyp@2848 886
tonyp@2848 887 void ForceOverflowSettings::update() {
tonyp@2848 888 if (_num_remaining > 0) {
tonyp@2848 889 _num_remaining -= 1;
tonyp@2848 890 _force = true;
tonyp@2848 891 } else {
tonyp@2848 892 _force = false;
tonyp@2848 893 }
tonyp@2848 894 }
tonyp@2848 895
tonyp@2848 896 bool ForceOverflowSettings::should_force() {
tonyp@2848 897 if (_force) {
tonyp@2848 898 _force = false;
tonyp@2848 899 return true;
tonyp@2848 900 } else {
tonyp@2848 901 return false;
tonyp@2848 902 }
tonyp@2848 903 }
tonyp@2848 904 #endif // !PRODUCT
tonyp@2848 905
ysr@777 906 class CMConcurrentMarkingTask: public AbstractGangTask {
ysr@777 907 private:
ysr@777 908 ConcurrentMark* _cm;
ysr@777 909 ConcurrentMarkThread* _cmt;
ysr@777 910
ysr@777 911 public:
jmasa@3357 912 void work(uint worker_id) {
tonyp@1458 913 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@1458 914 "this should only be done by a conc GC thread");
johnc@2316 915 ResourceMark rm;
ysr@777 916
ysr@777 917 double start_vtime = os::elapsedVTime();
ysr@777 918
ysr@777 919 ConcurrentGCThread::stsJoin();
ysr@777 920
jmasa@3357 921 assert(worker_id < _cm->active_tasks(), "invariant");
jmasa@3357 922 CMTask* the_task = _cm->task(worker_id);
ysr@777 923 the_task->record_start_time();
ysr@777 924 if (!_cm->has_aborted()) {
ysr@777 925 do {
ysr@777 926 double start_vtime_sec = os::elapsedVTime();
ysr@777 927 double start_time_sec = os::elapsedTime();
johnc@2494 928 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 929
johnc@2494 930 the_task->do_marking_step(mark_step_duration_ms,
johnc@2494 931 true /* do_stealing */,
johnc@2494 932 true /* do_termination */);
johnc@2494 933
ysr@777 934 double end_time_sec = os::elapsedTime();
ysr@777 935 double end_vtime_sec = os::elapsedVTime();
ysr@777 936 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
ysr@777 937 double elapsed_time_sec = end_time_sec - start_time_sec;
ysr@777 938 _cm->clear_has_overflown();
ysr@777 939
jmasa@3357 940 bool ret = _cm->do_yield_check(worker_id);
ysr@777 941
ysr@777 942 jlong sleep_time_ms;
ysr@777 943 if (!_cm->has_aborted() && the_task->has_aborted()) {
ysr@777 944 sleep_time_ms =
ysr@777 945 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
ysr@777 946 ConcurrentGCThread::stsLeave();
ysr@777 947 os::sleep(Thread::current(), sleep_time_ms, false);
ysr@777 948 ConcurrentGCThread::stsJoin();
ysr@777 949 }
ysr@777 950 double end_time2_sec = os::elapsedTime();
ysr@777 951 double elapsed_time2_sec = end_time2_sec - start_time_sec;
ysr@777 952
ysr@777 953 #if 0
ysr@777 954 gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
ysr@777 955 "overhead %1.4lf",
ysr@777 956 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
ysr@777 957 the_task->conc_overhead(os::elapsedTime()) * 8.0);
ysr@777 958 gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
ysr@777 959 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
ysr@777 960 #endif
ysr@777 961 } while (!_cm->has_aborted() && the_task->has_aborted());
ysr@777 962 }
ysr@777 963 the_task->record_end_time();
tonyp@1458 964 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ysr@777 965
ysr@777 966 ConcurrentGCThread::stsLeave();
ysr@777 967
ysr@777 968 double end_vtime = os::elapsedVTime();
jmasa@3357 969 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
ysr@777 970 }
ysr@777 971
ysr@777 972 CMConcurrentMarkingTask(ConcurrentMark* cm,
ysr@777 973 ConcurrentMarkThread* cmt) :
ysr@777 974 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
ysr@777 975
ysr@777 976 ~CMConcurrentMarkingTask() { }
ysr@777 977 };
ysr@777 978
jmasa@3294 979 // Calculates the number of active workers for a concurrent
jmasa@3294 980 // phase.
jmasa@3357 981 uint ConcurrentMark::calc_parallel_marking_threads() {
johnc@3338 982 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 983 uint n_conc_workers = 0;
jmasa@3294 984 if (!UseDynamicNumberOfGCThreads ||
jmasa@3294 985 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
jmasa@3294 986 !ForceDynamicNumberOfGCThreads)) {
jmasa@3294 987 n_conc_workers = max_parallel_marking_threads();
jmasa@3294 988 } else {
jmasa@3294 989 n_conc_workers =
jmasa@3294 990 AdaptiveSizePolicy::calc_default_active_workers(
jmasa@3294 991 max_parallel_marking_threads(),
jmasa@3294 992 1, /* Minimum workers */
jmasa@3294 993 parallel_marking_threads(),
jmasa@3294 994 Threads::number_of_non_daemon_threads());
jmasa@3294 995 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
jmasa@3294 996 // that scaling has already gone into "_max_parallel_marking_threads".
jmasa@3294 997 }
johnc@3338 998 assert(n_conc_workers > 0, "Always need at least 1");
johnc@3338 999 return n_conc_workers;
jmasa@3294 1000 }
johnc@3338 1001 // If we are not running with any parallel GC threads we will not
johnc@3338 1002 // have spawned any marking threads either. Hence the number of
johnc@3338 1003 // concurrent workers should be 0.
johnc@3338 1004 return 0;
jmasa@3294 1005 }
jmasa@3294 1006
tonyp@3464 1007 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
tonyp@3464 1008 // Currently, only survivors can be root regions.
tonyp@3464 1009 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
tonyp@3464 1010 G1RootRegionScanClosure cl(_g1h, this, worker_id);
tonyp@3464 1011
tonyp@3464 1012 const uintx interval = PrefetchScanIntervalInBytes;
tonyp@3464 1013 HeapWord* curr = hr->bottom();
tonyp@3464 1014 const HeapWord* end = hr->top();
tonyp@3464 1015 while (curr < end) {
tonyp@3464 1016 Prefetch::read(curr, interval);
tonyp@3464 1017 oop obj = oop(curr);
tonyp@3464 1018 int size = obj->oop_iterate(&cl);
tonyp@3464 1019 assert(size == obj->size(), "sanity");
tonyp@3464 1020 curr += size;
tonyp@3464 1021 }
tonyp@3464 1022 }
tonyp@3464 1023
tonyp@3464 1024 class CMRootRegionScanTask : public AbstractGangTask {
tonyp@3464 1025 private:
tonyp@3464 1026 ConcurrentMark* _cm;
tonyp@3464 1027
tonyp@3464 1028 public:
tonyp@3464 1029 CMRootRegionScanTask(ConcurrentMark* cm) :
tonyp@3464 1030 AbstractGangTask("Root Region Scan"), _cm(cm) { }
tonyp@3464 1031
tonyp@3464 1032 void work(uint worker_id) {
tonyp@3464 1033 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@3464 1034 "this should only be done by a conc GC thread");
tonyp@3464 1035
tonyp@3464 1036 CMRootRegions* root_regions = _cm->root_regions();
tonyp@3464 1037 HeapRegion* hr = root_regions->claim_next();
tonyp@3464 1038 while (hr != NULL) {
tonyp@3464 1039 _cm->scanRootRegion(hr, worker_id);
tonyp@3464 1040 hr = root_regions->claim_next();
tonyp@3464 1041 }
tonyp@3464 1042 }
tonyp@3464 1043 };
tonyp@3464 1044
tonyp@3464 1045 void ConcurrentMark::scanRootRegions() {
tonyp@3464 1046 // scan_in_progress() will have been set to true only if there was
tonyp@3464 1047 // at least one root region to scan. So, if it's false, we
tonyp@3464 1048 // should not attempt to do any further work.
tonyp@3464 1049 if (root_regions()->scan_in_progress()) {
tonyp@3464 1050 _parallel_marking_threads = calc_parallel_marking_threads();
tonyp@3464 1051 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
tonyp@3464 1052 "Maximum number of marking threads exceeded");
tonyp@3464 1053 uint active_workers = MAX2(1U, parallel_marking_threads());
tonyp@3464 1054
tonyp@3464 1055 CMRootRegionScanTask task(this);
tonyp@3464 1056 if (parallel_marking_threads() > 0) {
tonyp@3464 1057 _parallel_workers->set_active_workers((int) active_workers);
tonyp@3464 1058 _parallel_workers->run_task(&task);
tonyp@3464 1059 } else {
tonyp@3464 1060 task.work(0);
tonyp@3464 1061 }
tonyp@3464 1062
tonyp@3464 1063 // It's possible that has_aborted() is true here without actually
tonyp@3464 1064 // aborting the survivor scan earlier. This is OK as it's
tonyp@3464 1065 // mainly used for sanity checking.
tonyp@3464 1066 root_regions()->scan_finished();
tonyp@3464 1067 }
tonyp@3464 1068 }
tonyp@3464 1069
ysr@777 1070 void ConcurrentMark::markFromRoots() {
ysr@777 1071 // we might be tempted to assert that:
ysr@777 1072 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
ysr@777 1073 // "inconsistent argument?");
ysr@777 1074 // However that wouldn't be right, because it's possible that
ysr@777 1075 // a safepoint is indeed in progress as a younger generation
ysr@777 1076 // stop-the-world GC happens even as we mark in this generation.
ysr@777 1077
ysr@777 1078 _restart_for_overflow = false;
tonyp@2848 1079 force_overflow_conc()->init();
jmasa@3294 1080
jmasa@3294 1081 // _g1h has _n_par_threads
jmasa@3294 1082 _parallel_marking_threads = calc_parallel_marking_threads();
jmasa@3294 1083 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
jmasa@3294 1084 "Maximum number of marking threads exceeded");
johnc@3338 1085
jmasa@3357 1086 uint active_workers = MAX2(1U, parallel_marking_threads());
johnc@3338 1087
johnc@3338 1088 // Parallel task terminator is set in "set_phase()"
johnc@3338 1089 set_phase(active_workers, true /* concurrent */);
ysr@777 1090
ysr@777 1091 CMConcurrentMarkingTask markingTask(this, cmThread());
tonyp@2973 1092 if (parallel_marking_threads() > 0) {
johnc@3338 1093 _parallel_workers->set_active_workers((int)active_workers);
johnc@3338 1094 // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
johnc@3338 1095 // and the decisions on that MT processing is made elsewhere.
johnc@3338 1096 assert(_parallel_workers->active_workers() > 0, "Should have been set");
ysr@777 1097 _parallel_workers->run_task(&markingTask);
tonyp@2973 1098 } else {
ysr@777 1099 markingTask.work(0);
tonyp@2973 1100 }
ysr@777 1101 print_stats();
ysr@777 1102 }
ysr@777 1103
ysr@777 1104 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
ysr@777 1105 // world is stopped at this checkpoint
ysr@777 1106 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1107 "world should be stopped");
johnc@3175 1108
ysr@777 1109 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1110
ysr@777 1111 // If a full collection has happened, we shouldn't do this.
ysr@777 1112 if (has_aborted()) {
ysr@777 1113 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1114 return;
ysr@777 1115 }
ysr@777 1116
kamg@2445 1117 SvcGCMarker sgcm(SvcGCMarker::OTHER);
kamg@2445 1118
ysr@1280 1119 if (VerifyDuringGC) {
ysr@1280 1120 HandleMark hm; // handle scope
ysr@1280 1121 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1122 Universe::heap()->prepare_for_verify();
brutisso@3711 1123 Universe::verify(/* silent */ false,
johnc@2969 1124 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1125 }
ysr@1280 1126
ysr@777 1127 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 1128 g1p->record_concurrent_mark_remark_start();
ysr@777 1129
ysr@777 1130 double start = os::elapsedTime();
ysr@777 1131
ysr@777 1132 checkpointRootsFinalWork();
ysr@777 1133
ysr@777 1134 double mark_work_end = os::elapsedTime();
ysr@777 1135
ysr@777 1136 weakRefsWork(clear_all_soft_refs);
ysr@777 1137
ysr@777 1138 if (has_overflown()) {
ysr@777 1139 // Oops. We overflowed. Restart concurrent marking.
ysr@777 1140 _restart_for_overflow = true;
ysr@777 1141 // Clear the flag. We do not need it any more.
ysr@777 1142 clear_has_overflown();
tonyp@2973 1143 if (G1TraceMarkStackOverflow) {
ysr@777 1144 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
tonyp@2973 1145 }
ysr@777 1146 } else {
johnc@3463 1147 // Aggregate the per-task counting data that we have accumulated
johnc@3463 1148 // while marking.
johnc@3463 1149 aggregate_count_data();
johnc@3463 1150
tonyp@2469 1151 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 1152 // We're done with marking.
tonyp@1752 1153 // This is the end of the marking cycle, we're expected all
tonyp@1752 1154 // threads to have SATB queues with active set to true.
tonyp@2469 1155 satb_mq_set.set_active_all_threads(false, /* new active value */
tonyp@2469 1156 true /* expected_active */);
tonyp@1246 1157
tonyp@1246 1158 if (VerifyDuringGC) {
ysr@1280 1159 HandleMark hm; // handle scope
ysr@1280 1160 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1161 Universe::heap()->prepare_for_verify();
brutisso@3711 1162 Universe::verify(/* silent */ false,
johnc@2969 1163 /* option */ VerifyOption_G1UseNextMarking);
tonyp@1246 1164 }
johnc@2494 1165 assert(!restart_for_overflow(), "sanity");
johnc@2494 1166 }
johnc@2494 1167
johnc@2494 1168 // Reset the marking state if marking completed
johnc@2494 1169 if (!restart_for_overflow()) {
johnc@2494 1170 set_non_marking_state();
ysr@777 1171 }
ysr@777 1172
ysr@777 1173 #if VERIFY_OBJS_PROCESSED
ysr@777 1174 _scan_obj_cl.objs_processed = 0;
ysr@777 1175 ThreadLocalObjQueue::objs_enqueued = 0;
ysr@777 1176 #endif
ysr@777 1177
ysr@777 1178 // Statistics
ysr@777 1179 double now = os::elapsedTime();
ysr@777 1180 _remark_mark_times.add((mark_work_end - start) * 1000.0);
ysr@777 1181 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
ysr@777 1182 _remark_times.add((now - start) * 1000.0);
ysr@777 1183
ysr@777 1184 g1p->record_concurrent_mark_remark_end();
ysr@777 1185 }
ysr@777 1186
johnc@3731 1187 // Base class of the closures that finalize and verify the
johnc@3731 1188 // liveness counting data.
johnc@3731 1189 class CMCountDataClosureBase: public HeapRegionClosure {
johnc@3731 1190 protected:
ysr@777 1191 ConcurrentMark* _cm;
johnc@3463 1192 BitMap* _region_bm;
johnc@3463 1193 BitMap* _card_bm;
johnc@3463 1194
johnc@3731 1195 void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
johnc@3731 1196 assert(start_idx <= last_idx, "sanity");
johnc@3731 1197
johnc@3731 1198 // Set the inclusive bit range [start_idx, last_idx].
johnc@3731 1199 // For small ranges (up to 8 cards) use a simple loop; otherwise
johnc@3731 1200 // use par_at_put_range.
johnc@3731 1201 if ((last_idx - start_idx) < 8) {
johnc@3731 1202 for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
johnc@3731 1203 _card_bm->par_set_bit(i);
johnc@3731 1204 }
johnc@3731 1205 } else {
johnc@3731 1206 assert(last_idx < _card_bm->size(), "sanity");
johnc@3731 1207 // Note BitMap::par_at_put_range() is exclusive.
coleenp@4037 1208 BitMap::idx_t max_idx = MAX2(last_idx+1, _card_bm->size());
coleenp@4037 1209 _card_bm->par_at_put_range(start_idx, max_idx, true);
ysr@777 1210 }
ysr@777 1211 }
ysr@777 1212
tonyp@1264 1213 // It takes a region that's not empty (i.e., it has at least one
tonyp@1264 1214 // live object in it and sets its corresponding bit on the region
tonyp@1264 1215 // bitmap to 1. If the region is "starts humongous" it will also set
tonyp@1264 1216 // to 1 the bits on the region bitmap that correspond to its
tonyp@1264 1217 // associated "continues humongous" regions.
tonyp@1264 1218 void set_bit_for_region(HeapRegion* hr) {
tonyp@1264 1219 assert(!hr->continuesHumongous(), "should have filtered those out");
tonyp@1264 1220
tonyp@3713 1221 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
tonyp@1264 1222 if (!hr->startsHumongous()) {
tonyp@1264 1223 // Normal (non-humongous) case: just set the bit.
tonyp@3713 1224 _region_bm->par_at_put(index, true);
tonyp@1264 1225 } else {
tonyp@1264 1226 // Starts humongous case: calculate how many regions are part of
johnc@3463 1227 // this humongous region and then set the bit range.
tonyp@3957 1228 BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
tonyp@3713 1229 _region_bm->par_at_put_range(index, end_index, true);
tonyp@1264 1230 }
tonyp@1264 1231 }
tonyp@1264 1232
johnc@3731 1233 public:
johnc@3731 1234 CMCountDataClosureBase(ConcurrentMark *cm,
johnc@3731 1235 BitMap* region_bm, BitMap* card_bm):
johnc@3731 1236 _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
johnc@3731 1237 };
johnc@3731 1238
johnc@3731 1239 // Closure that calculates the # live objects per region. Used
johnc@3731 1240 // for verification purposes during the cleanup pause.
johnc@3731 1241 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
johnc@3731 1242 CMBitMapRO* _bm;
johnc@3731 1243 size_t _region_marked_bytes;
johnc@3731 1244
johnc@3731 1245 public:
johnc@3731 1246 CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
johnc@3731 1247 BitMap* region_bm, BitMap* card_bm) :
johnc@3731 1248 CMCountDataClosureBase(cm, region_bm, card_bm),
johnc@3731 1249 _bm(bm), _region_marked_bytes(0) { }
johnc@3731 1250
ysr@777 1251 bool doHeapRegion(HeapRegion* hr) {
ysr@777 1252
iveresov@1074 1253 if (hr->continuesHumongous()) {
tonyp@1264 1254 // We will ignore these here and process them when their
tonyp@1264 1255 // associated "starts humongous" region is processed (see
tonyp@1264 1256 // set_bit_for_heap_region()). Note that we cannot rely on their
tonyp@1264 1257 // associated "starts humongous" region to have their bit set to
tonyp@1264 1258 // 1 since, due to the region chunking in the parallel region
tonyp@1264 1259 // iteration, a "continues humongous" region might be visited
tonyp@1264 1260 // before its associated "starts humongous".
iveresov@1074 1261 return false;
iveresov@1074 1262 }
ysr@777 1263
ysr@777 1264 HeapWord* nextTop = hr->next_top_at_mark_start();
johnc@3463 1265 HeapWord* start = hr->bottom();
johnc@3463 1266
johnc@3463 1267 assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
johnc@3463 1268 err_msg("Preconditions not met - "
johnc@3463 1269 "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 1270 start, nextTop, hr->end()));
johnc@3463 1271
ysr@777 1272 // Find the first marked object at or after "start".
ysr@777 1273 start = _bm->getNextMarkedWordAddress(start, nextTop);
johnc@3463 1274
ysr@777 1275 size_t marked_bytes = 0;
ysr@777 1276
ysr@777 1277 while (start < nextTop) {
ysr@777 1278 oop obj = oop(start);
ysr@777 1279 int obj_sz = obj->size();
ysr@777 1280 HeapWord* obj_last = start + obj_sz - 1;
johnc@3731 1281
johnc@3731 1282 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3731 1283 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);
johnc@3731 1284
johnc@3731 1285 // Set the bits in the card BM for this object (inclusive).
johnc@3731 1286 set_card_bitmap_range(start_idx, last_idx);
johnc@3731 1287
johnc@3731 1288 // Add the size of this object to the number of marked bytes.
apetrusenko@1465 1289 marked_bytes += (size_t)obj_sz * HeapWordSize;
johnc@3463 1290
ysr@777 1291 // Find the next marked object after this one.
johnc@3731 1292 start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
tonyp@2973 1293 }
johnc@3463 1294
johnc@3463 1295 // Mark the allocated-since-marking portion...
johnc@3463 1296 HeapWord* top = hr->top();
johnc@3463 1297 if (nextTop < top) {
johnc@3731 1298 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
johnc@3731 1299 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
johnc@3731 1300
johnc@3731 1301 set_card_bitmap_range(start_idx, last_idx);
johnc@3463 1302
johnc@3463 1303 // This definitely means the region has live objects.
johnc@3463 1304 set_bit_for_region(hr);
ysr@777 1305 }
ysr@777 1306
ysr@777 1307 // Update the live region bitmap.
ysr@777 1308 if (marked_bytes > 0) {
tonyp@1264 1309 set_bit_for_region(hr);
ysr@777 1310 }
johnc@3463 1311
johnc@3463 1312 // Set the marked bytes for the current region so that
johnc@3463 1313 // it can be queried by a calling verificiation routine
johnc@3463 1314 _region_marked_bytes = marked_bytes;
johnc@3463 1315
johnc@3463 1316 return false;
johnc@3463 1317 }
johnc@3463 1318
johnc@3463 1319 size_t region_marked_bytes() const { return _region_marked_bytes; }
johnc@3463 1320 };
johnc@3463 1321
johnc@3463 1322 // Heap region closure used for verifying the counting data
johnc@3463 1323 // that was accumulated concurrently and aggregated during
johnc@3463 1324 // the remark pause. This closure is applied to the heap
johnc@3463 1325 // regions during the STW cleanup pause.
johnc@3463 1326
johnc@3463 1327 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
johnc@3463 1328 ConcurrentMark* _cm;
johnc@3463 1329 CalcLiveObjectsClosure _calc_cl;
johnc@3463 1330 BitMap* _region_bm; // Region BM to be verified
johnc@3463 1331 BitMap* _card_bm; // Card BM to be verified
johnc@3463 1332 bool _verbose; // verbose output?
johnc@3463 1333
johnc@3463 1334 BitMap* _exp_region_bm; // Expected Region BM values
johnc@3463 1335 BitMap* _exp_card_bm; // Expected card BM values
johnc@3463 1336
johnc@3463 1337 int _failures;
johnc@3463 1338
johnc@3463 1339 public:
johnc@3463 1340 VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
johnc@3463 1341 BitMap* region_bm,
johnc@3463 1342 BitMap* card_bm,
johnc@3463 1343 BitMap* exp_region_bm,
johnc@3463 1344 BitMap* exp_card_bm,
johnc@3463 1345 bool verbose) :
johnc@3463 1346 _cm(cm),
johnc@3463 1347 _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
johnc@3463 1348 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
johnc@3463 1349 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
johnc@3463 1350 _failures(0) { }
johnc@3463 1351
johnc@3463 1352 int failures() const { return _failures; }
johnc@3463 1353
johnc@3463 1354 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1355 if (hr->continuesHumongous()) {
johnc@3463 1356 // We will ignore these here and process them when their
johnc@3463 1357 // associated "starts humongous" region is processed (see
johnc@3463 1358 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1359 // associated "starts humongous" region to have their bit set to
johnc@3463 1360 // 1 since, due to the region chunking in the parallel region
johnc@3463 1361 // iteration, a "continues humongous" region might be visited
johnc@3463 1362 // before its associated "starts humongous".
johnc@3463 1363 return false;
johnc@3463 1364 }
johnc@3463 1365
johnc@3463 1366 int failures = 0;
johnc@3463 1367
johnc@3463 1368 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
johnc@3463 1369 // this region and set the corresponding bits in the expected region
johnc@3463 1370 // and card bitmaps.
johnc@3463 1371 bool res = _calc_cl.doHeapRegion(hr);
johnc@3463 1372 assert(res == false, "should be continuing");
johnc@3463 1373
johnc@3463 1374 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
johnc@3463 1375 Mutex::_no_safepoint_check_flag);
johnc@3463 1376
johnc@3463 1377 // Verify the marked bytes for this region.
johnc@3463 1378 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
johnc@3463 1379 size_t act_marked_bytes = hr->next_marked_bytes();
johnc@3463 1380
johnc@3463 1381 // We're not OK if expected marked bytes > actual marked bytes. It means
johnc@3463 1382 // we have missed accounting some objects during the actual marking.
johnc@3463 1383 if (exp_marked_bytes > act_marked_bytes) {
johnc@3463 1384 if (_verbose) {
tonyp@3713 1385 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
johnc@3463 1386 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
johnc@3463 1387 hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
johnc@3463 1388 }
johnc@3463 1389 failures += 1;
johnc@3463 1390 }
johnc@3463 1391
johnc@3463 1392 // Verify the bit, for this region, in the actual and expected
johnc@3463 1393 // (which was just calculated) region bit maps.
johnc@3463 1394 // We're not OK if the bit in the calculated expected region
johnc@3463 1395 // bitmap is set and the bit in the actual region bitmap is not.
tonyp@3713 1396 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
johnc@3463 1397
johnc@3463 1398 bool expected = _exp_region_bm->at(index);
johnc@3463 1399 bool actual = _region_bm->at(index);
johnc@3463 1400 if (expected && !actual) {
johnc@3463 1401 if (_verbose) {
tonyp@3713 1402 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
tonyp@3713 1403 "expected: %s, actual: %s",
tonyp@3713 1404 hr->hrs_index(),
tonyp@3713 1405 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
johnc@3463 1406 }
johnc@3463 1407 failures += 1;
johnc@3463 1408 }
johnc@3463 1409
johnc@3463 1410 // Verify that the card bit maps for the cards spanned by the current
johnc@3463 1411 // region match. We have an error if we have a set bit in the expected
johnc@3463 1412 // bit map and the corresponding bit in the actual bitmap is not set.
johnc@3463 1413
johnc@3463 1414 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
johnc@3463 1415 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
johnc@3463 1416
johnc@3463 1417 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
johnc@3463 1418 expected = _exp_card_bm->at(i);
johnc@3463 1419 actual = _card_bm->at(i);
johnc@3463 1420
johnc@3463 1421 if (expected && !actual) {
johnc@3463 1422 if (_verbose) {
tonyp@3713 1423 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
tonyp@3713 1424 "expected: %s, actual: %s",
tonyp@3713 1425 hr->hrs_index(), i,
tonyp@3713 1426 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
ysr@777 1427 }
johnc@3463 1428 failures += 1;
ysr@777 1429 }
ysr@777 1430 }
ysr@777 1431
johnc@3463 1432 if (failures > 0 && _verbose) {
johnc@3463 1433 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
johnc@3463 1434 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
johnc@3463 1435 HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
johnc@3463 1436 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
johnc@3463 1437 }
johnc@3463 1438
johnc@3463 1439 _failures += failures;
johnc@3463 1440
johnc@3463 1441 // We could stop iteration over the heap when we
johnc@3731 1442 // find the first violating region by returning true.
ysr@777 1443 return false;
ysr@777 1444 }
ysr@777 1445 };
ysr@777 1446
ysr@777 1447
johnc@3463 1448 class G1ParVerifyFinalCountTask: public AbstractGangTask {
johnc@3463 1449 protected:
johnc@3463 1450 G1CollectedHeap* _g1h;
johnc@3463 1451 ConcurrentMark* _cm;
johnc@3463 1452 BitMap* _actual_region_bm;
johnc@3463 1453 BitMap* _actual_card_bm;
johnc@3463 1454
johnc@3463 1455 uint _n_workers;
johnc@3463 1456
johnc@3463 1457 BitMap* _expected_region_bm;
johnc@3463 1458 BitMap* _expected_card_bm;
johnc@3463 1459
johnc@3463 1460 int _failures;
johnc@3463 1461 bool _verbose;
johnc@3463 1462
johnc@3463 1463 public:
johnc@3463 1464 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
johnc@3463 1465 BitMap* region_bm, BitMap* card_bm,
johnc@3463 1466 BitMap* expected_region_bm, BitMap* expected_card_bm)
johnc@3463 1467 : AbstractGangTask("G1 verify final counting"),
johnc@3463 1468 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1469 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1470 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
johnc@3463 1471 _failures(0), _verbose(false),
johnc@3463 1472 _n_workers(0) {
johnc@3463 1473 assert(VerifyDuringGC, "don't call this otherwise");
johnc@3463 1474
johnc@3463 1475 // Use the value already set as the number of active threads
johnc@3463 1476 // in the call to run_task().
johnc@3463 1477 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1478 assert( _g1h->workers()->active_workers() > 0,
johnc@3463 1479 "Should have been previously set");
johnc@3463 1480 _n_workers = _g1h->workers()->active_workers();
johnc@3463 1481 } else {
johnc@3463 1482 _n_workers = 1;
johnc@3463 1483 }
johnc@3463 1484
johnc@3463 1485 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
johnc@3463 1486 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
johnc@3463 1487
johnc@3463 1488 _verbose = _cm->verbose_medium();
johnc@3463 1489 }
johnc@3463 1490
johnc@3463 1491 void work(uint worker_id) {
johnc@3463 1492 assert(worker_id < _n_workers, "invariant");
johnc@3463 1493
johnc@3463 1494 VerifyLiveObjectDataHRClosure verify_cl(_cm,
johnc@3463 1495 _actual_region_bm, _actual_card_bm,
johnc@3463 1496 _expected_region_bm,
johnc@3463 1497 _expected_card_bm,
johnc@3463 1498 _verbose);
johnc@3463 1499
johnc@3463 1500 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1501 _g1h->heap_region_par_iterate_chunked(&verify_cl,
johnc@3463 1502 worker_id,
johnc@3463 1503 _n_workers,
johnc@3463 1504 HeapRegion::VerifyCountClaimValue);
johnc@3463 1505 } else {
johnc@3463 1506 _g1h->heap_region_iterate(&verify_cl);
johnc@3463 1507 }
johnc@3463 1508
johnc@3463 1509 Atomic::add(verify_cl.failures(), &_failures);
johnc@3463 1510 }
johnc@3463 1511
johnc@3463 1512 int failures() const { return _failures; }
johnc@3463 1513 };
johnc@3463 1514
johnc@3731 1515 // Closure that finalizes the liveness counting data.
johnc@3731 1516 // Used during the cleanup pause.
johnc@3731 1517 // Sets the bits corresponding to the interval [NTAMS, top]
johnc@3731 1518 // (which contains the implicitly live objects) in the
johnc@3731 1519 // card liveness bitmap. Also sets the bit for each region,
johnc@3731 1520 // containing live data, in the region liveness bitmap.
johnc@3731 1521
johnc@3731 1522 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
johnc@3463 1523 public:
johnc@3463 1524 FinalCountDataUpdateClosure(ConcurrentMark* cm,
johnc@3463 1525 BitMap* region_bm,
johnc@3463 1526 BitMap* card_bm) :
johnc@3731 1527 CMCountDataClosureBase(cm, region_bm, card_bm) { }
johnc@3463 1528
johnc@3463 1529 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1530
johnc@3463 1531 if (hr->continuesHumongous()) {
johnc@3463 1532 // We will ignore these here and process them when their
johnc@3463 1533 // associated "starts humongous" region is processed (see
johnc@3463 1534 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1535 // associated "starts humongous" region to have their bit set to
johnc@3463 1536 // 1 since, due to the region chunking in the parallel region
johnc@3463 1537 // iteration, a "continues humongous" region might be visited
johnc@3463 1538 // before its associated "starts humongous".
johnc@3463 1539 return false;
johnc@3463 1540 }
johnc@3463 1541
johnc@3463 1542 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@3463 1543 HeapWord* top = hr->top();
johnc@3463 1544
johnc@3731 1545 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
johnc@3463 1546
johnc@3463 1547 // Mark the allocated-since-marking portion...
johnc@3463 1548 if (ntams < top) {
johnc@3463 1549 // This definitely means the region has live objects.
johnc@3463 1550 set_bit_for_region(hr);
johnc@3463 1551 }
johnc@3463 1552
johnc@3731 1553 // Now set the bits for [ntams, top]
johnc@3731 1554 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
coleenp@4037 1555 // set_card_bitmap_range() expects the last_idx to be with
coleenp@4037 1556 // the range of the bit map (see assertion in set_card_bitmap_range()),
coleenp@4037 1557 // so limit it to that range with this application of MIN2.
coleenp@4037 1558 BitMap::idx_t last_idx = MIN2(_cm->card_bitmap_index_for(top),
coleenp@4037 1559 _card_bm->size()-1);
coleenp@4037 1560 if (start_idx < _card_bm->size()) {
johnc@3463 1561 set_card_bitmap_range(start_idx, last_idx);
coleenp@4037 1562 } else {
coleenp@4037 1563 // To reach here start_idx must be beyond the end of
coleenp@4037 1564 // the bit map and last_idx must have been limited by
coleenp@4037 1565 // the MIN2().
coleenp@4037 1566 assert(start_idx == last_idx + 1,
coleenp@4037 1567 err_msg("Not beyond end start_idx " SIZE_FORMAT " last_idx "
coleenp@4037 1568 SIZE_FORMAT, start_idx, last_idx));
coleenp@4037 1569 }
johnc@3463 1570
johnc@3463 1571 // Set the bit for the region if it contains live data
johnc@3463 1572 if (hr->next_marked_bytes() > 0) {
johnc@3463 1573 set_bit_for_region(hr);
johnc@3463 1574 }
johnc@3463 1575
johnc@3463 1576 return false;
johnc@3463 1577 }
johnc@3463 1578 };
ysr@777 1579
ysr@777 1580 class G1ParFinalCountTask: public AbstractGangTask {
ysr@777 1581 protected:
ysr@777 1582 G1CollectedHeap* _g1h;
johnc@3463 1583 ConcurrentMark* _cm;
johnc@3463 1584 BitMap* _actual_region_bm;
johnc@3463 1585 BitMap* _actual_card_bm;
johnc@3463 1586
jmasa@3357 1587 uint _n_workers;
johnc@3463 1588
ysr@777 1589 public:
johnc@3463 1590 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
johnc@3463 1591 : AbstractGangTask("G1 final counting"),
johnc@3463 1592 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1593 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1594 _n_workers(0) {
jmasa@3294 1595 // Use the value already set as the number of active threads
tonyp@3714 1596 // in the call to run_task().
jmasa@3294 1597 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1598 assert( _g1h->workers()->active_workers() > 0,
jmasa@3294 1599 "Should have been previously set");
jmasa@3294 1600 _n_workers = _g1h->workers()->active_workers();
tonyp@2973 1601 } else {
ysr@777 1602 _n_workers = 1;
tonyp@2973 1603 }
ysr@777 1604 }
ysr@777 1605
jmasa@3357 1606 void work(uint worker_id) {
johnc@3463 1607 assert(worker_id < _n_workers, "invariant");
johnc@3463 1608
johnc@3463 1609 FinalCountDataUpdateClosure final_update_cl(_cm,
johnc@3463 1610 _actual_region_bm,
johnc@3463 1611 _actual_card_bm);
johnc@3463 1612
jmasa@2188 1613 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1614 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
johnc@3463 1615 worker_id,
johnc@3463 1616 _n_workers,
tonyp@790 1617 HeapRegion::FinalCountClaimValue);
ysr@777 1618 } else {
johnc@3463 1619 _g1h->heap_region_iterate(&final_update_cl);
ysr@777 1620 }
ysr@777 1621 }
ysr@777 1622 };
ysr@777 1623
ysr@777 1624 class G1ParNoteEndTask;
ysr@777 1625
ysr@777 1626 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
ysr@777 1627 G1CollectedHeap* _g1;
ysr@777 1628 int _worker_num;
ysr@777 1629 size_t _max_live_bytes;
tonyp@3713 1630 uint _regions_claimed;
ysr@777 1631 size_t _freed_bytes;
tonyp@2493 1632 FreeRegionList* _local_cleanup_list;
tonyp@3268 1633 OldRegionSet* _old_proxy_set;
tonyp@2493 1634 HumongousRegionSet* _humongous_proxy_set;
tonyp@2493 1635 HRRSCleanupTask* _hrrs_cleanup_task;
ysr@777 1636 double _claimed_region_time;
ysr@777 1637 double _max_region_time;
ysr@777 1638
ysr@777 1639 public:
ysr@777 1640 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
tonyp@2493 1641 int worker_num,
tonyp@2493 1642 FreeRegionList* local_cleanup_list,
tonyp@3268 1643 OldRegionSet* old_proxy_set,
tonyp@2493 1644 HumongousRegionSet* humongous_proxy_set,
johnc@3292 1645 HRRSCleanupTask* hrrs_cleanup_task) :
johnc@3292 1646 _g1(g1), _worker_num(worker_num),
johnc@3292 1647 _max_live_bytes(0), _regions_claimed(0),
johnc@3292 1648 _freed_bytes(0),
johnc@3292 1649 _claimed_region_time(0.0), _max_region_time(0.0),
johnc@3292 1650 _local_cleanup_list(local_cleanup_list),
johnc@3292 1651 _old_proxy_set(old_proxy_set),
johnc@3292 1652 _humongous_proxy_set(humongous_proxy_set),
johnc@3292 1653 _hrrs_cleanup_task(hrrs_cleanup_task) { }
johnc@3292 1654
ysr@777 1655 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1656
johnc@3292 1657 bool doHeapRegion(HeapRegion *hr) {
tonyp@3957 1658 if (hr->continuesHumongous()) {
tonyp@3957 1659 return false;
tonyp@3957 1660 }
johnc@3292 1661 // We use a claim value of zero here because all regions
johnc@3292 1662 // were claimed with value 1 in the FinalCount task.
tonyp@3957 1663 _g1->reset_gc_time_stamps(hr);
tonyp@3957 1664 double start = os::elapsedTime();
tonyp@3957 1665 _regions_claimed++;
tonyp@3957 1666 hr->note_end_of_marking();
tonyp@3957 1667 _max_live_bytes += hr->max_live_bytes();
tonyp@3957 1668 _g1->free_region_if_empty(hr,
tonyp@3957 1669 &_freed_bytes,
tonyp@3957 1670 _local_cleanup_list,
tonyp@3957 1671 _old_proxy_set,
tonyp@3957 1672 _humongous_proxy_set,
tonyp@3957 1673 _hrrs_cleanup_task,
tonyp@3957 1674 true /* par */);
tonyp@3957 1675 double region_time = (os::elapsedTime() - start);
tonyp@3957 1676 _claimed_region_time += region_time;
tonyp@3957 1677 if (region_time > _max_region_time) {
tonyp@3957 1678 _max_region_time = region_time;
johnc@3292 1679 }
johnc@3292 1680 return false;
johnc@3292 1681 }
ysr@777 1682
ysr@777 1683 size_t max_live_bytes() { return _max_live_bytes; }
tonyp@3713 1684 uint regions_claimed() { return _regions_claimed; }
ysr@777 1685 double claimed_region_time_sec() { return _claimed_region_time; }
ysr@777 1686 double max_region_time_sec() { return _max_region_time; }
ysr@777 1687 };
ysr@777 1688
ysr@777 1689 class G1ParNoteEndTask: public AbstractGangTask {
ysr@777 1690 friend class G1NoteEndOfConcMarkClosure;
tonyp@2472 1691
ysr@777 1692 protected:
ysr@777 1693 G1CollectedHeap* _g1h;
ysr@777 1694 size_t _max_live_bytes;
ysr@777 1695 size_t _freed_bytes;
tonyp@2472 1696 FreeRegionList* _cleanup_list;
tonyp@2472 1697
ysr@777 1698 public:
ysr@777 1699 G1ParNoteEndTask(G1CollectedHeap* g1h,
tonyp@2472 1700 FreeRegionList* cleanup_list) :
ysr@777 1701 AbstractGangTask("G1 note end"), _g1h(g1h),
tonyp@2472 1702 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
ysr@777 1703
jmasa@3357 1704 void work(uint worker_id) {
ysr@777 1705 double start = os::elapsedTime();
tonyp@2493 1706 FreeRegionList local_cleanup_list("Local Cleanup List");
tonyp@3268 1707 OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
tonyp@2493 1708 HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
tonyp@2493 1709 HRRSCleanupTask hrrs_cleanup_task;
jmasa@3357 1710 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
tonyp@3268 1711 &old_proxy_set,
tonyp@2493 1712 &humongous_proxy_set,
tonyp@2493 1713 &hrrs_cleanup_task);
jmasa@2188 1714 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1715 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
jmasa@3294 1716 _g1h->workers()->active_workers(),
tonyp@790 1717 HeapRegion::NoteEndClaimValue);
ysr@777 1718 } else {
ysr@777 1719 _g1h->heap_region_iterate(&g1_note_end);
ysr@777 1720 }
ysr@777 1721 assert(g1_note_end.complete(), "Shouldn't have yielded!");
ysr@777 1722
tonyp@2472 1723 // Now update the lists
tonyp@2472 1724 _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
tonyp@2472 1725 NULL /* free_list */,
tonyp@3268 1726 &old_proxy_set,
tonyp@2493 1727 &humongous_proxy_set,
tonyp@2472 1728 true /* par */);
ysr@777 1729 {
ysr@777 1730 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 1731 _max_live_bytes += g1_note_end.max_live_bytes();
ysr@777 1732 _freed_bytes += g1_note_end.freed_bytes();
tonyp@2472 1733
tonyp@2975 1734 // If we iterate over the global cleanup list at the end of
tonyp@2975 1735 // cleanup to do this printing we will not guarantee to only
tonyp@2975 1736 // generate output for the newly-reclaimed regions (the list
tonyp@2975 1737 // might not be empty at the beginning of cleanup; we might
tonyp@2975 1738 // still be working on its previous contents). So we do the
tonyp@2975 1739 // printing here, before we append the new regions to the global
tonyp@2975 1740 // cleanup list.
tonyp@2975 1741
tonyp@2975 1742 G1HRPrinter* hr_printer = _g1h->hr_printer();
tonyp@2975 1743 if (hr_printer->is_active()) {
tonyp@2975 1744 HeapRegionLinkedListIterator iter(&local_cleanup_list);
tonyp@2975 1745 while (iter.more_available()) {
tonyp@2975 1746 HeapRegion* hr = iter.get_next();
tonyp@2975 1747 hr_printer->cleanup(hr);
tonyp@2975 1748 }
tonyp@2975 1749 }
tonyp@2975 1750
tonyp@2493 1751 _cleanup_list->add_as_tail(&local_cleanup_list);
tonyp@2493 1752 assert(local_cleanup_list.is_empty(), "post-condition");
tonyp@2493 1753
tonyp@2493 1754 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
ysr@777 1755 }
ysr@777 1756 }
ysr@777 1757 size_t max_live_bytes() { return _max_live_bytes; }
ysr@777 1758 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1759 };
ysr@777 1760
ysr@777 1761 class G1ParScrubRemSetTask: public AbstractGangTask {
ysr@777 1762 protected:
ysr@777 1763 G1RemSet* _g1rs;
ysr@777 1764 BitMap* _region_bm;
ysr@777 1765 BitMap* _card_bm;
ysr@777 1766 public:
ysr@777 1767 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
ysr@777 1768 BitMap* region_bm, BitMap* card_bm) :
ysr@777 1769 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
johnc@3463 1770 _region_bm(region_bm), _card_bm(card_bm) { }
ysr@777 1771
jmasa@3357 1772 void work(uint worker_id) {
jmasa@2188 1773 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1774 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
tonyp@790 1775 HeapRegion::ScrubRemSetClaimValue);
ysr@777 1776 } else {
ysr@777 1777 _g1rs->scrub(_region_bm, _card_bm);
ysr@777 1778 }
ysr@777 1779 }
ysr@777 1780
ysr@777 1781 };
ysr@777 1782
ysr@777 1783 void ConcurrentMark::cleanup() {
ysr@777 1784 // world is stopped at this checkpoint
ysr@777 1785 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1786 "world should be stopped");
ysr@777 1787 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1788
ysr@777 1789 // If a full collection has happened, we shouldn't do this.
ysr@777 1790 if (has_aborted()) {
ysr@777 1791 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1792 return;
ysr@777 1793 }
ysr@777 1794
tonyp@3268 1795 HRSPhaseSetter x(HRSPhaseCleanup);
tonyp@2472 1796 g1h->verify_region_sets_optional();
tonyp@2472 1797
ysr@1280 1798 if (VerifyDuringGC) {
ysr@1280 1799 HandleMark hm; // handle scope
ysr@1280 1800 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1801 Universe::heap()->prepare_for_verify();
brutisso@3711 1802 Universe::verify(/* silent */ false,
johnc@2969 1803 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1804 }
ysr@1280 1805
ysr@777 1806 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
ysr@777 1807 g1p->record_concurrent_mark_cleanup_start();
ysr@777 1808
ysr@777 1809 double start = os::elapsedTime();
ysr@777 1810
tonyp@2493 1811 HeapRegionRemSet::reset_for_cleanup_tasks();
tonyp@2493 1812
jmasa@3357 1813 uint n_workers;
jmasa@3294 1814
ysr@777 1815 // Do counting once more with the world stopped for good measure.
johnc@3463 1816 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
johnc@3463 1817
jmasa@2188 1818 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1819 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@790 1820 "sanity check");
tonyp@790 1821
johnc@3338 1822 g1h->set_par_threads();
johnc@3338 1823 n_workers = g1h->n_par_threads();
jmasa@3357 1824 assert(g1h->n_par_threads() == n_workers,
johnc@3338 1825 "Should not have been reset");
ysr@777 1826 g1h->workers()->run_task(&g1_par_count_task);
jmasa@3294 1827 // Done with the parallel phase so reset to 0.
ysr@777 1828 g1h->set_par_threads(0);
tonyp@790 1829
johnc@3463 1830 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
tonyp@790 1831 "sanity check");
ysr@777 1832 } else {
johnc@3338 1833 n_workers = 1;
ysr@777 1834 g1_par_count_task.work(0);
ysr@777 1835 }
ysr@777 1836
johnc@3463 1837 if (VerifyDuringGC) {
johnc@3463 1838 // Verify that the counting data accumulated during marking matches
johnc@3463 1839 // that calculated by walking the marking bitmap.
johnc@3463 1840
johnc@3463 1841 // Bitmaps to hold expected values
johnc@3463 1842 BitMap expected_region_bm(_region_bm.size(), false);
johnc@3463 1843 BitMap expected_card_bm(_card_bm.size(), false);
johnc@3463 1844
johnc@3463 1845 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
johnc@3463 1846 &_region_bm,
johnc@3463 1847 &_card_bm,
johnc@3463 1848 &expected_region_bm,
johnc@3463 1849 &expected_card_bm);
johnc@3463 1850
johnc@3463 1851 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1852 g1h->set_par_threads((int)n_workers);
johnc@3463 1853 g1h->workers()->run_task(&g1_par_verify_task);
johnc@3463 1854 // Done with the parallel phase so reset to 0.
johnc@3463 1855 g1h->set_par_threads(0);
johnc@3463 1856
johnc@3463 1857 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
johnc@3463 1858 "sanity check");
johnc@3463 1859 } else {
johnc@3463 1860 g1_par_verify_task.work(0);
johnc@3463 1861 }
johnc@3463 1862
johnc@3463 1863 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
johnc@3463 1864 }
johnc@3463 1865
ysr@777 1866 size_t start_used_bytes = g1h->used();
ysr@777 1867 g1h->set_marking_complete();
ysr@777 1868
ysr@777 1869 double count_end = os::elapsedTime();
ysr@777 1870 double this_final_counting_time = (count_end - start);
ysr@777 1871 _total_counting_time += this_final_counting_time;
ysr@777 1872
tonyp@2717 1873 if (G1PrintRegionLivenessInfo) {
tonyp@2717 1874 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
tonyp@2717 1875 _g1h->heap_region_iterate(&cl);
tonyp@2717 1876 }
tonyp@2717 1877
ysr@777 1878 // Install newly created mark bitMap as "prev".
ysr@777 1879 swapMarkBitMaps();
ysr@777 1880
ysr@777 1881 g1h->reset_gc_time_stamp();
ysr@777 1882
ysr@777 1883 // Note end of marking in all heap regions.
tonyp@2472 1884 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
jmasa@2188 1885 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1886 g1h->set_par_threads((int)n_workers);
ysr@777 1887 g1h->workers()->run_task(&g1_par_note_end_task);
ysr@777 1888 g1h->set_par_threads(0);
tonyp@790 1889
tonyp@790 1890 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
tonyp@790 1891 "sanity check");
ysr@777 1892 } else {
ysr@777 1893 g1_par_note_end_task.work(0);
ysr@777 1894 }
tonyp@3957 1895 g1h->check_gc_time_stamps();
tonyp@2472 1896
tonyp@2472 1897 if (!cleanup_list_is_empty()) {
tonyp@2472 1898 // The cleanup list is not empty, so we'll have to process it
tonyp@2472 1899 // concurrently. Notify anyone else that might be wanting free
tonyp@2472 1900 // regions that there will be more free regions coming soon.
tonyp@2472 1901 g1h->set_free_regions_coming();
tonyp@2472 1902 }
ysr@777 1903
ysr@777 1904 // call below, since it affects the metric by which we sort the heap
ysr@777 1905 // regions.
ysr@777 1906 if (G1ScrubRemSets) {
ysr@777 1907 double rs_scrub_start = os::elapsedTime();
ysr@777 1908 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
jmasa@2188 1909 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1910 g1h->set_par_threads((int)n_workers);
ysr@777 1911 g1h->workers()->run_task(&g1_par_scrub_rs_task);
ysr@777 1912 g1h->set_par_threads(0);
tonyp@790 1913
tonyp@790 1914 assert(g1h->check_heap_region_claim_values(
tonyp@790 1915 HeapRegion::ScrubRemSetClaimValue),
tonyp@790 1916 "sanity check");
ysr@777 1917 } else {
ysr@777 1918 g1_par_scrub_rs_task.work(0);
ysr@777 1919 }
ysr@777 1920
ysr@777 1921 double rs_scrub_end = os::elapsedTime();
ysr@777 1922 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
ysr@777 1923 _total_rs_scrub_time += this_rs_scrub_time;
ysr@777 1924 }
ysr@777 1925
ysr@777 1926 // this will also free any regions totally full of garbage objects,
ysr@777 1927 // and sort the regions.
jmasa@3294 1928 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
ysr@777 1929
ysr@777 1930 // Statistics.
ysr@777 1931 double end = os::elapsedTime();
ysr@777 1932 _cleanup_times.add((end - start) * 1000.0);
ysr@777 1933
brutisso@3710 1934 if (G1Log::fine()) {
ysr@777 1935 g1h->print_size_transition(gclog_or_tty,
ysr@777 1936 start_used_bytes,
ysr@777 1937 g1h->used(),
ysr@777 1938 g1h->capacity());
ysr@777 1939 }
ysr@777 1940
johnc@3175 1941 // Clean up will have freed any regions completely full of garbage.
johnc@3175 1942 // Update the soft reference policy with the new heap occupancy.
johnc@3175 1943 Universe::update_heap_info_at_gc();
johnc@3175 1944
ysr@777 1945 // We need to make this be a "collection" so any collection pause that
ysr@777 1946 // races with it goes around and waits for completeCleanup to finish.
ysr@777 1947 g1h->increment_total_collections();
ysr@777 1948
tonyp@3457 1949 // We reclaimed old regions so we should calculate the sizes to make
tonyp@3457 1950 // sure we update the old gen/space data.
tonyp@3457 1951 g1h->g1mm()->update_sizes();
tonyp@3457 1952
johnc@1186 1953 if (VerifyDuringGC) {
ysr@1280 1954 HandleMark hm; // handle scope
ysr@1280 1955 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1956 Universe::heap()->prepare_for_verify();
brutisso@3711 1957 Universe::verify(/* silent */ false,
johnc@2969 1958 /* option */ VerifyOption_G1UsePrevMarking);
ysr@777 1959 }
tonyp@2472 1960
tonyp@2472 1961 g1h->verify_region_sets_optional();
ysr@777 1962 }
ysr@777 1963
ysr@777 1964 void ConcurrentMark::completeCleanup() {
ysr@777 1965 if (has_aborted()) return;
ysr@777 1966
tonyp@2472 1967 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2472 1968
tonyp@2472 1969 _cleanup_list.verify_optional();
tonyp@2643 1970 FreeRegionList tmp_free_list("Tmp Free List");
tonyp@2472 1971
tonyp@2472 1972 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1973 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1974 "cleanup list has %u entries",
tonyp@2472 1975 _cleanup_list.length());
tonyp@2472 1976 }
tonyp@2472 1977
tonyp@2472 1978 // Noone else should be accessing the _cleanup_list at this point,
tonyp@2472 1979 // so it's not necessary to take any locks
tonyp@2472 1980 while (!_cleanup_list.is_empty()) {
tonyp@2472 1981 HeapRegion* hr = _cleanup_list.remove_head();
tonyp@2472 1982 assert(hr != NULL, "the list was not empty");
tonyp@2849 1983 hr->par_clear();
tonyp@2643 1984 tmp_free_list.add_as_tail(hr);
tonyp@2472 1985
tonyp@2472 1986 // Instead of adding one region at a time to the secondary_free_list,
tonyp@2472 1987 // we accumulate them in the local list and move them a few at a
tonyp@2472 1988 // time. This also cuts down on the number of notify_all() calls
tonyp@2472 1989 // we do during this process. We'll also append the local list when
tonyp@2472 1990 // _cleanup_list is empty (which means we just removed the last
tonyp@2472 1991 // region from the _cleanup_list).
tonyp@2643 1992 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
tonyp@2472 1993 _cleanup_list.is_empty()) {
tonyp@2472 1994 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1995 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1996 "appending %u entries to the secondary_free_list, "
tonyp@3713 1997 "cleanup list still has %u entries",
tonyp@2643 1998 tmp_free_list.length(),
tonyp@2472 1999 _cleanup_list.length());
ysr@777 2000 }
tonyp@2472 2001
tonyp@2472 2002 {
tonyp@2472 2003 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2643 2004 g1h->secondary_free_list_add_as_tail(&tmp_free_list);
tonyp@2472 2005 SecondaryFreeList_lock->notify_all();
tonyp@2472 2006 }
tonyp@2472 2007
tonyp@2472 2008 if (G1StressConcRegionFreeing) {
tonyp@2472 2009 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
tonyp@2472 2010 os::sleep(Thread::current(), (jlong) 1, false);
tonyp@2472 2011 }
tonyp@2472 2012 }
ysr@777 2013 }
ysr@777 2014 }
tonyp@2643 2015 assert(tmp_free_list.is_empty(), "post-condition");
ysr@777 2016 }
ysr@777 2017
johnc@2494 2018 // Support closures for reference procssing in G1
johnc@2494 2019
johnc@2379 2020 bool G1CMIsAliveClosure::do_object_b(oop obj) {
johnc@2379 2021 HeapWord* addr = (HeapWord*)obj;
johnc@2379 2022 return addr != NULL &&
johnc@2379 2023 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
johnc@2379 2024 }
ysr@777 2025
coleenp@4037 2026 class G1CMKeepAliveClosure: public ExtendedOopClosure {
ysr@777 2027 G1CollectedHeap* _g1;
ysr@777 2028 ConcurrentMark* _cm;
ysr@777 2029 public:
johnc@3463 2030 G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
johnc@3463 2031 _g1(g1), _cm(cm) {
johnc@3463 2032 assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
johnc@3463 2033 }
ysr@777 2034
ysr@1280 2035 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2036 virtual void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2037
ysr@1280 2038 template <class T> void do_oop_work(T* p) {
johnc@2494 2039 oop obj = oopDesc::load_decode_heap_oop(p);
johnc@2494 2040 HeapWord* addr = (HeapWord*)obj;
johnc@2494 2041
tonyp@2973 2042 if (_cm->verbose_high()) {
johnc@2494 2043 gclog_or_tty->print_cr("\t[0] we're looking at location "
tonyp@2973 2044 "*"PTR_FORMAT" = "PTR_FORMAT,
tonyp@2973 2045 p, (void*) obj);
tonyp@2973 2046 }
johnc@2494 2047
johnc@2494 2048 if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
johnc@3463 2049 _cm->mark_and_count(obj);
johnc@2494 2050 _cm->mark_stack_push(obj);
ysr@777 2051 }
ysr@777 2052 }
ysr@777 2053 };
ysr@777 2054
ysr@777 2055 class G1CMDrainMarkingStackClosure: public VoidClosure {
johnc@3463 2056 ConcurrentMark* _cm;
ysr@777 2057 CMMarkStack* _markStack;
ysr@777 2058 G1CMKeepAliveClosure* _oopClosure;
ysr@777 2059 public:
johnc@3463 2060 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
ysr@777 2061 G1CMKeepAliveClosure* oopClosure) :
johnc@3463 2062 _cm(cm),
ysr@777 2063 _markStack(markStack),
johnc@3463 2064 _oopClosure(oopClosure) { }
ysr@777 2065
ysr@777 2066 void do_void() {
coleenp@4037 2067 _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
ysr@777 2068 }
ysr@777 2069 };
ysr@777 2070
johnc@2494 2071 // 'Keep Alive' closure used by parallel reference processing.
johnc@2494 2072 // An instance of this closure is used in the parallel reference processing
johnc@2494 2073 // code rather than an instance of G1CMKeepAliveClosure. We could have used
johnc@2494 2074 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
johnc@2494 2075 // placed on to discovered ref lists once so we can mark and push with no
johnc@2494 2076 // need to check whether the object has already been marked. Using the
johnc@2494 2077 // G1CMKeepAliveClosure would mean, however, having all the worker threads
johnc@2494 2078 // operating on the global mark stack. This means that an individual
johnc@2494 2079 // worker would be doing lock-free pushes while it processes its own
johnc@2494 2080 // discovered ref list followed by drain call. If the discovered ref lists
johnc@2494 2081 // are unbalanced then this could cause interference with the other
johnc@2494 2082 // workers. Using a CMTask (and its embedded local data structures)
johnc@2494 2083 // avoids that potential interference.
johnc@2494 2084 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
johnc@2494 2085 ConcurrentMark* _cm;
johnc@2494 2086 CMTask* _task;
johnc@2494 2087 int _ref_counter_limit;
johnc@2494 2088 int _ref_counter;
johnc@2494 2089 public:
johnc@3292 2090 G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3292 2091 _cm(cm), _task(task),
johnc@3292 2092 _ref_counter_limit(G1RefProcDrainInterval) {
johnc@2494 2093 assert(_ref_counter_limit > 0, "sanity");
johnc@2494 2094 _ref_counter = _ref_counter_limit;
johnc@2494 2095 }
johnc@2494 2096
johnc@2494 2097 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
johnc@2494 2098 virtual void do_oop( oop* p) { do_oop_work(p); }
johnc@2494 2099
johnc@2494 2100 template <class T> void do_oop_work(T* p) {
johnc@2494 2101 if (!_cm->has_overflown()) {
johnc@2494 2102 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@2973 2103 if (_cm->verbose_high()) {
johnc@2494 2104 gclog_or_tty->print_cr("\t[%d] we're looking at location "
johnc@2494 2105 "*"PTR_FORMAT" = "PTR_FORMAT,
johnc@2494 2106 _task->task_id(), p, (void*) obj);
tonyp@2973 2107 }
johnc@2494 2108
johnc@2494 2109 _task->deal_with_reference(obj);
johnc@2494 2110 _ref_counter--;
johnc@2494 2111
johnc@2494 2112 if (_ref_counter == 0) {
johnc@2494 2113 // We have dealt with _ref_counter_limit references, pushing them and objects
johnc@2494 2114 // reachable from them on to the local stack (and possibly the global stack).
johnc@2494 2115 // Call do_marking_step() to process these entries. We call the routine in a
johnc@2494 2116 // loop, which we'll exit if there's nothing more to do (i.e. we're done
johnc@2494 2117 // with the entries that we've pushed as a result of the deal_with_reference
johnc@2494 2118 // calls above) or we overflow.
johnc@2494 2119 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2120 // while there may still be some work to do. (See the comment at the
johnc@2494 2121 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2122 // is reaching the specified time target.) It is only when
johnc@2494 2123 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2124 // that the marking has completed.
johnc@2494 2125 do {
johnc@2494 2126 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 2127 _task->do_marking_step(mark_step_duration_ms,
johnc@2494 2128 false /* do_stealing */,
johnc@2494 2129 false /* do_termination */);
johnc@2494 2130 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2131 _ref_counter = _ref_counter_limit;
johnc@2494 2132 }
johnc@2494 2133 } else {
tonyp@2973 2134 if (_cm->verbose_high()) {
johnc@2494 2135 gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
tonyp@2973 2136 }
johnc@2494 2137 }
johnc@2494 2138 }
johnc@2494 2139 };
johnc@2494 2140
johnc@2494 2141 class G1CMParDrainMarkingStackClosure: public VoidClosure {
johnc@2494 2142 ConcurrentMark* _cm;
johnc@2494 2143 CMTask* _task;
johnc@2494 2144 public:
johnc@2494 2145 G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3463 2146 _cm(cm), _task(task) { }
johnc@2494 2147
johnc@2494 2148 void do_void() {
johnc@2494 2149 do {
tonyp@2973 2150 if (_cm->verbose_high()) {
tonyp@2973 2151 gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
tonyp@2973 2152 _task->task_id());
tonyp@2973 2153 }
johnc@2494 2154
johnc@2494 2155 // We call CMTask::do_marking_step() to completely drain the local and
johnc@2494 2156 // global marking stacks. The routine is called in a loop, which we'll
johnc@2494 2157 // exit if there's nothing more to do (i.e. we'completely drained the
johnc@2494 2158 // entries that were pushed as a result of applying the
johnc@2494 2159 // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
johnc@2494 2160 // lists above) or we overflow the global marking stack.
johnc@2494 2161 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2162 // while there may still be some work to do. (See the comment at the
johnc@2494 2163 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2164 // is reaching the specified time target.) It is only when
johnc@2494 2165 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2166 // that the marking has completed.
johnc@2494 2167
johnc@2494 2168 _task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2169 true /* do_stealing */,
johnc@2494 2170 true /* do_termination */);
johnc@2494 2171 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2172 }
johnc@2494 2173 };
johnc@2494 2174
johnc@3175 2175 // Implementation of AbstractRefProcTaskExecutor for parallel
johnc@3175 2176 // reference processing at the end of G1 concurrent marking
johnc@3175 2177
johnc@3175 2178 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
johnc@2494 2179 private:
johnc@2494 2180 G1CollectedHeap* _g1h;
johnc@2494 2181 ConcurrentMark* _cm;
johnc@2494 2182 WorkGang* _workers;
johnc@2494 2183 int _active_workers;
johnc@2494 2184
johnc@2494 2185 public:
johnc@3175 2186 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
johnc@2494 2187 ConcurrentMark* cm,
johnc@2494 2188 WorkGang* workers,
johnc@2494 2189 int n_workers) :
johnc@3292 2190 _g1h(g1h), _cm(cm),
johnc@3292 2191 _workers(workers), _active_workers(n_workers) { }
johnc@2494 2192
johnc@2494 2193 // Executes the given task using concurrent marking worker threads.
johnc@2494 2194 virtual void execute(ProcessTask& task);
johnc@2494 2195 virtual void execute(EnqueueTask& task);
johnc@2494 2196 };
johnc@2494 2197
johnc@3175 2198 class G1CMRefProcTaskProxy: public AbstractGangTask {
johnc@2494 2199 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
johnc@2494 2200 ProcessTask& _proc_task;
johnc@2494 2201 G1CollectedHeap* _g1h;
johnc@2494 2202 ConcurrentMark* _cm;
johnc@2494 2203
johnc@2494 2204 public:
johnc@3175 2205 G1CMRefProcTaskProxy(ProcessTask& proc_task,
johnc@2494 2206 G1CollectedHeap* g1h,
johnc@3292 2207 ConcurrentMark* cm) :
johnc@2494 2208 AbstractGangTask("Process reference objects in parallel"),
johnc@3292 2209 _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
johnc@2494 2210
jmasa@3357 2211 virtual void work(uint worker_id) {
jmasa@3357 2212 CMTask* marking_task = _cm->task(worker_id);
johnc@2494 2213 G1CMIsAliveClosure g1_is_alive(_g1h);
johnc@3292 2214 G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
johnc@2494 2215 G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
johnc@2494 2216
jmasa@3357 2217 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
johnc@2494 2218 }
johnc@2494 2219 };
johnc@2494 2220
johnc@3175 2221 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
johnc@2494 2222 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2223
johnc@3292 2224 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
johnc@2494 2225
johnc@2494 2226 // We need to reset the phase for each task execution so that
johnc@2494 2227 // the termination protocol of CMTask::do_marking_step works.
johnc@2494 2228 _cm->set_phase(_active_workers, false /* concurrent */);
johnc@2494 2229 _g1h->set_par_threads(_active_workers);
johnc@2494 2230 _workers->run_task(&proc_task_proxy);
johnc@2494 2231 _g1h->set_par_threads(0);
johnc@2494 2232 }
johnc@2494 2233
johnc@3175 2234 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
johnc@2494 2235 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
johnc@2494 2236 EnqueueTask& _enq_task;
johnc@2494 2237
johnc@2494 2238 public:
johnc@3175 2239 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
johnc@2494 2240 AbstractGangTask("Enqueue reference objects in parallel"),
johnc@3292 2241 _enq_task(enq_task) { }
johnc@2494 2242
jmasa@3357 2243 virtual void work(uint worker_id) {
jmasa@3357 2244 _enq_task.work(worker_id);
johnc@2494 2245 }
johnc@2494 2246 };
johnc@2494 2247
johnc@3175 2248 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
johnc@2494 2249 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2250
johnc@3175 2251 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
johnc@2494 2252
johnc@2494 2253 _g1h->set_par_threads(_active_workers);
johnc@2494 2254 _workers->run_task(&enq_task_proxy);
johnc@2494 2255 _g1h->set_par_threads(0);
johnc@2494 2256 }
johnc@2494 2257
ysr@777 2258 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
ysr@777 2259 ResourceMark rm;
ysr@777 2260 HandleMark hm;
johnc@3171 2261
johnc@3171 2262 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3171 2263
johnc@3171 2264 // Is alive closure.
johnc@3171 2265 G1CMIsAliveClosure g1_is_alive(g1h);
johnc@3171 2266
johnc@3171 2267 // Inner scope to exclude the cleaning of the string and symbol
johnc@3171 2268 // tables from the displayed time.
johnc@3171 2269 {
brutisso@3710 2270 if (G1Log::finer()) {
johnc@3171 2271 gclog_or_tty->put(' ');
johnc@3171 2272 }
brutisso@3710 2273 TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
johnc@3171 2274
johnc@3175 2275 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3171 2276
johnc@3171 2277 // See the comment in G1CollectedHeap::ref_processing_init()
johnc@3171 2278 // about how reference processing currently works in G1.
johnc@3171 2279
johnc@3171 2280 // Process weak references.
johnc@3171 2281 rp->setup_policy(clear_all_soft_refs);
johnc@3171 2282 assert(_markStack.isEmpty(), "mark stack should be empty");
johnc@3171 2283
johnc@3463 2284 G1CMKeepAliveClosure g1_keep_alive(g1h, this);
johnc@3171 2285 G1CMDrainMarkingStackClosure
johnc@3463 2286 g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
johnc@3171 2287
johnc@3171 2288 // We use the work gang from the G1CollectedHeap and we utilize all
johnc@3171 2289 // the worker threads.
jmasa@3357 2290 uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
jmasa@3357 2291 active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
johnc@3171 2292
johnc@3292 2293 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
johnc@3175 2294 g1h->workers(), active_workers);
johnc@3171 2295
johnc@3171 2296 if (rp->processing_is_mt()) {
johnc@3171 2297 // Set the degree of MT here. If the discovery is done MT, there
johnc@3171 2298 // may have been a different number of threads doing the discovery
johnc@3171 2299 // and a different number of discovered lists may have Ref objects.
johnc@3171 2300 // That is OK as long as the Reference lists are balanced (see
johnc@3171 2301 // balance_all_queues() and balance_queues()).
johnc@3171 2302 rp->set_active_mt_degree(active_workers);
johnc@3171 2303
johnc@3171 2304 rp->process_discovered_references(&g1_is_alive,
johnc@2494 2305 &g1_keep_alive,
johnc@2494 2306 &g1_drain_mark_stack,
johnc@2494 2307 &par_task_executor);
johnc@2494 2308
johnc@3171 2309 // The work routines of the parallel keep_alive and drain_marking_stack
johnc@3171 2310 // will set the has_overflown flag if we overflow the global marking
johnc@3171 2311 // stack.
johnc@3171 2312 } else {
johnc@3171 2313 rp->process_discovered_references(&g1_is_alive,
johnc@3171 2314 &g1_keep_alive,
johnc@3171 2315 &g1_drain_mark_stack,
johnc@3171 2316 NULL);
johnc@3171 2317 }
johnc@3171 2318
johnc@3171 2319 assert(_markStack.overflow() || _markStack.isEmpty(),
johnc@3171 2320 "mark stack should be empty (unless it overflowed)");
johnc@3171 2321 if (_markStack.overflow()) {
johnc@3171 2322 // Should have been done already when we tried to push an
johnc@3171 2323 // entry on to the global mark stack. But let's do it again.
johnc@3171 2324 set_has_overflown();
johnc@3171 2325 }
johnc@3171 2326
johnc@3171 2327 if (rp->processing_is_mt()) {
johnc@3171 2328 assert(rp->num_q() == active_workers, "why not");
johnc@3171 2329 rp->enqueue_discovered_references(&par_task_executor);
johnc@3171 2330 } else {
johnc@3171 2331 rp->enqueue_discovered_references();
johnc@3171 2332 }
johnc@3171 2333
johnc@3171 2334 rp->verify_no_references_recorded();
johnc@3175 2335 assert(!rp->discovery_enabled(), "Post condition");
johnc@2494 2336 }
johnc@2494 2337
coleenp@2497 2338 // Now clean up stale oops in StringTable
johnc@2379 2339 StringTable::unlink(&g1_is_alive);
coleenp@2497 2340 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2341 SymbolTable::unlink();
ysr@777 2342 }
ysr@777 2343
ysr@777 2344 void ConcurrentMark::swapMarkBitMaps() {
ysr@777 2345 CMBitMapRO* temp = _prevMarkBitMap;
ysr@777 2346 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
ysr@777 2347 _nextMarkBitMap = (CMBitMap*) temp;
ysr@777 2348 }
ysr@777 2349
ysr@777 2350 class CMRemarkTask: public AbstractGangTask {
ysr@777 2351 private:
ysr@777 2352 ConcurrentMark *_cm;
ysr@777 2353
ysr@777 2354 public:
jmasa@3357 2355 void work(uint worker_id) {
ysr@777 2356 // Since all available tasks are actually started, we should
ysr@777 2357 // only proceed if we're supposed to be actived.
jmasa@3357 2358 if (worker_id < _cm->active_tasks()) {
jmasa@3357 2359 CMTask* task = _cm->task(worker_id);
ysr@777 2360 task->record_start_time();
ysr@777 2361 do {
johnc@2494 2362 task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2363 true /* do_stealing */,
johnc@2494 2364 true /* do_termination */);
ysr@777 2365 } while (task->has_aborted() && !_cm->has_overflown());
ysr@777 2366 // If we overflow, then we do not want to restart. We instead
ysr@777 2367 // want to abort remark and do concurrent marking again.
ysr@777 2368 task->record_end_time();
ysr@777 2369 }
ysr@777 2370 }
ysr@777 2371
johnc@3338 2372 CMRemarkTask(ConcurrentMark* cm, int active_workers) :
jmasa@3294 2373 AbstractGangTask("Par Remark"), _cm(cm) {
johnc@3338 2374 _cm->terminator()->reset_for_reuse(active_workers);
jmasa@3294 2375 }
ysr@777 2376 };
ysr@777 2377
ysr@777 2378 void ConcurrentMark::checkpointRootsFinalWork() {
ysr@777 2379 ResourceMark rm;
ysr@777 2380 HandleMark hm;
ysr@777 2381 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 2382
ysr@777 2383 g1h->ensure_parsability(false);
ysr@777 2384
jmasa@2188 2385 if (G1CollectedHeap::use_parallel_gc_threads()) {
jrose@1424 2386 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3294 2387 // this is remark, so we'll use up all active threads
jmasa@3357 2388 uint active_workers = g1h->workers()->active_workers();
jmasa@3294 2389 if (active_workers == 0) {
jmasa@3294 2390 assert(active_workers > 0, "Should have been set earlier");
jmasa@3357 2391 active_workers = (uint) ParallelGCThreads;
jmasa@3294 2392 g1h->workers()->set_active_workers(active_workers);
jmasa@3294 2393 }
johnc@2494 2394 set_phase(active_workers, false /* concurrent */);
jmasa@3294 2395 // Leave _parallel_marking_threads at it's
jmasa@3294 2396 // value originally calculated in the ConcurrentMark
jmasa@3294 2397 // constructor and pass values of the active workers
jmasa@3294 2398 // through the gang in the task.
ysr@777 2399
johnc@3338 2400 CMRemarkTask remarkTask(this, active_workers);
jmasa@3294 2401 g1h->set_par_threads(active_workers);
ysr@777 2402 g1h->workers()->run_task(&remarkTask);
ysr@777 2403 g1h->set_par_threads(0);
ysr@777 2404 } else {
jrose@1424 2405 G1CollectedHeap::StrongRootsScope srs(g1h);
ysr@777 2406 // this is remark, so we'll use up all available threads
jmasa@3357 2407 uint active_workers = 1;
johnc@2494 2408 set_phase(active_workers, false /* concurrent */);
ysr@777 2409
johnc@3338 2410 CMRemarkTask remarkTask(this, active_workers);
ysr@777 2411 // We will start all available threads, even if we decide that the
ysr@777 2412 // active_workers will be fewer. The extra ones will just bail out
ysr@777 2413 // immediately.
ysr@777 2414 remarkTask.work(0);
ysr@777 2415 }
tonyp@1458 2416 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1458 2417 guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 2418
ysr@777 2419 print_stats();
ysr@777 2420
ysr@777 2421 #if VERIFY_OBJS_PROCESSED
ysr@777 2422 if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
ysr@777 2423 gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
ysr@777 2424 _scan_obj_cl.objs_processed,
ysr@777 2425 ThreadLocalObjQueue::objs_enqueued);
ysr@777 2426 guarantee(_scan_obj_cl.objs_processed ==
ysr@777 2427 ThreadLocalObjQueue::objs_enqueued,
ysr@777 2428 "Different number of objs processed and enqueued.");
ysr@777 2429 }
ysr@777 2430 #endif
ysr@777 2431 }
ysr@777 2432
tonyp@1479 2433 #ifndef PRODUCT
tonyp@1479 2434
tonyp@1823 2435 class PrintReachableOopClosure: public OopClosure {
ysr@777 2436 private:
ysr@777 2437 G1CollectedHeap* _g1h;
ysr@777 2438 outputStream* _out;
johnc@2969 2439 VerifyOption _vo;
tonyp@1823 2440 bool _all;
ysr@777 2441
ysr@777 2442 public:
johnc@2969 2443 PrintReachableOopClosure(outputStream* out,
johnc@2969 2444 VerifyOption vo,
tonyp@1823 2445 bool all) :
tonyp@1479 2446 _g1h(G1CollectedHeap::heap()),
johnc@2969 2447 _out(out), _vo(vo), _all(all) { }
ysr@777 2448
ysr@1280 2449 void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2450 void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2451
ysr@1280 2452 template <class T> void do_oop_work(T* p) {
ysr@1280 2453 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@777 2454 const char* str = NULL;
ysr@777 2455 const char* str2 = "";
ysr@777 2456
tonyp@1823 2457 if (obj == NULL) {
tonyp@1823 2458 str = "";
tonyp@1823 2459 } else if (!_g1h->is_in_g1_reserved(obj)) {
tonyp@1823 2460 str = " O";
tonyp@1823 2461 } else {
ysr@777 2462 HeapRegion* hr = _g1h->heap_region_containing(obj);
tonyp@1458 2463 guarantee(hr != NULL, "invariant");
tonyp@3957 2464 bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
tonyp@3957 2465 bool marked = _g1h->is_marked(obj, _vo);
tonyp@1479 2466
tonyp@1479 2467 if (over_tams) {
tonyp@1823 2468 str = " >";
tonyp@1823 2469 if (marked) {
ysr@777 2470 str2 = " AND MARKED";
tonyp@1479 2471 }
tonyp@1823 2472 } else if (marked) {
tonyp@1823 2473 str = " M";
tonyp@1479 2474 } else {
tonyp@1823 2475 str = " NOT";
tonyp@1479 2476 }
ysr@777 2477 }
ysr@777 2478
tonyp@1823 2479 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
ysr@777 2480 p, (void*) obj, str, str2);
ysr@777 2481 }
ysr@777 2482 };
ysr@777 2483
tonyp@1823 2484 class PrintReachableObjectClosure : public ObjectClosure {
ysr@777 2485 private:
johnc@2969 2486 G1CollectedHeap* _g1h;
johnc@2969 2487 outputStream* _out;
johnc@2969 2488 VerifyOption _vo;
johnc@2969 2489 bool _all;
johnc@2969 2490 HeapRegion* _hr;
ysr@777 2491
ysr@777 2492 public:
johnc@2969 2493 PrintReachableObjectClosure(outputStream* out,
johnc@2969 2494 VerifyOption vo,
tonyp@1823 2495 bool all,
tonyp@1823 2496 HeapRegion* hr) :
johnc@2969 2497 _g1h(G1CollectedHeap::heap()),
johnc@2969 2498 _out(out), _vo(vo), _all(all), _hr(hr) { }
tonyp@1823 2499
tonyp@1823 2500 void do_object(oop o) {
tonyp@3957 2501 bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
tonyp@3957 2502 bool marked = _g1h->is_marked(o, _vo);
tonyp@1823 2503 bool print_it = _all || over_tams || marked;
tonyp@1823 2504
tonyp@1823 2505 if (print_it) {
tonyp@1823 2506 _out->print_cr(" "PTR_FORMAT"%s",
tonyp@1823 2507 o, (over_tams) ? " >" : (marked) ? " M" : "");
johnc@2969 2508 PrintReachableOopClosure oopCl(_out, _vo, _all);
coleenp@4037 2509 o->oop_iterate_no_header(&oopCl);
tonyp@1823 2510 }
ysr@777 2511 }
ysr@777 2512 };
ysr@777 2513
tonyp@1823 2514 class PrintReachableRegionClosure : public HeapRegionClosure {
ysr@777 2515 private:
tonyp@3957 2516 G1CollectedHeap* _g1h;
tonyp@3957 2517 outputStream* _out;
tonyp@3957 2518 VerifyOption _vo;
tonyp@3957 2519 bool _all;
ysr@777 2520
ysr@777 2521 public:
ysr@777 2522 bool doHeapRegion(HeapRegion* hr) {
ysr@777 2523 HeapWord* b = hr->bottom();
ysr@777 2524 HeapWord* e = hr->end();
ysr@777 2525 HeapWord* t = hr->top();
tonyp@3957 2526 HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
ysr@777 2527 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
tonyp@1479 2528 "TAMS: "PTR_FORMAT, b, e, t, p);
tonyp@1823 2529 _out->cr();
tonyp@1823 2530
tonyp@1823 2531 HeapWord* from = b;
tonyp@1823 2532 HeapWord* to = t;
tonyp@1823 2533
tonyp@1823 2534 if (to > from) {
tonyp@1823 2535 _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
tonyp@1823 2536 _out->cr();
johnc@2969 2537 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
tonyp@1823 2538 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
tonyp@1823 2539 _out->cr();
tonyp@1823 2540 }
ysr@777 2541
ysr@777 2542 return false;
ysr@777 2543 }
ysr@777 2544
johnc@2969 2545 PrintReachableRegionClosure(outputStream* out,
johnc@2969 2546 VerifyOption vo,
tonyp@1823 2547 bool all) :
tonyp@3957 2548 _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
ysr@777 2549 };
ysr@777 2550
tonyp@1823 2551 void ConcurrentMark::print_reachable(const char* str,
johnc@2969 2552 VerifyOption vo,
tonyp@1823 2553 bool all) {
tonyp@1823 2554 gclog_or_tty->cr();
tonyp@1823 2555 gclog_or_tty->print_cr("== Doing heap dump... ");
tonyp@1479 2556
tonyp@1479 2557 if (G1PrintReachableBaseFile == NULL) {
tonyp@1479 2558 gclog_or_tty->print_cr(" #### error: no base file defined");
tonyp@1479 2559 return;
tonyp@1479 2560 }
tonyp@1479 2561
tonyp@1479 2562 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
tonyp@1479 2563 (JVM_MAXPATHLEN - 1)) {
tonyp@1479 2564 gclog_or_tty->print_cr(" #### error: file name too long");
tonyp@1479 2565 return;
tonyp@1479 2566 }
tonyp@1479 2567
tonyp@1479 2568 char file_name[JVM_MAXPATHLEN];
tonyp@1479 2569 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
tonyp@1479 2570 gclog_or_tty->print_cr(" dumping to file %s", file_name);
tonyp@1479 2571
tonyp@1479 2572 fileStream fout(file_name);
tonyp@1479 2573 if (!fout.is_open()) {
tonyp@1479 2574 gclog_or_tty->print_cr(" #### error: could not open file");
tonyp@1479 2575 return;
tonyp@1479 2576 }
tonyp@1479 2577
tonyp@1479 2578 outputStream* out = &fout;
tonyp@3957 2579 out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
tonyp@1479 2580 out->cr();
tonyp@1479 2581
tonyp@1823 2582 out->print_cr("--- ITERATING OVER REGIONS");
tonyp@1479 2583 out->cr();
johnc@2969 2584 PrintReachableRegionClosure rcl(out, vo, all);
ysr@777 2585 _g1h->heap_region_iterate(&rcl);
tonyp@1479 2586 out->cr();
tonyp@1479 2587
tonyp@1479 2588 gclog_or_tty->print_cr(" done");
tonyp@1823 2589 gclog_or_tty->flush();
ysr@777 2590 }
ysr@777 2591
tonyp@1479 2592 #endif // PRODUCT
tonyp@1479 2593
tonyp@3416 2594 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
ysr@777 2595 // Note we are overriding the read-only view of the prev map here, via
ysr@777 2596 // the cast.
ysr@777 2597 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
tonyp@3416 2598 }
tonyp@3416 2599
tonyp@3416 2600 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
ysr@777 2601 _nextMarkBitMap->clearRange(mr);
ysr@777 2602 }
ysr@777 2603
tonyp@3416 2604 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
tonyp@3416 2605 clearRangePrevBitmap(mr);
tonyp@3416 2606 clearRangeNextBitmap(mr);
tonyp@3416 2607 }
tonyp@3416 2608
ysr@777 2609 HeapRegion*
ysr@777 2610 ConcurrentMark::claim_region(int task_num) {
ysr@777 2611 // "checkpoint" the finger
ysr@777 2612 HeapWord* finger = _finger;
ysr@777 2613
ysr@777 2614 // _heap_end will not change underneath our feet; it only changes at
ysr@777 2615 // yield points.
ysr@777 2616 while (finger < _heap_end) {
tonyp@1458 2617 assert(_g1h->is_in_g1_reserved(finger), "invariant");
ysr@777 2618
tonyp@2968 2619 // Note on how this code handles humongous regions. In the
tonyp@2968 2620 // normal case the finger will reach the start of a "starts
tonyp@2968 2621 // humongous" (SH) region. Its end will either be the end of the
tonyp@2968 2622 // last "continues humongous" (CH) region in the sequence, or the
tonyp@2968 2623 // standard end of the SH region (if the SH is the only region in
tonyp@2968 2624 // the sequence). That way claim_region() will skip over the CH
tonyp@2968 2625 // regions. However, there is a subtle race between a CM thread
tonyp@2968 2626 // executing this method and a mutator thread doing a humongous
tonyp@2968 2627 // object allocation. The two are not mutually exclusive as the CM
tonyp@2968 2628 // thread does not need to hold the Heap_lock when it gets
tonyp@2968 2629 // here. So there is a chance that claim_region() will come across
tonyp@2968 2630 // a free region that's in the progress of becoming a SH or a CH
tonyp@2968 2631 // region. In the former case, it will either
tonyp@2968 2632 // a) Miss the update to the region's end, in which case it will
tonyp@2968 2633 // visit every subsequent CH region, will find their bitmaps
tonyp@2968 2634 // empty, and do nothing, or
tonyp@2968 2635 // b) Will observe the update of the region's end (in which case
tonyp@2968 2636 // it will skip the subsequent CH regions).
tonyp@2968 2637 // If it comes across a region that suddenly becomes CH, the
tonyp@2968 2638 // scenario will be similar to b). So, the race between
tonyp@2968 2639 // claim_region() and a humongous object allocation might force us
tonyp@2968 2640 // to do a bit of unnecessary work (due to some unnecessary bitmap
tonyp@2968 2641 // iterations) but it should not introduce and correctness issues.
tonyp@2968 2642 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
ysr@777 2643 HeapWord* bottom = curr_region->bottom();
ysr@777 2644 HeapWord* end = curr_region->end();
ysr@777 2645 HeapWord* limit = curr_region->next_top_at_mark_start();
ysr@777 2646
tonyp@2968 2647 if (verbose_low()) {
ysr@777 2648 gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
ysr@777 2649 "["PTR_FORMAT", "PTR_FORMAT"), "
ysr@777 2650 "limit = "PTR_FORMAT,
ysr@777 2651 task_num, curr_region, bottom, end, limit);
tonyp@2968 2652 }
tonyp@2968 2653
tonyp@2968 2654 // Is the gap between reading the finger and doing the CAS too long?
tonyp@2968 2655 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
ysr@777 2656 if (res == finger) {
ysr@777 2657 // we succeeded
ysr@777 2658
ysr@777 2659 // notice that _finger == end cannot be guaranteed here since,
ysr@777 2660 // someone else might have moved the finger even further
tonyp@1458 2661 assert(_finger >= end, "the finger should have moved forward");
ysr@777 2662
tonyp@2973 2663 if (verbose_low()) {
ysr@777 2664 gclog_or_tty->print_cr("[%d] we were successful with region = "
ysr@777 2665 PTR_FORMAT, task_num, curr_region);
tonyp@2973 2666 }
ysr@777 2667
ysr@777 2668 if (limit > bottom) {
tonyp@2973 2669 if (verbose_low()) {
ysr@777 2670 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
ysr@777 2671 "returning it ", task_num, curr_region);
tonyp@2973 2672 }
ysr@777 2673 return curr_region;
ysr@777 2674 } else {
tonyp@1458 2675 assert(limit == bottom,
tonyp@1458 2676 "the region limit should be at bottom");
tonyp@2973 2677 if (verbose_low()) {
ysr@777 2678 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
ysr@777 2679 "returning NULL", task_num, curr_region);
tonyp@2973 2680 }
ysr@777 2681 // we return NULL and the caller should try calling
ysr@777 2682 // claim_region() again.
ysr@777 2683 return NULL;
ysr@777 2684 }
ysr@777 2685 } else {
tonyp@1458 2686 assert(_finger > finger, "the finger should have moved forward");
tonyp@2973 2687 if (verbose_low()) {
ysr@777 2688 gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
ysr@777 2689 "global finger = "PTR_FORMAT", "
ysr@777 2690 "our finger = "PTR_FORMAT,
ysr@777 2691 task_num, _finger, finger);
tonyp@2973 2692 }
ysr@777 2693
ysr@777 2694 // read it again
ysr@777 2695 finger = _finger;
ysr@777 2696 }
ysr@777 2697 }
ysr@777 2698
ysr@777 2699 return NULL;
ysr@777 2700 }
ysr@777 2701
tonyp@3416 2702 #ifndef PRODUCT
tonyp@3416 2703 enum VerifyNoCSetOopsPhase {
tonyp@3416 2704 VerifyNoCSetOopsStack,
tonyp@3416 2705 VerifyNoCSetOopsQueues,
tonyp@3416 2706 VerifyNoCSetOopsSATBCompleted,
tonyp@3416 2707 VerifyNoCSetOopsSATBThread
tonyp@3416 2708 };
tonyp@3416 2709
tonyp@3416 2710 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
tonyp@3416 2711 private:
tonyp@3416 2712 G1CollectedHeap* _g1h;
tonyp@3416 2713 VerifyNoCSetOopsPhase _phase;
tonyp@3416 2714 int _info;
tonyp@3416 2715
tonyp@3416 2716 const char* phase_str() {
tonyp@3416 2717 switch (_phase) {
tonyp@3416 2718 case VerifyNoCSetOopsStack: return "Stack";
tonyp@3416 2719 case VerifyNoCSetOopsQueues: return "Queue";
tonyp@3416 2720 case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
tonyp@3416 2721 case VerifyNoCSetOopsSATBThread: return "Thread SATB Buffers";
tonyp@3416 2722 default: ShouldNotReachHere();
tonyp@3416 2723 }
tonyp@3416 2724 return NULL;
ysr@777 2725 }
johnc@2190 2726
tonyp@3416 2727 void do_object_work(oop obj) {
tonyp@3416 2728 guarantee(!_g1h->obj_in_cs(obj),
tonyp@3416 2729 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
tonyp@3416 2730 (void*) obj, phase_str(), _info));
johnc@2190 2731 }
johnc@2190 2732
tonyp@3416 2733 public:
tonyp@3416 2734 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
tonyp@3416 2735
tonyp@3416 2736 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
tonyp@3416 2737 _phase = phase;
tonyp@3416 2738 _info = info;
tonyp@3416 2739 }
tonyp@3416 2740
tonyp@3416 2741 virtual void do_oop(oop* p) {
tonyp@3416 2742 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@3416 2743 do_object_work(obj);
tonyp@3416 2744 }
tonyp@3416 2745
tonyp@3416 2746 virtual void do_oop(narrowOop* p) {
tonyp@3416 2747 // We should not come across narrow oops while scanning marking
tonyp@3416 2748 // stacks and SATB buffers.
tonyp@3416 2749 ShouldNotReachHere();
tonyp@3416 2750 }
tonyp@3416 2751
tonyp@3416 2752 virtual void do_object(oop obj) {
tonyp@3416 2753 do_object_work(obj);
tonyp@3416 2754 }
tonyp@3416 2755 };
tonyp@3416 2756
tonyp@3416 2757 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
tonyp@3416 2758 bool verify_enqueued_buffers,
tonyp@3416 2759 bool verify_thread_buffers,
tonyp@3416 2760 bool verify_fingers) {
tonyp@3416 2761 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
tonyp@3416 2762 if (!G1CollectedHeap::heap()->mark_in_progress()) {
tonyp@3416 2763 return;
tonyp@3416 2764 }
tonyp@3416 2765
tonyp@3416 2766 VerifyNoCSetOopsClosure cl;
tonyp@3416 2767
tonyp@3416 2768 if (verify_stacks) {
tonyp@3416 2769 // Verify entries on the global mark stack
tonyp@3416 2770 cl.set_phase(VerifyNoCSetOopsStack);
tonyp@3416 2771 _markStack.oops_do(&cl);
tonyp@3416 2772
tonyp@3416 2773 // Verify entries on the task queues
tonyp@3416 2774 for (int i = 0; i < (int) _max_task_num; i += 1) {
tonyp@3416 2775 cl.set_phase(VerifyNoCSetOopsQueues, i);
tonyp@3416 2776 OopTaskQueue* queue = _task_queues->queue(i);
tonyp@3416 2777 queue->oops_do(&cl);
tonyp@3416 2778 }
tonyp@3416 2779 }
tonyp@3416 2780
tonyp@3416 2781 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@3416 2782
tonyp@3416 2783 // Verify entries on the enqueued SATB buffers
tonyp@3416 2784 if (verify_enqueued_buffers) {
tonyp@3416 2785 cl.set_phase(VerifyNoCSetOopsSATBCompleted);
tonyp@3416 2786 satb_qs.iterate_completed_buffers_read_only(&cl);
tonyp@3416 2787 }
tonyp@3416 2788
tonyp@3416 2789 // Verify entries on the per-thread SATB buffers
tonyp@3416 2790 if (verify_thread_buffers) {
tonyp@3416 2791 cl.set_phase(VerifyNoCSetOopsSATBThread);
tonyp@3416 2792 satb_qs.iterate_thread_buffers_read_only(&cl);
tonyp@3416 2793 }
tonyp@3416 2794
tonyp@3416 2795 if (verify_fingers) {
tonyp@3416 2796 // Verify the global finger
tonyp@3416 2797 HeapWord* global_finger = finger();
tonyp@3416 2798 if (global_finger != NULL && global_finger < _heap_end) {
tonyp@3416 2799 // The global finger always points to a heap region boundary. We
tonyp@3416 2800 // use heap_region_containing_raw() to get the containing region
tonyp@3416 2801 // given that the global finger could be pointing to a free region
tonyp@3416 2802 // which subsequently becomes continues humongous. If that
tonyp@3416 2803 // happens, heap_region_containing() will return the bottom of the
tonyp@3416 2804 // corresponding starts humongous region and the check below will
tonyp@3416 2805 // not hold any more.
tonyp@3416 2806 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
tonyp@3416 2807 guarantee(global_finger == global_hr->bottom(),
tonyp@3416 2808 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2809 global_finger, HR_FORMAT_PARAMS(global_hr)));
tonyp@3416 2810 }
tonyp@3416 2811
tonyp@3416 2812 // Verify the task fingers
tonyp@3416 2813 assert(parallel_marking_threads() <= _max_task_num, "sanity");
tonyp@3416 2814 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
tonyp@3416 2815 CMTask* task = _tasks[i];
tonyp@3416 2816 HeapWord* task_finger = task->finger();
tonyp@3416 2817 if (task_finger != NULL && task_finger < _heap_end) {
tonyp@3416 2818 // See above note on the global finger verification.
tonyp@3416 2819 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
tonyp@3416 2820 guarantee(task_finger == task_hr->bottom() ||
tonyp@3416 2821 !task_hr->in_collection_set(),
tonyp@3416 2822 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2823 task_finger, HR_FORMAT_PARAMS(task_hr)));
tonyp@3416 2824 }
tonyp@3416 2825 }
tonyp@3416 2826 }
ysr@777 2827 }
tonyp@3416 2828 #endif // PRODUCT
ysr@777 2829
tonyp@2848 2830 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
ysr@777 2831 _markStack.setEmpty();
ysr@777 2832 _markStack.clear_overflow();
tonyp@2848 2833 if (clear_overflow) {
tonyp@2848 2834 clear_has_overflown();
tonyp@2848 2835 } else {
tonyp@2848 2836 assert(has_overflown(), "pre-condition");
tonyp@2848 2837 }
ysr@777 2838 _finger = _heap_start;
ysr@777 2839
ysr@777 2840 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 2841 OopTaskQueue* queue = _task_queues->queue(i);
ysr@777 2842 queue->set_empty();
ysr@777 2843 }
ysr@777 2844 }
ysr@777 2845
johnc@3463 2846 // Aggregate the counting data that was constructed concurrently
johnc@3463 2847 // with marking.
johnc@3463 2848 class AggregateCountDataHRClosure: public HeapRegionClosure {
johnc@3463 2849 ConcurrentMark* _cm;
johnc@3463 2850 BitMap* _cm_card_bm;
johnc@3463 2851 size_t _max_task_num;
johnc@3463 2852
johnc@3463 2853 public:
johnc@3463 2854 AggregateCountDataHRClosure(ConcurrentMark *cm,
johnc@3463 2855 BitMap* cm_card_bm,
johnc@3463 2856 size_t max_task_num) :
johnc@3463 2857 _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 2858 _max_task_num(max_task_num) { }
johnc@3463 2859
johnc@3463 2860 bool is_card_aligned(HeapWord* p) {
johnc@3463 2861 return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
johnc@3463 2862 }
johnc@3463 2863
johnc@3463 2864 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 2865 if (hr->continuesHumongous()) {
johnc@3463 2866 // We will ignore these here and process them when their
johnc@3463 2867 // associated "starts humongous" region is processed.
johnc@3463 2868 // Note that we cannot rely on their associated
johnc@3463 2869 // "starts humongous" region to have their bit set to 1
johnc@3463 2870 // since, due to the region chunking in the parallel region
johnc@3463 2871 // iteration, a "continues humongous" region might be visited
johnc@3463 2872 // before its associated "starts humongous".
johnc@3463 2873 return false;
johnc@3463 2874 }
johnc@3463 2875
johnc@3463 2876 HeapWord* start = hr->bottom();
johnc@3463 2877 HeapWord* limit = hr->next_top_at_mark_start();
johnc@3463 2878 HeapWord* end = hr->end();
johnc@3463 2879
johnc@3463 2880 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
johnc@3463 2881 err_msg("Preconditions not met - "
johnc@3463 2882 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
johnc@3463 2883 "top: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 2884 start, limit, hr->top(), hr->end()));
johnc@3463 2885
johnc@3463 2886 assert(hr->next_marked_bytes() == 0, "Precondition");
johnc@3463 2887
johnc@3463 2888 if (start == limit) {
johnc@3463 2889 // NTAMS of this region has not been set so nothing to do.
johnc@3463 2890 return false;
johnc@3463 2891 }
johnc@3463 2892
johnc@3463 2893 assert(is_card_aligned(start), "sanity");
johnc@3463 2894 assert(is_card_aligned(end), "sanity");
johnc@3463 2895
johnc@3463 2896 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3463 2897 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
johnc@3463 2898 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
johnc@3463 2899
johnc@3463 2900 // If ntams is not card aligned then we bump the index for
johnc@3463 2901 // limit so that we get the card spanning ntams.
johnc@3463 2902 if (!is_card_aligned(limit)) {
johnc@3463 2903 limit_idx += 1;
johnc@3463 2904 }
johnc@3463 2905
johnc@3463 2906 assert(limit_idx <= end_idx, "or else use atomics");
johnc@3463 2907
johnc@3463 2908 // Aggregate the "stripe" in the count data associated with hr.
tonyp@3713 2909 uint hrs_index = hr->hrs_index();
johnc@3463 2910 size_t marked_bytes = 0;
johnc@3463 2911
johnc@3463 2912 for (int i = 0; (size_t)i < _max_task_num; i += 1) {
johnc@3463 2913 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
johnc@3463 2914 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
johnc@3463 2915
johnc@3463 2916 // Fetch the marked_bytes in this region for task i and
johnc@3463 2917 // add it to the running total for this region.
johnc@3463 2918 marked_bytes += marked_bytes_array[hrs_index];
johnc@3463 2919
johnc@3463 2920 // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
johnc@3463 2921 // into the global card bitmap.
johnc@3463 2922 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
johnc@3463 2923
johnc@3463 2924 while (scan_idx < limit_idx) {
johnc@3463 2925 assert(task_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2926 _cm_card_bm->set_bit(scan_idx);
johnc@3463 2927 assert(_cm_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2928
johnc@3463 2929 // BitMap::get_next_one_offset() can handle the case when
johnc@3463 2930 // its left_offset parameter is greater than its right_offset
johnc@3463 2931 // parameter. If does, however, have an early exit if
johnc@3463 2932 // left_offset == right_offset. So let's limit the value
johnc@3463 2933 // passed in for left offset here.
johnc@3463 2934 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
johnc@3463 2935 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
johnc@3463 2936 }
johnc@3463 2937 }
johnc@3463 2938
johnc@3463 2939 // Update the marked bytes for this region.
johnc@3463 2940 hr->add_to_marked_bytes(marked_bytes);
johnc@3463 2941
johnc@3463 2942 // Next heap region
johnc@3463 2943 return false;
johnc@3463 2944 }
johnc@3463 2945 };
johnc@3463 2946
johnc@3463 2947 class G1AggregateCountDataTask: public AbstractGangTask {
johnc@3463 2948 protected:
johnc@3463 2949 G1CollectedHeap* _g1h;
johnc@3463 2950 ConcurrentMark* _cm;
johnc@3463 2951 BitMap* _cm_card_bm;
johnc@3463 2952 size_t _max_task_num;
johnc@3463 2953 int _active_workers;
johnc@3463 2954
johnc@3463 2955 public:
johnc@3463 2956 G1AggregateCountDataTask(G1CollectedHeap* g1h,
johnc@3463 2957 ConcurrentMark* cm,
johnc@3463 2958 BitMap* cm_card_bm,
johnc@3463 2959 size_t max_task_num,
johnc@3463 2960 int n_workers) :
johnc@3463 2961 AbstractGangTask("Count Aggregation"),
johnc@3463 2962 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 2963 _max_task_num(max_task_num),
johnc@3463 2964 _active_workers(n_workers) { }
johnc@3463 2965
johnc@3463 2966 void work(uint worker_id) {
johnc@3463 2967 AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);
johnc@3463 2968
johnc@3463 2969 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 2970 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
johnc@3463 2971 _active_workers,
johnc@3463 2972 HeapRegion::AggregateCountClaimValue);
johnc@3463 2973 } else {
johnc@3463 2974 _g1h->heap_region_iterate(&cl);
johnc@3463 2975 }
johnc@3463 2976 }
johnc@3463 2977 };
johnc@3463 2978
johnc@3463 2979
johnc@3463 2980 void ConcurrentMark::aggregate_count_data() {
johnc@3463 2981 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
johnc@3463 2982 _g1h->workers()->active_workers() :
johnc@3463 2983 1);
johnc@3463 2984
johnc@3463 2985 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
johnc@3463 2986 _max_task_num, n_workers);
johnc@3463 2987
johnc@3463 2988 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 2989 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
johnc@3463 2990 "sanity check");
johnc@3463 2991 _g1h->set_par_threads(n_workers);
johnc@3463 2992 _g1h->workers()->run_task(&g1_par_agg_task);
johnc@3463 2993 _g1h->set_par_threads(0);
johnc@3463 2994
johnc@3463 2995 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
johnc@3463 2996 "sanity check");
johnc@3463 2997 _g1h->reset_heap_region_claim_values();
johnc@3463 2998 } else {
johnc@3463 2999 g1_par_agg_task.work(0);
johnc@3463 3000 }
johnc@3463 3001 }
johnc@3463 3002
johnc@3463 3003 // Clear the per-worker arrays used to store the per-region counting data
johnc@3463 3004 void ConcurrentMark::clear_all_count_data() {
johnc@3463 3005 // Clear the global card bitmap - it will be filled during
johnc@3463 3006 // liveness count aggregation (during remark) and the
johnc@3463 3007 // final counting task.
johnc@3463 3008 _card_bm.clear();
johnc@3463 3009
johnc@3463 3010 // Clear the global region bitmap - it will be filled as part
johnc@3463 3011 // of the final counting task.
johnc@3463 3012 _region_bm.clear();
johnc@3463 3013
tonyp@3713 3014 uint max_regions = _g1h->max_regions();
johnc@3463 3015 assert(_max_task_num != 0, "unitialized");
johnc@3463 3016
johnc@3463 3017 for (int i = 0; (size_t) i < _max_task_num; i += 1) {
johnc@3463 3018 BitMap* task_card_bm = count_card_bitmap_for(i);
johnc@3463 3019 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
johnc@3463 3020
johnc@3463 3021 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 3022 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 3023
tonyp@3713 3024 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
johnc@3463 3025 task_card_bm->clear();
johnc@3463 3026 }
johnc@3463 3027 }
johnc@3463 3028
ysr@777 3029 void ConcurrentMark::print_stats() {
ysr@777 3030 if (verbose_stats()) {
ysr@777 3031 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3032 for (size_t i = 0; i < _active_tasks; ++i) {
ysr@777 3033 _tasks[i]->print_stats();
ysr@777 3034 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3035 }
ysr@777 3036 }
ysr@777 3037 }
ysr@777 3038
ysr@777 3039 // abandon current marking iteration due to a Full GC
ysr@777 3040 void ConcurrentMark::abort() {
ysr@777 3041 // Clear all marks to force marking thread to do nothing
ysr@777 3042 _nextMarkBitMap->clearAll();
johnc@3463 3043 // Clear the liveness counting data
johnc@3463 3044 clear_all_count_data();
ysr@777 3045 // Empty mark stack
ysr@777 3046 clear_marking_state();
johnc@2190 3047 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 3048 _tasks[i]->clear_region_fields();
johnc@2190 3049 }
ysr@777 3050 _has_aborted = true;
ysr@777 3051
ysr@777 3052 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3053 satb_mq_set.abandon_partial_marking();
tonyp@1752 3054 // This can be called either during or outside marking, we'll read
tonyp@1752 3055 // the expected_active value from the SATB queue set.
tonyp@1752 3056 satb_mq_set.set_active_all_threads(
tonyp@1752 3057 false, /* new active value */
tonyp@1752 3058 satb_mq_set.is_active() /* expected_active */);
ysr@777 3059 }
ysr@777 3060
ysr@777 3061 static void print_ms_time_info(const char* prefix, const char* name,
ysr@777 3062 NumberSeq& ns) {
ysr@777 3063 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3064 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
ysr@777 3065 if (ns.num() > 0) {
ysr@777 3066 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
ysr@777 3067 prefix, ns.sd(), ns.maximum());
ysr@777 3068 }
ysr@777 3069 }
ysr@777 3070
ysr@777 3071 void ConcurrentMark::print_summary_info() {
ysr@777 3072 gclog_or_tty->print_cr(" Concurrent marking:");
ysr@777 3073 print_ms_time_info(" ", "init marks", _init_times);
ysr@777 3074 print_ms_time_info(" ", "remarks", _remark_times);
ysr@777 3075 {
ysr@777 3076 print_ms_time_info(" ", "final marks", _remark_mark_times);
ysr@777 3077 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
ysr@777 3078
ysr@777 3079 }
ysr@777 3080 print_ms_time_info(" ", "cleanups", _cleanup_times);
ysr@777 3081 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3082 _total_counting_time,
ysr@777 3083 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
ysr@777 3084 (double)_cleanup_times.num()
ysr@777 3085 : 0.0));
ysr@777 3086 if (G1ScrubRemSets) {
ysr@777 3087 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3088 _total_rs_scrub_time,
ysr@777 3089 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
ysr@777 3090 (double)_cleanup_times.num()
ysr@777 3091 : 0.0));
ysr@777 3092 }
ysr@777 3093 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
ysr@777 3094 (_init_times.sum() + _remark_times.sum() +
ysr@777 3095 _cleanup_times.sum())/1000.0);
ysr@777 3096 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
johnc@3463 3097 "(%8.2f s marking).",
ysr@777 3098 cmThread()->vtime_accum(),
johnc@3463 3099 cmThread()->vtime_mark_accum());
ysr@777 3100 }
ysr@777 3101
tonyp@1454 3102 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
tonyp@1454 3103 _parallel_workers->print_worker_threads_on(st);
tonyp@1454 3104 }
tonyp@1454 3105
ysr@777 3106 // We take a break if someone is trying to stop the world.
jmasa@3357 3107 bool ConcurrentMark::do_yield_check(uint worker_id) {
ysr@777 3108 if (should_yield()) {
jmasa@3357 3109 if (worker_id == 0) {
ysr@777 3110 _g1h->g1_policy()->record_concurrent_pause();
tonyp@2973 3111 }
ysr@777 3112 cmThread()->yield();
ysr@777 3113 return true;
ysr@777 3114 } else {
ysr@777 3115 return false;
ysr@777 3116 }
ysr@777 3117 }
ysr@777 3118
ysr@777 3119 bool ConcurrentMark::should_yield() {
ysr@777 3120 return cmThread()->should_yield();
ysr@777 3121 }
ysr@777 3122
ysr@777 3123 bool ConcurrentMark::containing_card_is_marked(void* p) {
ysr@777 3124 size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
ysr@777 3125 return _card_bm.at(offset >> CardTableModRefBS::card_shift);
ysr@777 3126 }
ysr@777 3127
ysr@777 3128 bool ConcurrentMark::containing_cards_are_marked(void* start,
ysr@777 3129 void* last) {
tonyp@2973 3130 return containing_card_is_marked(start) &&
tonyp@2973 3131 containing_card_is_marked(last);
ysr@777 3132 }
ysr@777 3133
ysr@777 3134 #ifndef PRODUCT
ysr@777 3135 // for debugging purposes
ysr@777 3136 void ConcurrentMark::print_finger() {
ysr@777 3137 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
ysr@777 3138 _heap_start, _heap_end, _finger);
ysr@777 3139 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 3140 gclog_or_tty->print(" %d: "PTR_FORMAT, i, _tasks[i]->finger());
ysr@777 3141 }
ysr@777 3142 gclog_or_tty->print_cr("");
ysr@777 3143 }
ysr@777 3144 #endif
ysr@777 3145
tonyp@2968 3146 void CMTask::scan_object(oop obj) {
tonyp@2968 3147 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
tonyp@2968 3148
tonyp@2968 3149 if (_cm->verbose_high()) {
tonyp@2968 3150 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
tonyp@2968 3151 _task_id, (void*) obj);
tonyp@2968 3152 }
tonyp@2968 3153
tonyp@2968 3154 size_t obj_size = obj->size();
tonyp@2968 3155 _words_scanned += obj_size;
tonyp@2968 3156
tonyp@2968 3157 obj->oop_iterate(_cm_oop_closure);
tonyp@2968 3158 statsOnly( ++_objs_scanned );
tonyp@2968 3159 check_limits();
tonyp@2968 3160 }
tonyp@2968 3161
ysr@777 3162 // Closure for iteration over bitmaps
ysr@777 3163 class CMBitMapClosure : public BitMapClosure {
ysr@777 3164 private:
ysr@777 3165 // the bitmap that is being iterated over
ysr@777 3166 CMBitMap* _nextMarkBitMap;
ysr@777 3167 ConcurrentMark* _cm;
ysr@777 3168 CMTask* _task;
ysr@777 3169
ysr@777 3170 public:
tonyp@3691 3171 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
tonyp@3691 3172 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
ysr@777 3173
ysr@777 3174 bool do_bit(size_t offset) {
ysr@777 3175 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tonyp@1458 3176 assert(_nextMarkBitMap->isMarked(addr), "invariant");
tonyp@1458 3177 assert( addr < _cm->finger(), "invariant");
ysr@777 3178
tonyp@3691 3179 statsOnly( _task->increase_objs_found_on_bitmap() );
tonyp@3691 3180 assert(addr >= _task->finger(), "invariant");
tonyp@3691 3181
tonyp@3691 3182 // We move that task's local finger along.
tonyp@3691 3183 _task->move_finger_to(addr);
ysr@777 3184
ysr@777 3185 _task->scan_object(oop(addr));
ysr@777 3186 // we only partially drain the local queue and global stack
ysr@777 3187 _task->drain_local_queue(true);
ysr@777 3188 _task->drain_global_stack(true);
ysr@777 3189
ysr@777 3190 // if the has_aborted flag has been raised, we need to bail out of
ysr@777 3191 // the iteration
ysr@777 3192 return !_task->has_aborted();
ysr@777 3193 }
ysr@777 3194 };
ysr@777 3195
ysr@777 3196 // Closure for iterating over objects, currently only used for
ysr@777 3197 // processing SATB buffers.
ysr@777 3198 class CMObjectClosure : public ObjectClosure {
ysr@777 3199 private:
ysr@777 3200 CMTask* _task;
ysr@777 3201
ysr@777 3202 public:
ysr@777 3203 void do_object(oop obj) {
ysr@777 3204 _task->deal_with_reference(obj);
ysr@777 3205 }
ysr@777 3206
ysr@777 3207 CMObjectClosure(CMTask* task) : _task(task) { }
ysr@777 3208 };
ysr@777 3209
tonyp@2968 3210 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
tonyp@2968 3211 ConcurrentMark* cm,
tonyp@2968 3212 CMTask* task)
tonyp@2968 3213 : _g1h(g1h), _cm(cm), _task(task) {
tonyp@2968 3214 assert(_ref_processor == NULL, "should be initialized to NULL");
tonyp@2968 3215
tonyp@2968 3216 if (G1UseConcMarkReferenceProcessing) {
johnc@3175 3217 _ref_processor = g1h->ref_processor_cm();
tonyp@2968 3218 assert(_ref_processor != NULL, "should not be NULL");
ysr@777 3219 }
tonyp@2968 3220 }
ysr@777 3221
ysr@777 3222 void CMTask::setup_for_region(HeapRegion* hr) {
tonyp@1458 3223 // Separated the asserts so that we know which one fires.
tonyp@1458 3224 assert(hr != NULL,
tonyp@1458 3225 "claim_region() should have filtered out continues humongous regions");
tonyp@1458 3226 assert(!hr->continuesHumongous(),
tonyp@1458 3227 "claim_region() should have filtered out continues humongous regions");
ysr@777 3228
tonyp@2973 3229 if (_cm->verbose_low()) {
ysr@777 3230 gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
ysr@777 3231 _task_id, hr);
tonyp@2973 3232 }
ysr@777 3233
ysr@777 3234 _curr_region = hr;
ysr@777 3235 _finger = hr->bottom();
ysr@777 3236 update_region_limit();
ysr@777 3237 }
ysr@777 3238
ysr@777 3239 void CMTask::update_region_limit() {
ysr@777 3240 HeapRegion* hr = _curr_region;
ysr@777 3241 HeapWord* bottom = hr->bottom();
ysr@777 3242 HeapWord* limit = hr->next_top_at_mark_start();
ysr@777 3243
ysr@777 3244 if (limit == bottom) {
tonyp@2973 3245 if (_cm->verbose_low()) {
ysr@777 3246 gclog_or_tty->print_cr("[%d] found an empty region "
ysr@777 3247 "["PTR_FORMAT", "PTR_FORMAT")",
ysr@777 3248 _task_id, bottom, limit);
tonyp@2973 3249 }
ysr@777 3250 // The region was collected underneath our feet.
ysr@777 3251 // We set the finger to bottom to ensure that the bitmap
ysr@777 3252 // iteration that will follow this will not do anything.
ysr@777 3253 // (this is not a condition that holds when we set the region up,
ysr@777 3254 // as the region is not supposed to be empty in the first place)
ysr@777 3255 _finger = bottom;
ysr@777 3256 } else if (limit >= _region_limit) {
tonyp@1458 3257 assert(limit >= _finger, "peace of mind");
ysr@777 3258 } else {
tonyp@1458 3259 assert(limit < _region_limit, "only way to get here");
ysr@777 3260 // This can happen under some pretty unusual circumstances. An
ysr@777 3261 // evacuation pause empties the region underneath our feet (NTAMS
ysr@777 3262 // at bottom). We then do some allocation in the region (NTAMS
ysr@777 3263 // stays at bottom), followed by the region being used as a GC
ysr@777 3264 // alloc region (NTAMS will move to top() and the objects
ysr@777 3265 // originally below it will be grayed). All objects now marked in
ysr@777 3266 // the region are explicitly grayed, if below the global finger,
ysr@777 3267 // and we do not need in fact to scan anything else. So, we simply
ysr@777 3268 // set _finger to be limit to ensure that the bitmap iteration
ysr@777 3269 // doesn't do anything.
ysr@777 3270 _finger = limit;
ysr@777 3271 }
ysr@777 3272
ysr@777 3273 _region_limit = limit;
ysr@777 3274 }
ysr@777 3275
ysr@777 3276 void CMTask::giveup_current_region() {
tonyp@1458 3277 assert(_curr_region != NULL, "invariant");
tonyp@2973 3278 if (_cm->verbose_low()) {
ysr@777 3279 gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
ysr@777 3280 _task_id, _curr_region);
tonyp@2973 3281 }
ysr@777 3282 clear_region_fields();
ysr@777 3283 }
ysr@777 3284
ysr@777 3285 void CMTask::clear_region_fields() {
ysr@777 3286 // Values for these three fields that indicate that we're not
ysr@777 3287 // holding on to a region.
ysr@777 3288 _curr_region = NULL;
ysr@777 3289 _finger = NULL;
ysr@777 3290 _region_limit = NULL;
ysr@777 3291 }
ysr@777 3292
tonyp@2968 3293 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
tonyp@2968 3294 if (cm_oop_closure == NULL) {
tonyp@2968 3295 assert(_cm_oop_closure != NULL, "invariant");
tonyp@2968 3296 } else {
tonyp@2968 3297 assert(_cm_oop_closure == NULL, "invariant");
tonyp@2968 3298 }
tonyp@2968 3299 _cm_oop_closure = cm_oop_closure;
tonyp@2968 3300 }
tonyp@2968 3301
ysr@777 3302 void CMTask::reset(CMBitMap* nextMarkBitMap) {
tonyp@1458 3303 guarantee(nextMarkBitMap != NULL, "invariant");
ysr@777 3304
tonyp@2973 3305 if (_cm->verbose_low()) {
ysr@777 3306 gclog_or_tty->print_cr("[%d] resetting", _task_id);
tonyp@2973 3307 }
ysr@777 3308
ysr@777 3309 _nextMarkBitMap = nextMarkBitMap;
ysr@777 3310 clear_region_fields();
ysr@777 3311
ysr@777 3312 _calls = 0;
ysr@777 3313 _elapsed_time_ms = 0.0;
ysr@777 3314 _termination_time_ms = 0.0;
ysr@777 3315 _termination_start_time_ms = 0.0;
ysr@777 3316
ysr@777 3317 #if _MARKING_STATS_
ysr@777 3318 _local_pushes = 0;
ysr@777 3319 _local_pops = 0;
ysr@777 3320 _local_max_size = 0;
ysr@777 3321 _objs_scanned = 0;
ysr@777 3322 _global_pushes = 0;
ysr@777 3323 _global_pops = 0;
ysr@777 3324 _global_max_size = 0;
ysr@777 3325 _global_transfers_to = 0;
ysr@777 3326 _global_transfers_from = 0;
ysr@777 3327 _regions_claimed = 0;
ysr@777 3328 _objs_found_on_bitmap = 0;
ysr@777 3329 _satb_buffers_processed = 0;
ysr@777 3330 _steal_attempts = 0;
ysr@777 3331 _steals = 0;
ysr@777 3332 _aborted = 0;
ysr@777 3333 _aborted_overflow = 0;
ysr@777 3334 _aborted_cm_aborted = 0;
ysr@777 3335 _aborted_yield = 0;
ysr@777 3336 _aborted_timed_out = 0;
ysr@777 3337 _aborted_satb = 0;
ysr@777 3338 _aborted_termination = 0;
ysr@777 3339 #endif // _MARKING_STATS_
ysr@777 3340 }
ysr@777 3341
ysr@777 3342 bool CMTask::should_exit_termination() {
ysr@777 3343 regular_clock_call();
ysr@777 3344 // This is called when we are in the termination protocol. We should
ysr@777 3345 // quit if, for some reason, this task wants to abort or the global
ysr@777 3346 // stack is not empty (this means that we can get work from it).
ysr@777 3347 return !_cm->mark_stack_empty() || has_aborted();
ysr@777 3348 }
ysr@777 3349
ysr@777 3350 void CMTask::reached_limit() {
tonyp@1458 3351 assert(_words_scanned >= _words_scanned_limit ||
tonyp@1458 3352 _refs_reached >= _refs_reached_limit ,
tonyp@1458 3353 "shouldn't have been called otherwise");
ysr@777 3354 regular_clock_call();
ysr@777 3355 }
ysr@777 3356
ysr@777 3357 void CMTask::regular_clock_call() {
tonyp@2973 3358 if (has_aborted()) return;
ysr@777 3359
ysr@777 3360 // First, we need to recalculate the words scanned and refs reached
ysr@777 3361 // limits for the next clock call.
ysr@777 3362 recalculate_limits();
ysr@777 3363
ysr@777 3364 // During the regular clock call we do the following
ysr@777 3365
ysr@777 3366 // (1) If an overflow has been flagged, then we abort.
ysr@777 3367 if (_cm->has_overflown()) {
ysr@777 3368 set_has_aborted();
ysr@777 3369 return;
ysr@777 3370 }
ysr@777 3371
ysr@777 3372 // If we are not concurrent (i.e. we're doing remark) we don't need
ysr@777 3373 // to check anything else. The other steps are only needed during
ysr@777 3374 // the concurrent marking phase.
tonyp@2973 3375 if (!concurrent()) return;
ysr@777 3376
ysr@777 3377 // (2) If marking has been aborted for Full GC, then we also abort.
ysr@777 3378 if (_cm->has_aborted()) {
ysr@777 3379 set_has_aborted();
ysr@777 3380 statsOnly( ++_aborted_cm_aborted );
ysr@777 3381 return;
ysr@777 3382 }
ysr@777 3383
ysr@777 3384 double curr_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3385
ysr@777 3386 // (3) If marking stats are enabled, then we update the step history.
ysr@777 3387 #if _MARKING_STATS_
tonyp@2973 3388 if (_words_scanned >= _words_scanned_limit) {
ysr@777 3389 ++_clock_due_to_scanning;
tonyp@2973 3390 }
tonyp@2973 3391 if (_refs_reached >= _refs_reached_limit) {
ysr@777 3392 ++_clock_due_to_marking;
tonyp@2973 3393 }
ysr@777 3394
ysr@777 3395 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
ysr@777 3396 _interval_start_time_ms = curr_time_ms;
ysr@777 3397 _all_clock_intervals_ms.add(last_interval_ms);
ysr@777 3398
ysr@777 3399 if (_cm->verbose_medium()) {
tonyp@2973 3400 gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
tonyp@2973 3401 "scanned = %d%s, refs reached = %d%s",
tonyp@2973 3402 _task_id, last_interval_ms,
tonyp@2973 3403 _words_scanned,
tonyp@2973 3404 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
tonyp@2973 3405 _refs_reached,
tonyp@2973 3406 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
ysr@777 3407 }
ysr@777 3408 #endif // _MARKING_STATS_
ysr@777 3409
ysr@777 3410 // (4) We check whether we should yield. If we have to, then we abort.
ysr@777 3411 if (_cm->should_yield()) {
ysr@777 3412 // We should yield. To do this we abort the task. The caller is
ysr@777 3413 // responsible for yielding.
ysr@777 3414 set_has_aborted();
ysr@777 3415 statsOnly( ++_aborted_yield );
ysr@777 3416 return;
ysr@777 3417 }
ysr@777 3418
ysr@777 3419 // (5) We check whether we've reached our time quota. If we have,
ysr@777 3420 // then we abort.
ysr@777 3421 double elapsed_time_ms = curr_time_ms - _start_time_ms;
ysr@777 3422 if (elapsed_time_ms > _time_target_ms) {
ysr@777 3423 set_has_aborted();
johnc@2494 3424 _has_timed_out = true;
ysr@777 3425 statsOnly( ++_aborted_timed_out );
ysr@777 3426 return;
ysr@777 3427 }
ysr@777 3428
ysr@777 3429 // (6) Finally, we check whether there are enough completed STAB
ysr@777 3430 // buffers available for processing. If there are, we abort.
ysr@777 3431 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3432 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
tonyp@2973 3433 if (_cm->verbose_low()) {
ysr@777 3434 gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
ysr@777 3435 _task_id);
tonyp@2973 3436 }
ysr@777 3437 // we do need to process SATB buffers, we'll abort and restart
ysr@777 3438 // the marking task to do so
ysr@777 3439 set_has_aborted();
ysr@777 3440 statsOnly( ++_aborted_satb );
ysr@777 3441 return;
ysr@777 3442 }
ysr@777 3443 }
ysr@777 3444
ysr@777 3445 void CMTask::recalculate_limits() {
ysr@777 3446 _real_words_scanned_limit = _words_scanned + words_scanned_period;
ysr@777 3447 _words_scanned_limit = _real_words_scanned_limit;
ysr@777 3448
ysr@777 3449 _real_refs_reached_limit = _refs_reached + refs_reached_period;
ysr@777 3450 _refs_reached_limit = _real_refs_reached_limit;
ysr@777 3451 }
ysr@777 3452
ysr@777 3453 void CMTask::decrease_limits() {
ysr@777 3454 // This is called when we believe that we're going to do an infrequent
ysr@777 3455 // operation which will increase the per byte scanned cost (i.e. move
ysr@777 3456 // entries to/from the global stack). It basically tries to decrease the
ysr@777 3457 // scanning limit so that the clock is called earlier.
ysr@777 3458
tonyp@2973 3459 if (_cm->verbose_medium()) {
ysr@777 3460 gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
tonyp@2973 3461 }
ysr@777 3462
ysr@777 3463 _words_scanned_limit = _real_words_scanned_limit -
ysr@777 3464 3 * words_scanned_period / 4;
ysr@777 3465 _refs_reached_limit = _real_refs_reached_limit -
ysr@777 3466 3 * refs_reached_period / 4;
ysr@777 3467 }
ysr@777 3468
ysr@777 3469 void CMTask::move_entries_to_global_stack() {
ysr@777 3470 // local array where we'll store the entries that will be popped
ysr@777 3471 // from the local queue
ysr@777 3472 oop buffer[global_stack_transfer_size];
ysr@777 3473
ysr@777 3474 int n = 0;
ysr@777 3475 oop obj;
ysr@777 3476 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
ysr@777 3477 buffer[n] = obj;
ysr@777 3478 ++n;
ysr@777 3479 }
ysr@777 3480
ysr@777 3481 if (n > 0) {
ysr@777 3482 // we popped at least one entry from the local queue
ysr@777 3483
ysr@777 3484 statsOnly( ++_global_transfers_to; _local_pops += n );
ysr@777 3485
ysr@777 3486 if (!_cm->mark_stack_push(buffer, n)) {
tonyp@2973 3487 if (_cm->verbose_low()) {
tonyp@2973 3488 gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
tonyp@2973 3489 _task_id);
tonyp@2973 3490 }
ysr@777 3491 set_has_aborted();
ysr@777 3492 } else {
ysr@777 3493 // the transfer was successful
ysr@777 3494
tonyp@2973 3495 if (_cm->verbose_medium()) {
ysr@777 3496 gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
ysr@777 3497 _task_id, n);
tonyp@2973 3498 }
ysr@777 3499 statsOnly( int tmp_size = _cm->mark_stack_size();
tonyp@2973 3500 if (tmp_size > _global_max_size) {
ysr@777 3501 _global_max_size = tmp_size;
tonyp@2973 3502 }
ysr@777 3503 _global_pushes += n );
ysr@777 3504 }
ysr@777 3505 }
ysr@777 3506
ysr@777 3507 // this operation was quite expensive, so decrease the limits
ysr@777 3508 decrease_limits();
ysr@777 3509 }
ysr@777 3510
ysr@777 3511 void CMTask::get_entries_from_global_stack() {
ysr@777 3512 // local array where we'll store the entries that will be popped
ysr@777 3513 // from the global stack.
ysr@777 3514 oop buffer[global_stack_transfer_size];
ysr@777 3515 int n;
ysr@777 3516 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tonyp@1458 3517 assert(n <= global_stack_transfer_size,
tonyp@1458 3518 "we should not pop more than the given limit");
ysr@777 3519 if (n > 0) {
ysr@777 3520 // yes, we did actually pop at least one entry
ysr@777 3521
ysr@777 3522 statsOnly( ++_global_transfers_from; _global_pops += n );
tonyp@2973 3523 if (_cm->verbose_medium()) {
ysr@777 3524 gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
ysr@777 3525 _task_id, n);
tonyp@2973 3526 }
ysr@777 3527 for (int i = 0; i < n; ++i) {
ysr@777 3528 bool success = _task_queue->push(buffer[i]);
ysr@777 3529 // We only call this when the local queue is empty or under a
ysr@777 3530 // given target limit. So, we do not expect this push to fail.
tonyp@1458 3531 assert(success, "invariant");
ysr@777 3532 }
ysr@777 3533
ysr@777 3534 statsOnly( int tmp_size = _task_queue->size();
tonyp@2973 3535 if (tmp_size > _local_max_size) {
ysr@777 3536 _local_max_size = tmp_size;
tonyp@2973 3537 }
ysr@777 3538 _local_pushes += n );
ysr@777 3539 }
ysr@777 3540
ysr@777 3541 // this operation was quite expensive, so decrease the limits
ysr@777 3542 decrease_limits();
ysr@777 3543 }
ysr@777 3544
ysr@777 3545 void CMTask::drain_local_queue(bool partially) {
tonyp@2973 3546 if (has_aborted()) return;
ysr@777 3547
ysr@777 3548 // Decide what the target size is, depending whether we're going to
ysr@777 3549 // drain it partially (so that other tasks can steal if they run out
ysr@777 3550 // of things to do) or totally (at the very end).
ysr@777 3551 size_t target_size;
tonyp@2973 3552 if (partially) {
ysr@777 3553 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
tonyp@2973 3554 } else {
ysr@777 3555 target_size = 0;
tonyp@2973 3556 }
ysr@777 3557
ysr@777 3558 if (_task_queue->size() > target_size) {
tonyp@2973 3559 if (_cm->verbose_high()) {
ysr@777 3560 gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
ysr@777 3561 _task_id, target_size);
tonyp@2973 3562 }
ysr@777 3563
ysr@777 3564 oop obj;
ysr@777 3565 bool ret = _task_queue->pop_local(obj);
ysr@777 3566 while (ret) {
ysr@777 3567 statsOnly( ++_local_pops );
ysr@777 3568
tonyp@2973 3569 if (_cm->verbose_high()) {
ysr@777 3570 gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
ysr@777 3571 (void*) obj);
tonyp@2973 3572 }
ysr@777 3573
tonyp@1458 3574 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
tonyp@2643 3575 assert(!_g1h->is_on_master_free_list(
tonyp@2472 3576 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
ysr@777 3577
ysr@777 3578 scan_object(obj);
ysr@777 3579
tonyp@2973 3580 if (_task_queue->size() <= target_size || has_aborted()) {
ysr@777 3581 ret = false;
tonyp@2973 3582 } else {
ysr@777 3583 ret = _task_queue->pop_local(obj);
tonyp@2973 3584 }
ysr@777 3585 }
ysr@777 3586
tonyp@2973 3587 if (_cm->verbose_high()) {
ysr@777 3588 gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
ysr@777 3589 _task_id, _task_queue->size());
tonyp@2973 3590 }
ysr@777 3591 }
ysr@777 3592 }
ysr@777 3593
ysr@777 3594 void CMTask::drain_global_stack(bool partially) {
tonyp@2973 3595 if (has_aborted()) return;
ysr@777 3596
ysr@777 3597 // We have a policy to drain the local queue before we attempt to
ysr@777 3598 // drain the global stack.
tonyp@1458 3599 assert(partially || _task_queue->size() == 0, "invariant");
ysr@777 3600
ysr@777 3601 // Decide what the target size is, depending whether we're going to
ysr@777 3602 // drain it partially (so that other tasks can steal if they run out
ysr@777 3603 // of things to do) or totally (at the very end). Notice that,
ysr@777 3604 // because we move entries from the global stack in chunks or
ysr@777 3605 // because another task might be doing the same, we might in fact
ysr@777 3606 // drop below the target. But, this is not a problem.
ysr@777 3607 size_t target_size;
tonyp@2973 3608 if (partially) {
ysr@777 3609 target_size = _cm->partial_mark_stack_size_target();
tonyp@2973 3610 } else {
ysr@777 3611 target_size = 0;
tonyp@2973 3612 }
ysr@777 3613
ysr@777 3614 if (_cm->mark_stack_size() > target_size) {
tonyp@2973 3615 if (_cm->verbose_low()) {
ysr@777 3616 gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
ysr@777 3617 _task_id, target_size);
tonyp@2973 3618 }
ysr@777 3619
ysr@777 3620 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
ysr@777 3621 get_entries_from_global_stack();
ysr@777 3622 drain_local_queue(partially);
ysr@777 3623 }
ysr@777 3624
tonyp@2973 3625 if (_cm->verbose_low()) {
ysr@777 3626 gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
ysr@777 3627 _task_id, _cm->mark_stack_size());
tonyp@2973 3628 }
ysr@777 3629 }
ysr@777 3630 }
ysr@777 3631
ysr@777 3632 // SATB Queue has several assumptions on whether to call the par or
ysr@777 3633 // non-par versions of the methods. this is why some of the code is
ysr@777 3634 // replicated. We should really get rid of the single-threaded version
ysr@777 3635 // of the code to simplify things.
ysr@777 3636 void CMTask::drain_satb_buffers() {
tonyp@2973 3637 if (has_aborted()) return;
ysr@777 3638
ysr@777 3639 // We set this so that the regular clock knows that we're in the
ysr@777 3640 // middle of draining buffers and doesn't set the abort flag when it
ysr@777 3641 // notices that SATB buffers are available for draining. It'd be
ysr@777 3642 // very counter productive if it did that. :-)
ysr@777 3643 _draining_satb_buffers = true;
ysr@777 3644
ysr@777 3645 CMObjectClosure oc(this);
ysr@777 3646 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@2973 3647 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3648 satb_mq_set.set_par_closure(_task_id, &oc);
tonyp@2973 3649 } else {
ysr@777 3650 satb_mq_set.set_closure(&oc);
tonyp@2973 3651 }
ysr@777 3652
ysr@777 3653 // This keeps claiming and applying the closure to completed buffers
ysr@777 3654 // until we run out of buffers or we need to abort.
jmasa@2188 3655 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3656 while (!has_aborted() &&
ysr@777 3657 satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
tonyp@2973 3658 if (_cm->verbose_medium()) {
ysr@777 3659 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3660 }
ysr@777 3661 statsOnly( ++_satb_buffers_processed );
ysr@777 3662 regular_clock_call();
ysr@777 3663 }
ysr@777 3664 } else {
ysr@777 3665 while (!has_aborted() &&
ysr@777 3666 satb_mq_set.apply_closure_to_completed_buffer()) {
tonyp@2973 3667 if (_cm->verbose_medium()) {
ysr@777 3668 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3669 }
ysr@777 3670 statsOnly( ++_satb_buffers_processed );
ysr@777 3671 regular_clock_call();
ysr@777 3672 }
ysr@777 3673 }
ysr@777 3674
ysr@777 3675 if (!concurrent() && !has_aborted()) {
ysr@777 3676 // We should only do this during remark.
tonyp@2973 3677 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3678 satb_mq_set.par_iterate_closure_all_threads(_task_id);
tonyp@2973 3679 } else {
ysr@777 3680 satb_mq_set.iterate_closure_all_threads();
tonyp@2973 3681 }
ysr@777 3682 }
ysr@777 3683
ysr@777 3684 _draining_satb_buffers = false;
ysr@777 3685
tonyp@1458 3686 assert(has_aborted() ||
tonyp@1458 3687 concurrent() ||
tonyp@1458 3688 satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 3689
tonyp@2973 3690 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3691 satb_mq_set.set_par_closure(_task_id, NULL);
tonyp@2973 3692 } else {
ysr@777 3693 satb_mq_set.set_closure(NULL);
tonyp@2973 3694 }
ysr@777 3695
ysr@777 3696 // again, this was a potentially expensive operation, decrease the
ysr@777 3697 // limits to get the regular clock call early
ysr@777 3698 decrease_limits();
ysr@777 3699 }
ysr@777 3700
ysr@777 3701 void CMTask::print_stats() {
ysr@777 3702 gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
ysr@777 3703 _task_id, _calls);
ysr@777 3704 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
ysr@777 3705 _elapsed_time_ms, _termination_time_ms);
ysr@777 3706 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3707 _step_times_ms.num(), _step_times_ms.avg(),
ysr@777 3708 _step_times_ms.sd());
ysr@777 3709 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3710 _step_times_ms.maximum(), _step_times_ms.sum());
ysr@777 3711
ysr@777 3712 #if _MARKING_STATS_
ysr@777 3713 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3714 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
ysr@777 3715 _all_clock_intervals_ms.sd());
ysr@777 3716 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3717 _all_clock_intervals_ms.maximum(),
ysr@777 3718 _all_clock_intervals_ms.sum());
ysr@777 3719 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
ysr@777 3720 _clock_due_to_scanning, _clock_due_to_marking);
ysr@777 3721 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
ysr@777 3722 _objs_scanned, _objs_found_on_bitmap);
ysr@777 3723 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
ysr@777 3724 _local_pushes, _local_pops, _local_max_size);
ysr@777 3725 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
ysr@777 3726 _global_pushes, _global_pops, _global_max_size);
ysr@777 3727 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
ysr@777 3728 _global_transfers_to,_global_transfers_from);
tonyp@3691 3729 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
ysr@777 3730 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
ysr@777 3731 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
ysr@777 3732 _steal_attempts, _steals);
ysr@777 3733 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
ysr@777 3734 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
ysr@777 3735 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
ysr@777 3736 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
ysr@777 3737 _aborted_timed_out, _aborted_satb, _aborted_termination);
ysr@777 3738 #endif // _MARKING_STATS_
ysr@777 3739 }
ysr@777 3740
ysr@777 3741 /*****************************************************************************
ysr@777 3742
ysr@777 3743 The do_marking_step(time_target_ms) method is the building block
ysr@777 3744 of the parallel marking framework. It can be called in parallel
ysr@777 3745 with other invocations of do_marking_step() on different tasks
ysr@777 3746 (but only one per task, obviously) and concurrently with the
ysr@777 3747 mutator threads, or during remark, hence it eliminates the need
ysr@777 3748 for two versions of the code. When called during remark, it will
ysr@777 3749 pick up from where the task left off during the concurrent marking
ysr@777 3750 phase. Interestingly, tasks are also claimable during evacuation
ysr@777 3751 pauses too, since do_marking_step() ensures that it aborts before
ysr@777 3752 it needs to yield.
ysr@777 3753
ysr@777 3754 The data structures that is uses to do marking work are the
ysr@777 3755 following:
ysr@777 3756
ysr@777 3757 (1) Marking Bitmap. If there are gray objects that appear only
ysr@777 3758 on the bitmap (this happens either when dealing with an overflow
ysr@777 3759 or when the initial marking phase has simply marked the roots
ysr@777 3760 and didn't push them on the stack), then tasks claim heap
ysr@777 3761 regions whose bitmap they then scan to find gray objects. A
ysr@777 3762 global finger indicates where the end of the last claimed region
ysr@777 3763 is. A local finger indicates how far into the region a task has
ysr@777 3764 scanned. The two fingers are used to determine how to gray an
ysr@777 3765 object (i.e. whether simply marking it is OK, as it will be
ysr@777 3766 visited by a task in the future, or whether it needs to be also
ysr@777 3767 pushed on a stack).
ysr@777 3768
ysr@777 3769 (2) Local Queue. The local queue of the task which is accessed
ysr@777 3770 reasonably efficiently by the task. Other tasks can steal from
ysr@777 3771 it when they run out of work. Throughout the marking phase, a
ysr@777 3772 task attempts to keep its local queue short but not totally
ysr@777 3773 empty, so that entries are available for stealing by other
ysr@777 3774 tasks. Only when there is no more work, a task will totally
ysr@777 3775 drain its local queue.
ysr@777 3776
ysr@777 3777 (3) Global Mark Stack. This handles local queue overflow. During
ysr@777 3778 marking only sets of entries are moved between it and the local
ysr@777 3779 queues, as access to it requires a mutex and more fine-grain
ysr@777 3780 interaction with it which might cause contention. If it
ysr@777 3781 overflows, then the marking phase should restart and iterate
ysr@777 3782 over the bitmap to identify gray objects. Throughout the marking
ysr@777 3783 phase, tasks attempt to keep the global mark stack at a small
ysr@777 3784 length but not totally empty, so that entries are available for
ysr@777 3785 popping by other tasks. Only when there is no more work, tasks
ysr@777 3786 will totally drain the global mark stack.
ysr@777 3787
tonyp@3691 3788 (4) SATB Buffer Queue. This is where completed SATB buffers are
ysr@777 3789 made available. Buffers are regularly removed from this queue
ysr@777 3790 and scanned for roots, so that the queue doesn't get too
ysr@777 3791 long. During remark, all completed buffers are processed, as
ysr@777 3792 well as the filled in parts of any uncompleted buffers.
ysr@777 3793
ysr@777 3794 The do_marking_step() method tries to abort when the time target
ysr@777 3795 has been reached. There are a few other cases when the
ysr@777 3796 do_marking_step() method also aborts:
ysr@777 3797
ysr@777 3798 (1) When the marking phase has been aborted (after a Full GC).
ysr@777 3799
tonyp@3691 3800 (2) When a global overflow (on the global stack) has been
tonyp@3691 3801 triggered. Before the task aborts, it will actually sync up with
tonyp@3691 3802 the other tasks to ensure that all the marking data structures
tonyp@3691 3803 (local queues, stacks, fingers etc.) are re-initialised so that
tonyp@3691 3804 when do_marking_step() completes, the marking phase can
tonyp@3691 3805 immediately restart.
ysr@777 3806
ysr@777 3807 (3) When enough completed SATB buffers are available. The
ysr@777 3808 do_marking_step() method only tries to drain SATB buffers right
ysr@777 3809 at the beginning. So, if enough buffers are available, the
ysr@777 3810 marking step aborts and the SATB buffers are processed at
ysr@777 3811 the beginning of the next invocation.
ysr@777 3812
ysr@777 3813 (4) To yield. when we have to yield then we abort and yield
ysr@777 3814 right at the end of do_marking_step(). This saves us from a lot
ysr@777 3815 of hassle as, by yielding we might allow a Full GC. If this
ysr@777 3816 happens then objects will be compacted underneath our feet, the
ysr@777 3817 heap might shrink, etc. We save checking for this by just
ysr@777 3818 aborting and doing the yield right at the end.
ysr@777 3819
ysr@777 3820 From the above it follows that the do_marking_step() method should
ysr@777 3821 be called in a loop (or, otherwise, regularly) until it completes.
ysr@777 3822
ysr@777 3823 If a marking step completes without its has_aborted() flag being
ysr@777 3824 true, it means it has completed the current marking phase (and
ysr@777 3825 also all other marking tasks have done so and have all synced up).
ysr@777 3826
ysr@777 3827 A method called regular_clock_call() is invoked "regularly" (in
ysr@777 3828 sub ms intervals) throughout marking. It is this clock method that
ysr@777 3829 checks all the abort conditions which were mentioned above and
ysr@777 3830 decides when the task should abort. A work-based scheme is used to
ysr@777 3831 trigger this clock method: when the number of object words the
ysr@777 3832 marking phase has scanned or the number of references the marking
ysr@777 3833 phase has visited reach a given limit. Additional invocations to
ysr@777 3834 the method clock have been planted in a few other strategic places
ysr@777 3835 too. The initial reason for the clock method was to avoid calling
ysr@777 3836 vtime too regularly, as it is quite expensive. So, once it was in
ysr@777 3837 place, it was natural to piggy-back all the other conditions on it
ysr@777 3838 too and not constantly check them throughout the code.
ysr@777 3839
ysr@777 3840 *****************************************************************************/
ysr@777 3841
johnc@2494 3842 void CMTask::do_marking_step(double time_target_ms,
johnc@2494 3843 bool do_stealing,
johnc@2494 3844 bool do_termination) {
tonyp@1458 3845 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
tonyp@1458 3846 assert(concurrent() == _cm->concurrent(), "they should be the same");
tonyp@1458 3847
ysr@777 3848 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
tonyp@1458 3849 assert(_task_queues != NULL, "invariant");
tonyp@1458 3850 assert(_task_queue != NULL, "invariant");
tonyp@1458 3851 assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
tonyp@1458 3852
tonyp@1458 3853 assert(!_claimed,
tonyp@1458 3854 "only one thread should claim this task at any one time");
ysr@777 3855
ysr@777 3856 // OK, this doesn't safeguard again all possible scenarios, as it is
ysr@777 3857 // possible for two threads to set the _claimed flag at the same
ysr@777 3858 // time. But it is only for debugging purposes anyway and it will
ysr@777 3859 // catch most problems.
ysr@777 3860 _claimed = true;
ysr@777 3861
ysr@777 3862 _start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3863 statsOnly( _interval_start_time_ms = _start_time_ms );
ysr@777 3864
ysr@777 3865 double diff_prediction_ms =
ysr@777 3866 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
ysr@777 3867 _time_target_ms = time_target_ms - diff_prediction_ms;
ysr@777 3868
ysr@777 3869 // set up the variables that are used in the work-based scheme to
ysr@777 3870 // call the regular clock method
ysr@777 3871 _words_scanned = 0;
ysr@777 3872 _refs_reached = 0;
ysr@777 3873 recalculate_limits();
ysr@777 3874
ysr@777 3875 // clear all flags
ysr@777 3876 clear_has_aborted();
johnc@2494 3877 _has_timed_out = false;
ysr@777 3878 _draining_satb_buffers = false;
ysr@777 3879
ysr@777 3880 ++_calls;
ysr@777 3881
tonyp@2973 3882 if (_cm->verbose_low()) {
ysr@777 3883 gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
ysr@777 3884 "target = %1.2lfms >>>>>>>>>>",
ysr@777 3885 _task_id, _calls, _time_target_ms);
tonyp@2973 3886 }
ysr@777 3887
ysr@777 3888 // Set up the bitmap and oop closures. Anything that uses them is
ysr@777 3889 // eventually called from this method, so it is OK to allocate these
ysr@777 3890 // statically.
ysr@777 3891 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
tonyp@2968 3892 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
tonyp@2968 3893 set_cm_oop_closure(&cm_oop_closure);
ysr@777 3894
ysr@777 3895 if (_cm->has_overflown()) {
tonyp@3691 3896 // This can happen if the mark stack overflows during a GC pause
tonyp@3691 3897 // and this task, after a yield point, restarts. We have to abort
tonyp@3691 3898 // as we need to get into the overflow protocol which happens
tonyp@3691 3899 // right at the end of this task.
ysr@777 3900 set_has_aborted();
ysr@777 3901 }
ysr@777 3902
ysr@777 3903 // First drain any available SATB buffers. After this, we will not
ysr@777 3904 // look at SATB buffers before the next invocation of this method.
ysr@777 3905 // If enough completed SATB buffers are queued up, the regular clock
ysr@777 3906 // will abort this task so that it restarts.
ysr@777 3907 drain_satb_buffers();
ysr@777 3908 // ...then partially drain the local queue and the global stack
ysr@777 3909 drain_local_queue(true);
ysr@777 3910 drain_global_stack(true);
ysr@777 3911
ysr@777 3912 do {
ysr@777 3913 if (!has_aborted() && _curr_region != NULL) {
ysr@777 3914 // This means that we're already holding on to a region.
tonyp@1458 3915 assert(_finger != NULL, "if region is not NULL, then the finger "
tonyp@1458 3916 "should not be NULL either");
ysr@777 3917
ysr@777 3918 // We might have restarted this task after an evacuation pause
ysr@777 3919 // which might have evacuated the region we're holding on to
ysr@777 3920 // underneath our feet. Let's read its limit again to make sure
ysr@777 3921 // that we do not iterate over a region of the heap that
ysr@777 3922 // contains garbage (update_region_limit() will also move
ysr@777 3923 // _finger to the start of the region if it is found empty).
ysr@777 3924 update_region_limit();
ysr@777 3925 // We will start from _finger not from the start of the region,
ysr@777 3926 // as we might be restarting this task after aborting half-way
ysr@777 3927 // through scanning this region. In this case, _finger points to
ysr@777 3928 // the address where we last found a marked object. If this is a
ysr@777 3929 // fresh region, _finger points to start().
ysr@777 3930 MemRegion mr = MemRegion(_finger, _region_limit);
ysr@777 3931
tonyp@2973 3932 if (_cm->verbose_low()) {
ysr@777 3933 gclog_or_tty->print_cr("[%d] we're scanning part "
ysr@777 3934 "["PTR_FORMAT", "PTR_FORMAT") "
ysr@777 3935 "of region "PTR_FORMAT,
ysr@777 3936 _task_id, _finger, _region_limit, _curr_region);
tonyp@2973 3937 }
ysr@777 3938
ysr@777 3939 // Let's iterate over the bitmap of the part of the
ysr@777 3940 // region that is left.
tonyp@3691 3941 if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
ysr@777 3942 // We successfully completed iterating over the region. Now,
ysr@777 3943 // let's give up the region.
ysr@777 3944 giveup_current_region();
ysr@777 3945 regular_clock_call();
ysr@777 3946 } else {
tonyp@1458 3947 assert(has_aborted(), "currently the only way to do so");
ysr@777 3948 // The only way to abort the bitmap iteration is to return
ysr@777 3949 // false from the do_bit() method. However, inside the
ysr@777 3950 // do_bit() method we move the _finger to point to the
ysr@777 3951 // object currently being looked at. So, if we bail out, we
ysr@777 3952 // have definitely set _finger to something non-null.
tonyp@1458 3953 assert(_finger != NULL, "invariant");
ysr@777 3954
ysr@777 3955 // Region iteration was actually aborted. So now _finger
ysr@777 3956 // points to the address of the object we last scanned. If we
ysr@777 3957 // leave it there, when we restart this task, we will rescan
ysr@777 3958 // the object. It is easy to avoid this. We move the finger by
ysr@777 3959 // enough to point to the next possible object header (the
ysr@777 3960 // bitmap knows by how much we need to move it as it knows its
ysr@777 3961 // granularity).
apetrusenko@1749 3962 assert(_finger < _region_limit, "invariant");
apetrusenko@1749 3963 HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
apetrusenko@1749 3964 // Check if bitmap iteration was aborted while scanning the last object
apetrusenko@1749 3965 if (new_finger >= _region_limit) {
tonyp@3691 3966 giveup_current_region();
apetrusenko@1749 3967 } else {
tonyp@3691 3968 move_finger_to(new_finger);
apetrusenko@1749 3969 }
ysr@777 3970 }
ysr@777 3971 }
ysr@777 3972 // At this point we have either completed iterating over the
ysr@777 3973 // region we were holding on to, or we have aborted.
ysr@777 3974
ysr@777 3975 // We then partially drain the local queue and the global stack.
ysr@777 3976 // (Do we really need this?)
ysr@777 3977 drain_local_queue(true);
ysr@777 3978 drain_global_stack(true);
ysr@777 3979
ysr@777 3980 // Read the note on the claim_region() method on why it might
ysr@777 3981 // return NULL with potentially more regions available for
ysr@777 3982 // claiming and why we have to check out_of_regions() to determine
ysr@777 3983 // whether we're done or not.
ysr@777 3984 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
ysr@777 3985 // We are going to try to claim a new region. We should have
ysr@777 3986 // given up on the previous one.
tonyp@1458 3987 // Separated the asserts so that we know which one fires.
tonyp@1458 3988 assert(_curr_region == NULL, "invariant");
tonyp@1458 3989 assert(_finger == NULL, "invariant");
tonyp@1458 3990 assert(_region_limit == NULL, "invariant");
tonyp@2973 3991 if (_cm->verbose_low()) {
ysr@777 3992 gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
tonyp@2973 3993 }
ysr@777 3994 HeapRegion* claimed_region = _cm->claim_region(_task_id);
ysr@777 3995 if (claimed_region != NULL) {
ysr@777 3996 // Yes, we managed to claim one
ysr@777 3997 statsOnly( ++_regions_claimed );
ysr@777 3998
tonyp@2973 3999 if (_cm->verbose_low()) {
ysr@777 4000 gclog_or_tty->print_cr("[%d] we successfully claimed "
ysr@777 4001 "region "PTR_FORMAT,
ysr@777 4002 _task_id, claimed_region);
tonyp@2973 4003 }
ysr@777 4004
ysr@777 4005 setup_for_region(claimed_region);
tonyp@1458 4006 assert(_curr_region == claimed_region, "invariant");
ysr@777 4007 }
ysr@777 4008 // It is important to call the regular clock here. It might take
ysr@777 4009 // a while to claim a region if, for example, we hit a large
ysr@777 4010 // block of empty regions. So we need to call the regular clock
ysr@777 4011 // method once round the loop to make sure it's called
ysr@777 4012 // frequently enough.
ysr@777 4013 regular_clock_call();
ysr@777 4014 }
ysr@777 4015
ysr@777 4016 if (!has_aborted() && _curr_region == NULL) {
tonyp@1458 4017 assert(_cm->out_of_regions(),
tonyp@1458 4018 "at this point we should be out of regions");
ysr@777 4019 }
ysr@777 4020 } while ( _curr_region != NULL && !has_aborted());
ysr@777 4021
ysr@777 4022 if (!has_aborted()) {
ysr@777 4023 // We cannot check whether the global stack is empty, since other
tonyp@3691 4024 // tasks might be pushing objects to it concurrently.
tonyp@1458 4025 assert(_cm->out_of_regions(),
tonyp@1458 4026 "at this point we should be out of regions");
ysr@777 4027
tonyp@2973 4028 if (_cm->verbose_low()) {
ysr@777 4029 gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
tonyp@2973 4030 }
ysr@777 4031
ysr@777 4032 // Try to reduce the number of available SATB buffers so that
ysr@777 4033 // remark has less work to do.
ysr@777 4034 drain_satb_buffers();
ysr@777 4035 }
ysr@777 4036
ysr@777 4037 // Since we've done everything else, we can now totally drain the
ysr@777 4038 // local queue and global stack.
ysr@777 4039 drain_local_queue(false);
ysr@777 4040 drain_global_stack(false);
ysr@777 4041
ysr@777 4042 // Attempt at work stealing from other task's queues.
johnc@2494 4043 if (do_stealing && !has_aborted()) {
ysr@777 4044 // We have not aborted. This means that we have finished all that
ysr@777 4045 // we could. Let's try to do some stealing...
ysr@777 4046
ysr@777 4047 // We cannot check whether the global stack is empty, since other
tonyp@3691 4048 // tasks might be pushing objects to it concurrently.
tonyp@1458 4049 assert(_cm->out_of_regions() && _task_queue->size() == 0,
tonyp@1458 4050 "only way to reach here");
ysr@777 4051
tonyp@2973 4052 if (_cm->verbose_low()) {
ysr@777 4053 gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
tonyp@2973 4054 }
ysr@777 4055
ysr@777 4056 while (!has_aborted()) {
ysr@777 4057 oop obj;
ysr@777 4058 statsOnly( ++_steal_attempts );
ysr@777 4059
ysr@777 4060 if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
tonyp@2973 4061 if (_cm->verbose_medium()) {
ysr@777 4062 gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
ysr@777 4063 _task_id, (void*) obj);
tonyp@2973 4064 }
ysr@777 4065
ysr@777 4066 statsOnly( ++_steals );
ysr@777 4067
tonyp@1458 4068 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
tonyp@1458 4069 "any stolen object should be marked");
ysr@777 4070 scan_object(obj);
ysr@777 4071
ysr@777 4072 // And since we're towards the end, let's totally drain the
ysr@777 4073 // local queue and global stack.
ysr@777 4074 drain_local_queue(false);
ysr@777 4075 drain_global_stack(false);
ysr@777 4076 } else {
ysr@777 4077 break;
ysr@777 4078 }
ysr@777 4079 }
ysr@777 4080 }
ysr@777 4081
tonyp@2848 4082 // If we are about to wrap up and go into termination, check if we
tonyp@2848 4083 // should raise the overflow flag.
tonyp@2848 4084 if (do_termination && !has_aborted()) {
tonyp@2848 4085 if (_cm->force_overflow()->should_force()) {
tonyp@2848 4086 _cm->set_has_overflown();
tonyp@2848 4087 regular_clock_call();
tonyp@2848 4088 }
tonyp@2848 4089 }
tonyp@2848 4090
ysr@777 4091 // We still haven't aborted. Now, let's try to get into the
ysr@777 4092 // termination protocol.
johnc@2494 4093 if (do_termination && !has_aborted()) {
ysr@777 4094 // We cannot check whether the global stack is empty, since other
tonyp@3691 4095 // tasks might be concurrently pushing objects on it.
tonyp@1458 4096 // Separated the asserts so that we know which one fires.
tonyp@1458 4097 assert(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4098 assert(_task_queue->size() == 0, "only way to reach here");
ysr@777 4099
tonyp@2973 4100 if (_cm->verbose_low()) {
ysr@777 4101 gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
tonyp@2973 4102 }
ysr@777 4103
ysr@777 4104 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4105 // The CMTask class also extends the TerminatorTerminator class,
ysr@777 4106 // hence its should_exit_termination() method will also decide
ysr@777 4107 // whether to exit the termination protocol or not.
ysr@777 4108 bool finished = _cm->terminator()->offer_termination(this);
ysr@777 4109 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4110 _termination_time_ms +=
ysr@777 4111 termination_end_time_ms - _termination_start_time_ms;
ysr@777 4112
ysr@777 4113 if (finished) {
ysr@777 4114 // We're all done.
ysr@777 4115
ysr@777 4116 if (_task_id == 0) {
ysr@777 4117 // let's allow task 0 to do this
ysr@777 4118 if (concurrent()) {
tonyp@1458 4119 assert(_cm->concurrent_marking_in_progress(), "invariant");
ysr@777 4120 // we need to set this to false before the next
ysr@777 4121 // safepoint. This way we ensure that the marking phase
ysr@777 4122 // doesn't observe any more heap expansions.
ysr@777 4123 _cm->clear_concurrent_marking_in_progress();
ysr@777 4124 }
ysr@777 4125 }
ysr@777 4126
ysr@777 4127 // We can now guarantee that the global stack is empty, since
tonyp@1458 4128 // all other tasks have finished. We separated the guarantees so
tonyp@1458 4129 // that, if a condition is false, we can immediately find out
tonyp@1458 4130 // which one.
tonyp@1458 4131 guarantee(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4132 guarantee(_cm->mark_stack_empty(), "only way to reach here");
tonyp@1458 4133 guarantee(_task_queue->size() == 0, "only way to reach here");
tonyp@1458 4134 guarantee(!_cm->has_overflown(), "only way to reach here");
tonyp@1458 4135 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
ysr@777 4136
tonyp@2973 4137 if (_cm->verbose_low()) {
ysr@777 4138 gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
tonyp@2973 4139 }
ysr@777 4140 } else {
ysr@777 4141 // Apparently there's more work to do. Let's abort this task. It
ysr@777 4142 // will restart it and we can hopefully find more things to do.
ysr@777 4143
tonyp@2973 4144 if (_cm->verbose_low()) {
tonyp@2973 4145 gclog_or_tty->print_cr("[%d] apparently there is more work to do",
tonyp@2973 4146 _task_id);
tonyp@2973 4147 }
ysr@777 4148
ysr@777 4149 set_has_aborted();
ysr@777 4150 statsOnly( ++_aborted_termination );
ysr@777 4151 }
ysr@777 4152 }
ysr@777 4153
ysr@777 4154 // Mainly for debugging purposes to make sure that a pointer to the
ysr@777 4155 // closure which was statically allocated in this frame doesn't
ysr@777 4156 // escape it by accident.
tonyp@2968 4157 set_cm_oop_closure(NULL);
ysr@777 4158 double end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4159 double elapsed_time_ms = end_time_ms - _start_time_ms;
ysr@777 4160 // Update the step history.
ysr@777 4161 _step_times_ms.add(elapsed_time_ms);
ysr@777 4162
ysr@777 4163 if (has_aborted()) {
ysr@777 4164 // The task was aborted for some reason.
ysr@777 4165
ysr@777 4166 statsOnly( ++_aborted );
ysr@777 4167
johnc@2494 4168 if (_has_timed_out) {
ysr@777 4169 double diff_ms = elapsed_time_ms - _time_target_ms;
ysr@777 4170 // Keep statistics of how well we did with respect to hitting
ysr@777 4171 // our target only if we actually timed out (if we aborted for
ysr@777 4172 // other reasons, then the results might get skewed).
ysr@777 4173 _marking_step_diffs_ms.add(diff_ms);
ysr@777 4174 }
ysr@777 4175
ysr@777 4176 if (_cm->has_overflown()) {
ysr@777 4177 // This is the interesting one. We aborted because a global
ysr@777 4178 // overflow was raised. This means we have to restart the
ysr@777 4179 // marking phase and start iterating over regions. However, in
ysr@777 4180 // order to do this we have to make sure that all tasks stop
ysr@777 4181 // what they are doing and re-initialise in a safe manner. We
ysr@777 4182 // will achieve this with the use of two barrier sync points.
ysr@777 4183
tonyp@2973 4184 if (_cm->verbose_low()) {
ysr@777 4185 gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
tonyp@2973 4186 }
ysr@777 4187
ysr@777 4188 _cm->enter_first_sync_barrier(_task_id);
ysr@777 4189 // When we exit this sync barrier we know that all tasks have
ysr@777 4190 // stopped doing marking work. So, it's now safe to
ysr@777 4191 // re-initialise our data structures. At the end of this method,
ysr@777 4192 // task 0 will clear the global data structures.
ysr@777 4193
ysr@777 4194 statsOnly( ++_aborted_overflow );
ysr@777 4195
ysr@777 4196 // We clear the local state of this task...
ysr@777 4197 clear_region_fields();
ysr@777 4198
ysr@777 4199 // ...and enter the second barrier.
ysr@777 4200 _cm->enter_second_sync_barrier(_task_id);
ysr@777 4201 // At this point everything has bee re-initialised and we're
ysr@777 4202 // ready to restart.
ysr@777 4203 }
ysr@777 4204
ysr@777 4205 if (_cm->verbose_low()) {
ysr@777 4206 gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
ysr@777 4207 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4208 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4209 if (_cm->has_aborted()) {
ysr@777 4210 gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
ysr@777 4211 _task_id);
tonyp@2973 4212 }
ysr@777 4213 }
ysr@777 4214 } else {
tonyp@2973 4215 if (_cm->verbose_low()) {
ysr@777 4216 gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
ysr@777 4217 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4218 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4219 }
ysr@777 4220 }
ysr@777 4221
ysr@777 4222 _claimed = false;
ysr@777 4223 }
ysr@777 4224
ysr@777 4225 CMTask::CMTask(int task_id,
ysr@777 4226 ConcurrentMark* cm,
johnc@3463 4227 size_t* marked_bytes,
johnc@3463 4228 BitMap* card_bm,
ysr@777 4229 CMTaskQueue* task_queue,
ysr@777 4230 CMTaskQueueSet* task_queues)
ysr@777 4231 : _g1h(G1CollectedHeap::heap()),
ysr@777 4232 _task_id(task_id), _cm(cm),
ysr@777 4233 _claimed(false),
ysr@777 4234 _nextMarkBitMap(NULL), _hash_seed(17),
ysr@777 4235 _task_queue(task_queue),
ysr@777 4236 _task_queues(task_queues),
tonyp@2968 4237 _cm_oop_closure(NULL),
johnc@3463 4238 _marked_bytes_array(marked_bytes),
johnc@3463 4239 _card_bm(card_bm) {
tonyp@1458 4240 guarantee(task_queue != NULL, "invariant");
tonyp@1458 4241 guarantee(task_queues != NULL, "invariant");
ysr@777 4242
ysr@777 4243 statsOnly( _clock_due_to_scanning = 0;
ysr@777 4244 _clock_due_to_marking = 0 );
ysr@777 4245
ysr@777 4246 _marking_step_diffs_ms.add(0.5);
ysr@777 4247 }
tonyp@2717 4248
tonyp@2717 4249 // These are formatting macros that are used below to ensure
tonyp@2717 4250 // consistent formatting. The *_H_* versions are used to format the
tonyp@2717 4251 // header for a particular value and they should be kept consistent
tonyp@2717 4252 // with the corresponding macro. Also note that most of the macros add
tonyp@2717 4253 // the necessary white space (as a prefix) which makes them a bit
tonyp@2717 4254 // easier to compose.
tonyp@2717 4255
tonyp@2717 4256 // All the output lines are prefixed with this string to be able to
tonyp@2717 4257 // identify them easily in a large log file.
tonyp@2717 4258 #define G1PPRL_LINE_PREFIX "###"
tonyp@2717 4259
tonyp@2717 4260 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
tonyp@2717 4261 #ifdef _LP64
tonyp@2717 4262 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
tonyp@2717 4263 #else // _LP64
tonyp@2717 4264 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
tonyp@2717 4265 #endif // _LP64
tonyp@2717 4266
tonyp@2717 4267 // For per-region info
tonyp@2717 4268 #define G1PPRL_TYPE_FORMAT " %-4s"
tonyp@2717 4269 #define G1PPRL_TYPE_H_FORMAT " %4s"
tonyp@2717 4270 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
tonyp@2717 4271 #define G1PPRL_BYTE_H_FORMAT " %9s"
tonyp@2717 4272 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
tonyp@2717 4273 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
tonyp@2717 4274
tonyp@2717 4275 // For summary info
tonyp@2717 4276 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4277 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
tonyp@2717 4278 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
tonyp@2717 4279 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
tonyp@2717 4280
tonyp@2717 4281 G1PrintRegionLivenessInfoClosure::
tonyp@2717 4282 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
tonyp@2717 4283 : _out(out),
tonyp@2717 4284 _total_used_bytes(0), _total_capacity_bytes(0),
tonyp@2717 4285 _total_prev_live_bytes(0), _total_next_live_bytes(0),
tonyp@2717 4286 _hum_used_bytes(0), _hum_capacity_bytes(0),
tonyp@2717 4287 _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
tonyp@2717 4288 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2717 4289 MemRegion g1_committed = g1h->g1_committed();
tonyp@2717 4290 MemRegion g1_reserved = g1h->g1_reserved();
tonyp@2717 4291 double now = os::elapsedTime();
tonyp@2717 4292
tonyp@2717 4293 // Print the header of the output.
tonyp@2717 4294 _out->cr();
tonyp@2717 4295 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
tonyp@2717 4296 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
tonyp@2717 4297 G1PPRL_SUM_ADDR_FORMAT("committed")
tonyp@2717 4298 G1PPRL_SUM_ADDR_FORMAT("reserved")
tonyp@2717 4299 G1PPRL_SUM_BYTE_FORMAT("region-size"),
tonyp@2717 4300 g1_committed.start(), g1_committed.end(),
tonyp@2717 4301 g1_reserved.start(), g1_reserved.end(),
johnc@3182 4302 HeapRegion::GrainBytes);
tonyp@2717 4303 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4304 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4305 G1PPRL_TYPE_H_FORMAT
tonyp@2717 4306 G1PPRL_ADDR_BASE_H_FORMAT
tonyp@2717 4307 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4308 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4309 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4310 G1PPRL_DOUBLE_H_FORMAT,
tonyp@2717 4311 "type", "address-range",
tonyp@2717 4312 "used", "prev-live", "next-live", "gc-eff");
johnc@3173 4313 _out->print_cr(G1PPRL_LINE_PREFIX
johnc@3173 4314 G1PPRL_TYPE_H_FORMAT
johnc@3173 4315 G1PPRL_ADDR_BASE_H_FORMAT
johnc@3173 4316 G1PPRL_BYTE_H_FORMAT
johnc@3173 4317 G1PPRL_BYTE_H_FORMAT
johnc@3173 4318 G1PPRL_BYTE_H_FORMAT
johnc@3173 4319 G1PPRL_DOUBLE_H_FORMAT,
johnc@3173 4320 "", "",
johnc@3173 4321 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
tonyp@2717 4322 }
tonyp@2717 4323
tonyp@2717 4324 // It takes as a parameter a reference to one of the _hum_* fields, it
tonyp@2717 4325 // deduces the corresponding value for a region in a humongous region
tonyp@2717 4326 // series (either the region size, or what's left if the _hum_* field
tonyp@2717 4327 // is < the region size), and updates the _hum_* field accordingly.
tonyp@2717 4328 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
tonyp@2717 4329 size_t bytes = 0;
tonyp@2717 4330 // The > 0 check is to deal with the prev and next live bytes which
tonyp@2717 4331 // could be 0.
tonyp@2717 4332 if (*hum_bytes > 0) {
johnc@3182 4333 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
tonyp@2717 4334 *hum_bytes -= bytes;
tonyp@2717 4335 }
tonyp@2717 4336 return bytes;
tonyp@2717 4337 }
tonyp@2717 4338
tonyp@2717 4339 // It deduces the values for a region in a humongous region series
tonyp@2717 4340 // from the _hum_* fields and updates those accordingly. It assumes
tonyp@2717 4341 // that that _hum_* fields have already been set up from the "starts
tonyp@2717 4342 // humongous" region and we visit the regions in address order.
tonyp@2717 4343 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
tonyp@2717 4344 size_t* capacity_bytes,
tonyp@2717 4345 size_t* prev_live_bytes,
tonyp@2717 4346 size_t* next_live_bytes) {
tonyp@2717 4347 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
tonyp@2717 4348 *used_bytes = get_hum_bytes(&_hum_used_bytes);
tonyp@2717 4349 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
tonyp@2717 4350 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
tonyp@2717 4351 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
tonyp@2717 4352 }
tonyp@2717 4353
tonyp@2717 4354 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
tonyp@2717 4355 const char* type = "";
tonyp@2717 4356 HeapWord* bottom = r->bottom();
tonyp@2717 4357 HeapWord* end = r->end();
tonyp@2717 4358 size_t capacity_bytes = r->capacity();
tonyp@2717 4359 size_t used_bytes = r->used();
tonyp@2717 4360 size_t prev_live_bytes = r->live_bytes();
tonyp@2717 4361 size_t next_live_bytes = r->next_live_bytes();
tonyp@2717 4362 double gc_eff = r->gc_efficiency();
tonyp@2717 4363 if (r->used() == 0) {
tonyp@2717 4364 type = "FREE";
tonyp@2717 4365 } else if (r->is_survivor()) {
tonyp@2717 4366 type = "SURV";
tonyp@2717 4367 } else if (r->is_young()) {
tonyp@2717 4368 type = "EDEN";
tonyp@2717 4369 } else if (r->startsHumongous()) {
tonyp@2717 4370 type = "HUMS";
tonyp@2717 4371
tonyp@2717 4372 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
tonyp@2717 4373 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
tonyp@2717 4374 "they should have been zeroed after the last time we used them");
tonyp@2717 4375 // Set up the _hum_* fields.
tonyp@2717 4376 _hum_capacity_bytes = capacity_bytes;
tonyp@2717 4377 _hum_used_bytes = used_bytes;
tonyp@2717 4378 _hum_prev_live_bytes = prev_live_bytes;
tonyp@2717 4379 _hum_next_live_bytes = next_live_bytes;
tonyp@2717 4380 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4381 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4382 end = bottom + HeapRegion::GrainWords;
tonyp@2717 4383 } else if (r->continuesHumongous()) {
tonyp@2717 4384 type = "HUMC";
tonyp@2717 4385 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4386 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4387 assert(end == bottom + HeapRegion::GrainWords, "invariant");
tonyp@2717 4388 } else {
tonyp@2717 4389 type = "OLD";
tonyp@2717 4390 }
tonyp@2717 4391
tonyp@2717 4392 _total_used_bytes += used_bytes;
tonyp@2717 4393 _total_capacity_bytes += capacity_bytes;
tonyp@2717 4394 _total_prev_live_bytes += prev_live_bytes;
tonyp@2717 4395 _total_next_live_bytes += next_live_bytes;
tonyp@2717 4396
tonyp@2717 4397 // Print a line for this particular region.
tonyp@2717 4398 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4399 G1PPRL_TYPE_FORMAT
tonyp@2717 4400 G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4401 G1PPRL_BYTE_FORMAT
tonyp@2717 4402 G1PPRL_BYTE_FORMAT
tonyp@2717 4403 G1PPRL_BYTE_FORMAT
tonyp@2717 4404 G1PPRL_DOUBLE_FORMAT,
tonyp@2717 4405 type, bottom, end,
tonyp@2717 4406 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
tonyp@2717 4407
tonyp@2717 4408 return false;
tonyp@2717 4409 }
tonyp@2717 4410
tonyp@2717 4411 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
tonyp@2717 4412 // Print the footer of the output.
tonyp@2717 4413 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4414 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4415 " SUMMARY"
tonyp@2717 4416 G1PPRL_SUM_MB_FORMAT("capacity")
tonyp@2717 4417 G1PPRL_SUM_MB_PERC_FORMAT("used")
tonyp@2717 4418 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
tonyp@2717 4419 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
tonyp@2717 4420 bytes_to_mb(_total_capacity_bytes),
tonyp@2717 4421 bytes_to_mb(_total_used_bytes),
tonyp@2717 4422 perc(_total_used_bytes, _total_capacity_bytes),
tonyp@2717 4423 bytes_to_mb(_total_prev_live_bytes),
tonyp@2717 4424 perc(_total_prev_live_bytes, _total_capacity_bytes),
tonyp@2717 4425 bytes_to_mb(_total_next_live_bytes),
tonyp@2717 4426 perc(_total_next_live_bytes, _total_capacity_bytes));
tonyp@2717 4427 _out->cr();
tonyp@2717 4428 }

mercurial