src/share/vm/memory/cardTableRS.cpp

Wed, 01 May 2013 14:11:01 +0100

author
chegar
date
Wed, 01 May 2013 14:11:01 +0100
changeset 5246
4b52137b07c9
parent 4967
5a9fa2ba85f0
child 5103
f9be75d21404
permissions
-rw-r--r--

Merge

duke@435 1 /*
dcubed@4967 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableRS.hpp"
stefank@2314 28 #include "memory/genCollectedHeap.hpp"
stefank@2314 29 #include "memory/generation.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "oops/oop.inline.hpp"
stefank@2314 32 #include "runtime/java.hpp"
stefank@2314 33 #include "runtime/os.hpp"
jprovino@4542 34 #include "utilities/macros.hpp"
jprovino@4542 35 #if INCLUDE_ALL_GCS
stefank@2314 36 #include "gc_implementation/g1/concurrentMark.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
jprovino@4542 38 #endif // INCLUDE_ALL_GCS
duke@435 39
duke@435 40 CardTableRS::CardTableRS(MemRegion whole_heap,
duke@435 41 int max_covered_regions) :
ysr@777 42 GenRemSet(),
ysr@777 43 _cur_youngergen_card_val(youngergenP1_card),
ysr@777 44 _regions_to_iterate(max_covered_regions - 1)
duke@435 45 {
jprovino@4542 46 #if INCLUDE_ALL_GCS
ysr@777 47 if (UseG1GC) {
ysr@777 48 _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
ysr@777 49 max_covered_regions);
ysr@777 50 } else {
ysr@777 51 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 52 }
ysr@777 53 #else
ysr@777 54 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 55 #endif
ysr@777 56 set_bs(_ct_bs);
dcubed@4967 57 _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
duke@435 58 if (_last_cur_val_in_gen == NULL) {
dcubed@4967 59 vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
duke@435 60 }
duke@435 61 for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
duke@435 62 _last_cur_val_in_gen[i] = clean_card_val();
duke@435 63 }
ysr@777 64 _ct_bs->set_CTRS(this);
duke@435 65 }
duke@435 66
duke@435 67 void CardTableRS::resize_covered_region(MemRegion new_region) {
ysr@777 68 _ct_bs->resize_covered_region(new_region);
duke@435 69 }
duke@435 70
duke@435 71 jbyte CardTableRS::find_unused_youngergenP_card_value() {
duke@435 72 for (jbyte v = youngergenP1_card;
duke@435 73 v < cur_youngergen_and_prev_nonclean_card;
duke@435 74 v++) {
duke@435 75 bool seen = false;
ysr@777 76 for (int g = 0; g < _regions_to_iterate; g++) {
duke@435 77 if (_last_cur_val_in_gen[g] == v) {
duke@435 78 seen = true;
duke@435 79 break;
duke@435 80 }
duke@435 81 }
duke@435 82 if (!seen) return v;
duke@435 83 }
duke@435 84 ShouldNotReachHere();
duke@435 85 return 0;
duke@435 86 }
duke@435 87
duke@435 88 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
duke@435 89 // Parallel or sequential, we must always set the prev to equal the
duke@435 90 // last one written.
duke@435 91 if (parallel) {
duke@435 92 // Find a parallel value to be used next.
duke@435 93 jbyte next_val = find_unused_youngergenP_card_value();
duke@435 94 set_cur_youngergen_card_val(next_val);
duke@435 95
duke@435 96 } else {
duke@435 97 // In an sequential traversal we will always write youngergen, so that
duke@435 98 // the inline barrier is correct.
duke@435 99 set_cur_youngergen_card_val(youngergen_card);
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 void CardTableRS::younger_refs_iterate(Generation* g,
duke@435 104 OopsInGenClosure* blk) {
duke@435 105 _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
duke@435 106 g->younger_refs_iterate(blk);
duke@435 107 }
duke@435 108
ysr@2819 109 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
ysr@2819 110 if (_is_par) {
ysr@2819 111 return clear_card_parallel(entry);
ysr@2819 112 } else {
ysr@2819 113 return clear_card_serial(entry);
ysr@2819 114 }
ysr@2819 115 }
ysr@2819 116
ysr@2819 117 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
ysr@2819 118 while (true) {
ysr@2819 119 // In the parallel case, we may have to do this several times.
ysr@2819 120 jbyte entry_val = *entry;
ysr@2819 121 assert(entry_val != CardTableRS::clean_card_val(),
ysr@2819 122 "We shouldn't be looking at clean cards, and this should "
ysr@2819 123 "be the only place they get cleaned.");
ysr@2819 124 if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
ysr@2819 125 || _ct->is_prev_youngergen_card_val(entry_val)) {
ysr@2819 126 jbyte res =
ysr@2819 127 Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
ysr@2819 128 if (res == entry_val) {
ysr@2819 129 break;
ysr@2819 130 } else {
ysr@2819 131 assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
ysr@2819 132 "The CAS above should only fail if another thread did "
ysr@2819 133 "a GC write barrier.");
duke@435 134 }
ysr@2819 135 } else if (entry_val ==
ysr@2819 136 CardTableRS::cur_youngergen_and_prev_nonclean_card) {
ysr@2819 137 // Parallelism shouldn't matter in this case. Only the thread
ysr@2819 138 // assigned to scan the card should change this value.
ysr@2819 139 *entry = _ct->cur_youngergen_card_val();
ysr@2819 140 break;
duke@435 141 } else {
ysr@2819 142 assert(entry_val == _ct->cur_youngergen_card_val(),
ysr@2819 143 "Should be the only possibility.");
ysr@2819 144 // In this case, the card was clean before, and become
ysr@2819 145 // cur_youngergen only because of processing of a promoted object.
ysr@2819 146 // We don't have to look at the card.
ysr@2819 147 return false;
duke@435 148 }
duke@435 149 }
ysr@2819 150 return true;
ysr@2819 151 }
duke@435 152
ysr@2819 153
ysr@2819 154 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
ysr@2819 155 jbyte entry_val = *entry;
ysr@2819 156 assert(entry_val != CardTableRS::clean_card_val(),
ysr@2819 157 "We shouldn't be looking at clean cards, and this should "
ysr@2819 158 "be the only place they get cleaned.");
ysr@2819 159 assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
ysr@2819 160 "This should be possible in the sequential case.");
ysr@2819 161 *entry = CardTableRS::clean_card_val();
ysr@2819 162 return true;
ysr@2819 163 }
ysr@2819 164
ysr@2819 165 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
ysr@2889 166 DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
duke@435 167 _dirty_card_closure(dirty_card_closure), _ct(ct) {
jmasa@3294 168 // Cannot yet substitute active_workers for n_par_threads
jmasa@3294 169 // in the case where parallelism is being turned off by
jmasa@3294 170 // setting n_par_threads to 0.
duke@435 171 _is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 172 assert(!_is_par ||
jmasa@3294 173 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 174 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
ysr@2819 175 }
ysr@2819 176
brutisso@3642 177 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
brutisso@3642 178 return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
brutisso@3642 179 }
brutisso@3642 180
ysr@2819 181 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
ysr@2819 182 assert(mr.word_size() > 0, "Error");
ysr@2819 183 assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
ysr@2819 184 // mr.end() may not necessarily be card aligned.
ysr@2819 185 jbyte* cur_entry = _ct->byte_for(mr.last());
ysr@2819 186 const jbyte* limit = _ct->byte_for(mr.start());
ysr@2819 187 HeapWord* end_of_non_clean = mr.end();
ysr@2819 188 HeapWord* start_of_non_clean = end_of_non_clean;
ysr@2819 189 while (cur_entry >= limit) {
ysr@2819 190 HeapWord* cur_hw = _ct->addr_for(cur_entry);
ysr@2819 191 if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
ysr@2819 192 // Continue the dirty range by opening the
ysr@2819 193 // dirty window one card to the left.
ysr@2819 194 start_of_non_clean = cur_hw;
ysr@2819 195 } else {
ysr@2819 196 // We hit a "clean" card; process any non-empty
ysr@2819 197 // "dirty" range accumulated so far.
ysr@2819 198 if (start_of_non_clean < end_of_non_clean) {
ysr@2819 199 const MemRegion mrd(start_of_non_clean, end_of_non_clean);
ysr@2819 200 _dirty_card_closure->do_MemRegion(mrd);
ysr@2819 201 }
brutisso@3642 202
brutisso@3642 203 // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
brutisso@3642 204 if (is_word_aligned(cur_entry)) {
brutisso@3642 205 jbyte* cur_row = cur_entry - BytesPerWord;
brutisso@3642 206 while (cur_row >= limit && *((intptr_t*)cur_row) == CardTableRS::clean_card_row()) {
brutisso@3642 207 cur_row -= BytesPerWord;
brutisso@3642 208 }
brutisso@3642 209 cur_entry = cur_row + BytesPerWord;
brutisso@3642 210 cur_hw = _ct->addr_for(cur_entry);
brutisso@3642 211 }
brutisso@3642 212
ysr@2819 213 // Reset the dirty window, while continuing to look
ysr@2819 214 // for the next dirty card that will start a
ysr@2819 215 // new dirty window.
ysr@2819 216 end_of_non_clean = cur_hw;
ysr@2819 217 start_of_non_clean = cur_hw;
ysr@2819 218 }
ysr@2819 219 // Note that "cur_entry" leads "start_of_non_clean" in
ysr@2819 220 // its leftward excursion after this point
ysr@2819 221 // in the loop and, when we hit the left end of "mr",
ysr@2819 222 // will point off of the left end of the card-table
ysr@2819 223 // for "mr".
ysr@2819 224 cur_entry--;
duke@435 225 }
ysr@2819 226 // If the first card of "mr" was dirty, we will have
ysr@2819 227 // been left with a dirty window, co-initial with "mr",
ysr@2819 228 // which we now process.
ysr@2819 229 if (start_of_non_clean < end_of_non_clean) {
ysr@2819 230 const MemRegion mrd(start_of_non_clean, end_of_non_clean);
ysr@2819 231 _dirty_card_closure->do_MemRegion(mrd);
duke@435 232 }
ysr@2819 233 }
ysr@2819 234
duke@435 235 // clean (by dirty->clean before) ==> cur_younger_gen
duke@435 236 // dirty ==> cur_youngergen_and_prev_nonclean_card
duke@435 237 // precleaned ==> cur_youngergen_and_prev_nonclean_card
duke@435 238 // prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card
duke@435 239 // cur-younger-gen ==> cur_younger_gen
duke@435 240 // cur_youngergen_and_prev_nonclean_card ==> no change.
coleenp@548 241 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
duke@435 242 jbyte* entry = ct_bs()->byte_for(field);
duke@435 243 do {
duke@435 244 jbyte entry_val = *entry;
duke@435 245 // We put this first because it's probably the most common case.
duke@435 246 if (entry_val == clean_card_val()) {
duke@435 247 // No threat of contention with cleaning threads.
duke@435 248 *entry = cur_youngergen_card_val();
duke@435 249 return;
duke@435 250 } else if (card_is_dirty_wrt_gen_iter(entry_val)
duke@435 251 || is_prev_youngergen_card_val(entry_val)) {
duke@435 252 // Mark it as both cur and prev youngergen; card cleaning thread will
duke@435 253 // eventually remove the previous stuff.
duke@435 254 jbyte new_val = cur_youngergen_and_prev_nonclean_card;
duke@435 255 jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
duke@435 256 // Did the CAS succeed?
duke@435 257 if (res == entry_val) return;
duke@435 258 // Otherwise, retry, to see the new value.
duke@435 259 continue;
duke@435 260 } else {
duke@435 261 assert(entry_val == cur_youngergen_and_prev_nonclean_card
duke@435 262 || entry_val == cur_youngergen_card_val(),
duke@435 263 "should be only possibilities.");
duke@435 264 return;
duke@435 265 }
duke@435 266 } while (true);
duke@435 267 }
duke@435 268
duke@435 269 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
duke@435 270 OopsInGenClosure* cl) {
ysr@2825 271 const MemRegion urasm = sp->used_region_at_save_marks();
ysr@2825 272 #ifdef ASSERT
ysr@2825 273 // Convert the assertion check to a warning if we are running
ysr@2825 274 // CMS+ParNew until related bug is fixed.
ysr@2825 275 MemRegion ur = sp->used_region();
ysr@2825 276 assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
ysr@2825 277 err_msg("Did you forget to call save_marks()? "
ysr@2825 278 "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
ysr@2825 279 "[" PTR_FORMAT ", " PTR_FORMAT ")",
ysr@2825 280 urasm.start(), urasm.end(), ur.start(), ur.end()));
ysr@2825 281 // In the case of CMS+ParNew, issue a warning
ysr@2825 282 if (!ur.contains(urasm)) {
ysr@2825 283 assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
ysr@2825 284 warning("CMS+ParNew: Did you forget to call save_marks()? "
ysr@2825 285 "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
ysr@2825 286 "[" PTR_FORMAT ", " PTR_FORMAT ")",
ysr@2825 287 urasm.start(), urasm.end(), ur.start(), ur.end());
ysr@2825 288 MemRegion ur2 = sp->used_region();
ysr@2825 289 MemRegion urasm2 = sp->used_region_at_save_marks();
ysr@2825 290 if (!ur.equals(ur2)) {
ysr@2825 291 warning("CMS+ParNew: Flickering used_region()!!");
ysr@2825 292 }
ysr@2825 293 if (!urasm.equals(urasm2)) {
ysr@2825 294 warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
ysr@2825 295 }
ysr@2889 296 ShouldNotReachHere();
ysr@2825 297 }
ysr@2825 298 #endif
ysr@2889 299 _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
duke@435 300 }
duke@435 301
coleenp@4037 302 void CardTableRS::clear_into_younger(Generation* gen) {
duke@435 303 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 304 // Generations younger than gen have been evacuated. We can clear
duke@435 305 // card table entries for gen (we know that it has no pointers
duke@435 306 // to younger gens) and for those below. The card tables for
coleenp@4037 307 // the youngest gen need never be cleared.
duke@435 308 // There's a bit of subtlety in the clear() and invalidate()
duke@435 309 // methods that we exploit here and in invalidate_or_clear()
duke@435 310 // below to avoid missing cards at the fringes. If clear() or
duke@435 311 // invalidate() are changed in the future, this code should
duke@435 312 // be revisited. 20040107.ysr
duke@435 313 Generation* g = gen;
duke@435 314 for(Generation* prev_gen = gch->prev_gen(g);
duke@435 315 prev_gen != NULL;
duke@435 316 g = prev_gen, prev_gen = gch->prev_gen(g)) {
duke@435 317 MemRegion to_be_cleared_mr = g->prev_used_region();
duke@435 318 clear(to_be_cleared_mr);
duke@435 319 }
duke@435 320 }
duke@435 321
coleenp@4037 322 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger) {
duke@435 323 GenCollectedHeap* gch = GenCollectedHeap::heap();
coleenp@4037 324 // For each generation gen (and younger)
duke@435 325 // invalidate the cards for the currently occupied part
duke@435 326 // of that generation and clear the cards for the
duke@435 327 // unoccupied part of the generation (if any, making use
duke@435 328 // of that generation's prev_used_region to determine that
duke@435 329 // region). No need to do anything for the youngest
duke@435 330 // generation. Also see note#20040107.ysr above.
duke@435 331 Generation* g = gen;
duke@435 332 for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
duke@435 333 g = prev_gen, prev_gen = gch->prev_gen(g)) {
duke@435 334 MemRegion used_mr = g->used_region();
duke@435 335 MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
duke@435 336 if (!to_be_cleared_mr.is_empty()) {
duke@435 337 clear(to_be_cleared_mr);
duke@435 338 }
duke@435 339 invalidate(used_mr);
duke@435 340 if (!younger) break;
duke@435 341 }
duke@435 342 }
duke@435 343
duke@435 344
duke@435 345 class VerifyCleanCardClosure: public OopClosure {
coleenp@548 346 private:
coleenp@548 347 HeapWord* _boundary;
coleenp@548 348 HeapWord* _begin;
coleenp@548 349 HeapWord* _end;
coleenp@548 350 protected:
coleenp@548 351 template <class T> void do_oop_work(T* p) {
duke@435 352 HeapWord* jp = (HeapWord*)p;
ysr@2710 353 assert(jp >= _begin && jp < _end,
ysr@2710 354 err_msg("Error: jp " PTR_FORMAT " should be within "
ysr@2710 355 "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
mikael@4668 356 jp, _begin, _end));
ysr@2710 357 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@2710 358 guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
ysr@2710 359 err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
ysr@2710 360 "clean card crosses boundary" PTR_FORMAT,
ysr@2710 361 (HeapWord*)obj, jp, _boundary));
duke@435 362 }
ysr@2710 363
coleenp@548 364 public:
coleenp@548 365 VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
ysr@2710 366 _boundary(b), _begin(begin), _end(end) {
ysr@2710 367 assert(b <= begin,
ysr@2710 368 err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
ysr@2710 369 b, begin));
ysr@2710 370 assert(begin <= end,
ysr@2710 371 err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
ysr@2710 372 begin, end));
ysr@2710 373 }
ysr@2710 374
coleenp@548 375 virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); }
coleenp@548 376 virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
duke@435 377 };
duke@435 378
duke@435 379 class VerifyCTSpaceClosure: public SpaceClosure {
coleenp@548 380 private:
duke@435 381 CardTableRS* _ct;
duke@435 382 HeapWord* _boundary;
duke@435 383 public:
duke@435 384 VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
duke@435 385 _ct(ct), _boundary(boundary) {}
coleenp@548 386 virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
duke@435 387 };
duke@435 388
duke@435 389 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
duke@435 390 CardTableRS* _ct;
duke@435 391 public:
duke@435 392 VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
duke@435 393 void do_generation(Generation* gen) {
duke@435 394 // Skip the youngest generation.
duke@435 395 if (gen->level() == 0) return;
duke@435 396 // Normally, we're interested in pointers to younger generations.
duke@435 397 VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
duke@435 398 gen->space_iterate(&blk, true);
duke@435 399 }
duke@435 400 };
duke@435 401
duke@435 402 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
duke@435 403 // We don't need to do young-gen spaces.
duke@435 404 if (s->end() <= gen_boundary) return;
duke@435 405 MemRegion used = s->used_region();
duke@435 406
duke@435 407 jbyte* cur_entry = byte_for(used.start());
duke@435 408 jbyte* limit = byte_after(used.last());
duke@435 409 while (cur_entry < limit) {
duke@435 410 if (*cur_entry == CardTableModRefBS::clean_card) {
duke@435 411 jbyte* first_dirty = cur_entry+1;
duke@435 412 while (first_dirty < limit &&
duke@435 413 *first_dirty == CardTableModRefBS::clean_card) {
duke@435 414 first_dirty++;
duke@435 415 }
duke@435 416 // If the first object is a regular object, and it has a
duke@435 417 // young-to-old field, that would mark the previous card.
duke@435 418 HeapWord* boundary = addr_for(cur_entry);
duke@435 419 HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
duke@435 420 HeapWord* boundary_block = s->block_start(boundary);
duke@435 421 HeapWord* begin = boundary; // Until proven otherwise.
duke@435 422 HeapWord* start_block = boundary_block; // Until proven otherwise.
duke@435 423 if (boundary_block < boundary) {
duke@435 424 if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
duke@435 425 oop boundary_obj = oop(boundary_block);
duke@435 426 if (!boundary_obj->is_objArray() &&
duke@435 427 !boundary_obj->is_typeArray()) {
duke@435 428 guarantee(cur_entry > byte_for(used.start()),
duke@435 429 "else boundary would be boundary_block");
duke@435 430 if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
duke@435 431 begin = boundary_block + s->block_size(boundary_block);
duke@435 432 start_block = begin;
duke@435 433 }
duke@435 434 }
duke@435 435 }
duke@435 436 }
duke@435 437 // Now traverse objects until end.
ysr@2710 438 if (begin < end) {
ysr@2710 439 MemRegion mr(begin, end);
ysr@2710 440 VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
ysr@2710 441 for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
ysr@2710 442 if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
coleenp@4037 443 oop(cur)->oop_iterate_no_header(&verify_blk, mr);
ysr@2710 444 }
duke@435 445 }
duke@435 446 }
duke@435 447 cur_entry = first_dirty;
duke@435 448 } else {
duke@435 449 // We'd normally expect that cur_youngergen_and_prev_nonclean_card
duke@435 450 // is a transient value, that cannot be in the card table
duke@435 451 // except during GC, and thus assert that:
duke@435 452 // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
duke@435 453 // "Illegal CT value");
duke@435 454 // That however, need not hold, as will become clear in the
duke@435 455 // following...
duke@435 456
duke@435 457 // We'd normally expect that if we are in the parallel case,
duke@435 458 // we can't have left a prev value (which would be different
duke@435 459 // from the current value) in the card table, and so we'd like to
duke@435 460 // assert that:
duke@435 461 // guarantee(cur_youngergen_card_val() == youngergen_card
duke@435 462 // || !is_prev_youngergen_card_val(*cur_entry),
duke@435 463 // "Illegal CT value");
duke@435 464 // That, however, may not hold occasionally, because of
duke@435 465 // CMS or MSC in the old gen. To wit, consider the
duke@435 466 // following two simple illustrative scenarios:
duke@435 467 // (a) CMS: Consider the case where a large object L
duke@435 468 // spanning several cards is allocated in the old
duke@435 469 // gen, and has a young gen reference stored in it, dirtying
duke@435 470 // some interior cards. A young collection scans the card,
duke@435 471 // finds a young ref and installs a youngergenP_n value.
duke@435 472 // L then goes dead. Now a CMS collection starts,
duke@435 473 // finds L dead and sweeps it up. Assume that L is
duke@435 474 // abutting _unallocated_blk, so _unallocated_blk is
duke@435 475 // adjusted down to (below) L. Assume further that
duke@435 476 // no young collection intervenes during this CMS cycle.
duke@435 477 // The next young gen cycle will not get to look at this
duke@435 478 // youngergenP_n card since it lies in the unoccupied
duke@435 479 // part of the space.
duke@435 480 // Some young collections later the blocks on this
duke@435 481 // card can be re-allocated either due to direct allocation
duke@435 482 // or due to absorbing promotions. At this time, the
duke@435 483 // before-gc verification will fail the above assert.
duke@435 484 // (b) MSC: In this case, an object L with a young reference
duke@435 485 // is on a card that (therefore) holds a youngergen_n value.
duke@435 486 // Suppose also that L lies towards the end of the used
duke@435 487 // the used space before GC. An MSC collection
duke@435 488 // occurs that compacts to such an extent that this
duke@435 489 // card is no longer in the occupied part of the space.
duke@435 490 // Since current code in MSC does not always clear cards
duke@435 491 // in the unused part of old gen, this stale youngergen_n
duke@435 492 // value is left behind and can later be covered by
duke@435 493 // an object when promotion or direct allocation
duke@435 494 // re-allocates that part of the heap.
duke@435 495 //
duke@435 496 // Fortunately, the presence of such stale card values is
duke@435 497 // "only" a minor annoyance in that subsequent young collections
duke@435 498 // might needlessly scan such cards, but would still never corrupt
duke@435 499 // the heap as a result. However, it's likely not to be a significant
duke@435 500 // performance inhibitor in practice. For instance,
duke@435 501 // some recent measurements with unoccupied cards eagerly cleared
duke@435 502 // out to maintain this invariant, showed next to no
duke@435 503 // change in young collection times; of course one can construct
duke@435 504 // degenerate examples where the cost can be significant.)
duke@435 505 // Note, in particular, that if the "stale" card is modified
duke@435 506 // after re-allocation, it would be dirty, not "stale". Thus,
duke@435 507 // we can never have a younger ref in such a card and it is
duke@435 508 // safe not to scan that card in any collection. [As we see
duke@435 509 // below, we do some unnecessary scanning
duke@435 510 // in some cases in the current parallel scanning algorithm.]
duke@435 511 //
duke@435 512 // The main point below is that the parallel card scanning code
duke@435 513 // deals correctly with these stale card values. There are two main
duke@435 514 // cases to consider where we have a stale "younger gen" value and a
duke@435 515 // "derivative" case to consider, where we have a stale
duke@435 516 // "cur_younger_gen_and_prev_non_clean" value, as will become
duke@435 517 // apparent in the case analysis below.
duke@435 518 // o Case 1. If the stale value corresponds to a younger_gen_n
duke@435 519 // value other than the cur_younger_gen value then the code
duke@435 520 // treats this as being tantamount to a prev_younger_gen
duke@435 521 // card. This means that the card may be unnecessarily scanned.
duke@435 522 // There are two sub-cases to consider:
duke@435 523 // o Case 1a. Let us say that the card is in the occupied part
duke@435 524 // of the generation at the time the collection begins. In
duke@435 525 // that case the card will be either cleared when it is scanned
duke@435 526 // for young pointers, or will be set to cur_younger_gen as a
duke@435 527 // result of promotion. (We have elided the normal case where
duke@435 528 // the scanning thread and the promoting thread interleave
duke@435 529 // possibly resulting in a transient
duke@435 530 // cur_younger_gen_and_prev_non_clean value before settling
duke@435 531 // to cur_younger_gen. [End Case 1a.]
duke@435 532 // o Case 1b. Consider now the case when the card is in the unoccupied
duke@435 533 // part of the space which becomes occupied because of promotions
duke@435 534 // into it during the current young GC. In this case the card
duke@435 535 // will never be scanned for young references. The current
duke@435 536 // code will set the card value to either
duke@435 537 // cur_younger_gen_and_prev_non_clean or leave
duke@435 538 // it with its stale value -- because the promotions didn't
duke@435 539 // result in any younger refs on that card. Of these two
duke@435 540 // cases, the latter will be covered in Case 1a during
duke@435 541 // a subsequent scan. To deal with the former case, we need
duke@435 542 // to further consider how we deal with a stale value of
duke@435 543 // cur_younger_gen_and_prev_non_clean in our case analysis
duke@435 544 // below. This we do in Case 3 below. [End Case 1b]
duke@435 545 // [End Case 1]
duke@435 546 // o Case 2. If the stale value corresponds to cur_younger_gen being
duke@435 547 // a value not necessarily written by a current promotion, the
duke@435 548 // card will not be scanned by the younger refs scanning code.
duke@435 549 // (This is OK since as we argued above such cards cannot contain
duke@435 550 // any younger refs.) The result is that this value will be
duke@435 551 // treated as a prev_younger_gen value in a subsequent collection,
duke@435 552 // which is addressed in Case 1 above. [End Case 2]
duke@435 553 // o Case 3. We here consider the "derivative" case from Case 1b. above
duke@435 554 // because of which we may find a stale
duke@435 555 // cur_younger_gen_and_prev_non_clean card value in the table.
duke@435 556 // Once again, as in Case 1, we consider two subcases, depending
duke@435 557 // on whether the card lies in the occupied or unoccupied part
duke@435 558 // of the space at the start of the young collection.
duke@435 559 // o Case 3a. Let us say the card is in the occupied part of
duke@435 560 // the old gen at the start of the young collection. In that
duke@435 561 // case, the card will be scanned by the younger refs scanning
duke@435 562 // code which will set it to cur_younger_gen. In a subsequent
duke@435 563 // scan, the card will be considered again and get its final
duke@435 564 // correct value. [End Case 3a]
duke@435 565 // o Case 3b. Now consider the case where the card is in the
duke@435 566 // unoccupied part of the old gen, and is occupied as a result
duke@435 567 // of promotions during thus young gc. In that case,
duke@435 568 // the card will not be scanned for younger refs. The presence
duke@435 569 // of newly promoted objects on the card will then result in
duke@435 570 // its keeping the value cur_younger_gen_and_prev_non_clean
duke@435 571 // value, which we have dealt with in Case 3 here. [End Case 3b]
duke@435 572 // [End Case 3]
duke@435 573 //
duke@435 574 // (Please refer to the code in the helper class
duke@435 575 // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
duke@435 576 //
duke@435 577 // The informal arguments above can be tightened into a formal
duke@435 578 // correctness proof and it behooves us to write up such a proof,
duke@435 579 // or to use model checking to prove that there are no lingering
duke@435 580 // concerns.
duke@435 581 //
duke@435 582 // Clearly because of Case 3b one cannot bound the time for
duke@435 583 // which a card will retain what we have called a "stale" value.
duke@435 584 // However, one can obtain a Loose upper bound on the redundant
duke@435 585 // work as a result of such stale values. Note first that any
duke@435 586 // time a stale card lies in the occupied part of the space at
duke@435 587 // the start of the collection, it is scanned by younger refs
duke@435 588 // code and we can define a rank function on card values that
duke@435 589 // declines when this is so. Note also that when a card does not
duke@435 590 // lie in the occupied part of the space at the beginning of a
duke@435 591 // young collection, its rank can either decline or stay unchanged.
duke@435 592 // In this case, no extra work is done in terms of redundant
duke@435 593 // younger refs scanning of that card.
duke@435 594 // Then, the case analysis above reveals that, in the worst case,
duke@435 595 // any such stale card will be scanned unnecessarily at most twice.
duke@435 596 //
duke@435 597 // It is nonethelss advisable to try and get rid of some of this
duke@435 598 // redundant work in a subsequent (low priority) re-design of
duke@435 599 // the card-scanning code, if only to simplify the underlying
duke@435 600 // state machine analysis/proof. ysr 1/28/2002. XXX
duke@435 601 cur_entry++;
duke@435 602 }
duke@435 603 }
duke@435 604 }
duke@435 605
duke@435 606 void CardTableRS::verify() {
duke@435 607 // At present, we only know how to verify the card table RS for
duke@435 608 // generational heaps.
duke@435 609 VerifyCTGenClosure blk(this);
duke@435 610 CollectedHeap* ch = Universe::heap();
duke@435 611
duke@435 612 if (ch->kind() == CollectedHeap::GenCollectedHeap) {
duke@435 613 GenCollectedHeap::heap()->generation_iterate(&blk, false);
ysr@777 614 _ct_bs->verify();
duke@435 615 }
duke@435 616 }
duke@435 617
duke@435 618
jmasa@441 619 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
duke@435 620 if (!mr.is_empty()) {
duke@435 621 jbyte* cur_entry = byte_for(mr.start());
duke@435 622 jbyte* limit = byte_after(mr.last());
jmasa@441 623 // The region mr may not start on a card boundary so
jmasa@441 624 // the first card may reflect a write to the space
jmasa@441 625 // just prior to mr.
jmasa@441 626 if (!is_aligned(mr.start())) {
jmasa@441 627 cur_entry++;
jmasa@441 628 }
duke@435 629 for (;cur_entry < limit; cur_entry++) {
duke@435 630 guarantee(*cur_entry == CardTableModRefBS::clean_card,
duke@435 631 "Unexpected dirty card found");
duke@435 632 }
duke@435 633 }
duke@435 634 }

mercurial