src/share/vm/c1/c1_IR.cpp

Thu, 10 Oct 2013 15:44:12 +0200

author
anoll
date
Thu, 10 Oct 2013 15:44:12 +0200
changeset 5919
469216acdb28
parent 5259
ef57c43512d6
child 6198
55fb97c4c58d
permissions
-rw-r--r--

8023014: CodeSweeperSweepNoFlushTest.java fails with HS crash
Summary: Ensure ensure correct initialization of compiler runtime
Reviewed-by: kvn, twisti

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_GraphBuilder.hpp"
stefank@2314 29 #include "c1/c1_IR.hpp"
stefank@2314 30 #include "c1/c1_InstructionPrinter.hpp"
stefank@2314 31 #include "c1/c1_Optimizer.hpp"
stefank@2314 32 #include "utilities/bitMap.inline.hpp"
duke@435 33
duke@435 34
duke@435 35 // Implementation of XHandlers
duke@435 36 //
duke@435 37 // Note: This code could eventually go away if we are
duke@435 38 // just using the ciExceptionHandlerStream.
duke@435 39
duke@435 40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
duke@435 41 ciExceptionHandlerStream s(method);
duke@435 42 while (!s.is_done()) {
duke@435 43 _list.append(new XHandler(s.handler()));
duke@435 44 s.next();
duke@435 45 }
duke@435 46 assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
duke@435 47 }
duke@435 48
duke@435 49 // deep copy of all XHandler contained in list
duke@435 50 XHandlers::XHandlers(XHandlers* other) :
duke@435 51 _list(other->length())
duke@435 52 {
duke@435 53 for (int i = 0; i < other->length(); i++) {
duke@435 54 _list.append(new XHandler(other->handler_at(i)));
duke@435 55 }
duke@435 56 }
duke@435 57
duke@435 58 // Returns whether a particular exception type can be caught. Also
duke@435 59 // returns true if klass is unloaded or any exception handler
duke@435 60 // classes are unloaded. type_is_exact indicates whether the throw
duke@435 61 // is known to be exactly that class or it might throw a subtype.
duke@435 62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
duke@435 63 // the type is unknown so be conservative
duke@435 64 if (!klass->is_loaded()) {
duke@435 65 return true;
duke@435 66 }
duke@435 67
duke@435 68 for (int i = 0; i < length(); i++) {
duke@435 69 XHandler* handler = handler_at(i);
duke@435 70 if (handler->is_catch_all()) {
duke@435 71 // catch of ANY
duke@435 72 return true;
duke@435 73 }
duke@435 74 ciInstanceKlass* handler_klass = handler->catch_klass();
duke@435 75 // if it's unknown it might be catchable
duke@435 76 if (!handler_klass->is_loaded()) {
duke@435 77 return true;
duke@435 78 }
duke@435 79 // if the throw type is definitely a subtype of the catch type
duke@435 80 // then it can be caught.
duke@435 81 if (klass->is_subtype_of(handler_klass)) {
duke@435 82 return true;
duke@435 83 }
duke@435 84 if (!type_is_exact) {
duke@435 85 // If the type isn't exactly known then it can also be caught by
duke@435 86 // catch statements where the inexact type is a subtype of the
duke@435 87 // catch type.
duke@435 88 // given: foo extends bar extends Exception
duke@435 89 // throw bar can be caught by catch foo, catch bar, and catch
duke@435 90 // Exception, however it can't be caught by any handlers without
duke@435 91 // bar in its type hierarchy.
duke@435 92 if (handler_klass->is_subtype_of(klass)) {
duke@435 93 return true;
duke@435 94 }
duke@435 95 }
duke@435 96 }
duke@435 97
duke@435 98 return false;
duke@435 99 }
duke@435 100
duke@435 101
duke@435 102 bool XHandlers::equals(XHandlers* others) const {
duke@435 103 if (others == NULL) return false;
duke@435 104 if (length() != others->length()) return false;
duke@435 105
duke@435 106 for (int i = 0; i < length(); i++) {
duke@435 107 if (!handler_at(i)->equals(others->handler_at(i))) return false;
duke@435 108 }
duke@435 109 return true;
duke@435 110 }
duke@435 111
duke@435 112 bool XHandler::equals(XHandler* other) const {
duke@435 113 assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
duke@435 114
duke@435 115 if (entry_pco() != other->entry_pco()) return false;
duke@435 116 if (scope_count() != other->scope_count()) return false;
duke@435 117 if (_desc != other->_desc) return false;
duke@435 118
duke@435 119 assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
duke@435 120 return true;
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 // Implementation of IRScope
duke@435 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
duke@435 126 GraphBuilder gm(compilation, this);
duke@435 127 NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
duke@435 128 if (compilation->bailed_out()) return NULL;
duke@435 129 return gm.start();
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
duke@435 134 : _callees(2)
duke@435 135 , _compilation(compilation)
duke@435 136 , _requires_phi_function(method->max_locals())
duke@435 137 {
duke@435 138 _caller = caller;
duke@435 139 _level = caller == NULL ? 0 : caller->level() + 1;
duke@435 140 _method = method;
duke@435 141 _xhandlers = new XHandlers(method);
duke@435 142 _number_of_locks = 0;
duke@435 143 _monitor_pairing_ok = method->has_balanced_monitors();
jiangli@3592 144 _wrote_final = false;
duke@435 145 _start = NULL;
duke@435 146
duke@435 147 if (osr_bci == -1) {
duke@435 148 _requires_phi_function.clear();
duke@435 149 } else {
duke@435 150 // selective creation of phi functions is not possibel in osr-methods
duke@435 151 _requires_phi_function.set_range(0, method->max_locals());
duke@435 152 }
duke@435 153
duke@435 154 assert(method->holder()->is_loaded() , "method holder must be loaded");
duke@435 155
duke@435 156 // build graph if monitor pairing is ok
duke@435 157 if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 int IRScope::max_stack() const {
duke@435 162 int my_max = method()->max_stack();
duke@435 163 int callee_max = 0;
duke@435 164 for (int i = 0; i < number_of_callees(); i++) {
duke@435 165 callee_max = MAX2(callee_max, callee_no(i)->max_stack());
duke@435 166 }
duke@435 167 return my_max + callee_max;
duke@435 168 }
duke@435 169
duke@435 170
cfang@1335 171 bool IRScopeDebugInfo::should_reexecute() {
cfang@1335 172 ciMethod* cur_method = scope()->method();
cfang@1335 173 int cur_bci = bci();
cfang@1335 174 if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
cfang@1335 175 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
cfang@1335 176 return Interpreter::bytecode_should_reexecute(code);
cfang@1335 177 } else
cfang@1335 178 return false;
cfang@1335 179 }
duke@435 180
duke@435 181
duke@435 182 // Implementation of CodeEmitInfo
duke@435 183
duke@435 184 // Stack must be NON-null
roland@4860 185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
duke@435 186 : _scope(stack->scope())
duke@435 187 , _scope_debug_info(NULL)
duke@435 188 , _oop_map(NULL)
duke@435 189 , _stack(stack)
duke@435 190 , _exception_handlers(exception_handlers)
roland@4860 191 , _is_method_handle_invoke(false)
roland@4860 192 , _deoptimize_on_exception(deoptimize_on_exception) {
duke@435 193 assert(_stack != NULL, "must be non null");
duke@435 194 }
duke@435 195
duke@435 196
roland@2174 197 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
duke@435 198 : _scope(info->_scope)
duke@435 199 , _exception_handlers(NULL)
duke@435 200 , _scope_debug_info(NULL)
twisti@1919 201 , _oop_map(NULL)
roland@2174 202 , _stack(stack == NULL ? info->_stack : stack)
roland@4860 203 , _is_method_handle_invoke(info->_is_method_handle_invoke)
roland@4860 204 , _deoptimize_on_exception(info->_deoptimize_on_exception) {
duke@435 205
duke@435 206 // deep copy of exception handlers
duke@435 207 if (info->_exception_handlers != NULL) {
duke@435 208 _exception_handlers = new XHandlers(info->_exception_handlers);
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212
twisti@1919 213 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
duke@435 214 // record the safepoint before recording the debug info for enclosing scopes
duke@435 215 recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
twisti@1919 216 _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
duke@435 217 recorder->end_safepoint(pc_offset);
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
duke@435 222 assert(_oop_map != NULL, "oop map must already exist");
duke@435 223 assert(opr->is_single_cpu(), "should not call otherwise");
duke@435 224
duke@435 225 VMReg name = frame_map()->regname(opr);
duke@435 226 _oop_map->set_oop(name);
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230
duke@435 231
duke@435 232 // Implementation of IR
duke@435 233
duke@435 234 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
duke@435 235 _locals_size(in_WordSize(-1))
duke@435 236 , _num_loops(0) {
duke@435 237 // setup IR fields
duke@435 238 _compilation = compilation;
duke@435 239 _top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
duke@435 240 _code = NULL;
duke@435 241 }
duke@435 242
duke@435 243
roland@4860 244 void IR::optimize_blocks() {
duke@435 245 Optimizer opt(this);
iveresov@2138 246 if (!compilation()->profile_branches()) {
iveresov@2138 247 if (DoCEE) {
iveresov@2138 248 opt.eliminate_conditional_expressions();
duke@435 249 #ifndef PRODUCT
iveresov@2138 250 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
iveresov@2138 251 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
duke@435 252 #endif
iveresov@2138 253 }
iveresov@2138 254 if (EliminateBlocks) {
iveresov@2138 255 opt.eliminate_blocks();
duke@435 256 #ifndef PRODUCT
iveresov@2138 257 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
iveresov@2138 258 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
duke@435 259 #endif
iveresov@2138 260 }
duke@435 261 }
roland@4860 262 }
roland@4860 263
roland@4860 264 void IR::eliminate_null_checks() {
roland@4860 265 Optimizer opt(this);
duke@435 266 if (EliminateNullChecks) {
duke@435 267 opt.eliminate_null_checks();
duke@435 268 #ifndef PRODUCT
duke@435 269 if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
duke@435 270 if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
duke@435 271 #endif
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 static int sort_pairs(BlockPair** a, BlockPair** b) {
duke@435 277 if ((*a)->from() == (*b)->from()) {
duke@435 278 return (*a)->to()->block_id() - (*b)->to()->block_id();
duke@435 279 } else {
duke@435 280 return (*a)->from()->block_id() - (*b)->from()->block_id();
duke@435 281 }
duke@435 282 }
duke@435 283
duke@435 284
duke@435 285 class CriticalEdgeFinder: public BlockClosure {
duke@435 286 BlockPairList blocks;
duke@435 287 IR* _ir;
duke@435 288
duke@435 289 public:
duke@435 290 CriticalEdgeFinder(IR* ir): _ir(ir) {}
duke@435 291 void block_do(BlockBegin* bb) {
duke@435 292 BlockEnd* be = bb->end();
duke@435 293 int nos = be->number_of_sux();
duke@435 294 if (nos >= 2) {
duke@435 295 for (int i = 0; i < nos; i++) {
duke@435 296 BlockBegin* sux = be->sux_at(i);
duke@435 297 if (sux->number_of_preds() >= 2) {
duke@435 298 blocks.append(new BlockPair(bb, sux));
duke@435 299 }
duke@435 300 }
duke@435 301 }
duke@435 302 }
duke@435 303
duke@435 304 void split_edges() {
duke@435 305 BlockPair* last_pair = NULL;
duke@435 306 blocks.sort(sort_pairs);
duke@435 307 for (int i = 0; i < blocks.length(); i++) {
duke@435 308 BlockPair* pair = blocks.at(i);
duke@435 309 if (last_pair != NULL && pair->is_same(last_pair)) continue;
duke@435 310 BlockBegin* from = pair->from();
duke@435 311 BlockBegin* to = pair->to();
duke@435 312 BlockBegin* split = from->insert_block_between(to);
duke@435 313 #ifndef PRODUCT
duke@435 314 if ((PrintIR || PrintIR1) && Verbose) {
duke@435 315 tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
duke@435 316 from->block_id(), to->block_id(), split->block_id());
duke@435 317 }
duke@435 318 #endif
duke@435 319 last_pair = pair;
duke@435 320 }
duke@435 321 }
duke@435 322 };
duke@435 323
duke@435 324 void IR::split_critical_edges() {
duke@435 325 CriticalEdgeFinder cef(this);
duke@435 326
duke@435 327 iterate_preorder(&cef);
duke@435 328 cef.split_edges();
duke@435 329 }
duke@435 330
duke@435 331
iveresov@1939 332 class UseCountComputer: public ValueVisitor, BlockClosure {
duke@435 333 private:
iveresov@1939 334 void visit(Value* n) {
duke@435 335 // Local instructions and Phis for expression stack values at the
duke@435 336 // start of basic blocks are not added to the instruction list
roland@2254 337 if (!(*n)->is_linked() && (*n)->can_be_linked()) {
duke@435 338 assert(false, "a node was not appended to the graph");
iveresov@1939 339 Compilation::current()->bailout("a node was not appended to the graph");
duke@435 340 }
duke@435 341 // use n's input if not visited before
duke@435 342 if (!(*n)->is_pinned() && !(*n)->has_uses()) {
duke@435 343 // note: a) if the instruction is pinned, it will be handled by compute_use_count
duke@435 344 // b) if the instruction has uses, it was touched before
duke@435 345 // => in both cases we don't need to update n's values
duke@435 346 uses_do(n);
duke@435 347 }
duke@435 348 // use n
duke@435 349 (*n)->_use_count++;
duke@435 350 }
duke@435 351
iveresov@1939 352 Values* worklist;
iveresov@1939 353 int depth;
duke@435 354 enum {
duke@435 355 max_recurse_depth = 20
duke@435 356 };
duke@435 357
iveresov@1939 358 void uses_do(Value* n) {
duke@435 359 depth++;
duke@435 360 if (depth > max_recurse_depth) {
duke@435 361 // don't allow the traversal to recurse too deeply
duke@435 362 worklist->push(*n);
duke@435 363 } else {
iveresov@1939 364 (*n)->input_values_do(this);
duke@435 365 // special handling for some instructions
duke@435 366 if ((*n)->as_BlockEnd() != NULL) {
duke@435 367 // note on BlockEnd:
duke@435 368 // must 'use' the stack only if the method doesn't
duke@435 369 // terminate, however, in those cases stack is empty
iveresov@1939 370 (*n)->state_values_do(this);
duke@435 371 }
duke@435 372 }
duke@435 373 depth--;
duke@435 374 }
duke@435 375
iveresov@1939 376 void block_do(BlockBegin* b) {
duke@435 377 depth = 0;
duke@435 378 // process all pinned nodes as the roots of expression trees
duke@435 379 for (Instruction* n = b; n != NULL; n = n->next()) {
duke@435 380 if (n->is_pinned()) uses_do(&n);
duke@435 381 }
duke@435 382 assert(depth == 0, "should have counted back down");
duke@435 383
duke@435 384 // now process any unpinned nodes which recursed too deeply
duke@435 385 while (worklist->length() > 0) {
duke@435 386 Value t = worklist->pop();
duke@435 387 if (!t->is_pinned()) {
duke@435 388 // compute the use count
duke@435 389 uses_do(&t);
duke@435 390
duke@435 391 // pin the instruction so that LIRGenerator doesn't recurse
duke@435 392 // too deeply during it's evaluation.
duke@435 393 t->pin();
duke@435 394 }
duke@435 395 }
duke@435 396 assert(depth == 0, "should have counted back down");
duke@435 397 }
duke@435 398
iveresov@1939 399 UseCountComputer() {
iveresov@1939 400 worklist = new Values();
iveresov@1939 401 depth = 0;
iveresov@1939 402 }
iveresov@1939 403
duke@435 404 public:
duke@435 405 static void compute(BlockList* blocks) {
iveresov@1939 406 UseCountComputer ucc;
iveresov@1939 407 blocks->iterate_backward(&ucc);
duke@435 408 }
duke@435 409 };
duke@435 410
duke@435 411
duke@435 412 // helper macro for short definition of trace-output inside code
duke@435 413 #ifndef PRODUCT
duke@435 414 #define TRACE_LINEAR_SCAN(level, code) \
duke@435 415 if (TraceLinearScanLevel >= level) { \
duke@435 416 code; \
duke@435 417 }
duke@435 418 #else
duke@435 419 #define TRACE_LINEAR_SCAN(level, code)
duke@435 420 #endif
duke@435 421
duke@435 422 class ComputeLinearScanOrder : public StackObj {
duke@435 423 private:
duke@435 424 int _max_block_id; // the highest block_id of a block
duke@435 425 int _num_blocks; // total number of blocks (smaller than _max_block_id)
duke@435 426 int _num_loops; // total number of loops
duke@435 427 bool _iterative_dominators;// method requires iterative computation of dominatiors
duke@435 428
duke@435 429 BlockList* _linear_scan_order; // the resulting list of blocks in correct order
duke@435 430
duke@435 431 BitMap _visited_blocks; // used for recursive processing of blocks
duke@435 432 BitMap _active_blocks; // used for recursive processing of blocks
duke@435 433 BitMap _dominator_blocks; // temproary BitMap used for computation of dominator
duke@435 434 intArray _forward_branches; // number of incoming forward branches for each block
duke@435 435 BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
duke@435 436 BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
duke@435 437 BlockList _work_list; // temporary list (used in mark_loops and compute_order)
roland@4860 438 BlockList _loop_headers;
duke@435 439
iveresov@2138 440 Compilation* _compilation;
iveresov@2138 441
duke@435 442 // accessors for _visited_blocks and _active_blocks
duke@435 443 void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
duke@435 444 bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
duke@435 445 bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
duke@435 446 void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
duke@435 447 void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
duke@435 448 void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
duke@435 449
duke@435 450 // accessors for _forward_branches
duke@435 451 void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
duke@435 452 int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
duke@435 453
duke@435 454 // accessors for _loop_map
duke@435 455 bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
duke@435 456 void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
duke@435 457 void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
duke@435 458
duke@435 459 // count edges between blocks
duke@435 460 void count_edges(BlockBegin* cur, BlockBegin* parent);
duke@435 461
duke@435 462 // loop detection
duke@435 463 void mark_loops();
duke@435 464 void clear_non_natural_loops(BlockBegin* start_block);
duke@435 465 void assign_loop_depth(BlockBegin* start_block);
duke@435 466
duke@435 467 // computation of final block order
duke@435 468 BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
duke@435 469 void compute_dominator(BlockBegin* cur, BlockBegin* parent);
duke@435 470 int compute_weight(BlockBegin* cur);
duke@435 471 bool ready_for_processing(BlockBegin* cur);
duke@435 472 void sort_into_work_list(BlockBegin* b);
duke@435 473 void append_block(BlockBegin* cur);
duke@435 474 void compute_order(BlockBegin* start_block);
duke@435 475
duke@435 476 // fixup of dominators for non-natural loops
duke@435 477 bool compute_dominators_iter();
duke@435 478 void compute_dominators();
duke@435 479
duke@435 480 // debug functions
duke@435 481 NOT_PRODUCT(void print_blocks();)
duke@435 482 DEBUG_ONLY(void verify();)
duke@435 483
iveresov@2138 484 Compilation* compilation() const { return _compilation; }
duke@435 485 public:
iveresov@2138 486 ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
duke@435 487
duke@435 488 // accessors for final result
duke@435 489 BlockList* linear_scan_order() const { return _linear_scan_order; }
duke@435 490 int num_loops() const { return _num_loops; }
duke@435 491 };
duke@435 492
duke@435 493
iveresov@2138 494 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
duke@435 495 _max_block_id(BlockBegin::number_of_blocks()),
duke@435 496 _num_blocks(0),
duke@435 497 _num_loops(0),
duke@435 498 _iterative_dominators(false),
duke@435 499 _visited_blocks(_max_block_id),
duke@435 500 _active_blocks(_max_block_id),
duke@435 501 _dominator_blocks(_max_block_id),
duke@435 502 _forward_branches(_max_block_id, 0),
duke@435 503 _loop_end_blocks(8),
duke@435 504 _work_list(8),
duke@435 505 _linear_scan_order(NULL), // initialized later with correct size
iveresov@2138 506 _loop_map(0, 0), // initialized later with correct size
iveresov@2138 507 _compilation(c)
duke@435 508 {
ccheung@5259 509 TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
duke@435 510
duke@435 511 init_visited();
duke@435 512 count_edges(start_block, NULL);
duke@435 513
iveresov@2138 514 if (compilation()->is_profiling()) {
iveresov@2349 515 ciMethod *method = compilation()->method();
iveresov@2349 516 if (!method->is_accessor()) {
iveresov@2349 517 ciMethodData* md = method->method_data_or_null();
iveresov@2349 518 assert(md != NULL, "Sanity");
iveresov@2349 519 md->set_compilation_stats(_num_loops, _num_blocks);
iveresov@2349 520 }
iveresov@2138 521 }
iveresov@2138 522
duke@435 523 if (_num_loops > 0) {
duke@435 524 mark_loops();
duke@435 525 clear_non_natural_loops(start_block);
duke@435 526 assign_loop_depth(start_block);
duke@435 527 }
duke@435 528
duke@435 529 compute_order(start_block);
duke@435 530 compute_dominators();
duke@435 531
duke@435 532 NOT_PRODUCT(print_blocks());
duke@435 533 DEBUG_ONLY(verify());
duke@435 534 }
duke@435 535
duke@435 536
duke@435 537 // Traverse the CFG:
duke@435 538 // * count total number of blocks
duke@435 539 // * count all incoming edges and backward incoming edges
duke@435 540 // * number loop header blocks
duke@435 541 // * create a list with all loop end blocks
duke@435 542 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
duke@435 543 TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
duke@435 544 assert(cur->dominator() == NULL, "dominator already initialized");
duke@435 545
duke@435 546 if (is_active(cur)) {
duke@435 547 TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
duke@435 548 assert(is_visited(cur), "block must be visisted when block is active");
duke@435 549 assert(parent != NULL, "must have parent");
duke@435 550
duke@435 551 cur->set(BlockBegin::linear_scan_loop_header_flag);
duke@435 552 cur->set(BlockBegin::backward_branch_target_flag);
duke@435 553
duke@435 554 parent->set(BlockBegin::linear_scan_loop_end_flag);
never@863 555
never@863 556 // When a loop header is also the start of an exception handler, then the backward branch is
never@863 557 // an exception edge. Because such edges are usually critical edges which cannot be split, the
never@863 558 // loop must be excluded here from processing.
never@863 559 if (cur->is_set(BlockBegin::exception_entry_flag)) {
never@863 560 // Make sure that dominators are correct in this weird situation
never@863 561 _iterative_dominators = true;
never@863 562 return;
never@863 563 }
never@863 564 assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
never@863 565 "loop end blocks must have one successor (critical edges are split)");
never@863 566
duke@435 567 _loop_end_blocks.append(parent);
duke@435 568 return;
duke@435 569 }
duke@435 570
duke@435 571 // increment number of incoming forward branches
duke@435 572 inc_forward_branches(cur);
duke@435 573
duke@435 574 if (is_visited(cur)) {
duke@435 575 TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
duke@435 576 return;
duke@435 577 }
duke@435 578
duke@435 579 _num_blocks++;
duke@435 580 set_visited(cur);
duke@435 581 set_active(cur);
duke@435 582
duke@435 583 // recursive call for all successors
duke@435 584 int i;
duke@435 585 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 586 count_edges(cur->sux_at(i), cur);
duke@435 587 }
duke@435 588 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 589 count_edges(cur->exception_handler_at(i), cur);
duke@435 590 }
duke@435 591
duke@435 592 clear_active(cur);
duke@435 593
duke@435 594 // Each loop has a unique number.
duke@435 595 // When multiple loops are nested, assign_loop_depth assumes that the
duke@435 596 // innermost loop has the lowest number. This is guaranteed by setting
duke@435 597 // the loop number after the recursive calls for the successors above
duke@435 598 // have returned.
duke@435 599 if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
duke@435 600 assert(cur->loop_index() == -1, "cannot set loop-index twice");
duke@435 601 TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
duke@435 602
duke@435 603 cur->set_loop_index(_num_loops);
roland@4860 604 _loop_headers.append(cur);
duke@435 605 _num_loops++;
duke@435 606 }
duke@435 607
duke@435 608 TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
duke@435 609 }
duke@435 610
duke@435 611
duke@435 612 void ComputeLinearScanOrder::mark_loops() {
duke@435 613 TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
duke@435 614
duke@435 615 _loop_map = BitMap2D(_num_loops, _max_block_id);
duke@435 616 _loop_map.clear();
duke@435 617
duke@435 618 for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
duke@435 619 BlockBegin* loop_end = _loop_end_blocks.at(i);
duke@435 620 BlockBegin* loop_start = loop_end->sux_at(0);
duke@435 621 int loop_idx = loop_start->loop_index();
duke@435 622
duke@435 623 TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
duke@435 624 assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
duke@435 625 assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
duke@435 626 assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
duke@435 627 assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
duke@435 628 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 629
duke@435 630 // add the end-block of the loop to the working list
duke@435 631 _work_list.push(loop_end);
duke@435 632 set_block_in_loop(loop_idx, loop_end);
duke@435 633 do {
duke@435 634 BlockBegin* cur = _work_list.pop();
duke@435 635
duke@435 636 TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
duke@435 637 assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
duke@435 638
duke@435 639 // recursive processing of all predecessors ends when start block of loop is reached
duke@435 640 if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
duke@435 641 for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 642 BlockBegin* pred = cur->pred_at(j);
duke@435 643
duke@435 644 if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
duke@435 645 // this predecessor has not been processed yet, so add it to work list
duke@435 646 TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
duke@435 647 _work_list.push(pred);
duke@435 648 set_block_in_loop(loop_idx, pred);
duke@435 649 }
duke@435 650 }
duke@435 651 }
duke@435 652 } while (!_work_list.is_empty());
duke@435 653 }
duke@435 654 }
duke@435 655
duke@435 656
duke@435 657 // check for non-natural loops (loops where the loop header does not dominate
duke@435 658 // all other loop blocks = loops with mulitple entries).
duke@435 659 // such loops are ignored
duke@435 660 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
duke@435 661 for (int i = _num_loops - 1; i >= 0; i--) {
duke@435 662 if (is_block_in_loop(i, start_block)) {
duke@435 663 // loop i contains the entry block of the method
duke@435 664 // -> this is not a natural loop, so ignore it
duke@435 665 TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
duke@435 666
roland@4860 667 BlockBegin *loop_header = _loop_headers.at(i);
roland@4860 668 assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
roland@4860 669
roland@4860 670 for (int j = 0; j < loop_header->number_of_preds(); j++) {
roland@4860 671 BlockBegin *pred = loop_header->pred_at(j);
roland@4860 672 pred->clear(BlockBegin::linear_scan_loop_end_flag);
roland@4860 673 }
roland@4860 674
roland@4860 675 loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
roland@4860 676
duke@435 677 for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
duke@435 678 clear_block_in_loop(i, block_id);
duke@435 679 }
duke@435 680 _iterative_dominators = true;
duke@435 681 }
duke@435 682 }
duke@435 683 }
duke@435 684
duke@435 685 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
ccheung@5259 686 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
duke@435 687 init_visited();
duke@435 688
duke@435 689 assert(_work_list.is_empty(), "work list must be empty before processing");
duke@435 690 _work_list.append(start_block);
duke@435 691
duke@435 692 do {
duke@435 693 BlockBegin* cur = _work_list.pop();
duke@435 694
duke@435 695 if (!is_visited(cur)) {
duke@435 696 set_visited(cur);
duke@435 697 TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
duke@435 698
duke@435 699 // compute loop-depth and loop-index for the block
duke@435 700 assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
duke@435 701 int i;
duke@435 702 int loop_depth = 0;
duke@435 703 int min_loop_idx = -1;
duke@435 704 for (i = _num_loops - 1; i >= 0; i--) {
duke@435 705 if (is_block_in_loop(i, cur)) {
duke@435 706 loop_depth++;
duke@435 707 min_loop_idx = i;
duke@435 708 }
duke@435 709 }
duke@435 710 cur->set_loop_depth(loop_depth);
duke@435 711 cur->set_loop_index(min_loop_idx);
duke@435 712
duke@435 713 // append all unvisited successors to work list
duke@435 714 for (i = cur->number_of_sux() - 1; i >= 0; i--) {
duke@435 715 _work_list.append(cur->sux_at(i));
duke@435 716 }
duke@435 717 for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
duke@435 718 _work_list.append(cur->exception_handler_at(i));
duke@435 719 }
duke@435 720 }
duke@435 721 } while (!_work_list.is_empty());
duke@435 722 }
duke@435 723
duke@435 724
duke@435 725 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
duke@435 726 assert(a != NULL && b != NULL, "must have input blocks");
duke@435 727
duke@435 728 _dominator_blocks.clear();
duke@435 729 while (a != NULL) {
duke@435 730 _dominator_blocks.set_bit(a->block_id());
duke@435 731 assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 732 a = a->dominator();
duke@435 733 }
duke@435 734 while (b != NULL && !_dominator_blocks.at(b->block_id())) {
duke@435 735 assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
duke@435 736 b = b->dominator();
duke@435 737 }
duke@435 738
duke@435 739 assert(b != NULL, "could not find dominator");
duke@435 740 return b;
duke@435 741 }
duke@435 742
duke@435 743 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
duke@435 744 if (cur->dominator() == NULL) {
duke@435 745 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
duke@435 746 cur->set_dominator(parent);
duke@435 747
duke@435 748 } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
duke@435 749 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
roland@4860 750 // Does not hold for exception blocks
roland@4860 751 assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
duke@435 752 cur->set_dominator(common_dominator(cur->dominator(), parent));
duke@435 753 }
roland@4860 754
roland@4860 755 // Additional edge to xhandler of all our successors
roland@4860 756 // range check elimination needs that the state at the end of a
roland@4860 757 // block be valid in every block it dominates so cur must dominate
roland@4860 758 // the exception handlers of its successors.
roland@4860 759 int num_cur_xhandler = cur->number_of_exception_handlers();
roland@4860 760 for (int j = 0; j < num_cur_xhandler; j++) {
roland@4860 761 BlockBegin* xhandler = cur->exception_handler_at(j);
roland@4860 762 compute_dominator(xhandler, parent);
roland@4860 763 }
duke@435 764 }
duke@435 765
duke@435 766
duke@435 767 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
duke@435 768 BlockBegin* single_sux = NULL;
duke@435 769 if (cur->number_of_sux() == 1) {
duke@435 770 single_sux = cur->sux_at(0);
duke@435 771 }
duke@435 772
duke@435 773 // limit loop-depth to 15 bit (only for security reason, it will never be so big)
duke@435 774 int weight = (cur->loop_depth() & 0x7FFF) << 16;
duke@435 775
duke@435 776 // general macro for short definition of weight flags
duke@435 777 // the first instance of INC_WEIGHT_IF has the highest priority
duke@435 778 int cur_bit = 15;
duke@435 779 #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
duke@435 780
duke@435 781 // this is necessery for the (very rare) case that two successing blocks have
duke@435 782 // the same loop depth, but a different loop index (can happen for endless loops
duke@435 783 // with exception handlers)
duke@435 784 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
duke@435 785
duke@435 786 // loop end blocks (blocks that end with a backward branch) are added
duke@435 787 // after all other blocks of the loop.
duke@435 788 INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
duke@435 789
duke@435 790 // critical edge split blocks are prefered because than they have a bigger
duke@435 791 // proability to be completely empty
duke@435 792 INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
duke@435 793
duke@435 794 // exceptions should not be thrown in normal control flow, so these blocks
duke@435 795 // are added as late as possible
duke@435 796 INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
duke@435 797 INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
duke@435 798
duke@435 799 // exceptions handlers are added as late as possible
duke@435 800 INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
duke@435 801
duke@435 802 // guarantee that weight is > 0
duke@435 803 weight |= 1;
duke@435 804
duke@435 805 #undef INC_WEIGHT_IF
duke@435 806 assert(cur_bit >= 0, "too many flags");
duke@435 807 assert(weight > 0, "weight cannot become negative");
duke@435 808
duke@435 809 return weight;
duke@435 810 }
duke@435 811
duke@435 812 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
duke@435 813 // Discount the edge just traveled.
duke@435 814 // When the number drops to zero, all forward branches were processed
duke@435 815 if (dec_forward_branches(cur) != 0) {
duke@435 816 return false;
duke@435 817 }
duke@435 818
duke@435 819 assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
duke@435 820 assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
duke@435 821 return true;
duke@435 822 }
duke@435 823
duke@435 824 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
duke@435 825 assert(_work_list.index_of(cur) == -1, "block already in work list");
duke@435 826
duke@435 827 int cur_weight = compute_weight(cur);
duke@435 828
duke@435 829 // the linear_scan_number is used to cache the weight of a block
duke@435 830 cur->set_linear_scan_number(cur_weight);
duke@435 831
duke@435 832 #ifndef PRODUCT
duke@435 833 if (StressLinearScan) {
duke@435 834 _work_list.insert_before(0, cur);
duke@435 835 return;
duke@435 836 }
duke@435 837 #endif
duke@435 838
duke@435 839 _work_list.append(NULL); // provide space for new element
duke@435 840
duke@435 841 int insert_idx = _work_list.length() - 1;
duke@435 842 while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
duke@435 843 _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
duke@435 844 insert_idx--;
duke@435 845 }
duke@435 846 _work_list.at_put(insert_idx, cur);
duke@435 847
duke@435 848 TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
duke@435 849 TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
duke@435 850
duke@435 851 #ifdef ASSERT
duke@435 852 for (int i = 0; i < _work_list.length(); i++) {
duke@435 853 assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
duke@435 854 assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
duke@435 855 }
duke@435 856 #endif
duke@435 857 }
duke@435 858
duke@435 859 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
duke@435 860 TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
duke@435 861 assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
duke@435 862
duke@435 863 // currently, the linear scan order and code emit order are equal.
duke@435 864 // therefore the linear_scan_number and the weight of a block must also
duke@435 865 // be equal.
duke@435 866 cur->set_linear_scan_number(_linear_scan_order->length());
duke@435 867 _linear_scan_order->append(cur);
duke@435 868 }
duke@435 869
duke@435 870 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
ccheung@5259 871 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
duke@435 872
duke@435 873 // the start block is always the first block in the linear scan order
duke@435 874 _linear_scan_order = new BlockList(_num_blocks);
duke@435 875 append_block(start_block);
duke@435 876
duke@435 877 assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
duke@435 878 BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
duke@435 879 BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
duke@435 880
duke@435 881 BlockBegin* sux_of_osr_entry = NULL;
duke@435 882 if (osr_entry != NULL) {
duke@435 883 // special handling for osr entry:
duke@435 884 // ignore the edge between the osr entry and its successor for processing
duke@435 885 // the osr entry block is added manually below
duke@435 886 assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
duke@435 887 assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
duke@435 888
duke@435 889 sux_of_osr_entry = osr_entry->sux_at(0);
duke@435 890 dec_forward_branches(sux_of_osr_entry);
duke@435 891
duke@435 892 compute_dominator(osr_entry, start_block);
duke@435 893 _iterative_dominators = true;
duke@435 894 }
duke@435 895 compute_dominator(std_entry, start_block);
duke@435 896
duke@435 897 // start processing with standard entry block
duke@435 898 assert(_work_list.is_empty(), "list must be empty before processing");
duke@435 899
duke@435 900 if (ready_for_processing(std_entry)) {
duke@435 901 sort_into_work_list(std_entry);
duke@435 902 } else {
duke@435 903 assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
duke@435 904 }
duke@435 905
duke@435 906 do {
duke@435 907 BlockBegin* cur = _work_list.pop();
duke@435 908
duke@435 909 if (cur == sux_of_osr_entry) {
duke@435 910 // the osr entry block is ignored in normal processing, it is never added to the
duke@435 911 // work list. Instead, it is added as late as possible manually here.
duke@435 912 append_block(osr_entry);
duke@435 913 compute_dominator(cur, osr_entry);
duke@435 914 }
duke@435 915 append_block(cur);
duke@435 916
duke@435 917 int i;
duke@435 918 int num_sux = cur->number_of_sux();
duke@435 919 // changed loop order to get "intuitive" order of if- and else-blocks
duke@435 920 for (i = 0; i < num_sux; i++) {
duke@435 921 BlockBegin* sux = cur->sux_at(i);
duke@435 922 compute_dominator(sux, cur);
duke@435 923 if (ready_for_processing(sux)) {
duke@435 924 sort_into_work_list(sux);
duke@435 925 }
duke@435 926 }
duke@435 927 num_sux = cur->number_of_exception_handlers();
duke@435 928 for (i = 0; i < num_sux; i++) {
duke@435 929 BlockBegin* sux = cur->exception_handler_at(i);
duke@435 930 if (ready_for_processing(sux)) {
duke@435 931 sort_into_work_list(sux);
duke@435 932 }
duke@435 933 }
duke@435 934 } while (_work_list.length() > 0);
duke@435 935 }
duke@435 936
duke@435 937
duke@435 938 bool ComputeLinearScanOrder::compute_dominators_iter() {
duke@435 939 bool changed = false;
duke@435 940 int num_blocks = _linear_scan_order->length();
duke@435 941
duke@435 942 assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
duke@435 943 assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
duke@435 944 for (int i = 1; i < num_blocks; i++) {
duke@435 945 BlockBegin* block = _linear_scan_order->at(i);
duke@435 946
duke@435 947 BlockBegin* dominator = block->pred_at(0);
duke@435 948 int num_preds = block->number_of_preds();
roland@4860 949
roland@4860 950 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
roland@4860 951
roland@4860 952 for (int j = 0; j < num_preds; j++) {
roland@4860 953
roland@4860 954 BlockBegin *pred = block->pred_at(j);
roland@4860 955 TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
roland@4860 956
roland@4860 957 if (block->is_set(BlockBegin::exception_entry_flag)) {
roland@4860 958 dominator = common_dominator(dominator, pred);
roland@4860 959 int num_pred_preds = pred->number_of_preds();
roland@4860 960 for (int k = 0; k < num_pred_preds; k++) {
roland@4860 961 dominator = common_dominator(dominator, pred->pred_at(k));
roland@4860 962 }
roland@4860 963 } else {
roland@4860 964 dominator = common_dominator(dominator, pred);
roland@4860 965 }
duke@435 966 }
duke@435 967
duke@435 968 if (dominator != block->dominator()) {
duke@435 969 TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
duke@435 970
duke@435 971 block->set_dominator(dominator);
duke@435 972 changed = true;
duke@435 973 }
duke@435 974 }
duke@435 975 return changed;
duke@435 976 }
duke@435 977
duke@435 978 void ComputeLinearScanOrder::compute_dominators() {
duke@435 979 TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
duke@435 980
duke@435 981 // iterative computation of dominators is only required for methods with non-natural loops
duke@435 982 // and OSR-methods. For all other methods, the dominators computed when generating the
duke@435 983 // linear scan block order are correct.
duke@435 984 if (_iterative_dominators) {
duke@435 985 do {
duke@435 986 TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
duke@435 987 } while (compute_dominators_iter());
duke@435 988 }
duke@435 989
duke@435 990 // check that dominators are correct
duke@435 991 assert(!compute_dominators_iter(), "fix point not reached");
roland@4860 992
roland@4860 993 // Add Blocks to dominates-Array
roland@4860 994 int num_blocks = _linear_scan_order->length();
roland@4860 995 for (int i = 0; i < num_blocks; i++) {
roland@4860 996 BlockBegin* block = _linear_scan_order->at(i);
roland@4860 997
roland@4860 998 BlockBegin *dom = block->dominator();
roland@4860 999 if (dom) {
roland@4860 1000 assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
roland@4860 1001 dom->dominates()->append(block);
roland@4860 1002 block->set_dominator_depth(dom->dominator_depth() + 1);
roland@4860 1003 } else {
roland@4860 1004 block->set_dominator_depth(0);
roland@4860 1005 }
roland@4860 1006 }
duke@435 1007 }
duke@435 1008
duke@435 1009
duke@435 1010 #ifndef PRODUCT
duke@435 1011 void ComputeLinearScanOrder::print_blocks() {
duke@435 1012 if (TraceLinearScanLevel >= 2) {
duke@435 1013 tty->print_cr("----- loop information:");
duke@435 1014 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 1015 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 1016
duke@435 1017 tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
duke@435 1018 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 1019 tty->print ("%d ", is_block_in_loop(loop_idx, cur));
duke@435 1020 }
duke@435 1021 tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
duke@435 1022 }
duke@435 1023 }
duke@435 1024
duke@435 1025 if (TraceLinearScanLevel >= 1) {
duke@435 1026 tty->print_cr("----- linear-scan block order:");
duke@435 1027 for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
duke@435 1028 BlockBegin* cur = _linear_scan_order->at(block_idx);
duke@435 1029 tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
duke@435 1030
duke@435 1031 tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
duke@435 1032 tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
duke@435 1033 tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
duke@435 1034 tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
duke@435 1035
duke@435 1036 if (cur->dominator() != NULL) {
duke@435 1037 tty->print(" dom: B%d ", cur->dominator()->block_id());
duke@435 1038 } else {
duke@435 1039 tty->print(" dom: NULL ");
duke@435 1040 }
duke@435 1041
duke@435 1042 if (cur->number_of_preds() > 0) {
duke@435 1043 tty->print(" preds: ");
duke@435 1044 for (int j = 0; j < cur->number_of_preds(); j++) {
duke@435 1045 BlockBegin* pred = cur->pred_at(j);
duke@435 1046 tty->print("B%d ", pred->block_id());
duke@435 1047 }
duke@435 1048 }
duke@435 1049 if (cur->number_of_sux() > 0) {
duke@435 1050 tty->print(" sux: ");
duke@435 1051 for (int j = 0; j < cur->number_of_sux(); j++) {
duke@435 1052 BlockBegin* sux = cur->sux_at(j);
duke@435 1053 tty->print("B%d ", sux->block_id());
duke@435 1054 }
duke@435 1055 }
duke@435 1056 if (cur->number_of_exception_handlers() > 0) {
duke@435 1057 tty->print(" ex: ");
duke@435 1058 for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
duke@435 1059 BlockBegin* ex = cur->exception_handler_at(j);
duke@435 1060 tty->print("B%d ", ex->block_id());
duke@435 1061 }
duke@435 1062 }
duke@435 1063 tty->cr();
duke@435 1064 }
duke@435 1065 }
duke@435 1066 }
duke@435 1067 #endif
duke@435 1068
duke@435 1069 #ifdef ASSERT
duke@435 1070 void ComputeLinearScanOrder::verify() {
duke@435 1071 assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
duke@435 1072
duke@435 1073 if (StressLinearScan) {
duke@435 1074 // blocks are scrambled when StressLinearScan is used
duke@435 1075 return;
duke@435 1076 }
duke@435 1077
duke@435 1078 // check that all successors of a block have a higher linear-scan-number
duke@435 1079 // and that all predecessors of a block have a lower linear-scan-number
duke@435 1080 // (only backward branches of loops are ignored)
duke@435 1081 int i;
duke@435 1082 for (i = 0; i < _linear_scan_order->length(); i++) {
duke@435 1083 BlockBegin* cur = _linear_scan_order->at(i);
duke@435 1084
duke@435 1085 assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
duke@435 1086 assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
duke@435 1087
duke@435 1088 int j;
duke@435 1089 for (j = cur->number_of_sux() - 1; j >= 0; j--) {
duke@435 1090 BlockBegin* sux = cur->sux_at(j);
duke@435 1091
duke@435 1092 assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
roland@4860 1093 if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
duke@435 1094 assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
duke@435 1095 }
duke@435 1096 if (cur->loop_depth() == sux->loop_depth()) {
duke@435 1097 assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1098 }
duke@435 1099 }
duke@435 1100
duke@435 1101 for (j = cur->number_of_preds() - 1; j >= 0; j--) {
duke@435 1102 BlockBegin* pred = cur->pred_at(j);
duke@435 1103
duke@435 1104 assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
roland@4860 1105 if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
duke@435 1106 assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
duke@435 1107 }
duke@435 1108 if (cur->loop_depth() == pred->loop_depth()) {
duke@435 1109 assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
duke@435 1110 }
duke@435 1111
duke@435 1112 assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
duke@435 1113 }
duke@435 1114
duke@435 1115 // check dominator
duke@435 1116 if (i == 0) {
duke@435 1117 assert(cur->dominator() == NULL, "first block has no dominator");
duke@435 1118 } else {
duke@435 1119 assert(cur->dominator() != NULL, "all but first block must have dominator");
duke@435 1120 }
roland@4860 1121 // Assertion does not hold for exception handlers
roland@4860 1122 assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
duke@435 1123 }
duke@435 1124
duke@435 1125 // check that all loops are continuous
duke@435 1126 for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
duke@435 1127 int block_idx = 0;
duke@435 1128 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
duke@435 1129
duke@435 1130 // skip blocks before the loop
duke@435 1131 while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1132 block_idx++;
duke@435 1133 }
duke@435 1134 // skip blocks of loop
duke@435 1135 while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
duke@435 1136 block_idx++;
duke@435 1137 }
duke@435 1138 // after the first non-loop block, there must not be another loop-block
duke@435 1139 while (block_idx < _num_blocks) {
duke@435 1140 assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
duke@435 1141 block_idx++;
duke@435 1142 }
duke@435 1143 }
duke@435 1144 }
duke@435 1145 #endif
duke@435 1146
duke@435 1147
duke@435 1148 void IR::compute_code() {
duke@435 1149 assert(is_valid(), "IR must be valid");
duke@435 1150
iveresov@2138 1151 ComputeLinearScanOrder compute_order(compilation(), start());
duke@435 1152 _num_loops = compute_order.num_loops();
duke@435 1153 _code = compute_order.linear_scan_order();
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void IR::compute_use_counts() {
duke@435 1158 // make sure all values coming out of this block get evaluated.
duke@435 1159 int num_blocks = _code->length();
duke@435 1160 for (int i = 0; i < num_blocks; i++) {
duke@435 1161 _code->at(i)->end()->state()->pin_stack_for_linear_scan();
duke@435 1162 }
duke@435 1163
duke@435 1164 // compute use counts
duke@435 1165 UseCountComputer::compute(_code);
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 void IR::iterate_preorder(BlockClosure* closure) {
duke@435 1170 assert(is_valid(), "IR must be valid");
duke@435 1171 start()->iterate_preorder(closure);
duke@435 1172 }
duke@435 1173
duke@435 1174
duke@435 1175 void IR::iterate_postorder(BlockClosure* closure) {
duke@435 1176 assert(is_valid(), "IR must be valid");
duke@435 1177 start()->iterate_postorder(closure);
duke@435 1178 }
duke@435 1179
duke@435 1180 void IR::iterate_linear_scan_order(BlockClosure* closure) {
duke@435 1181 linear_scan_order()->iterate_forward(closure);
duke@435 1182 }
duke@435 1183
duke@435 1184
duke@435 1185 #ifndef PRODUCT
duke@435 1186 class BlockPrinter: public BlockClosure {
duke@435 1187 private:
duke@435 1188 InstructionPrinter* _ip;
duke@435 1189 bool _cfg_only;
duke@435 1190 bool _live_only;
duke@435 1191
duke@435 1192 public:
duke@435 1193 BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
duke@435 1194 _ip = ip;
duke@435 1195 _cfg_only = cfg_only;
duke@435 1196 _live_only = live_only;
duke@435 1197 }
duke@435 1198
duke@435 1199 virtual void block_do(BlockBegin* block) {
duke@435 1200 if (_cfg_only) {
duke@435 1201 _ip->print_instr(block); tty->cr();
duke@435 1202 } else {
duke@435 1203 block->print_block(*_ip, _live_only);
duke@435 1204 }
duke@435 1205 }
duke@435 1206 };
duke@435 1207
duke@435 1208
duke@435 1209 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
duke@435 1210 ttyLocker ttyl;
duke@435 1211 InstructionPrinter ip(!cfg_only);
duke@435 1212 BlockPrinter bp(&ip, cfg_only, live_only);
duke@435 1213 start->iterate_preorder(&bp);
duke@435 1214 tty->cr();
duke@435 1215 }
duke@435 1216
duke@435 1217 void IR::print(bool cfg_only, bool live_only) {
duke@435 1218 if (is_valid()) {
duke@435 1219 print(start(), cfg_only, live_only);
duke@435 1220 } else {
duke@435 1221 tty->print_cr("invalid IR");
duke@435 1222 }
duke@435 1223 }
duke@435 1224
duke@435 1225
duke@435 1226 define_array(BlockListArray, BlockList*)
duke@435 1227 define_stack(BlockListList, BlockListArray)
duke@435 1228
duke@435 1229 class PredecessorValidator : public BlockClosure {
duke@435 1230 private:
duke@435 1231 BlockListList* _predecessors;
duke@435 1232 BlockList* _blocks;
duke@435 1233
duke@435 1234 static int cmp(BlockBegin** a, BlockBegin** b) {
duke@435 1235 return (*a)->block_id() - (*b)->block_id();
duke@435 1236 }
duke@435 1237
duke@435 1238 public:
duke@435 1239 PredecessorValidator(IR* hir) {
duke@435 1240 ResourceMark rm;
duke@435 1241 _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
duke@435 1242 _blocks = new BlockList();
duke@435 1243
duke@435 1244 int i;
duke@435 1245 hir->start()->iterate_preorder(this);
duke@435 1246 if (hir->code() != NULL) {
duke@435 1247 assert(hir->code()->length() == _blocks->length(), "must match");
duke@435 1248 for (i = 0; i < _blocks->length(); i++) {
duke@435 1249 assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
duke@435 1250 }
duke@435 1251 }
duke@435 1252
duke@435 1253 for (i = 0; i < _blocks->length(); i++) {
duke@435 1254 BlockBegin* block = _blocks->at(i);
duke@435 1255 BlockList* preds = _predecessors->at(block->block_id());
duke@435 1256 if (preds == NULL) {
duke@435 1257 assert(block->number_of_preds() == 0, "should be the same");
duke@435 1258 continue;
duke@435 1259 }
duke@435 1260
duke@435 1261 // clone the pred list so we can mutate it
duke@435 1262 BlockList* pred_copy = new BlockList();
duke@435 1263 int j;
duke@435 1264 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1265 pred_copy->append(block->pred_at(j));
duke@435 1266 }
duke@435 1267 // sort them in the same order
duke@435 1268 preds->sort(cmp);
duke@435 1269 pred_copy->sort(cmp);
duke@435 1270 int length = MIN2(preds->length(), block->number_of_preds());
duke@435 1271 for (j = 0; j < block->number_of_preds(); j++) {
duke@435 1272 assert(preds->at(j) == pred_copy->at(j), "must match");
duke@435 1273 }
duke@435 1274
duke@435 1275 assert(preds->length() == block->number_of_preds(), "should be the same");
duke@435 1276 }
duke@435 1277 }
duke@435 1278
duke@435 1279 virtual void block_do(BlockBegin* block) {
duke@435 1280 _blocks->append(block);
duke@435 1281 BlockEnd* be = block->end();
duke@435 1282 int n = be->number_of_sux();
duke@435 1283 int i;
duke@435 1284 for (i = 0; i < n; i++) {
duke@435 1285 BlockBegin* sux = be->sux_at(i);
duke@435 1286 assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
duke@435 1287
duke@435 1288 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1289 if (preds == NULL) {
duke@435 1290 preds = new BlockList();
duke@435 1291 _predecessors->at_put(sux->block_id(), preds);
duke@435 1292 }
duke@435 1293 preds->append(block);
duke@435 1294 }
duke@435 1295
duke@435 1296 n = block->number_of_exception_handlers();
duke@435 1297 for (i = 0; i < n; i++) {
duke@435 1298 BlockBegin* sux = block->exception_handler_at(i);
duke@435 1299 assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
duke@435 1300
duke@435 1301 BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
duke@435 1302 if (preds == NULL) {
duke@435 1303 preds = new BlockList();
duke@435 1304 _predecessors->at_put(sux->block_id(), preds);
duke@435 1305 }
duke@435 1306 preds->append(block);
duke@435 1307 }
duke@435 1308 }
duke@435 1309 };
duke@435 1310
roland@4860 1311 class VerifyBlockBeginField : public BlockClosure {
roland@4860 1312
roland@4860 1313 public:
roland@4860 1314
roland@4860 1315 virtual void block_do(BlockBegin *block) {
roland@4860 1316 for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
roland@4860 1317 assert(cur->block() == block, "Block begin is not correct");
roland@4860 1318 }
roland@4860 1319 }
roland@4860 1320 };
roland@4860 1321
duke@435 1322 void IR::verify() {
duke@435 1323 #ifdef ASSERT
duke@435 1324 PredecessorValidator pv(this);
roland@4860 1325 VerifyBlockBeginField verifier;
roland@4860 1326 this->iterate_postorder(&verifier);
duke@435 1327 #endif
duke@435 1328 }
duke@435 1329
duke@435 1330 #endif // PRODUCT
duke@435 1331
iveresov@1939 1332 void SubstitutionResolver::visit(Value* v) {
duke@435 1333 Value v0 = *v;
duke@435 1334 if (v0) {
duke@435 1335 Value vs = v0->subst();
duke@435 1336 if (vs != v0) {
duke@435 1337 *v = v0->subst();
duke@435 1338 }
duke@435 1339 }
duke@435 1340 }
duke@435 1341
duke@435 1342 #ifdef ASSERT
iveresov@1939 1343 class SubstitutionChecker: public ValueVisitor {
iveresov@1939 1344 void visit(Value* v) {
iveresov@1939 1345 Value v0 = *v;
iveresov@1939 1346 if (v0) {
iveresov@1939 1347 Value vs = v0->subst();
iveresov@1939 1348 assert(vs == v0, "missed substitution");
iveresov@1939 1349 }
duke@435 1350 }
iveresov@1939 1351 };
duke@435 1352 #endif
duke@435 1353
duke@435 1354
duke@435 1355 void SubstitutionResolver::block_do(BlockBegin* block) {
duke@435 1356 Instruction* last = NULL;
duke@435 1357 for (Instruction* n = block; n != NULL;) {
iveresov@1939 1358 n->values_do(this);
duke@435 1359 // need to remove this instruction from the instruction stream
duke@435 1360 if (n->subst() != n) {
duke@435 1361 assert(last != NULL, "must have last");
roland@2174 1362 last->set_next(n->next());
duke@435 1363 } else {
duke@435 1364 last = n;
duke@435 1365 }
duke@435 1366 n = last->next();
duke@435 1367 }
duke@435 1368
duke@435 1369 #ifdef ASSERT
iveresov@1939 1370 SubstitutionChecker check_substitute;
iveresov@1939 1371 if (block->state()) block->state()->values_do(&check_substitute);
iveresov@1939 1372 block->block_values_do(&check_substitute);
iveresov@1939 1373 if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
duke@435 1374 #endif
duke@435 1375 }

mercurial