src/share/vm/memory/genCollectedHeap.hpp

Thu, 26 Sep 2013 12:18:21 +0200

author
tschatzl
date
Thu, 26 Sep 2013 12:18:21 +0200
changeset 5775
461159cd7a91
parent 5701
40136aa2cdb1
child 6084
46d7652b223c
permissions
-rw-r--r--

Merge

duke@435 1 /*
tschatzl@5701 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 29 #include "memory/collectorPolicy.hpp"
stefank@2314 30 #include "memory/generation.hpp"
stefank@2314 31 #include "memory/sharedHeap.hpp"
stefank@2314 32
duke@435 33 class SubTasksDone;
duke@435 34
duke@435 35 // A "GenCollectedHeap" is a SharedHeap that uses generational
duke@435 36 // collection. It is represented with a sequence of Generation's.
duke@435 37 class GenCollectedHeap : public SharedHeap {
duke@435 38 friend class GenCollectorPolicy;
duke@435 39 friend class Generation;
duke@435 40 friend class DefNewGeneration;
duke@435 41 friend class TenuredGeneration;
duke@435 42 friend class ConcurrentMarkSweepGeneration;
duke@435 43 friend class CMSCollector;
duke@435 44 friend class GenMarkSweep;
duke@435 45 friend class VM_GenCollectForAllocation;
duke@435 46 friend class VM_GenCollectFull;
duke@435 47 friend class VM_GenCollectFullConcurrent;
duke@435 48 friend class VM_GC_HeapInspection;
duke@435 49 friend class VM_HeapDumper;
duke@435 50 friend class HeapInspection;
duke@435 51 friend class GCCauseSetter;
duke@435 52 friend class VMStructs;
duke@435 53 public:
duke@435 54 enum SomeConstants {
duke@435 55 max_gens = 10
duke@435 56 };
duke@435 57
duke@435 58 friend class VM_PopulateDumpSharedSpace;
duke@435 59
duke@435 60 protected:
duke@435 61 // Fields:
duke@435 62 static GenCollectedHeap* _gch;
duke@435 63
duke@435 64 private:
duke@435 65 int _n_gens;
duke@435 66 Generation* _gens[max_gens];
duke@435 67 GenerationSpec** _gen_specs;
duke@435 68
duke@435 69 // The generational collector policy.
duke@435 70 GenCollectorPolicy* _gen_policy;
duke@435 71
ysr@2243 72 // Indicates that the most recent previous incremental collection failed.
ysr@2243 73 // The flag is cleared when an action is taken that might clear the
ysr@2243 74 // condition that caused that incremental collection to fail.
ysr@2243 75 bool _incremental_collection_failed;
duke@435 76
duke@435 77 // In support of ExplicitGCInvokesConcurrent functionality
duke@435 78 unsigned int _full_collections_completed;
duke@435 79
duke@435 80 // Data structure for claiming the (potentially) parallel tasks in
duke@435 81 // (gen-specific) strong roots processing.
duke@435 82 SubTasksDone* _gen_process_strong_tasks;
jmasa@2188 83 SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
duke@435 84
duke@435 85 // In block contents verification, the number of header words to skip
duke@435 86 NOT_PRODUCT(static size_t _skip_header_HeapWords;)
duke@435 87
duke@435 88 protected:
duke@435 89 // Directs each generation up to and including "collectedGen" to recompute
duke@435 90 // its desired size.
duke@435 91 void compute_new_generation_sizes(int collectedGen);
duke@435 92
duke@435 93 // Helper functions for allocation
duke@435 94 HeapWord* attempt_allocation(size_t size,
duke@435 95 bool is_tlab,
duke@435 96 bool first_only);
duke@435 97
duke@435 98 // Helper function for two callbacks below.
duke@435 99 // Considers collection of the first max_level+1 generations.
duke@435 100 void do_collection(bool full,
duke@435 101 bool clear_all_soft_refs,
duke@435 102 size_t size,
duke@435 103 bool is_tlab,
duke@435 104 int max_level);
duke@435 105
duke@435 106 // Callback from VM_GenCollectForAllocation operation.
duke@435 107 // This function does everything necessary/possible to satisfy an
duke@435 108 // allocation request that failed in the youngest generation that should
duke@435 109 // have handled it (including collection, expansion, etc.)
duke@435 110 HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
duke@435 111
duke@435 112 // Callback from VM_GenCollectFull operation.
duke@435 113 // Perform a full collection of the first max_level+1 generations.
coleenp@4037 114 virtual void do_full_collection(bool clear_all_soft_refs);
duke@435 115 void do_full_collection(bool clear_all_soft_refs, int max_level);
duke@435 116
duke@435 117 // Does the "cause" of GC indicate that
duke@435 118 // we absolutely __must__ clear soft refs?
duke@435 119 bool must_clear_all_soft_refs();
duke@435 120
duke@435 121 public:
duke@435 122 GenCollectedHeap(GenCollectorPolicy *policy);
duke@435 123
duke@435 124 GCStats* gc_stats(int level) const;
duke@435 125
duke@435 126 // Returns JNI_OK on success
duke@435 127 virtual jint initialize();
coleenp@4037 128 char* allocate(size_t alignment,
duke@435 129 size_t* _total_reserved, int* _n_covered_regions,
duke@435 130 ReservedSpace* heap_rs);
duke@435 131
duke@435 132 // Does operations required after initialization has been done.
duke@435 133 void post_initialize();
duke@435 134
duke@435 135 // Initialize ("weak") refs processing support
duke@435 136 virtual void ref_processing_init();
duke@435 137
duke@435 138 virtual CollectedHeap::Name kind() const {
duke@435 139 return CollectedHeap::GenCollectedHeap;
duke@435 140 }
duke@435 141
duke@435 142 // The generational collector policy.
duke@435 143 GenCollectorPolicy* gen_policy() const { return _gen_policy; }
coleenp@4037 144 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
duke@435 145
duke@435 146 // Adaptive size policy
duke@435 147 virtual AdaptiveSizePolicy* size_policy() {
duke@435 148 return gen_policy()->size_policy();
duke@435 149 }
duke@435 150
tschatzl@5701 151 // Return the (conservative) maximum heap alignment
tschatzl@5701 152 static size_t conservative_max_heap_alignment() {
tschatzl@5701 153 return Generation::GenGrain;
tschatzl@5701 154 }
tschatzl@5701 155
duke@435 156 size_t capacity() const;
duke@435 157 size_t used() const;
duke@435 158
coleenp@4037 159 // Save the "used_region" for generations level and lower.
coleenp@4037 160 void save_used_regions(int level);
duke@435 161
duke@435 162 size_t max_capacity() const;
duke@435 163
duke@435 164 HeapWord* mem_allocate(size_t size,
duke@435 165 bool* gc_overhead_limit_was_exceeded);
duke@435 166
duke@435 167 // We may support a shared contiguous allocation area, if the youngest
duke@435 168 // generation does.
duke@435 169 bool supports_inline_contig_alloc() const;
duke@435 170 HeapWord** top_addr() const;
duke@435 171 HeapWord** end_addr() const;
duke@435 172
duke@435 173 // Return an estimate of the maximum allocation that could be performed
duke@435 174 // without triggering any collection activity. In a generational
duke@435 175 // collector, for example, this is probably the largest allocation that
duke@435 176 // could be supported in the youngest generation. It is "unsafe" because
duke@435 177 // no locks are taken; the result should be treated as an approximation,
duke@435 178 // not a guarantee.
duke@435 179 size_t unsafe_max_alloc();
duke@435 180
duke@435 181 // Does this heap support heap inspection? (+PrintClassHistogram)
duke@435 182 virtual bool supports_heap_inspection() const { return true; }
duke@435 183
duke@435 184 // Perform a full collection of the heap; intended for use in implementing
duke@435 185 // "System.gc". This implies as full a collection as the CollectedHeap
duke@435 186 // supports. Caller does not hold the Heap_lock on entry.
duke@435 187 void collect(GCCause::Cause cause);
duke@435 188
duke@435 189 // The same as above but assume that the caller holds the Heap_lock.
duke@435 190 void collect_locked(GCCause::Cause cause);
duke@435 191
duke@435 192 // Perform a full collection of the first max_level+1 generations.
duke@435 193 // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
duke@435 194 void collect(GCCause::Cause cause, int max_level);
duke@435 195
stefank@3335 196 // Returns "TRUE" iff "p" points into the committed areas of the heap.
duke@435 197 // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
duke@435 198 // be expensive to compute in general, so, to prevent
duke@435 199 // their inadvertent use in product jvm's, we restrict their use to
duke@435 200 // assertion checking or verification only.
duke@435 201 bool is_in(const void* p) const;
duke@435 202
duke@435 203 // override
duke@435 204 bool is_in_closed_subset(const void* p) const {
duke@435 205 if (UseConcMarkSweepGC) {
duke@435 206 return is_in_reserved(p);
duke@435 207 } else {
duke@435 208 return is_in(p);
duke@435 209 }
duke@435 210 }
duke@435 211
jmasa@2909 212 // Returns true if the reference is to an object in the reserved space
jmasa@2909 213 // for the young generation.
jmasa@2909 214 // Assumes the the young gen address range is less than that of the old gen.
jmasa@2909 215 bool is_in_young(oop p);
jmasa@2909 216
jmasa@2909 217 #ifdef ASSERT
jmasa@2909 218 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 219 #endif
jmasa@2909 220
jmasa@2909 221 virtual bool is_scavengable(const void* addr) {
jmasa@2909 222 return is_in_young((oop)addr);
jmasa@2909 223 }
duke@435 224
duke@435 225 // Iteration functions.
coleenp@4037 226 void oop_iterate(ExtendedOopClosure* cl);
coleenp@4037 227 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
duke@435 228 void object_iterate(ObjectClosure* cl);
jmasa@952 229 void safe_object_iterate(ObjectClosure* cl);
duke@435 230 Space* space_containing(const void* addr) const;
duke@435 231
duke@435 232 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 233 // each address in the (reserved) heap is a member of exactly
duke@435 234 // one block. The defining characteristic of a block is that it is
duke@435 235 // possible to find its size, and thus to progress forward to the next
duke@435 236 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 237 // represent Java objects, or they might be free blocks in a
duke@435 238 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 239 // distinguishable and the size of each is determinable.
duke@435 240
duke@435 241 // Returns the address of the start of the "block" that contains the
duke@435 242 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 243 // may not pack objects densely; a chunk may either be an object or a
duke@435 244 // non-object.
duke@435 245 virtual HeapWord* block_start(const void* addr) const;
duke@435 246
duke@435 247 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 248 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 249 // of the active area of the heap. Assumes (and verifies in non-product
duke@435 250 // builds) that addr is in the allocated part of the heap and is
duke@435 251 // the start of a chunk.
duke@435 252 virtual size_t block_size(const HeapWord* addr) const;
duke@435 253
duke@435 254 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 255 // the block is an object. Assumes (and verifies in non-product
duke@435 256 // builds) that addr is in the allocated part of the heap and is
duke@435 257 // the start of a chunk.
duke@435 258 virtual bool block_is_obj(const HeapWord* addr) const;
duke@435 259
duke@435 260 // Section on TLAB's.
duke@435 261 virtual bool supports_tlab_allocation() const;
duke@435 262 virtual size_t tlab_capacity(Thread* thr) const;
duke@435 263 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
duke@435 264 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 265
ysr@777 266 // Can a compiler initialize a new object without store barriers?
ysr@777 267 // This permission only extends from the creation of a new object
ysr@777 268 // via a TLAB up to the first subsequent safepoint.
ysr@777 269 virtual bool can_elide_tlab_store_barriers() const {
ysr@777 270 return true;
ysr@777 271 }
ysr@777 272
ysr@1601 273 virtual bool card_mark_must_follow_store() const {
ysr@1601 274 return UseConcMarkSweepGC;
ysr@1601 275 }
ysr@1601 276
ysr@1462 277 // We don't need barriers for stores to objects in the
ysr@1462 278 // young gen and, a fortiori, for initializing stores to
ysr@1462 279 // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
ysr@1462 280 // only and may need to be re-examined in case other
ysr@1462 281 // kinds of collectors are implemented in the future.
ysr@1462 282 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1463 283 // We wanted to assert that:-
ysr@1463 284 // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
ysr@1463 285 // "Check can_elide_initializing_store_barrier() for this collector");
ysr@1463 286 // but unfortunately the flag UseSerialGC need not necessarily always
ysr@1463 287 // be set when DefNew+Tenured are being used.
jmasa@2909 288 return is_in_young(new_obj);
ysr@1462 289 }
ysr@1462 290
duke@435 291 // The "requestor" generation is performing some garbage collection
duke@435 292 // action for which it would be useful to have scratch space. The
duke@435 293 // requestor promises to allocate no more than "max_alloc_words" in any
duke@435 294 // older generation (via promotion say.) Any blocks of space that can
duke@435 295 // be provided are returned as a list of ScratchBlocks, sorted by
duke@435 296 // decreasing size.
duke@435 297 ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
jmasa@698 298 // Allow each generation to reset any scratch space that it has
jmasa@698 299 // contributed as it needs.
jmasa@698 300 void release_scratch();
duke@435 301
duke@435 302 // Ensure parsability: override
duke@435 303 virtual void ensure_parsability(bool retire_tlabs);
duke@435 304
duke@435 305 // Time in ms since the longest time a collector ran in
duke@435 306 // in any generation.
duke@435 307 virtual jlong millis_since_last_gc();
duke@435 308
duke@435 309 // Total number of full collections completed.
duke@435 310 unsigned int total_full_collections_completed() {
duke@435 311 assert(_full_collections_completed <= _total_full_collections,
duke@435 312 "Can't complete more collections than were started");
duke@435 313 return _full_collections_completed;
duke@435 314 }
duke@435 315
duke@435 316 // Update above counter, as appropriate, at the end of a stop-world GC cycle
duke@435 317 unsigned int update_full_collections_completed();
duke@435 318 // Update above counter, as appropriate, at the end of a concurrent GC cycle
duke@435 319 unsigned int update_full_collections_completed(unsigned int count);
duke@435 320
duke@435 321 // Update "time of last gc" for all constituent generations
duke@435 322 // to "now".
duke@435 323 void update_time_of_last_gc(jlong now) {
duke@435 324 for (int i = 0; i < _n_gens; i++) {
duke@435 325 _gens[i]->update_time_of_last_gc(now);
duke@435 326 }
duke@435 327 }
duke@435 328
duke@435 329 // Update the gc statistics for each generation.
duke@435 330 // "level" is the level of the lastest collection
duke@435 331 void update_gc_stats(int current_level, bool full) {
duke@435 332 for (int i = 0; i < _n_gens; i++) {
duke@435 333 _gens[i]->update_gc_stats(current_level, full);
duke@435 334 }
duke@435 335 }
duke@435 336
duke@435 337 // Override.
duke@435 338 bool no_gc_in_progress() { return !is_gc_active(); }
duke@435 339
duke@435 340 // Override.
duke@435 341 void prepare_for_verify();
duke@435 342
duke@435 343 // Override.
brutisso@3711 344 void verify(bool silent, VerifyOption option);
duke@435 345
duke@435 346 // Override.
tonyp@3269 347 virtual void print_on(outputStream* st) const;
duke@435 348 virtual void print_gc_threads_on(outputStream* st) const;
duke@435 349 virtual void gc_threads_do(ThreadClosure* tc) const;
duke@435 350 virtual void print_tracing_info() const;
stefank@4904 351 virtual void print_on_error(outputStream* st) const;
duke@435 352
duke@435 353 // PrintGC, PrintGCDetails support
duke@435 354 void print_heap_change(size_t prev_used) const;
duke@435 355
duke@435 356 // The functions below are helper functions that a subclass of
duke@435 357 // "CollectedHeap" can use in the implementation of its virtual
duke@435 358 // functions.
duke@435 359
duke@435 360 class GenClosure : public StackObj {
duke@435 361 public:
duke@435 362 virtual void do_generation(Generation* gen) = 0;
duke@435 363 };
duke@435 364
coleenp@4037 365 // Apply "cl.do_generation" to all generations in the heap
coleenp@4037 366 // If "old_to_young" determines the order.
duke@435 367 void generation_iterate(GenClosure* cl, bool old_to_young);
duke@435 368
duke@435 369 void space_iterate(SpaceClosure* cl);
duke@435 370
coleenp@4037 371 // Return "true" if all generations have reached the
duke@435 372 // maximal committed limit that they can reach, without a garbage
duke@435 373 // collection.
duke@435 374 virtual bool is_maximal_no_gc() const;
duke@435 375
brutisso@5516 376 // Return the generation before "gen".
duke@435 377 Generation* prev_gen(Generation* gen) const {
duke@435 378 int l = gen->level();
brutisso@5516 379 guarantee(l > 0, "Out of bounds");
brutisso@5516 380 return _gens[l-1];
duke@435 381 }
duke@435 382
brutisso@5516 383 // Return the generation after "gen".
duke@435 384 Generation* next_gen(Generation* gen) const {
duke@435 385 int l = gen->level() + 1;
brutisso@5516 386 guarantee(l < _n_gens, "Out of bounds");
brutisso@5516 387 return _gens[l];
duke@435 388 }
duke@435 389
duke@435 390 Generation* get_gen(int i) const {
brutisso@5516 391 guarantee(i >= 0 && i < _n_gens, "Out of bounds");
brutisso@5516 392 return _gens[i];
duke@435 393 }
duke@435 394
duke@435 395 int n_gens() const {
duke@435 396 assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
duke@435 397 return _n_gens;
duke@435 398 }
duke@435 399
duke@435 400 // Convenience function to be used in situations where the heap type can be
duke@435 401 // asserted to be this type.
duke@435 402 static GenCollectedHeap* heap();
duke@435 403
jmasa@3357 404 void set_par_threads(uint t);
duke@435 405
duke@435 406 // Invoke the "do_oop" method of one of the closures "not_older_gens"
duke@435 407 // or "older_gens" on root locations for the generation at
duke@435 408 // "level". (The "older_gens" closure is used for scanning references
duke@435 409 // from older generations; "not_older_gens" is used everywhere else.)
duke@435 410 // If "younger_gens_as_roots" is false, younger generations are
duke@435 411 // not scanned as roots; in this case, the caller must be arranging to
duke@435 412 // scan the younger generations itself. (For example, a generation might
duke@435 413 // explicitly mark reachable objects in younger generations, to avoid
coleenp@4037 414 // excess storage retention.)
coleenp@4037 415 // The "so" argument determines which of the roots
duke@435 416 // the closure is applied to:
duke@435 417 // "SO_None" does none;
duke@435 418 // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
duke@435 419 // "SO_SystemClasses" to all the "system" classes and loaders;
ysr@2825 420 // "SO_Strings" applies the closure to all entries in the StringTable.
jrose@1424 421 void gen_process_strong_roots(int level,
jrose@1424 422 bool younger_gens_as_roots,
jrose@1424 423 // The remaining arguments are in an order
jrose@1424 424 // consistent with SharedHeap::process_strong_roots:
jrose@1424 425 bool activate_scope,
coleenp@4037 426 bool is_scavenging,
duke@435 427 SharedHeap::ScanningOption so,
jrose@1424 428 OopsInGenClosure* not_older_gens,
jrose@1424 429 bool do_code_roots,
coleenp@4037 430 OopsInGenClosure* older_gens,
coleenp@4037 431 KlassClosure* klass_closure);
duke@435 432
duke@435 433 // Apply "blk" to all the weak roots of the system. These include
duke@435 434 // JNI weak roots, the code cache, system dictionary, symbol table,
duke@435 435 // string table, and referents of reachable weak refs.
duke@435 436 void gen_process_weak_roots(OopClosure* root_closure,
stefank@5011 437 CodeBlobClosure* code_roots);
duke@435 438
duke@435 439 // Set the saved marks of generations, if that makes sense.
duke@435 440 // In particular, if any generation might iterate over the oops
duke@435 441 // in other generations, it should call this method.
duke@435 442 void save_marks();
duke@435 443
duke@435 444 // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
duke@435 445 // allocated since the last call to save_marks in generations at or above
coleenp@4037 446 // "level". The "cur" closure is
duke@435 447 // applied to references in the generation at "level", and the "older"
coleenp@4037 448 // closure to older generations.
duke@435 449 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 450 void oop_since_save_marks_iterate(int level, \
duke@435 451 OopClosureType* cur, \
duke@435 452 OopClosureType* older);
duke@435 453
duke@435 454 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
duke@435 455
duke@435 456 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
duke@435 457
duke@435 458 // Returns "true" iff no allocations have occurred in any generation at
coleenp@4037 459 // "level" or above since the last
duke@435 460 // call to "save_marks".
duke@435 461 bool no_allocs_since_save_marks(int level);
duke@435 462
ysr@2243 463 // Returns true if an incremental collection is likely to fail.
ysr@2336 464 // We optionally consult the young gen, if asked to do so;
ysr@2336 465 // otherwise we base our answer on whether the previous incremental
ysr@2336 466 // collection attempt failed with no corrective action as of yet.
ysr@2336 467 bool incremental_collection_will_fail(bool consult_young) {
ysr@2243 468 // Assumes a 2-generation system; the first disjunct remembers if an
ysr@2243 469 // incremental collection failed, even when we thought (second disjunct)
ysr@2243 470 // that it would not.
ysr@2243 471 assert(heap()->collector_policy()->is_two_generation_policy(),
ysr@2243 472 "the following definition may not be suitable for an n(>2)-generation system");
ysr@2336 473 return incremental_collection_failed() ||
ysr@2336 474 (consult_young && !get_gen(0)->collection_attempt_is_safe());
ysr@2243 475 }
ysr@2243 476
duke@435 477 // If a generation bails out of an incremental collection,
duke@435 478 // it sets this flag.
ysr@2243 479 bool incremental_collection_failed() const {
ysr@2243 480 return _incremental_collection_failed;
duke@435 481 }
ysr@2243 482 void set_incremental_collection_failed() {
ysr@2243 483 _incremental_collection_failed = true;
duke@435 484 }
ysr@2243 485 void clear_incremental_collection_failed() {
ysr@2243 486 _incremental_collection_failed = false;
duke@435 487 }
duke@435 488
coleenp@4037 489 // Promotion of obj into gen failed. Try to promote obj to higher
duke@435 490 // gens in ascending order; return the new location of obj if successful.
brutisso@5516 491 // Otherwise, try expand-and-allocate for obj in both the young and old
brutisso@5516 492 // generation; return the new location of obj if successful. Otherwise, return NULL.
brutisso@5516 493 oop handle_failed_promotion(Generation* old_gen,
duke@435 494 oop obj,
coleenp@548 495 size_t obj_size);
duke@435 496
duke@435 497 private:
duke@435 498 // Accessor for memory state verification support
duke@435 499 NOT_PRODUCT(
duke@435 500 static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
duke@435 501 )
duke@435 502
duke@435 503 // Override
duke@435 504 void check_for_non_bad_heap_word_value(HeapWord* addr,
duke@435 505 size_t size) PRODUCT_RETURN;
duke@435 506
duke@435 507 // For use by mark-sweep. As implemented, mark-sweep-compact is global
duke@435 508 // in an essential way: compaction is performed across generations, by
duke@435 509 // iterating over spaces.
duke@435 510 void prepare_for_compaction();
duke@435 511
duke@435 512 // Perform a full collection of the first max_level+1 generations.
duke@435 513 // This is the low level interface used by the public versions of
duke@435 514 // collect() and collect_locked(). Caller holds the Heap_lock on entry.
duke@435 515 void collect_locked(GCCause::Cause cause, int max_level);
duke@435 516
duke@435 517 // Returns success or failure.
duke@435 518 bool create_cms_collector();
duke@435 519
duke@435 520 // In support of ExplicitGCInvokesConcurrent functionality
duke@435 521 bool should_do_concurrent_full_gc(GCCause::Cause cause);
duke@435 522 void collect_mostly_concurrent(GCCause::Cause cause);
duke@435 523
jmasa@698 524 // Save the tops of the spaces in all generations
jmasa@698 525 void record_gen_tops_before_GC() PRODUCT_RETURN;
jmasa@698 526
duke@435 527 protected:
duke@435 528 virtual void gc_prologue(bool full);
duke@435 529 virtual void gc_epilogue(bool full);
duke@435 530 };
stefank@2314 531
stefank@2314 532 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial