src/cpu/x86/vm/interp_masm_x86_64.cpp

Wed, 21 May 2008 16:31:35 -0700

author
kvn
date
Wed, 21 May 2008 16:31:35 -0700
changeset 600
437d03ea40b1
parent 548
ba764ed4b6f2
child 613
6d172e3548cb
child 777
37f87013dfd8
permissions
-rw-r--r--

6703888: Compressed Oops: use the 32-bits gap after klass in a object
Summary: Use the gap also for a narrow oop field and a boxing object value.
Reviewed-by: coleenp, never

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_x86_64.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // Implementation of InterpreterMacroAssembler
duke@435 30
duke@435 31 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
duke@435 32 int number_of_arguments) {
duke@435 33 // interpreter specific
duke@435 34 //
duke@435 35 // Note: No need to save/restore bcp & locals (r13 & r14) pointer
duke@435 36 // since these are callee saved registers and no blocking/
duke@435 37 // GC can happen in leaf calls.
duke@435 38 #ifdef ASSERT
duke@435 39 save_bcp();
duke@435 40 {
duke@435 41 Label L;
duke@435 42 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
duke@435 43 jcc(Assembler::equal, L);
duke@435 44 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@435 45 " last_sp != NULL");
duke@435 46 bind(L);
duke@435 47 }
duke@435 48 #endif
duke@435 49 // super call
duke@435 50 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
duke@435 51 // interpreter specific
duke@435 52 #ifdef ASSERT
duke@435 53 {
duke@435 54 Label L;
duke@435 55 cmpq(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize));
duke@435 56 jcc(Assembler::equal, L);
duke@435 57 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@435 58 " r13 not callee saved?");
duke@435 59 bind(L);
duke@435 60 }
duke@435 61 {
duke@435 62 Label L;
duke@435 63 cmpq(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize));
duke@435 64 jcc(Assembler::equal, L);
duke@435 65 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@435 66 " r14 not callee saved?");
duke@435 67 bind(L);
duke@435 68 }
duke@435 69 #endif
duke@435 70 }
duke@435 71
duke@435 72 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
duke@435 73 Register java_thread,
duke@435 74 Register last_java_sp,
duke@435 75 address entry_point,
duke@435 76 int number_of_arguments,
duke@435 77 bool check_exceptions) {
duke@435 78 // interpreter specific
duke@435 79 //
duke@435 80 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
duke@435 81 // really make a difference for these runtime calls, since they are
duke@435 82 // slow anyway. Btw., bcp must be saved/restored since it may change
duke@435 83 // due to GC.
duke@435 84 // assert(java_thread == noreg , "not expecting a precomputed java thread");
duke@435 85 save_bcp();
duke@435 86 #ifdef ASSERT
duke@435 87 {
duke@435 88 Label L;
duke@435 89 cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
duke@435 90 jcc(Assembler::equal, L);
duke@435 91 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
duke@435 92 " last_sp != NULL");
duke@435 93 bind(L);
duke@435 94 }
duke@435 95 #endif /* ASSERT */
duke@435 96 // super call
duke@435 97 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
duke@435 98 entry_point, number_of_arguments,
duke@435 99 check_exceptions);
duke@435 100 // interpreter specific
duke@435 101 restore_bcp();
duke@435 102 restore_locals();
duke@435 103 }
duke@435 104
duke@435 105
duke@435 106 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
duke@435 107 if (JvmtiExport::can_pop_frame()) {
duke@435 108 Label L;
duke@435 109 // Initiate popframe handling only if it is not already being
duke@435 110 // processed. If the flag has the popframe_processing bit set, it
duke@435 111 // means that this code is called *during* popframe handling - we
duke@435 112 // don't want to reenter.
duke@435 113 // This method is only called just after the call into the vm in
duke@435 114 // call_VM_base, so the arg registers are available.
duke@435 115 movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
duke@435 116 testl(c_rarg0, JavaThread::popframe_pending_bit);
duke@435 117 jcc(Assembler::zero, L);
duke@435 118 testl(c_rarg0, JavaThread::popframe_processing_bit);
duke@435 119 jcc(Assembler::notZero, L);
duke@435 120 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 121 // address of the same-named entrypoint in the generated interpreter code.
duke@435 122 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 123 jmp(rax);
duke@435 124 bind(L);
duke@435 125 }
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 130 movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@435 131 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
duke@435 132 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
duke@435 133 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
duke@435 134 switch (state) {
duke@435 135 case atos: movq(rax, oop_addr);
duke@435 136 movptr(oop_addr, NULL_WORD);
duke@435 137 verify_oop(rax, state); break;
duke@435 138 case ltos: movq(rax, val_addr); break;
duke@435 139 case btos: // fall through
duke@435 140 case ctos: // fall through
duke@435 141 case stos: // fall through
duke@435 142 case itos: movl(rax, val_addr); break;
duke@435 143 case ftos: movflt(xmm0, val_addr); break;
duke@435 144 case dtos: movdbl(xmm0, val_addr); break;
duke@435 145 case vtos: /* nothing to do */ break;
duke@435 146 default : ShouldNotReachHere();
duke@435 147 }
duke@435 148 // Clean up tos value in the thread object
duke@435 149 movl(tos_addr, (int) ilgl);
duke@435 150 movl(val_addr, (int) NULL_WORD);
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
duke@435 155 if (JvmtiExport::can_force_early_return()) {
duke@435 156 Label L;
duke@435 157 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@435 158 testq(c_rarg0, c_rarg0);
duke@435 159 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 160
duke@435 161 // Initiate earlyret handling only if it is not already being processed.
duke@435 162 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 163 // is called *during* earlyret handling - we don't want to reenter.
duke@435 164 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
duke@435 165 cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
duke@435 166 jcc(Assembler::notEqual, L);
duke@435 167
duke@435 168 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 169 // same-named entrypoint in the generated interpreter code.
duke@435 170 movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
duke@435 171 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
duke@435 172 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
duke@435 173 jmp(rax);
duke@435 174 bind(L);
duke@435 175 }
duke@435 176 }
duke@435 177
duke@435 178
duke@435 179 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
duke@435 180 Register reg,
duke@435 181 int bcp_offset) {
duke@435 182 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
duke@435 183 movl(reg, Address(r13, bcp_offset));
duke@435 184 bswapl(reg);
duke@435 185 shrl(reg, 16);
duke@435 186 }
duke@435 187
duke@435 188
duke@435 189 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
duke@435 190 Register index,
duke@435 191 int bcp_offset) {
duke@435 192 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 193 assert(cache != index, "must use different registers");
duke@435 194 load_unsigned_word(index, Address(r13, bcp_offset));
duke@435 195 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@435 196 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@435 197 // convert from field index to ConstantPoolCacheEntry index
duke@435 198 shll(index, 2);
duke@435 199 }
duke@435 200
duke@435 201
duke@435 202 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
duke@435 203 Register tmp,
duke@435 204 int bcp_offset) {
duke@435 205 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 206 assert(cache != tmp, "must use different register");
duke@435 207 load_unsigned_word(tmp, Address(r13, bcp_offset));
duke@435 208 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
duke@435 209 // convert from field index to ConstantPoolCacheEntry index
duke@435 210 // and from word offset to byte offset
duke@435 211 shll(tmp, 2 + LogBytesPerWord);
duke@435 212 movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
duke@435 213 // skip past the header
duke@435 214 addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
duke@435 215 addq(cache, tmp); // construct pointer to cache entry
duke@435 216 }
duke@435 217
duke@435 218
duke@435 219 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
duke@435 220 // subtype of super_klass.
duke@435 221 //
duke@435 222 // Args:
duke@435 223 // rax: superklass
duke@435 224 // Rsub_klass: subklass
duke@435 225 //
duke@435 226 // Kills:
duke@435 227 // rcx, rdi
duke@435 228 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 229 Label& ok_is_subtype) {
duke@435 230 assert(Rsub_klass != rax, "rax holds superklass");
duke@435 231 assert(Rsub_klass != r14, "r14 holds locals");
duke@435 232 assert(Rsub_klass != r13, "r13 holds bcp");
duke@435 233 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
duke@435 234 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
duke@435 235
duke@435 236 Label not_subtype, loop;
duke@435 237
duke@435 238 // Profile the not-null value's klass.
duke@435 239 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
duke@435 240
duke@435 241 // Load the super-klass's check offset into rcx
duke@435 242 movl(rcx, Address(rax, sizeof(oopDesc) +
duke@435 243 Klass::super_check_offset_offset_in_bytes()));
duke@435 244 // Load from the sub-klass's super-class display list, or a 1-word
duke@435 245 // cache of the secondary superclass list, or a failing value with a
duke@435 246 // sentinel offset if the super-klass is an interface or
duke@435 247 // exceptionally deep in the Java hierarchy and we have to scan the
duke@435 248 // secondary superclass list the hard way. See if we get an
duke@435 249 // immediate positive hit
duke@435 250 cmpq(rax, Address(Rsub_klass, rcx, Address::times_1));
duke@435 251 jcc(Assembler::equal,ok_is_subtype);
duke@435 252
duke@435 253 // Check for immediate negative hit
duke@435 254 cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
duke@435 255 jcc( Assembler::notEqual, not_subtype );
duke@435 256 // Check for self
duke@435 257 cmpq(Rsub_klass, rax);
duke@435 258 jcc(Assembler::equal, ok_is_subtype);
duke@435 259
duke@435 260 // Now do a linear scan of the secondary super-klass chain.
duke@435 261 movq(rdi, Address(Rsub_klass, sizeof(oopDesc) +
duke@435 262 Klass::secondary_supers_offset_in_bytes()));
duke@435 263 // rdi holds the objArrayOop of secondary supers.
duke@435 264 // Load the array length
duke@435 265 movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@435 266 // Skip to start of data; also clear Z flag incase rcx is zero
duke@435 267 addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@435 268 // Scan rcx words at [rdi] for occurance of rax
duke@435 269 // Set NZ/Z based on last compare
coleenp@548 270
coleenp@548 271 // this part is kind tricky, as values in supers array could be 32 or 64 bit wide
coleenp@548 272 // and we store values in objArrays always encoded, thus we need to encode value
coleenp@548 273 // before repne
coleenp@548 274 if (UseCompressedOops) {
coleenp@548 275 encode_heap_oop(rax);
coleenp@548 276 repne_scanl();
coleenp@548 277 // Not equal?
coleenp@548 278 jcc(Assembler::notEqual, not_subtype);
coleenp@548 279 // decode heap oop here for movq
coleenp@548 280 decode_heap_oop(rax);
coleenp@548 281 } else {
coleenp@548 282 repne_scanq();
coleenp@548 283 jcc(Assembler::notEqual, not_subtype);
coleenp@548 284 }
duke@435 285 // Must be equal but missed in cache. Update cache.
duke@435 286 movq(Address(Rsub_klass, sizeof(oopDesc) +
duke@435 287 Klass::secondary_super_cache_offset_in_bytes()), rax);
duke@435 288 jmp(ok_is_subtype);
duke@435 289
duke@435 290 bind(not_subtype);
coleenp@548 291 // decode heap oop here for miss
coleenp@548 292 if (UseCompressedOops) decode_heap_oop(rax);
duke@435 293 profile_typecheck_failed(rcx); // blows rcx
duke@435 294 }
duke@435 295
duke@435 296
duke@435 297 // Java Expression Stack
duke@435 298
duke@435 299 #ifdef ASSERT
duke@435 300 // Verifies that the stack tag matches. Must be called before the stack
duke@435 301 // value is popped off the stack.
duke@435 302 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
duke@435 303 if (TaggedStackInterpreter) {
duke@435 304 frame::Tag tag = t;
duke@435 305 if (t == frame::TagCategory2) {
duke@435 306 tag = frame::TagValue;
duke@435 307 Label hokay;
duke@435 308 cmpq(Address(rsp, 3*wordSize), (int)tag);
duke@435 309 jcc(Assembler::equal, hokay);
duke@435 310 stop("Java Expression stack tag high value is bad");
duke@435 311 bind(hokay);
duke@435 312 }
duke@435 313 Label okay;
duke@435 314 cmpq(Address(rsp, wordSize), (int)tag);
duke@435 315 jcc(Assembler::equal, okay);
duke@435 316 // Also compare if the stack value is zero, then the tag might
duke@435 317 // not have been set coming from deopt.
duke@435 318 cmpq(Address(rsp, 0), 0);
duke@435 319 jcc(Assembler::equal, okay);
duke@435 320 stop("Java Expression stack tag value is bad");
duke@435 321 bind(okay);
duke@435 322 }
duke@435 323 }
duke@435 324 #endif // ASSERT
duke@435 325
duke@435 326 void InterpreterMacroAssembler::pop_ptr(Register r) {
duke@435 327 debug_only(verify_stack_tag(frame::TagReference));
duke@435 328 popq(r);
duke@435 329 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@435 330 }
duke@435 331
duke@435 332 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
duke@435 333 popq(r);
duke@435 334 if (TaggedStackInterpreter) popq(tag);
duke@435 335 }
duke@435 336
duke@435 337 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 338 // XXX can't use popq currently, upper half non clean
duke@435 339 debug_only(verify_stack_tag(frame::TagValue));
duke@435 340 movl(r, Address(rsp, 0));
duke@435 341 addq(rsp, wordSize);
duke@435 342 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@435 343 }
duke@435 344
duke@435 345 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 346 debug_only(verify_stack_tag(frame::TagCategory2));
duke@435 347 movq(r, Address(rsp, 0));
duke@435 348 addq(rsp, 2 * Interpreter::stackElementSize());
duke@435 349 }
duke@435 350
duke@435 351 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
duke@435 352 debug_only(verify_stack_tag(frame::TagValue));
duke@435 353 movflt(r, Address(rsp, 0));
duke@435 354 addq(rsp, wordSize);
duke@435 355 if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
duke@435 356 }
duke@435 357
duke@435 358 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
duke@435 359 debug_only(verify_stack_tag(frame::TagCategory2));
duke@435 360 movdbl(r, Address(rsp, 0));
duke@435 361 addq(rsp, 2 * Interpreter::stackElementSize());
duke@435 362 }
duke@435 363
duke@435 364 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 365 if (TaggedStackInterpreter) pushq(frame::TagReference);
duke@435 366 pushq(r);
duke@435 367 }
duke@435 368
duke@435 369 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@435 370 if (TaggedStackInterpreter) pushq(tag);
duke@435 371 pushq(r);
duke@435 372 }
duke@435 373
duke@435 374 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 375 if (TaggedStackInterpreter) pushq(frame::TagValue);
duke@435 376 pushq(r);
duke@435 377 }
duke@435 378
duke@435 379 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 380 if (TaggedStackInterpreter) {
duke@435 381 pushq(frame::TagValue);
duke@435 382 subq(rsp, 1 * wordSize);
duke@435 383 pushq(frame::TagValue);
duke@435 384 subq(rsp, 1 * wordSize);
duke@435 385 } else {
duke@435 386 subq(rsp, 2 * wordSize);
duke@435 387 }
duke@435 388 movq(Address(rsp, 0), r);
duke@435 389 }
duke@435 390
duke@435 391 void InterpreterMacroAssembler::push_f(XMMRegister r) {
duke@435 392 if (TaggedStackInterpreter) pushq(frame::TagValue);
duke@435 393 subq(rsp, wordSize);
duke@435 394 movflt(Address(rsp, 0), r);
duke@435 395 }
duke@435 396
duke@435 397 void InterpreterMacroAssembler::push_d(XMMRegister r) {
duke@435 398 if (TaggedStackInterpreter) {
duke@435 399 pushq(frame::TagValue);
duke@435 400 subq(rsp, 1 * wordSize);
duke@435 401 pushq(frame::TagValue);
duke@435 402 subq(rsp, 1 * wordSize);
duke@435 403 } else {
duke@435 404 subq(rsp, 2 * wordSize);
duke@435 405 }
duke@435 406 movdbl(Address(rsp, 0), r);
duke@435 407 }
duke@435 408
duke@435 409 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 410 switch (state) {
duke@435 411 case atos: pop_ptr(); break;
duke@435 412 case btos:
duke@435 413 case ctos:
duke@435 414 case stos:
duke@435 415 case itos: pop_i(); break;
duke@435 416 case ltos: pop_l(); break;
duke@435 417 case ftos: pop_f(); break;
duke@435 418 case dtos: pop_d(); break;
duke@435 419 case vtos: /* nothing to do */ break;
duke@435 420 default: ShouldNotReachHere();
duke@435 421 }
duke@435 422 verify_oop(rax, state);
duke@435 423 }
duke@435 424
duke@435 425 void InterpreterMacroAssembler::push(TosState state) {
duke@435 426 verify_oop(rax, state);
duke@435 427 switch (state) {
duke@435 428 case atos: push_ptr(); break;
duke@435 429 case btos:
duke@435 430 case ctos:
duke@435 431 case stos:
duke@435 432 case itos: push_i(); break;
duke@435 433 case ltos: push_l(); break;
duke@435 434 case ftos: push_f(); break;
duke@435 435 case dtos: push_d(); break;
duke@435 436 case vtos: /* nothing to do */ break;
duke@435 437 default : ShouldNotReachHere();
duke@435 438 }
duke@435 439 }
duke@435 440
duke@435 441
duke@435 442 // Tagged stack helpers for swap and dup
duke@435 443 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@435 444 Register tag) {
duke@435 445 movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
duke@435 446 if (TaggedStackInterpreter) {
duke@435 447 movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
duke@435 448 }
duke@435 449 }
duke@435 450
duke@435 451 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@435 452 Register tag) {
duke@435 453 movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
duke@435 454 if (TaggedStackInterpreter) {
duke@435 455 movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
duke@435 456 }
duke@435 457 }
duke@435 458
duke@435 459
duke@435 460 // Tagged local support
duke@435 461 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
duke@435 462 if (TaggedStackInterpreter) {
duke@435 463 if (tag == frame::TagCategory2) {
duke@435 464 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
duke@435 465 (intptr_t)frame::TagValue);
duke@435 466 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
duke@435 467 (intptr_t)frame::TagValue);
duke@435 468 } else {
duke@435 469 mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag);
duke@435 470 }
duke@435 471 }
duke@435 472 }
duke@435 473
duke@435 474 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
duke@435 475 if (TaggedStackInterpreter) {
duke@435 476 if (tag == frame::TagCategory2) {
duke@435 477 mov64(Address(r14, idx, Address::times_8,
duke@435 478 Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue);
duke@435 479 mov64(Address(r14, idx, Address::times_8,
duke@435 480 Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue);
duke@435 481 } else {
duke@435 482 mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
duke@435 483 (intptr_t)tag);
duke@435 484 }
duke@435 485 }
duke@435 486 }
duke@435 487
duke@435 488 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
duke@435 489 if (TaggedStackInterpreter) {
duke@435 490 // can only be TagValue or TagReference
duke@435 491 movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
duke@435 492 }
duke@435 493 }
duke@435 494
duke@435 495
duke@435 496 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
duke@435 497 if (TaggedStackInterpreter) {
duke@435 498 // can only be TagValue or TagReference
duke@435 499 movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
duke@435 500 }
duke@435 501 }
duke@435 502
duke@435 503 #ifdef ASSERT
duke@435 504 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
duke@435 505 if (TaggedStackInterpreter) {
duke@435 506 frame::Tag t = tag;
duke@435 507 if (tag == frame::TagCategory2) {
duke@435 508 Label nbl;
duke@435 509 t = frame::TagValue; // change to what is stored in locals
duke@435 510 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
duke@435 511 jcc(Assembler::equal, nbl);
duke@435 512 stop("Local tag is bad for long/double");
duke@435 513 bind(nbl);
duke@435 514 }
duke@435 515 Label notBad;
duke@435 516 cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
duke@435 517 jcc(Assembler::equal, notBad);
duke@435 518 // Also compare if the local value is zero, then the tag might
duke@435 519 // not have been set coming from deopt.
duke@435 520 cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
duke@435 521 jcc(Assembler::equal, notBad);
duke@435 522 stop("Local tag is bad");
duke@435 523 bind(notBad);
duke@435 524 }
duke@435 525 }
duke@435 526
duke@435 527 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
duke@435 528 if (TaggedStackInterpreter) {
duke@435 529 frame::Tag t = tag;
duke@435 530 if (tag == frame::TagCategory2) {
duke@435 531 Label nbl;
duke@435 532 t = frame::TagValue; // change to what is stored in locals
duke@435 533 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t);
duke@435 534 jcc(Assembler::equal, nbl);
duke@435 535 stop("Local tag is bad for long/double");
duke@435 536 bind(nbl);
duke@435 537 }
duke@435 538 Label notBad;
duke@435 539 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t);
duke@435 540 jcc(Assembler::equal, notBad);
duke@435 541 // Also compare if the local value is zero, then the tag might
duke@435 542 // not have been set coming from deopt.
duke@435 543 cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
duke@435 544 jcc(Assembler::equal, notBad);
duke@435 545 stop("Local tag is bad");
duke@435 546 bind(notBad);
duke@435 547 }
duke@435 548 }
duke@435 549 #endif // ASSERT
duke@435 550
duke@435 551
duke@435 552 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
duke@435 553 MacroAssembler::call_VM_leaf_base(entry_point, 0);
duke@435 554 }
duke@435 555
duke@435 556
duke@435 557 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@435 558 Register arg_1) {
duke@435 559 if (c_rarg0 != arg_1) {
duke@435 560 movq(c_rarg0, arg_1);
duke@435 561 }
duke@435 562 MacroAssembler::call_VM_leaf_base(entry_point, 1);
duke@435 563 }
duke@435 564
duke@435 565
duke@435 566 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@435 567 Register arg_1,
duke@435 568 Register arg_2) {
duke@435 569 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 570 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 571 if (c_rarg0 != arg_1) {
duke@435 572 movq(c_rarg0, arg_1);
duke@435 573 }
duke@435 574 if (c_rarg1 != arg_2) {
duke@435 575 movq(c_rarg1, arg_2);
duke@435 576 }
duke@435 577 MacroAssembler::call_VM_leaf_base(entry_point, 2);
duke@435 578 }
duke@435 579
duke@435 580 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
duke@435 581 Register arg_1,
duke@435 582 Register arg_2,
duke@435 583 Register arg_3) {
duke@435 584 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 585 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 586 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 587 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 588 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 589 assert(c_rarg2 != arg_2, "smashed argument");
duke@435 590 if (c_rarg0 != arg_1) {
duke@435 591 movq(c_rarg0, arg_1);
duke@435 592 }
duke@435 593 if (c_rarg1 != arg_2) {
duke@435 594 movq(c_rarg1, arg_2);
duke@435 595 }
duke@435 596 if (c_rarg2 != arg_3) {
duke@435 597 movq(c_rarg2, arg_3);
duke@435 598 }
duke@435 599 MacroAssembler::call_VM_leaf_base(entry_point, 3);
duke@435 600 }
duke@435 601
duke@435 602 // Jump to from_interpreted entry of a call unless single stepping is possible
duke@435 603 // in this thread in which case we must call the i2i entry
duke@435 604 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
duke@435 605 // set sender sp
duke@435 606 leaq(r13, Address(rsp, wordSize));
duke@435 607 // record last_sp
duke@435 608 movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
duke@435 609
duke@435 610 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 611 Label run_compiled_code;
duke@435 612 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 613 // compiled code in threads for which the event is enabled. Check here for
duke@435 614 // interp_only_mode if these events CAN be enabled.
duke@435 615 get_thread(temp);
duke@435 616 // interp_only is an int, on little endian it is sufficient to test the byte only
duke@435 617 // Is a cmpl faster (ce
duke@435 618 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
duke@435 619 jcc(Assembler::zero, run_compiled_code);
duke@435 620 jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
duke@435 621 bind(run_compiled_code);
duke@435 622 }
duke@435 623
duke@435 624 jmp(Address(method, methodOopDesc::from_interpreted_offset()));
duke@435 625
duke@435 626 }
duke@435 627
duke@435 628
duke@435 629 // The following two routines provide a hook so that an implementation
duke@435 630 // can schedule the dispatch in two parts. amd64 does not do this.
duke@435 631 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
duke@435 632 // Nothing amd64 specific to be done here
duke@435 633 }
duke@435 634
duke@435 635 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
duke@435 636 dispatch_next(state, step);
duke@435 637 }
duke@435 638
duke@435 639 void InterpreterMacroAssembler::dispatch_base(TosState state,
duke@435 640 address* table,
duke@435 641 bool verifyoop) {
duke@435 642 verify_FPU(1, state);
duke@435 643 if (VerifyActivationFrameSize) {
duke@435 644 Label L;
duke@435 645 movq(rcx, rbp);
duke@435 646 subq(rcx, rsp);
duke@435 647 int min_frame_size =
duke@435 648 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
duke@435 649 wordSize;
duke@435 650 cmpq(rcx, min_frame_size);
duke@435 651 jcc(Assembler::greaterEqual, L);
duke@435 652 stop("broken stack frame");
duke@435 653 bind(L);
duke@435 654 }
duke@435 655 if (verifyoop) {
duke@435 656 verify_oop(rax, state);
duke@435 657 }
duke@435 658 lea(rscratch1, ExternalAddress((address)table));
duke@435 659 jmp(Address(rscratch1, rbx, Address::times_8));
duke@435 660 }
duke@435 661
duke@435 662 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 663 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 664 }
duke@435 665
duke@435 666 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
duke@435 667 dispatch_base(state, Interpreter::normal_table(state));
duke@435 668 }
duke@435 669
duke@435 670 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
duke@435 671 dispatch_base(state, Interpreter::normal_table(state), false);
duke@435 672 }
duke@435 673
duke@435 674
duke@435 675 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
duke@435 676 // load next bytecode (load before advancing r13 to prevent AGI)
duke@435 677 load_unsigned_byte(rbx, Address(r13, step));
duke@435 678 // advance r13
duke@435 679 incrementq(r13, step);
duke@435 680 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 681 }
duke@435 682
duke@435 683 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 684 // load current bytecode
duke@435 685 load_unsigned_byte(rbx, Address(r13, 0));
duke@435 686 dispatch_base(state, table);
duke@435 687 }
duke@435 688
duke@435 689 // remove activation
duke@435 690 //
duke@435 691 // Unlock the receiver if this is a synchronized method.
duke@435 692 // Unlock any Java monitors from syncronized blocks.
duke@435 693 // Remove the activation from the stack.
duke@435 694 //
duke@435 695 // If there are locked Java monitors
duke@435 696 // If throw_monitor_exception
duke@435 697 // throws IllegalMonitorStateException
duke@435 698 // Else if install_monitor_exception
duke@435 699 // installs IllegalMonitorStateException
duke@435 700 // Else
duke@435 701 // no error processing
duke@435 702 void InterpreterMacroAssembler::remove_activation(
duke@435 703 TosState state,
duke@435 704 Register ret_addr,
duke@435 705 bool throw_monitor_exception,
duke@435 706 bool install_monitor_exception,
duke@435 707 bool notify_jvmdi) {
duke@435 708 // Note: Registers rdx xmm0 may be in use for the
duke@435 709 // result check if synchronized method
duke@435 710 Label unlocked, unlock, no_unlock;
duke@435 711
duke@435 712 // get the value of _do_not_unlock_if_synchronized into rdx
duke@435 713 const Address do_not_unlock_if_synchronized(r15_thread,
duke@435 714 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 715 movbool(rdx, do_not_unlock_if_synchronized);
duke@435 716 movbool(do_not_unlock_if_synchronized, false); // reset the flag
duke@435 717
duke@435 718 // get method access flags
duke@435 719 movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
duke@435 720 movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
duke@435 721 testl(rcx, JVM_ACC_SYNCHRONIZED);
duke@435 722 jcc(Assembler::zero, unlocked);
duke@435 723
duke@435 724 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 725 // is set.
duke@435 726 testbool(rdx);
duke@435 727 jcc(Assembler::notZero, no_unlock);
duke@435 728
duke@435 729 // unlock monitor
duke@435 730 push(state); // save result
duke@435 731
duke@435 732 // BasicObjectLock will be first in list, since this is a
duke@435 733 // synchronized method. However, need to check that the object has
duke@435 734 // not been unlocked by an explicit monitorexit bytecode.
duke@435 735 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
duke@435 736 wordSize - (int) sizeof(BasicObjectLock));
duke@435 737 // We use c_rarg1 so that if we go slow path it will be the correct
duke@435 738 // register for unlock_object to pass to VM directly
duke@435 739 leaq(c_rarg1, monitor); // address of first monitor
duke@435 740
duke@435 741 movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
duke@435 742 testq(rax, rax);
duke@435 743 jcc(Assembler::notZero, unlock);
duke@435 744
duke@435 745 pop(state);
duke@435 746 if (throw_monitor_exception) {
duke@435 747 // Entry already unlocked, need to throw exception
duke@435 748 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@435 749 InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 750 should_not_reach_here();
duke@435 751 } else {
duke@435 752 // Monitor already unlocked during a stack unroll. If requested,
duke@435 753 // install an illegal_monitor_state_exception. Continue with
duke@435 754 // stack unrolling.
duke@435 755 if (install_monitor_exception) {
duke@435 756 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@435 757 InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 758 }
duke@435 759 jmp(unlocked);
duke@435 760 }
duke@435 761
duke@435 762 bind(unlock);
duke@435 763 unlock_object(c_rarg1);
duke@435 764 pop(state);
duke@435 765
duke@435 766 // Check that for block-structured locking (i.e., that all locked
duke@435 767 // objects has been unlocked)
duke@435 768 bind(unlocked);
duke@435 769
duke@435 770 // rax: Might contain return value
duke@435 771
duke@435 772 // Check that all monitors are unlocked
duke@435 773 {
duke@435 774 Label loop, exception, entry, restart;
duke@435 775 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 776 const Address monitor_block_top(
duke@435 777 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
duke@435 778 const Address monitor_block_bot(
duke@435 779 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
duke@435 780
duke@435 781 bind(restart);
duke@435 782 // We use c_rarg1 so that if we go slow path it will be the correct
duke@435 783 // register for unlock_object to pass to VM directly
duke@435 784 movq(c_rarg1, monitor_block_top); // points to current entry, starting
duke@435 785 // with top-most entry
duke@435 786 leaq(rbx, monitor_block_bot); // points to word before bottom of
duke@435 787 // monitor block
duke@435 788 jmp(entry);
duke@435 789
duke@435 790 // Entry already locked, need to throw exception
duke@435 791 bind(exception);
duke@435 792
duke@435 793 if (throw_monitor_exception) {
duke@435 794 // Throw exception
duke@435 795 MacroAssembler::call_VM(noreg,
duke@435 796 CAST_FROM_FN_PTR(address, InterpreterRuntime::
duke@435 797 throw_illegal_monitor_state_exception));
duke@435 798 should_not_reach_here();
duke@435 799 } else {
duke@435 800 // Stack unrolling. Unlock object and install illegal_monitor_exception.
duke@435 801 // Unlock does not block, so don't have to worry about the frame.
duke@435 802 // We don't have to preserve c_rarg1 since we are going to throw an exception.
duke@435 803
duke@435 804 push(state);
duke@435 805 unlock_object(c_rarg1);
duke@435 806 pop(state);
duke@435 807
duke@435 808 if (install_monitor_exception) {
duke@435 809 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@435 810 InterpreterRuntime::
duke@435 811 new_illegal_monitor_state_exception));
duke@435 812 }
duke@435 813
duke@435 814 jmp(restart);
duke@435 815 }
duke@435 816
duke@435 817 bind(loop);
duke@435 818 // check if current entry is used
duke@435 819 cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
duke@435 820 jcc(Assembler::notEqual, exception);
duke@435 821
duke@435 822 addq(c_rarg1, entry_size); // otherwise advance to next entry
duke@435 823 bind(entry);
duke@435 824 cmpq(c_rarg1, rbx); // check if bottom reached
duke@435 825 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
duke@435 826 }
duke@435 827
duke@435 828 bind(no_unlock);
duke@435 829
duke@435 830 // jvmti support
duke@435 831 if (notify_jvmdi) {
duke@435 832 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
duke@435 833 } else {
duke@435 834 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
duke@435 835 }
duke@435 836
duke@435 837 // remove activation
duke@435 838 // get sender sp
duke@435 839 movq(rbx,
duke@435 840 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
duke@435 841 leave(); // remove frame anchor
duke@435 842 popq(ret_addr); // get return address
duke@435 843 movq(rsp, rbx); // set sp to sender sp
duke@435 844 }
duke@435 845
duke@435 846 // Lock object
duke@435 847 //
duke@435 848 // Args:
duke@435 849 // c_rarg1: BasicObjectLock to be used for locking
duke@435 850 //
duke@435 851 // Kills:
duke@435 852 // rax
duke@435 853 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
duke@435 854 // rscratch1, rscratch2 (scratch regs)
duke@435 855 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
duke@435 856 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
duke@435 857
duke@435 858 if (UseHeavyMonitors) {
duke@435 859 call_VM(noreg,
duke@435 860 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@435 861 lock_reg);
duke@435 862 } else {
duke@435 863 Label done;
duke@435 864
duke@435 865 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 866 const Register obj_reg = c_rarg3; // Will contain the oop
duke@435 867
duke@435 868 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
duke@435 869 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
duke@435 870 const int mark_offset = lock_offset +
duke@435 871 BasicLock::displaced_header_offset_in_bytes();
duke@435 872
duke@435 873 Label slow_case;
duke@435 874
duke@435 875 // Load object pointer into obj_reg %c_rarg3
duke@435 876 movq(obj_reg, Address(lock_reg, obj_offset));
duke@435 877
duke@435 878 if (UseBiasedLocking) {
duke@435 879 biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
duke@435 880 }
duke@435 881
duke@435 882 // Load immediate 1 into swap_reg %rax
duke@435 883 movl(swap_reg, 1);
duke@435 884
duke@435 885 // Load (object->mark() | 1) into swap_reg %rax
duke@435 886 orq(swap_reg, Address(obj_reg, 0));
duke@435 887
duke@435 888 // Save (object->mark() | 1) into BasicLock's displaced header
duke@435 889 movq(Address(lock_reg, mark_offset), swap_reg);
duke@435 890
duke@435 891 assert(lock_offset == 0,
duke@435 892 "displached header must be first word in BasicObjectLock");
duke@435 893
duke@435 894 if (os::is_MP()) lock();
duke@435 895 cmpxchgq(lock_reg, Address(obj_reg, 0));
duke@435 896 if (PrintBiasedLockingStatistics) {
duke@435 897 cond_inc32(Assembler::zero,
duke@435 898 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@435 899 }
duke@435 900 jcc(Assembler::zero, done);
duke@435 901
duke@435 902 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 903 // 1) (mark & 7) == 0, and
duke@435 904 // 2) rsp <= mark < mark + os::pagesize()
duke@435 905 //
duke@435 906 // These 3 tests can be done by evaluating the following
duke@435 907 // expression: ((mark - rsp) & (7 - os::vm_page_size())),
duke@435 908 // assuming both stack pointer and pagesize have their
duke@435 909 // least significant 3 bits clear.
duke@435 910 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@435 911 subq(swap_reg, rsp);
duke@435 912 andq(swap_reg, 7 - os::vm_page_size());
duke@435 913
duke@435 914 // Save the test result, for recursive case, the result is zero
duke@435 915 movq(Address(lock_reg, mark_offset), swap_reg);
duke@435 916
duke@435 917 if (PrintBiasedLockingStatistics) {
duke@435 918 cond_inc32(Assembler::zero,
duke@435 919 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
duke@435 920 }
duke@435 921 jcc(Assembler::zero, done);
duke@435 922
duke@435 923 bind(slow_case);
duke@435 924
duke@435 925 // Call the runtime routine for slow case
duke@435 926 call_VM(noreg,
duke@435 927 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
duke@435 928 lock_reg);
duke@435 929
duke@435 930 bind(done);
duke@435 931 }
duke@435 932 }
duke@435 933
duke@435 934
duke@435 935 // Unlocks an object. Used in monitorexit bytecode and
duke@435 936 // remove_activation. Throws an IllegalMonitorException if object is
duke@435 937 // not locked by current thread.
duke@435 938 //
duke@435 939 // Args:
duke@435 940 // c_rarg1: BasicObjectLock for lock
duke@435 941 //
duke@435 942 // Kills:
duke@435 943 // rax
duke@435 944 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
duke@435 945 // rscratch1, rscratch2 (scratch regs)
duke@435 946 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 947 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
duke@435 948
duke@435 949 if (UseHeavyMonitors) {
duke@435 950 call_VM(noreg,
duke@435 951 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@435 952 lock_reg);
duke@435 953 } else {
duke@435 954 Label done;
duke@435 955
duke@435 956 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 957 const Register header_reg = c_rarg2; // Will contain the old oopMark
duke@435 958 const Register obj_reg = c_rarg3; // Will contain the oop
duke@435 959
duke@435 960 save_bcp(); // Save in case of exception
duke@435 961
duke@435 962 // Convert from BasicObjectLock structure to object and BasicLock
duke@435 963 // structure Store the BasicLock address into %rax
duke@435 964 leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
duke@435 965
duke@435 966 // Load oop into obj_reg(%c_rarg3)
duke@435 967 movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
duke@435 968
duke@435 969 // Free entry
duke@435 970 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
duke@435 971
duke@435 972 if (UseBiasedLocking) {
duke@435 973 biased_locking_exit(obj_reg, header_reg, done);
duke@435 974 }
duke@435 975
duke@435 976 // Load the old header from BasicLock structure
duke@435 977 movq(header_reg, Address(swap_reg,
duke@435 978 BasicLock::displaced_header_offset_in_bytes()));
duke@435 979
duke@435 980 // Test for recursion
duke@435 981 testq(header_reg, header_reg);
duke@435 982
duke@435 983 // zero for recursive case
duke@435 984 jcc(Assembler::zero, done);
duke@435 985
duke@435 986 // Atomic swap back the old header
duke@435 987 if (os::is_MP()) lock();
duke@435 988 cmpxchgq(header_reg, Address(obj_reg, 0));
duke@435 989
duke@435 990 // zero for recursive case
duke@435 991 jcc(Assembler::zero, done);
duke@435 992
duke@435 993 // Call the runtime routine for slow case.
duke@435 994 movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
duke@435 995 obj_reg); // restore obj
duke@435 996 call_VM(noreg,
duke@435 997 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
duke@435 998 lock_reg);
duke@435 999
duke@435 1000 bind(done);
duke@435 1001
duke@435 1002 restore_bcp();
duke@435 1003 }
duke@435 1004 }
duke@435 1005
duke@435 1006
duke@435 1007 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
duke@435 1008 Label& zero_continue) {
duke@435 1009 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1010 movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
duke@435 1011 testq(mdp, mdp);
duke@435 1012 jcc(Assembler::zero, zero_continue);
duke@435 1013 }
duke@435 1014
duke@435 1015
duke@435 1016 // Set the method data pointer for the current bcp.
duke@435 1017 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1018 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1019 Label zero_continue;
duke@435 1020 pushq(rax);
duke@435 1021 pushq(rbx);
duke@435 1022
duke@435 1023 get_method(rbx);
duke@435 1024 // Test MDO to avoid the call if it is NULL.
duke@435 1025 movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
duke@435 1026 testq(rax, rax);
duke@435 1027 jcc(Assembler::zero, zero_continue);
duke@435 1028
duke@435 1029 // rbx: method
duke@435 1030 // r13: bcp
duke@435 1031 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
duke@435 1032 // rax: mdi
duke@435 1033
duke@435 1034 movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
duke@435 1035 testq(rbx, rbx);
duke@435 1036 jcc(Assembler::zero, zero_continue);
duke@435 1037 addq(rbx, in_bytes(methodDataOopDesc::data_offset()));
duke@435 1038 addq(rbx, rax);
duke@435 1039 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
duke@435 1040
duke@435 1041 bind(zero_continue);
duke@435 1042 popq(rbx);
duke@435 1043 popq(rax);
duke@435 1044 }
duke@435 1045
duke@435 1046 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1047 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1048 #ifdef ASSERT
duke@435 1049 Label verify_continue;
duke@435 1050 pushq(rax);
duke@435 1051 pushq(rbx);
duke@435 1052 pushq(c_rarg3);
duke@435 1053 pushq(c_rarg2);
duke@435 1054 test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
duke@435 1055 get_method(rbx);
duke@435 1056
duke@435 1057 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1058 // consistent with the bcp. The converse is highly probable also.
duke@435 1059 load_unsigned_word(c_rarg2,
duke@435 1060 Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
duke@435 1061 addq(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
duke@435 1062 leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
duke@435 1063 cmpq(c_rarg2, r13);
duke@435 1064 jcc(Assembler::equal, verify_continue);
duke@435 1065 // rbx: method
duke@435 1066 // r13: bcp
duke@435 1067 // c_rarg3: mdp
duke@435 1068 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
duke@435 1069 rbx, r13, c_rarg3);
duke@435 1070 bind(verify_continue);
duke@435 1071 popq(c_rarg2);
duke@435 1072 popq(c_rarg3);
duke@435 1073 popq(rbx);
duke@435 1074 popq(rax);
duke@435 1075 #endif // ASSERT
duke@435 1076 }
duke@435 1077
duke@435 1078
duke@435 1079 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
duke@435 1080 int constant,
duke@435 1081 Register value) {
duke@435 1082 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1083 Address data(mdp_in, constant);
duke@435 1084 movq(data, value);
duke@435 1085 }
duke@435 1086
duke@435 1087
duke@435 1088 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@435 1089 int constant,
duke@435 1090 bool decrement) {
duke@435 1091 // Counter address
duke@435 1092 Address data(mdp_in, constant);
duke@435 1093
duke@435 1094 increment_mdp_data_at(data, decrement);
duke@435 1095 }
duke@435 1096
duke@435 1097 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
duke@435 1098 bool decrement) {
duke@435 1099 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1100
duke@435 1101 if (decrement) {
duke@435 1102 // Decrement the register. Set condition codes.
duke@435 1103 addq(data, -DataLayout::counter_increment);
duke@435 1104 // If the decrement causes the counter to overflow, stay negative
duke@435 1105 Label L;
duke@435 1106 jcc(Assembler::negative, L);
duke@435 1107 addq(data, DataLayout::counter_increment);
duke@435 1108 bind(L);
duke@435 1109 } else {
duke@435 1110 assert(DataLayout::counter_increment == 1,
duke@435 1111 "flow-free idiom only works with 1");
duke@435 1112 // Increment the register. Set carry flag.
duke@435 1113 addq(data, DataLayout::counter_increment);
duke@435 1114 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1115 sbbq(data, 0);
duke@435 1116 }
duke@435 1117 }
duke@435 1118
duke@435 1119
duke@435 1120 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
duke@435 1121 Register reg,
duke@435 1122 int constant,
duke@435 1123 bool decrement) {
duke@435 1124 Address data(mdp_in, reg, Address::times_1, constant);
duke@435 1125
duke@435 1126 increment_mdp_data_at(data, decrement);
duke@435 1127 }
duke@435 1128
duke@435 1129 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
duke@435 1130 int flag_byte_constant) {
duke@435 1131 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1132 int header_offset = in_bytes(DataLayout::header_offset());
duke@435 1133 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
duke@435 1134 // Set the flag
duke@435 1135 orl(Address(mdp_in, header_offset), header_bits);
duke@435 1136 }
duke@435 1137
duke@435 1138
duke@435 1139
duke@435 1140 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
duke@435 1141 int offset,
duke@435 1142 Register value,
duke@435 1143 Register test_value_out,
duke@435 1144 Label& not_equal_continue) {
duke@435 1145 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1146 if (test_value_out == noreg) {
duke@435 1147 cmpq(value, Address(mdp_in, offset));
duke@435 1148 } else {
duke@435 1149 // Put the test value into a register, so caller can use it:
duke@435 1150 movq(test_value_out, Address(mdp_in, offset));
duke@435 1151 cmpq(test_value_out, value);
duke@435 1152 }
duke@435 1153 jcc(Assembler::notEqual, not_equal_continue);
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@435 1158 int offset_of_disp) {
duke@435 1159 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1160 Address disp_address(mdp_in, offset_of_disp);
duke@435 1161 addq(mdp_in, disp_address);
duke@435 1162 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
duke@435 1167 Register reg,
duke@435 1168 int offset_of_disp) {
duke@435 1169 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1170 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
duke@435 1171 addq(mdp_in, disp_address);
duke@435 1172 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
duke@435 1177 int constant) {
duke@435 1178 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1179 addq(mdp_in, constant);
duke@435 1180 movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
duke@435 1181 }
duke@435 1182
duke@435 1183
duke@435 1184 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
duke@435 1185 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1186 pushq(return_bci); // save/restore across call_VM
duke@435 1187 call_VM(noreg,
duke@435 1188 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
duke@435 1189 return_bci);
duke@435 1190 popq(return_bci);
duke@435 1191 }
duke@435 1192
duke@435 1193
duke@435 1194 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
duke@435 1195 Register bumped_count) {
duke@435 1196 if (ProfileInterpreter) {
duke@435 1197 Label profile_continue;
duke@435 1198
duke@435 1199 // If no method data exists, go to profile_continue.
duke@435 1200 // Otherwise, assign to mdp
duke@435 1201 test_method_data_pointer(mdp, profile_continue);
duke@435 1202
duke@435 1203 // We are taking a branch. Increment the taken count.
duke@435 1204 // We inline increment_mdp_data_at to return bumped_count in a register
duke@435 1205 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
duke@435 1206 Address data(mdp, in_bytes(JumpData::taken_offset()));
duke@435 1207 movq(bumped_count, data);
duke@435 1208 assert(DataLayout::counter_increment == 1,
duke@435 1209 "flow-free idiom only works with 1");
duke@435 1210 addq(bumped_count, DataLayout::counter_increment);
duke@435 1211 sbbq(bumped_count, 0);
duke@435 1212 movq(data, bumped_count); // Store back out
duke@435 1213
duke@435 1214 // The method data pointer needs to be updated to reflect the new target.
duke@435 1215 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
duke@435 1216 bind(profile_continue);
duke@435 1217 }
duke@435 1218 }
duke@435 1219
duke@435 1220
duke@435 1221 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
duke@435 1222 if (ProfileInterpreter) {
duke@435 1223 Label profile_continue;
duke@435 1224
duke@435 1225 // If no method data exists, go to profile_continue.
duke@435 1226 test_method_data_pointer(mdp, profile_continue);
duke@435 1227
duke@435 1228 // We are taking a branch. Increment the not taken count.
duke@435 1229 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
duke@435 1230
duke@435 1231 // The method data pointer needs to be updated to correspond to
duke@435 1232 // the next bytecode
duke@435 1233 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
duke@435 1234 bind(profile_continue);
duke@435 1235 }
duke@435 1236 }
duke@435 1237
duke@435 1238
duke@435 1239 void InterpreterMacroAssembler::profile_call(Register mdp) {
duke@435 1240 if (ProfileInterpreter) {
duke@435 1241 Label profile_continue;
duke@435 1242
duke@435 1243 // If no method data exists, go to profile_continue.
duke@435 1244 test_method_data_pointer(mdp, profile_continue);
duke@435 1245
duke@435 1246 // We are making a call. Increment the count.
duke@435 1247 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@435 1248
duke@435 1249 // The method data pointer needs to be updated to reflect the new target.
duke@435 1250 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
duke@435 1251 bind(profile_continue);
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255
duke@435 1256 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
duke@435 1257 if (ProfileInterpreter) {
duke@435 1258 Label profile_continue;
duke@435 1259
duke@435 1260 // If no method data exists, go to profile_continue.
duke@435 1261 test_method_data_pointer(mdp, profile_continue);
duke@435 1262
duke@435 1263 // We are making a call. Increment the count.
duke@435 1264 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@435 1265
duke@435 1266 // The method data pointer needs to be updated to reflect the new target.
duke@435 1267 update_mdp_by_constant(mdp,
duke@435 1268 in_bytes(VirtualCallData::
duke@435 1269 virtual_call_data_size()));
duke@435 1270 bind(profile_continue);
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274
duke@435 1275 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@435 1276 Register mdp,
duke@435 1277 Register reg2) {
duke@435 1278 if (ProfileInterpreter) {
duke@435 1279 Label profile_continue;
duke@435 1280
duke@435 1281 // If no method data exists, go to profile_continue.
duke@435 1282 test_method_data_pointer(mdp, profile_continue);
duke@435 1283
duke@435 1284 // We are making a call. Increment the count.
duke@435 1285 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@435 1286
duke@435 1287 // Record the receiver type.
duke@435 1288 record_klass_in_profile(receiver, mdp, reg2);
duke@435 1289
duke@435 1290 // The method data pointer needs to be updated to reflect the new target.
duke@435 1291 update_mdp_by_constant(mdp,
duke@435 1292 in_bytes(VirtualCallData::
duke@435 1293 virtual_call_data_size()));
duke@435 1294 bind(profile_continue);
duke@435 1295 }
duke@435 1296 }
duke@435 1297
duke@435 1298 // This routine creates a state machine for updating the multi-row
duke@435 1299 // type profile at a virtual call site (or other type-sensitive bytecode).
duke@435 1300 // The machine visits each row (of receiver/count) until the receiver type
duke@435 1301 // is found, or until it runs out of rows. At the same time, it remembers
duke@435 1302 // the location of the first empty row. (An empty row records null for its
duke@435 1303 // receiver, and can be allocated for a newly-observed receiver type.)
duke@435 1304 // Because there are two degrees of freedom in the state, a simple linear
duke@435 1305 // search will not work; it must be a decision tree. Hence this helper
duke@435 1306 // function is recursive, to generate the required tree structured code.
duke@435 1307 // It's the interpreter, so we are trading off code space for speed.
duke@435 1308 // See below for example code.
duke@435 1309 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1310 Register receiver, Register mdp,
duke@435 1311 Register reg2,
duke@435 1312 int start_row, Label& done) {
duke@435 1313 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1314 assert(start_row <= last_row, "must be work left to do");
duke@435 1315 // Test this row for both the receiver and for null.
duke@435 1316 // Take any of three different outcomes:
duke@435 1317 // 1. found receiver => increment count and goto done
duke@435 1318 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1319 // 3. found something else => keep looking for cases 1 and 2
duke@435 1320 // Case 3 is handled by a recursive call.
duke@435 1321 for (int row = start_row; row <= last_row; row++) {
duke@435 1322 Label next_test;
duke@435 1323 bool test_for_null_also = (row == start_row);
duke@435 1324
duke@435 1325 // See if the receiver is receiver[n].
duke@435 1326 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1327 test_mdp_data_at(mdp, recvr_offset, receiver,
duke@435 1328 (test_for_null_also ? reg2 : noreg),
duke@435 1329 next_test);
duke@435 1330 // (Reg2 now contains the receiver from the CallData.)
duke@435 1331
duke@435 1332 // The receiver is receiver[n]. Increment count[n].
duke@435 1333 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1334 increment_mdp_data_at(mdp, count_offset);
duke@435 1335 jmp(done);
duke@435 1336 bind(next_test);
duke@435 1337
duke@435 1338 if (test_for_null_also) {
duke@435 1339 // Failed the equality check on receiver[n]... Test for null.
duke@435 1340 testq(reg2, reg2);
duke@435 1341 if (start_row == last_row) {
duke@435 1342 // The only thing left to do is handle the null case.
duke@435 1343 jcc(Assembler::notZero, done);
duke@435 1344 break;
duke@435 1345 }
duke@435 1346 // Since null is rare, make it be the branch-taken case.
duke@435 1347 Label found_null;
duke@435 1348 jcc(Assembler::zero, found_null);
duke@435 1349
duke@435 1350 // Put all the "Case 3" tests here.
duke@435 1351 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
duke@435 1352
duke@435 1353 // Found a null. Keep searching for a matching receiver,
duke@435 1354 // but remember that this is an empty (unused) slot.
duke@435 1355 bind(found_null);
duke@435 1356 }
duke@435 1357 }
duke@435 1358
duke@435 1359 // In the fall-through case, we found no matching receiver, but we
duke@435 1360 // observed the receiver[start_row] is NULL.
duke@435 1361
duke@435 1362 // Fill in the receiver field and increment the count.
duke@435 1363 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1364 set_mdp_data_at(mdp, recvr_offset, receiver);
duke@435 1365 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1366 movl(reg2, DataLayout::counter_increment);
duke@435 1367 set_mdp_data_at(mdp, count_offset, reg2);
duke@435 1368 jmp(done);
duke@435 1369 }
duke@435 1370
duke@435 1371 // Example state machine code for three profile rows:
duke@435 1372 // // main copy of decision tree, rooted at row[1]
duke@435 1373 // if (row[0].rec == rec) { row[0].incr(); goto done; }
duke@435 1374 // if (row[0].rec != NULL) {
duke@435 1375 // // inner copy of decision tree, rooted at row[1]
duke@435 1376 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@435 1377 // if (row[1].rec != NULL) {
duke@435 1378 // // degenerate decision tree, rooted at row[2]
duke@435 1379 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@435 1380 // if (row[2].rec != NULL) { goto done; } // overflow
duke@435 1381 // row[2].init(rec); goto done;
duke@435 1382 // } else {
duke@435 1383 // // remember row[1] is empty
duke@435 1384 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@435 1385 // row[1].init(rec); goto done;
duke@435 1386 // }
duke@435 1387 // } else {
duke@435 1388 // // remember row[0] is empty
duke@435 1389 // if (row[1].rec == rec) { row[1].incr(); goto done; }
duke@435 1390 // if (row[2].rec == rec) { row[2].incr(); goto done; }
duke@435 1391 // row[0].init(rec); goto done;
duke@435 1392 // }
duke@435 1393
duke@435 1394 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@435 1395 Register mdp,
duke@435 1396 Register reg2) {
duke@435 1397 assert(ProfileInterpreter, "must be profiling");
duke@435 1398 Label done;
duke@435 1399
duke@435 1400 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
duke@435 1401
duke@435 1402 bind (done);
duke@435 1403 }
duke@435 1404
duke@435 1405 void InterpreterMacroAssembler::profile_ret(Register return_bci,
duke@435 1406 Register mdp) {
duke@435 1407 if (ProfileInterpreter) {
duke@435 1408 Label profile_continue;
duke@435 1409 uint row;
duke@435 1410
duke@435 1411 // If no method data exists, go to profile_continue.
duke@435 1412 test_method_data_pointer(mdp, profile_continue);
duke@435 1413
duke@435 1414 // Update the total ret count.
duke@435 1415 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
duke@435 1416
duke@435 1417 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1418 Label next_test;
duke@435 1419
duke@435 1420 // See if return_bci is equal to bci[n]:
duke@435 1421 test_mdp_data_at(mdp,
duke@435 1422 in_bytes(RetData::bci_offset(row)),
duke@435 1423 return_bci, noreg,
duke@435 1424 next_test);
duke@435 1425
duke@435 1426 // return_bci is equal to bci[n]. Increment the count.
duke@435 1427 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
duke@435 1428
duke@435 1429 // The method data pointer needs to be updated to reflect the new target.
duke@435 1430 update_mdp_by_offset(mdp,
duke@435 1431 in_bytes(RetData::bci_displacement_offset(row)));
duke@435 1432 jmp(profile_continue);
duke@435 1433 bind(next_test);
duke@435 1434 }
duke@435 1435
duke@435 1436 update_mdp_for_ret(return_bci);
duke@435 1437
duke@435 1438 bind(profile_continue);
duke@435 1439 }
duke@435 1440 }
duke@435 1441
duke@435 1442
duke@435 1443 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
duke@435 1444 if (ProfileInterpreter) {
duke@435 1445 Label profile_continue;
duke@435 1446
duke@435 1447 // If no method data exists, go to profile_continue.
duke@435 1448 test_method_data_pointer(mdp, profile_continue);
duke@435 1449
duke@435 1450 // The method data pointer needs to be updated.
duke@435 1451 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1452 if (TypeProfileCasts) {
duke@435 1453 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1454 }
duke@435 1455 update_mdp_by_constant(mdp, mdp_delta);
duke@435 1456
duke@435 1457 bind(profile_continue);
duke@435 1458 }
duke@435 1459 }
duke@435 1460
duke@435 1461
duke@435 1462 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
duke@435 1463 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1464 Label profile_continue;
duke@435 1465
duke@435 1466 // If no method data exists, go to profile_continue.
duke@435 1467 test_method_data_pointer(mdp, profile_continue);
duke@435 1468
duke@435 1469 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1470 // Back up the address, since we have already bumped the mdp.
duke@435 1471 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1472
duke@435 1473 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1474 increment_mdp_data_at(mdp, count_offset, true);
duke@435 1475
duke@435 1476 bind (profile_continue);
duke@435 1477 }
duke@435 1478 }
duke@435 1479
duke@435 1480
duke@435 1481 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
duke@435 1482 if (ProfileInterpreter) {
duke@435 1483 Label profile_continue;
duke@435 1484
duke@435 1485 // If no method data exists, go to profile_continue.
duke@435 1486 test_method_data_pointer(mdp, profile_continue);
duke@435 1487
duke@435 1488 // The method data pointer needs to be updated.
duke@435 1489 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1490 if (TypeProfileCasts) {
duke@435 1491 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1492
duke@435 1493 // Record the object type.
duke@435 1494 record_klass_in_profile(klass, mdp, reg2);
duke@435 1495 }
duke@435 1496 update_mdp_by_constant(mdp, mdp_delta);
duke@435 1497
duke@435 1498 bind(profile_continue);
duke@435 1499 }
duke@435 1500 }
duke@435 1501
duke@435 1502
duke@435 1503 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
duke@435 1504 if (ProfileInterpreter) {
duke@435 1505 Label profile_continue;
duke@435 1506
duke@435 1507 // If no method data exists, go to profile_continue.
duke@435 1508 test_method_data_pointer(mdp, profile_continue);
duke@435 1509
duke@435 1510 // Update the default case count
duke@435 1511 increment_mdp_data_at(mdp,
duke@435 1512 in_bytes(MultiBranchData::default_count_offset()));
duke@435 1513
duke@435 1514 // The method data pointer needs to be updated.
duke@435 1515 update_mdp_by_offset(mdp,
duke@435 1516 in_bytes(MultiBranchData::
duke@435 1517 default_displacement_offset()));
duke@435 1518
duke@435 1519 bind(profile_continue);
duke@435 1520 }
duke@435 1521 }
duke@435 1522
duke@435 1523
duke@435 1524 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1525 Register mdp,
duke@435 1526 Register reg2) {
duke@435 1527 if (ProfileInterpreter) {
duke@435 1528 Label profile_continue;
duke@435 1529
duke@435 1530 // If no method data exists, go to profile_continue.
duke@435 1531 test_method_data_pointer(mdp, profile_continue);
duke@435 1532
duke@435 1533 // Build the base (index * per_case_size_in_bytes()) +
duke@435 1534 // case_array_offset_in_bytes()
duke@435 1535 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
duke@435 1536 imulq(index, reg2); // XXX l ?
duke@435 1537 addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
duke@435 1538
duke@435 1539 // Update the case count
duke@435 1540 increment_mdp_data_at(mdp,
duke@435 1541 index,
duke@435 1542 in_bytes(MultiBranchData::relative_count_offset()));
duke@435 1543
duke@435 1544 // The method data pointer needs to be updated.
duke@435 1545 update_mdp_by_offset(mdp,
duke@435 1546 index,
duke@435 1547 in_bytes(MultiBranchData::
duke@435 1548 relative_displacement_offset()));
duke@435 1549
duke@435 1550 bind(profile_continue);
duke@435 1551 }
duke@435 1552 }
duke@435 1553
duke@435 1554
duke@435 1555 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
duke@435 1556 if (state == atos) {
duke@435 1557 MacroAssembler::verify_oop(reg);
duke@435 1558 }
duke@435 1559 }
duke@435 1560
duke@435 1561 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 1562 }
duke@435 1563
duke@435 1564
duke@435 1565 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 1566 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@435 1567 // track stack depth. If it is possible to enter interp_only_mode we add
duke@435 1568 // the code to check if the event should be sent.
duke@435 1569 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 1570 Label L;
duke@435 1571 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@435 1572 testl(rdx, rdx);
duke@435 1573 jcc(Assembler::zero, L);
duke@435 1574 call_VM(noreg, CAST_FROM_FN_PTR(address,
duke@435 1575 InterpreterRuntime::post_method_entry));
duke@435 1576 bind(L);
duke@435 1577 }
duke@435 1578
duke@435 1579 {
duke@435 1580 SkipIfEqual skip(this, &DTraceMethodProbes, false);
duke@435 1581 get_method(c_rarg1);
duke@435 1582 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1583 r15_thread, c_rarg1);
duke@435 1584 }
duke@435 1585 }
duke@435 1586
duke@435 1587
duke@435 1588 void InterpreterMacroAssembler::notify_method_exit(
duke@435 1589 TosState state, NotifyMethodExitMode mode) {
duke@435 1590 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
duke@435 1591 // track stack depth. If it is possible to enter interp_only_mode we add
duke@435 1592 // the code to check if the event should be sent.
duke@435 1593 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 1594 Label L;
duke@435 1595 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 1596 // method result is saved across the call to post_method_exit. If this
duke@435 1597 // is changed then the interpreter_frame_result implementation will
duke@435 1598 // need to be updated too.
duke@435 1599 push(state);
duke@435 1600 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
duke@435 1601 testl(rdx, rdx);
duke@435 1602 jcc(Assembler::zero, L);
duke@435 1603 call_VM(noreg,
duke@435 1604 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 1605 bind(L);
duke@435 1606 pop(state);
duke@435 1607 }
duke@435 1608
duke@435 1609 {
duke@435 1610 SkipIfEqual skip(this, &DTraceMethodProbes, false);
duke@435 1611 push(state);
duke@435 1612 get_method(c_rarg1);
duke@435 1613 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1614 r15_thread, c_rarg1);
duke@435 1615 pop(state);
duke@435 1616 }
duke@435 1617 }

mercurial