src/cpu/ppc/vm/stubGenerator_ppc.cpp

Wed, 27 Nov 2013 16:16:21 -0800

author
goetz
date
Wed, 27 Nov 2013 16:16:21 -0800
changeset 6490
41b780b43b74
parent 6458
ec28f9c041ff
child 6495
67fa91961822
permissions
-rw-r--r--

8029015: PPC64 (part 216): opto: trap based null and range checks
Summary: On PPC64 use tdi instruction that does a compare and raises SIGTRAP for NULL and range checks.
Reviewed-by: kvn

goetz@6458 1 /*
goetz@6458 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
goetz@6458 3 * Copyright 2012, 2013 SAP AG. All rights reserved.
goetz@6458 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
goetz@6458 5 *
goetz@6458 6 * This code is free software; you can redistribute it and/or modify it
goetz@6458 7 * under the terms of the GNU General Public License version 2 only, as
goetz@6458 8 * published by the Free Software Foundation.
goetz@6458 9 *
goetz@6458 10 * This code is distributed in the hope that it will be useful, but WITHOUT
goetz@6458 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
goetz@6458 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
goetz@6458 13 * version 2 for more details (a copy is included in the LICENSE file that
goetz@6458 14 * accompanied this code).
goetz@6458 15 *
goetz@6458 16 * You should have received a copy of the GNU General Public License version
goetz@6458 17 * 2 along with this work; if not, write to the Free Software Foundation,
goetz@6458 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
goetz@6458 19 *
goetz@6458 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
goetz@6458 21 * or visit www.oracle.com if you need additional information or have any
goetz@6458 22 * questions.
goetz@6458 23 *
goetz@6458 24 */
goetz@6458 25
goetz@6458 26 #include "precompiled.hpp"
goetz@6458 27 #include "asm/assembler.hpp"
goetz@6458 28 #include "asm/macroAssembler.inline.hpp"
goetz@6458 29 #include "interpreter/interpreter.hpp"
goetz@6458 30 #include "nativeInst_ppc.hpp"
goetz@6458 31 #include "oops/instanceOop.hpp"
goetz@6458 32 #include "oops/method.hpp"
goetz@6458 33 #include "oops/objArrayKlass.hpp"
goetz@6458 34 #include "oops/oop.inline.hpp"
goetz@6458 35 #include "prims/methodHandles.hpp"
goetz@6458 36 #include "runtime/frame.inline.hpp"
goetz@6458 37 #include "runtime/handles.inline.hpp"
goetz@6458 38 #include "runtime/sharedRuntime.hpp"
goetz@6458 39 #include "runtime/stubCodeGenerator.hpp"
goetz@6458 40 #include "runtime/stubRoutines.hpp"
goetz@6458 41 #include "utilities/top.hpp"
goetz@6458 42 #ifdef TARGET_OS_FAMILY_aix
goetz@6458 43 # include "thread_aix.inline.hpp"
goetz@6458 44 #endif
goetz@6458 45 #ifdef TARGET_OS_FAMILY_linux
goetz@6458 46 # include "thread_linux.inline.hpp"
goetz@6458 47 #endif
goetz@6458 48 #ifdef COMPILER2
goetz@6458 49 #include "opto/runtime.hpp"
goetz@6458 50 #endif
goetz@6458 51
goetz@6458 52 #define __ _masm->
goetz@6458 53
goetz@6458 54 #ifdef PRODUCT
goetz@6458 55 #define BLOCK_COMMENT(str) // nothing
goetz@6458 56 #else
goetz@6458 57 #define BLOCK_COMMENT(str) __ block_comment(str)
goetz@6458 58 #endif
goetz@6458 59
goetz@6458 60 class StubGenerator: public StubCodeGenerator {
goetz@6458 61 private:
goetz@6458 62
goetz@6458 63 // Call stubs are used to call Java from C
goetz@6458 64 //
goetz@6458 65 // Arguments:
goetz@6458 66 //
goetz@6458 67 // R3 - call wrapper address : address
goetz@6458 68 // R4 - result : intptr_t*
goetz@6458 69 // R5 - result type : BasicType
goetz@6458 70 // R6 - method : Method
goetz@6458 71 // R7 - frame mgr entry point : address
goetz@6458 72 // R8 - parameter block : intptr_t*
goetz@6458 73 // R9 - parameter count in words : int
goetz@6458 74 // R10 - thread : Thread*
goetz@6458 75 //
goetz@6458 76 address generate_call_stub(address& return_address) {
goetz@6458 77 // Setup a new c frame, copy java arguments, call frame manager or
goetz@6458 78 // native_entry, and process result.
goetz@6458 79
goetz@6458 80 StubCodeMark mark(this, "StubRoutines", "call_stub");
goetz@6458 81
goetz@6458 82 address start = __ emit_fd();
goetz@6458 83
goetz@6458 84 // some sanity checks
goetz@6458 85 assert((sizeof(frame::abi_48) % 16) == 0, "unaligned");
goetz@6458 86 assert((sizeof(frame::abi_112) % 16) == 0, "unaligned");
goetz@6458 87 assert((sizeof(frame::spill_nonvolatiles) % 16) == 0, "unaligned");
goetz@6458 88 assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
goetz@6458 89 assert((sizeof(frame::entry_frame_locals) % 16) == 0, "unaligned");
goetz@6458 90
goetz@6458 91 Register r_arg_call_wrapper_addr = R3;
goetz@6458 92 Register r_arg_result_addr = R4;
goetz@6458 93 Register r_arg_result_type = R5;
goetz@6458 94 Register r_arg_method = R6;
goetz@6458 95 Register r_arg_entry = R7;
goetz@6458 96 Register r_arg_thread = R10;
goetz@6458 97
goetz@6458 98 Register r_temp = R24;
goetz@6458 99 Register r_top_of_arguments_addr = R25;
goetz@6458 100 Register r_entryframe_fp = R26;
goetz@6458 101
goetz@6458 102 {
goetz@6458 103 // Stack on entry to call_stub:
goetz@6458 104 //
goetz@6458 105 // F1 [C_FRAME]
goetz@6458 106 // ...
goetz@6458 107
goetz@6458 108 Register r_arg_argument_addr = R8;
goetz@6458 109 Register r_arg_argument_count = R9;
goetz@6458 110 Register r_frame_alignment_in_bytes = R27;
goetz@6458 111 Register r_argument_addr = R28;
goetz@6458 112 Register r_argumentcopy_addr = R29;
goetz@6458 113 Register r_argument_size_in_bytes = R30;
goetz@6458 114 Register r_frame_size = R23;
goetz@6458 115
goetz@6458 116 Label arguments_copied;
goetz@6458 117
goetz@6458 118 // Save LR/CR to caller's C_FRAME.
goetz@6458 119 __ save_LR_CR(R0);
goetz@6458 120
goetz@6458 121 // Zero extend arg_argument_count.
goetz@6458 122 __ clrldi(r_arg_argument_count, r_arg_argument_count, 32);
goetz@6458 123
goetz@6458 124 // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe).
goetz@6458 125 __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
goetz@6458 126
goetz@6458 127 // Keep copy of our frame pointer (caller's SP).
goetz@6458 128 __ mr(r_entryframe_fp, R1_SP);
goetz@6458 129
goetz@6458 130 BLOCK_COMMENT("Push ENTRY_FRAME including arguments");
goetz@6458 131 // Push ENTRY_FRAME including arguments:
goetz@6458 132 //
goetz@6458 133 // F0 [TOP_IJAVA_FRAME_ABI]
goetz@6458 134 // alignment (optional)
goetz@6458 135 // [outgoing Java arguments]
goetz@6458 136 // [ENTRY_FRAME_LOCALS]
goetz@6458 137 // F1 [C_FRAME]
goetz@6458 138 // ...
goetz@6458 139
goetz@6458 140 // calculate frame size
goetz@6458 141
goetz@6458 142 // unaligned size of arguments
goetz@6458 143 __ sldi(r_argument_size_in_bytes,
goetz@6458 144 r_arg_argument_count, Interpreter::logStackElementSize);
goetz@6458 145 // arguments alignment (max 1 slot)
goetz@6458 146 // FIXME: use round_to() here
goetz@6458 147 __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1);
goetz@6458 148 __ sldi(r_frame_alignment_in_bytes,
goetz@6458 149 r_frame_alignment_in_bytes, Interpreter::logStackElementSize);
goetz@6458 150
goetz@6458 151 // size = unaligned size of arguments + top abi's size
goetz@6458 152 __ addi(r_frame_size, r_argument_size_in_bytes,
goetz@6458 153 frame::top_ijava_frame_abi_size);
goetz@6458 154 // size += arguments alignment
goetz@6458 155 __ add(r_frame_size,
goetz@6458 156 r_frame_size, r_frame_alignment_in_bytes);
goetz@6458 157 // size += size of call_stub locals
goetz@6458 158 __ addi(r_frame_size,
goetz@6458 159 r_frame_size, frame::entry_frame_locals_size);
goetz@6458 160
goetz@6458 161 // push ENTRY_FRAME
goetz@6458 162 __ push_frame(r_frame_size, r_temp);
goetz@6458 163
goetz@6458 164 // initialize call_stub locals (step 1)
goetz@6458 165 __ std(r_arg_call_wrapper_addr,
goetz@6458 166 _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp);
goetz@6458 167 __ std(r_arg_result_addr,
goetz@6458 168 _entry_frame_locals_neg(result_address), r_entryframe_fp);
goetz@6458 169 __ std(r_arg_result_type,
goetz@6458 170 _entry_frame_locals_neg(result_type), r_entryframe_fp);
goetz@6458 171 // we will save arguments_tos_address later
goetz@6458 172
goetz@6458 173
goetz@6458 174 BLOCK_COMMENT("Copy Java arguments");
goetz@6458 175 // copy Java arguments
goetz@6458 176
goetz@6458 177 // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later.
goetz@6458 178 // FIXME: why not simply use SP+frame::top_ijava_frame_size?
goetz@6458 179 __ addi(r_top_of_arguments_addr,
goetz@6458 180 R1_SP, frame::top_ijava_frame_abi_size);
goetz@6458 181 __ add(r_top_of_arguments_addr,
goetz@6458 182 r_top_of_arguments_addr, r_frame_alignment_in_bytes);
goetz@6458 183
goetz@6458 184 // any arguments to copy?
goetz@6458 185 __ cmpdi(CCR0, r_arg_argument_count, 0);
goetz@6458 186 __ beq(CCR0, arguments_copied);
goetz@6458 187
goetz@6458 188 // prepare loop and copy arguments in reverse order
goetz@6458 189 {
goetz@6458 190 // init CTR with arg_argument_count
goetz@6458 191 __ mtctr(r_arg_argument_count);
goetz@6458 192
goetz@6458 193 // let r_argumentcopy_addr point to last outgoing Java arguments P
goetz@6458 194 __ mr(r_argumentcopy_addr, r_top_of_arguments_addr);
goetz@6458 195
goetz@6458 196 // let r_argument_addr point to last incoming java argument
goetz@6458 197 __ add(r_argument_addr,
goetz@6458 198 r_arg_argument_addr, r_argument_size_in_bytes);
goetz@6458 199 __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
goetz@6458 200
goetz@6458 201 // now loop while CTR > 0 and copy arguments
goetz@6458 202 {
goetz@6458 203 Label next_argument;
goetz@6458 204 __ bind(next_argument);
goetz@6458 205
goetz@6458 206 __ ld(r_temp, 0, r_argument_addr);
goetz@6458 207 // argument_addr--;
goetz@6458 208 __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
goetz@6458 209 __ std(r_temp, 0, r_argumentcopy_addr);
goetz@6458 210 // argumentcopy_addr++;
goetz@6458 211 __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord);
goetz@6458 212
goetz@6458 213 __ bdnz(next_argument);
goetz@6458 214 }
goetz@6458 215 }
goetz@6458 216
goetz@6458 217 // Arguments copied, continue.
goetz@6458 218 __ bind(arguments_copied);
goetz@6458 219 }
goetz@6458 220
goetz@6458 221 {
goetz@6458 222 BLOCK_COMMENT("Call frame manager or native entry.");
goetz@6458 223 // Call frame manager or native entry.
goetz@6458 224 Register r_new_arg_entry = R14_state;
goetz@6458 225 assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr,
goetz@6458 226 r_arg_method, r_arg_thread);
goetz@6458 227
goetz@6458 228 __ mr(r_new_arg_entry, r_arg_entry);
goetz@6458 229
goetz@6458 230 // Register state on entry to frame manager / native entry:
goetz@6458 231 //
goetz@6458 232 // R17_tos - intptr_t* sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8
goetz@6458 233 // R19_method - Method
goetz@6458 234 // R16_thread - JavaThread*
goetz@6458 235
goetz@6458 236 // R17_tos must point to last argument - element_size.
goetz@6458 237 __ addi(R17_tos, r_top_of_arguments_addr, -Interpreter::stackElementSize);
goetz@6458 238
goetz@6458 239 // initialize call_stub locals (step 2)
goetz@6458 240 // now save R17_tos as arguments_tos_address
goetz@6458 241 __ std(R17_tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp);
goetz@6458 242
goetz@6458 243 // load argument registers for call
goetz@6458 244 __ mr(R19_method, r_arg_method);
goetz@6458 245 __ mr(R16_thread, r_arg_thread);
goetz@6458 246 assert(R17_tos != r_arg_method, "trashed r_arg_method");
goetz@6458 247 assert(R17_tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread");
goetz@6458 248
goetz@6458 249 // Set R15_prev_state to 0 for simplifying checks in callee.
goetz@6458 250 __ li(R15_prev_state, 0);
goetz@6458 251
goetz@6458 252 // Stack on entry to frame manager / native entry:
goetz@6458 253 //
goetz@6458 254 // F0 [TOP_IJAVA_FRAME_ABI]
goetz@6458 255 // alignment (optional)
goetz@6458 256 // [outgoing Java arguments]
goetz@6458 257 // [ENTRY_FRAME_LOCALS]
goetz@6458 258 // F1 [C_FRAME]
goetz@6458 259 // ...
goetz@6458 260 //
goetz@6458 261
goetz@6458 262 // global toc register
goetz@6458 263 __ load_const(R29, MacroAssembler::global_toc(), R11_scratch1);
goetz@6458 264
goetz@6458 265 // Load narrow oop base.
goetz@6458 266 __ reinit_heapbase(R30, R11_scratch1);
goetz@6458 267
goetz@6458 268 // Remember the senderSP so we interpreter can pop c2i arguments off of the stack
goetz@6458 269 // when called via a c2i.
goetz@6458 270
goetz@6458 271 // Pass initial_caller_sp to framemanager.
goetz@6458 272 __ mr(R21_tmp1, R1_SP);
goetz@6458 273
goetz@6458 274 // Do a light-weight C-call here, r_new_arg_entry holds the address
goetz@6458 275 // of the interpreter entry point (frame manager or native entry)
goetz@6458 276 // and save runtime-value of LR in return_address.
goetz@6458 277 assert(r_new_arg_entry != R17_tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread,
goetz@6458 278 "trashed r_new_arg_entry");
goetz@6458 279 return_address = __ call_stub(r_new_arg_entry);
goetz@6458 280 }
goetz@6458 281
goetz@6458 282 {
goetz@6458 283 BLOCK_COMMENT("Returned from frame manager or native entry.");
goetz@6458 284 // Returned from frame manager or native entry.
goetz@6458 285 // Now pop frame, process result, and return to caller.
goetz@6458 286
goetz@6458 287 // Stack on exit from frame manager / native entry:
goetz@6458 288 //
goetz@6458 289 // F0 [ABI]
goetz@6458 290 // ...
goetz@6458 291 // [ENTRY_FRAME_LOCALS]
goetz@6458 292 // F1 [C_FRAME]
goetz@6458 293 // ...
goetz@6458 294 //
goetz@6458 295 // Just pop the topmost frame ...
goetz@6458 296 //
goetz@6458 297
goetz@6458 298 Label ret_is_object;
goetz@6458 299 Label ret_is_long;
goetz@6458 300 Label ret_is_float;
goetz@6458 301 Label ret_is_double;
goetz@6458 302
goetz@6458 303 Register r_entryframe_fp = R30;
goetz@6458 304 Register r_lr = R7_ARG5;
goetz@6458 305 Register r_cr = R8_ARG6;
goetz@6458 306
goetz@6458 307 // Reload some volatile registers which we've spilled before the call
goetz@6458 308 // to frame manager / native entry.
goetz@6458 309 // Access all locals via frame pointer, because we know nothing about
goetz@6458 310 // the topmost frame's size.
goetz@6458 311 __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP);
goetz@6458 312 assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr);
goetz@6458 313 __ ld(r_arg_result_addr,
goetz@6458 314 _entry_frame_locals_neg(result_address), r_entryframe_fp);
goetz@6458 315 __ ld(r_arg_result_type,
goetz@6458 316 _entry_frame_locals_neg(result_type), r_entryframe_fp);
goetz@6458 317 __ ld(r_cr, _abi(cr), r_entryframe_fp);
goetz@6458 318 __ ld(r_lr, _abi(lr), r_entryframe_fp);
goetz@6458 319
goetz@6458 320 // pop frame and restore non-volatiles, LR and CR
goetz@6458 321 __ mr(R1_SP, r_entryframe_fp);
goetz@6458 322 __ mtcr(r_cr);
goetz@6458 323 __ mtlr(r_lr);
goetz@6458 324
goetz@6458 325 // Store result depending on type. Everything that is not
goetz@6458 326 // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT.
goetz@6458 327 __ cmpwi(CCR0, r_arg_result_type, T_OBJECT);
goetz@6458 328 __ cmpwi(CCR1, r_arg_result_type, T_LONG);
goetz@6458 329 __ cmpwi(CCR5, r_arg_result_type, T_FLOAT);
goetz@6458 330 __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE);
goetz@6458 331
goetz@6458 332 // restore non-volatile registers
goetz@6458 333 __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
goetz@6458 334
goetz@6458 335
goetz@6458 336 // Stack on exit from call_stub:
goetz@6458 337 //
goetz@6458 338 // 0 [C_FRAME]
goetz@6458 339 // ...
goetz@6458 340 //
goetz@6458 341 // no call_stub frames left.
goetz@6458 342
goetz@6458 343 // All non-volatiles have been restored at this point!!
goetz@6458 344 assert(R3_RET == R3, "R3_RET should be R3");
goetz@6458 345
goetz@6458 346 __ beq(CCR0, ret_is_object);
goetz@6458 347 __ beq(CCR1, ret_is_long);
goetz@6458 348 __ beq(CCR5, ret_is_float);
goetz@6458 349 __ beq(CCR6, ret_is_double);
goetz@6458 350
goetz@6458 351 // default:
goetz@6458 352 __ stw(R3_RET, 0, r_arg_result_addr);
goetz@6458 353 __ blr(); // return to caller
goetz@6458 354
goetz@6458 355 // case T_OBJECT:
goetz@6458 356 __ bind(ret_is_object);
goetz@6458 357 __ std(R3_RET, 0, r_arg_result_addr);
goetz@6458 358 __ blr(); // return to caller
goetz@6458 359
goetz@6458 360 // case T_LONG:
goetz@6458 361 __ bind(ret_is_long);
goetz@6458 362 __ std(R3_RET, 0, r_arg_result_addr);
goetz@6458 363 __ blr(); // return to caller
goetz@6458 364
goetz@6458 365 // case T_FLOAT:
goetz@6458 366 __ bind(ret_is_float);
goetz@6458 367 __ stfs(F1_RET, 0, r_arg_result_addr);
goetz@6458 368 __ blr(); // return to caller
goetz@6458 369
goetz@6458 370 // case T_DOUBLE:
goetz@6458 371 __ bind(ret_is_double);
goetz@6458 372 __ stfd(F1_RET, 0, r_arg_result_addr);
goetz@6458 373 __ blr(); // return to caller
goetz@6458 374 }
goetz@6458 375
goetz@6458 376 return start;
goetz@6458 377 }
goetz@6458 378
goetz@6458 379 // Return point for a Java call if there's an exception thrown in
goetz@6458 380 // Java code. The exception is caught and transformed into a
goetz@6458 381 // pending exception stored in JavaThread that can be tested from
goetz@6458 382 // within the VM.
goetz@6458 383 //
goetz@6458 384 address generate_catch_exception() {
goetz@6458 385 StubCodeMark mark(this, "StubRoutines", "catch_exception");
goetz@6458 386
goetz@6458 387 address start = __ pc();
goetz@6458 388
goetz@6458 389 // Registers alive
goetz@6458 390 //
goetz@6458 391 // R16_thread
goetz@6458 392 // R3_ARG1 - address of pending exception
goetz@6458 393 // R4_ARG2 - return address in call stub
goetz@6458 394
goetz@6458 395 const Register exception_file = R21_tmp1;
goetz@6458 396 const Register exception_line = R22_tmp2;
goetz@6458 397
goetz@6458 398 __ load_const(exception_file, (void*)__FILE__);
goetz@6458 399 __ load_const(exception_line, (void*)__LINE__);
goetz@6458 400
goetz@6458 401 __ std(R3_ARG1, thread_(pending_exception));
goetz@6458 402 // store into `char *'
goetz@6458 403 __ std(exception_file, thread_(exception_file));
goetz@6458 404 // store into `int'
goetz@6458 405 __ stw(exception_line, thread_(exception_line));
goetz@6458 406
goetz@6458 407 // complete return to VM
goetz@6458 408 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
goetz@6458 409
goetz@6458 410 __ mtlr(R4_ARG2);
goetz@6458 411 // continue in call stub
goetz@6458 412 __ blr();
goetz@6458 413
goetz@6458 414 return start;
goetz@6458 415 }
goetz@6458 416
goetz@6458 417 // Continuation point for runtime calls returning with a pending
goetz@6458 418 // exception. The pending exception check happened in the runtime
goetz@6458 419 // or native call stub. The pending exception in Thread is
goetz@6458 420 // converted into a Java-level exception.
goetz@6458 421 //
goetz@6458 422 address generate_forward_exception() {
goetz@6458 423 StubCodeMark mark(this, "StubRoutines", "forward_exception");
goetz@6458 424 address start = __ pc();
goetz@6458 425
goetz@6458 426 #if !defined(PRODUCT)
goetz@6458 427 if (VerifyOops) {
goetz@6458 428 // Get pending exception oop.
goetz@6458 429 __ ld(R3_ARG1,
goetz@6458 430 in_bytes(Thread::pending_exception_offset()),
goetz@6458 431 R16_thread);
goetz@6458 432 // Make sure that this code is only executed if there is a pending exception.
goetz@6458 433 {
goetz@6458 434 Label L;
goetz@6458 435 __ cmpdi(CCR0, R3_ARG1, 0);
goetz@6458 436 __ bne(CCR0, L);
goetz@6458 437 __ stop("StubRoutines::forward exception: no pending exception (1)");
goetz@6458 438 __ bind(L);
goetz@6458 439 }
goetz@6458 440 __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop");
goetz@6458 441 }
goetz@6458 442 #endif
goetz@6458 443
goetz@6458 444 // Save LR/CR and copy exception pc (LR) into R4_ARG2.
goetz@6458 445 __ save_LR_CR(R4_ARG2);
goetz@6458 446 __ push_frame_abi112(0, R0);
goetz@6458 447 // Find exception handler.
goetz@6458 448 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
goetz@6458 449 SharedRuntime::exception_handler_for_return_address),
goetz@6458 450 R16_thread,
goetz@6458 451 R4_ARG2);
goetz@6458 452 // Copy handler's address.
goetz@6458 453 __ mtctr(R3_RET);
goetz@6458 454 __ pop_frame();
goetz@6458 455 __ restore_LR_CR(R0);
goetz@6458 456
goetz@6458 457 // Set up the arguments for the exception handler:
goetz@6458 458 // - R3_ARG1: exception oop
goetz@6458 459 // - R4_ARG2: exception pc.
goetz@6458 460
goetz@6458 461 // Load pending exception oop.
goetz@6458 462 __ ld(R3_ARG1,
goetz@6458 463 in_bytes(Thread::pending_exception_offset()),
goetz@6458 464 R16_thread);
goetz@6458 465
goetz@6458 466 // The exception pc is the return address in the caller.
goetz@6458 467 // Must load it into R4_ARG2.
goetz@6458 468 __ mflr(R4_ARG2);
goetz@6458 469
goetz@6458 470 #ifdef ASSERT
goetz@6458 471 // Make sure exception is set.
goetz@6458 472 {
goetz@6458 473 Label L;
goetz@6458 474 __ cmpdi(CCR0, R3_ARG1, 0);
goetz@6458 475 __ bne(CCR0, L);
goetz@6458 476 __ stop("StubRoutines::forward exception: no pending exception (2)");
goetz@6458 477 __ bind(L);
goetz@6458 478 }
goetz@6458 479 #endif
goetz@6458 480
goetz@6458 481 // Clear the pending exception.
goetz@6458 482 __ li(R0, 0);
goetz@6458 483 __ std(R0,
goetz@6458 484 in_bytes(Thread::pending_exception_offset()),
goetz@6458 485 R16_thread);
goetz@6458 486 // Jump to exception handler.
goetz@6458 487 __ bctr();
goetz@6458 488
goetz@6458 489 return start;
goetz@6458 490 }
goetz@6458 491
goetz@6458 492 #undef __
goetz@6458 493 #define __ masm->
goetz@6458 494 // Continuation point for throwing of implicit exceptions that are
goetz@6458 495 // not handled in the current activation. Fabricates an exception
goetz@6458 496 // oop and initiates normal exception dispatching in this
goetz@6458 497 // frame. Only callee-saved registers are preserved (through the
goetz@6458 498 // normal register window / RegisterMap handling). If the compiler
goetz@6458 499 // needs all registers to be preserved between the fault point and
goetz@6458 500 // the exception handler then it must assume responsibility for that
goetz@6458 501 // in AbstractCompiler::continuation_for_implicit_null_exception or
goetz@6458 502 // continuation_for_implicit_division_by_zero_exception. All other
goetz@6458 503 // implicit exceptions (e.g., NullPointerException or
goetz@6458 504 // AbstractMethodError on entry) are either at call sites or
goetz@6458 505 // otherwise assume that stack unwinding will be initiated, so
goetz@6458 506 // caller saved registers were assumed volatile in the compiler.
goetz@6458 507 //
goetz@6458 508 // Note that we generate only this stub into a RuntimeStub, because
goetz@6458 509 // it needs to be properly traversed and ignored during GC, so we
goetz@6458 510 // change the meaning of the "__" macro within this method.
goetz@6458 511 //
goetz@6458 512 // Note: the routine set_pc_not_at_call_for_caller in
goetz@6458 513 // SharedRuntime.cpp requires that this code be generated into a
goetz@6458 514 // RuntimeStub.
goetz@6458 515 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
goetz@6458 516 Register arg1 = noreg, Register arg2 = noreg) {
goetz@6458 517 CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
goetz@6458 518 MacroAssembler* masm = new MacroAssembler(&code);
goetz@6458 519
goetz@6458 520 OopMapSet* oop_maps = new OopMapSet();
goetz@6458 521 int frame_size_in_bytes = frame::abi_112_size;
goetz@6458 522 OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
goetz@6458 523
goetz@6458 524 StubCodeMark mark(this, "StubRoutines", "throw_exception");
goetz@6458 525
goetz@6458 526 address start = __ pc();
goetz@6458 527
goetz@6458 528 __ save_LR_CR(R11_scratch1);
goetz@6458 529
goetz@6458 530 // Push a frame.
goetz@6458 531 __ push_frame_abi112(0, R11_scratch1);
goetz@6458 532
goetz@6458 533 address frame_complete_pc = __ pc();
goetz@6458 534
goetz@6458 535 if (restore_saved_exception_pc) {
goetz@6458 536 __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74);
goetz@6458 537 }
goetz@6458 538
goetz@6458 539 // Note that we always have a runtime stub frame on the top of
goetz@6458 540 // stack by this point. Remember the offset of the instruction
goetz@6458 541 // whose address will be moved to R11_scratch1.
goetz@6458 542 address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
goetz@6458 543
goetz@6458 544 __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
goetz@6458 545
goetz@6458 546 __ mr(R3_ARG1, R16_thread);
goetz@6458 547 if (arg1 != noreg) {
goetz@6458 548 __ mr(R4_ARG2, arg1);
goetz@6458 549 }
goetz@6458 550 if (arg2 != noreg) {
goetz@6458 551 __ mr(R5_ARG3, arg2);
goetz@6458 552 }
goetz@6458 553 __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry),
goetz@6458 554 relocInfo::none);
goetz@6458 555
goetz@6458 556 // Set an oopmap for the call site.
goetz@6458 557 oop_maps->add_gc_map((int)(gc_map_pc - start), map);
goetz@6458 558
goetz@6458 559 __ reset_last_Java_frame();
goetz@6458 560
goetz@6458 561 #ifdef ASSERT
goetz@6458 562 // Make sure that this code is only executed if there is a pending
goetz@6458 563 // exception.
goetz@6458 564 {
goetz@6458 565 Label L;
goetz@6458 566 __ ld(R0,
goetz@6458 567 in_bytes(Thread::pending_exception_offset()),
goetz@6458 568 R16_thread);
goetz@6458 569 __ cmpdi(CCR0, R0, 0);
goetz@6458 570 __ bne(CCR0, L);
goetz@6458 571 __ stop("StubRoutines::throw_exception: no pending exception");
goetz@6458 572 __ bind(L);
goetz@6458 573 }
goetz@6458 574 #endif
goetz@6458 575
goetz@6458 576 // Pop frame.
goetz@6458 577 __ pop_frame();
goetz@6458 578
goetz@6458 579 __ restore_LR_CR(R11_scratch1);
goetz@6458 580
goetz@6458 581 __ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
goetz@6458 582 __ mtctr(R11_scratch1);
goetz@6458 583 __ bctr();
goetz@6458 584
goetz@6458 585 // Create runtime stub with OopMap.
goetz@6458 586 RuntimeStub* stub =
goetz@6458 587 RuntimeStub::new_runtime_stub(name, &code,
goetz@6458 588 /*frame_complete=*/ (int)(frame_complete_pc - start),
goetz@6458 589 frame_size_in_bytes/wordSize,
goetz@6458 590 oop_maps,
goetz@6458 591 false);
goetz@6458 592 return stub->entry_point();
goetz@6458 593 }
goetz@6458 594 #undef __
goetz@6458 595 #define __ _masm->
goetz@6458 596
goetz@6458 597 // Generate G1 pre-write barrier for array.
goetz@6458 598 //
goetz@6458 599 // Input:
goetz@6458 600 // from - register containing src address (only needed for spilling)
goetz@6458 601 // to - register containing starting address
goetz@6458 602 // count - register containing element count
goetz@6458 603 // tmp - scratch register
goetz@6458 604 //
goetz@6458 605 // Kills:
goetz@6458 606 // nothing
goetz@6458 607 //
goetz@6458 608 void gen_write_ref_array_pre_barrier(Register from, Register to, Register count, bool dest_uninitialized, Register Rtmp1) {
goetz@6458 609 BarrierSet* const bs = Universe::heap()->barrier_set();
goetz@6458 610 switch (bs->kind()) {
goetz@6458 611 case BarrierSet::G1SATBCT:
goetz@6458 612 case BarrierSet::G1SATBCTLogging:
goetz@6458 613 // With G1, don't generate the call if we statically know that the target in uninitialized
goetz@6458 614 if (!dest_uninitialized) {
goetz@6458 615 const int spill_slots = 4 * wordSize;
goetz@6458 616 const int frame_size = frame::abi_112_size + spill_slots;
goetz@6458 617
goetz@6458 618 __ save_LR_CR(R0);
goetz@6458 619 __ push_frame_abi112(spill_slots, R0);
goetz@6458 620 __ std(from, frame_size - 1 * wordSize, R1_SP);
goetz@6458 621 __ std(to, frame_size - 2 * wordSize, R1_SP);
goetz@6458 622 __ std(count, frame_size - 3 * wordSize, R1_SP);
goetz@6458 623
goetz@6458 624 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), to, count);
goetz@6458 625
goetz@6458 626 __ ld(from, frame_size - 1 * wordSize, R1_SP);
goetz@6458 627 __ ld(to, frame_size - 2 * wordSize, R1_SP);
goetz@6458 628 __ ld(count, frame_size - 3 * wordSize, R1_SP);
goetz@6458 629 __ pop_frame();
goetz@6458 630 __ restore_LR_CR(R0);
goetz@6458 631 }
goetz@6458 632 break;
goetz@6458 633 case BarrierSet::CardTableModRef:
goetz@6458 634 case BarrierSet::CardTableExtension:
goetz@6458 635 case BarrierSet::ModRef:
goetz@6458 636 break;
goetz@6458 637 default:
goetz@6458 638 ShouldNotReachHere();
goetz@6458 639 }
goetz@6458 640 }
goetz@6458 641
goetz@6458 642 // Generate CMS/G1 post-write barrier for array.
goetz@6458 643 //
goetz@6458 644 // Input:
goetz@6458 645 // addr - register containing starting address
goetz@6458 646 // count - register containing element count
goetz@6458 647 // tmp - scratch register
goetz@6458 648 //
goetz@6458 649 // The input registers and R0 are overwritten.
goetz@6458 650 //
goetz@6458 651 void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp) {
goetz@6458 652 BarrierSet* const bs = Universe::heap()->barrier_set();
goetz@6458 653
goetz@6458 654 switch (bs->kind()) {
goetz@6458 655 case BarrierSet::G1SATBCT:
goetz@6458 656 case BarrierSet::G1SATBCTLogging:
goetz@6458 657 {
goetz@6458 658 __ save_LR_CR(R0);
goetz@6458 659 // We need this frame only that the callee can spill LR/CR.
goetz@6458 660 __ push_frame_abi112(0, R0);
goetz@6458 661
goetz@6458 662 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
goetz@6458 663
goetz@6458 664 __ pop_frame();
goetz@6458 665 __ restore_LR_CR(R0);
goetz@6458 666 }
goetz@6458 667 break;
goetz@6458 668 case BarrierSet::CardTableModRef:
goetz@6458 669 case BarrierSet::CardTableExtension:
goetz@6458 670 {
goetz@6458 671 Label Lskip_loop, Lstore_loop;
goetz@6458 672 if (UseConcMarkSweepGC) {
goetz@6458 673 // TODO PPC port: contribute optimization / requires shared changes
goetz@6458 674 __ release();
goetz@6458 675 }
goetz@6458 676
goetz@6458 677 CardTableModRefBS* const ct = (CardTableModRefBS*)bs;
goetz@6458 678 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
goetz@6458 679 assert_different_registers(addr, count, tmp);
goetz@6458 680
goetz@6458 681 __ sldi(count, count, LogBytesPerHeapOop);
goetz@6458 682 __ addi(count, count, -BytesPerHeapOop);
goetz@6458 683 __ add(count, addr, count);
goetz@6458 684 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
goetz@6458 685 __ srdi(addr, addr, CardTableModRefBS::card_shift);
goetz@6458 686 __ srdi(count, count, CardTableModRefBS::card_shift);
goetz@6458 687 __ subf(count, addr, count);
goetz@6458 688 assert_different_registers(R0, addr, count, tmp);
goetz@6458 689 __ load_const(tmp, (address)ct->byte_map_base);
goetz@6458 690 __ addic_(count, count, 1);
goetz@6458 691 __ beq(CCR0, Lskip_loop);
goetz@6458 692 __ li(R0, 0);
goetz@6458 693 __ mtctr(count);
goetz@6458 694 // Byte store loop
goetz@6458 695 __ bind(Lstore_loop);
goetz@6458 696 __ stbx(R0, tmp, addr);
goetz@6458 697 __ addi(addr, addr, 1);
goetz@6458 698 __ bdnz(Lstore_loop);
goetz@6458 699 __ bind(Lskip_loop);
goetz@6458 700 }
goetz@6458 701 break;
goetz@6458 702 case BarrierSet::ModRef:
goetz@6458 703 break;
goetz@6458 704 default:
goetz@6458 705 ShouldNotReachHere();
goetz@6458 706 }
goetz@6458 707 }
goetz@6458 708
goetz@6458 709 // Support for void zero_words_aligned8(HeapWord* to, size_t count)
goetz@6458 710 //
goetz@6458 711 // Arguments:
goetz@6458 712 // to:
goetz@6458 713 // count:
goetz@6458 714 //
goetz@6458 715 // Destroys:
goetz@6458 716 //
goetz@6458 717 address generate_zero_words_aligned8() {
goetz@6458 718 StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");
goetz@6458 719
goetz@6458 720 // Implemented as in ClearArray.
goetz@6458 721 address start = __ emit_fd();
goetz@6458 722
goetz@6458 723 Register base_ptr_reg = R3_ARG1; // tohw (needs to be 8b aligned)
goetz@6458 724 Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
goetz@6458 725 Register tmp1_reg = R5_ARG3;
goetz@6458 726 Register tmp2_reg = R6_ARG4;
goetz@6458 727 Register zero_reg = R7_ARG5;
goetz@6458 728
goetz@6458 729 // Procedure for large arrays (uses data cache block zero instruction).
goetz@6458 730 Label dwloop, fast, fastloop, restloop, lastdword, done;
goetz@6458 731 int cl_size=VM_Version::get_cache_line_size(), cl_dwords=cl_size>>3, cl_dwordaddr_bits=exact_log2(cl_dwords);
goetz@6458 732 int min_dcbz=2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines.
goetz@6458 733
goetz@6458 734 // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16.
goetz@6458 735 __ dcbtst(base_ptr_reg); // Indicate write access to first cache line ...
goetz@6458 736 __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if number of dwords is even.
goetz@6458 737 __ srdi_(tmp1_reg, cnt_dwords_reg, 1); // number of double dwords
goetz@6458 738 __ load_const_optimized(zero_reg, 0L); // Use as zero register.
goetz@6458 739
goetz@6458 740 __ cmpdi(CCR1, tmp2_reg, 0); // cnt_dwords even?
goetz@6458 741 __ beq(CCR0, lastdword); // size <= 1
goetz@6458 742 __ mtctr(tmp1_reg); // Speculatively preload counter for rest loop (>0).
goetz@6458 743 __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included?
goetz@6458 744 __ neg(tmp1_reg, base_ptr_reg); // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000
goetz@6458 745
goetz@6458 746 __ blt(CCR0, restloop); // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.)
goetz@6458 747 __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16.
goetz@6458 748
goetz@6458 749 __ beq(CCR0, fast); // already 128byte aligned
goetz@6458 750 __ mtctr(tmp1_reg); // Set ctr to hit 128byte boundary (0<ctr<cnt).
goetz@6458 751 __ subf(cnt_dwords_reg, tmp1_reg, cnt_dwords_reg); // rest (>0 since size>=256-8)
goetz@6458 752
goetz@6458 753 // Clear in first cache line dword-by-dword if not already 128byte aligned.
goetz@6458 754 __ bind(dwloop);
goetz@6458 755 __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block.
goetz@6458 756 __ addi(base_ptr_reg, base_ptr_reg, 8);
goetz@6458 757 __ bdnz(dwloop);
goetz@6458 758
goetz@6458 759 // clear 128byte blocks
goetz@6458 760 __ bind(fast);
goetz@6458 761 __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8)
goetz@6458 762 __ andi(tmp2_reg, cnt_dwords_reg, 1); // to check if rest even
goetz@6458 763
goetz@6458 764 __ mtctr(tmp1_reg); // load counter
goetz@6458 765 __ cmpdi(CCR1, tmp2_reg, 0); // rest even?
goetz@6458 766 __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords
goetz@6458 767
goetz@6458 768 __ bind(fastloop);
goetz@6458 769 __ dcbz(base_ptr_reg); // Clear 128byte aligned block.
goetz@6458 770 __ addi(base_ptr_reg, base_ptr_reg, cl_size);
goetz@6458 771 __ bdnz(fastloop);
goetz@6458 772
goetz@6458 773 //__ dcbtst(base_ptr_reg); // Indicate write access to last cache line.
goetz@6458 774 __ beq(CCR0, lastdword); // rest<=1
goetz@6458 775 __ mtctr(tmp1_reg); // load counter
goetz@6458 776
goetz@6458 777 // Clear rest.
goetz@6458 778 __ bind(restloop);
goetz@6458 779 __ std(zero_reg, 0, base_ptr_reg); // Clear 8byte aligned block.
goetz@6458 780 __ std(zero_reg, 8, base_ptr_reg); // Clear 8byte aligned block.
goetz@6458 781 __ addi(base_ptr_reg, base_ptr_reg, 16);
goetz@6458 782 __ bdnz(restloop);
goetz@6458 783
goetz@6458 784 __ bind(lastdword);
goetz@6458 785 __ beq(CCR1, done);
goetz@6458 786 __ std(zero_reg, 0, base_ptr_reg);
goetz@6458 787 __ bind(done);
goetz@6458 788 __ blr(); // return
goetz@6458 789
goetz@6458 790 return start;
goetz@6458 791 }
goetz@6458 792
goetz@6458 793 // The following routine generates a subroutine to throw an asynchronous
goetz@6458 794 // UnknownError when an unsafe access gets a fault that could not be
goetz@6458 795 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
goetz@6458 796 //
goetz@6458 797 address generate_handler_for_unsafe_access() {
goetz@6458 798 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
goetz@6458 799 address start = __ emit_fd();
goetz@6458 800 __ unimplemented("StubRoutines::handler_for_unsafe_access", 93);
goetz@6458 801 return start;
goetz@6458 802 }
goetz@6458 803
goetz@6458 804 #if !defined(PRODUCT)
goetz@6458 805 // Wrapper which calls oopDesc::is_oop_or_null()
goetz@6458 806 // Only called by MacroAssembler::verify_oop
goetz@6458 807 static void verify_oop_helper(const char* message, oop o) {
goetz@6458 808 if (!o->is_oop_or_null()) {
goetz@6458 809 fatal(message);
goetz@6458 810 }
goetz@6458 811 ++ StubRoutines::_verify_oop_count;
goetz@6458 812 }
goetz@6458 813 #endif
goetz@6458 814
goetz@6458 815 // Return address of code to be called from code generated by
goetz@6458 816 // MacroAssembler::verify_oop.
goetz@6458 817 //
goetz@6458 818 // Don't generate, rather use C++ code.
goetz@6458 819 address generate_verify_oop() {
goetz@6458 820 StubCodeMark mark(this, "StubRoutines", "verify_oop");
goetz@6458 821
goetz@6458 822 // this is actually a `FunctionDescriptor*'.
goetz@6458 823 address start = 0;
goetz@6458 824
goetz@6458 825 #if !defined(PRODUCT)
goetz@6458 826 start = CAST_FROM_FN_PTR(address, verify_oop_helper);
goetz@6458 827 #endif
goetz@6458 828
goetz@6458 829 return start;
goetz@6458 830 }
goetz@6458 831
goetz@6458 832 // Fairer handling of safepoints for native methods.
goetz@6458 833 //
goetz@6458 834 // Generate code which reads from the polling page. This special handling is needed as the
goetz@6458 835 // linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode
goetz@6458 836 // (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try
goetz@6458 837 // to read from the safepoint polling page.
goetz@6458 838 address generate_load_from_poll() {
goetz@6458 839 StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll");
goetz@6458 840 address start = __ emit_fd();
goetz@6458 841 __ unimplemented("StubRoutines::verify_oop", 95); // TODO PPC port
goetz@6458 842 return start;
goetz@6458 843 }
goetz@6458 844
goetz@6458 845 // -XX:+OptimizeFill : convert fill/copy loops into intrinsic
goetz@6458 846 //
goetz@6458 847 // The code is implemented(ported from sparc) as we believe it benefits JVM98, however
goetz@6458 848 // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all!
goetz@6458 849 //
goetz@6458 850 // Source code in function is_range_check_if() shows OptimizeFill relaxed the condition
goetz@6458 851 // for turning on loop predication optimization, and hence the behavior of "array range check"
goetz@6458 852 // and "loop invariant check" could be influenced, which potentially boosted JVM98.
goetz@6458 853 //
goetz@6458 854 // We leave the code here and see if Oracle has updates in later releases(later than HS20).
goetz@6458 855 //
goetz@6458 856 // Generate stub for disjoint short fill. If "aligned" is true, the
goetz@6458 857 // "to" address is assumed to be heapword aligned.
goetz@6458 858 //
goetz@6458 859 // Arguments for generated stub:
goetz@6458 860 // to: R3_ARG1
goetz@6458 861 // value: R4_ARG2
goetz@6458 862 // count: R5_ARG3 treated as signed
goetz@6458 863 //
goetz@6458 864 address generate_fill(BasicType t, bool aligned, const char* name) {
goetz@6458 865 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 866 address start = __ emit_fd();
goetz@6458 867
goetz@6458 868 const Register to = R3_ARG1; // source array address
goetz@6458 869 const Register value = R4_ARG2; // fill value
goetz@6458 870 const Register count = R5_ARG3; // elements count
goetz@6458 871 const Register temp = R6_ARG4; // temp register
goetz@6458 872
goetz@6458 873 //assert_clean_int(count, O3); // Make sure 'count' is clean int.
goetz@6458 874
goetz@6458 875 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
goetz@6458 876 Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes;
goetz@6458 877
goetz@6458 878 int shift = -1;
goetz@6458 879 switch (t) {
goetz@6458 880 case T_BYTE:
goetz@6458 881 shift = 2;
goetz@6458 882 // clone bytes (zero extend not needed because store instructions below ignore high order bytes)
goetz@6458 883 __ rldimi(value, value, 8, 48); // 8 bit -> 16 bit
goetz@6458 884 __ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element
goetz@6458 885 __ blt(CCR0, L_fill_elements);
goetz@6458 886 __ rldimi(value, value, 16, 32); // 16 bit -> 32 bit
goetz@6458 887 break;
goetz@6458 888 case T_SHORT:
goetz@6458 889 shift = 1;
goetz@6458 890 // clone bytes (zero extend not needed because store instructions below ignore high order bytes)
goetz@6458 891 __ rldimi(value, value, 16, 32); // 16 bit -> 32 bit
goetz@6458 892 __ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element
goetz@6458 893 __ blt(CCR0, L_fill_elements);
goetz@6458 894 break;
goetz@6458 895 case T_INT:
goetz@6458 896 shift = 0;
goetz@6458 897 __ cmpdi(CCR0, count, 2<<shift); // Short arrays (< 8 bytes) fill by element
goetz@6458 898 __ blt(CCR0, L_fill_4_bytes);
goetz@6458 899 break;
goetz@6458 900 default: ShouldNotReachHere();
goetz@6458 901 }
goetz@6458 902
goetz@6458 903 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
goetz@6458 904 // align source address at 4 bytes address boundary
goetz@6458 905 if (t == T_BYTE) {
goetz@6458 906 // One byte misalignment happens only for byte arrays
goetz@6458 907 __ andi_(temp, to, 1);
goetz@6458 908 __ beq(CCR0, L_skip_align1);
goetz@6458 909 __ stb(value, 0, to);
goetz@6458 910 __ addi(to, to, 1);
goetz@6458 911 __ addi(count, count, -1);
goetz@6458 912 __ bind(L_skip_align1);
goetz@6458 913 }
goetz@6458 914 // Two bytes misalignment happens only for byte and short (char) arrays.
goetz@6458 915 __ andi_(temp, to, 2);
goetz@6458 916 __ beq(CCR0, L_skip_align2);
goetz@6458 917 __ sth(value, 0, to);
goetz@6458 918 __ addi(to, to, 2);
goetz@6458 919 __ addi(count, count, -(1 << (shift - 1)));
goetz@6458 920 __ bind(L_skip_align2);
goetz@6458 921 }
goetz@6458 922
goetz@6458 923 if (!aligned) {
goetz@6458 924 // Align to 8 bytes, we know we are 4 byte aligned to start.
goetz@6458 925 __ andi_(temp, to, 7);
goetz@6458 926 __ beq(CCR0, L_fill_32_bytes);
goetz@6458 927 __ stw(value, 0, to);
goetz@6458 928 __ addi(to, to, 4);
goetz@6458 929 __ addi(count, count, -(1 << shift));
goetz@6458 930 __ bind(L_fill_32_bytes);
goetz@6458 931 }
goetz@6458 932
goetz@6458 933 __ li(temp, 8<<shift); // prepare for 32 byte loop
goetz@6458 934 // clone bytes int->long as above
goetz@6458 935 __ rldimi(value, value, 32, 0); // 32 bit -> 64 bit
goetz@6458 936
goetz@6458 937 Label L_check_fill_8_bytes;
goetz@6458 938 // Fill 32-byte chunks
goetz@6458 939 __ subf_(count, temp, count);
goetz@6458 940 __ blt(CCR0, L_check_fill_8_bytes);
goetz@6458 941
goetz@6458 942 Label L_fill_32_bytes_loop;
goetz@6458 943 __ align(32);
goetz@6458 944 __ bind(L_fill_32_bytes_loop);
goetz@6458 945
goetz@6458 946 __ std(value, 0, to);
goetz@6458 947 __ std(value, 8, to);
goetz@6458 948 __ subf_(count, temp, count); // update count
goetz@6458 949 __ std(value, 16, to);
goetz@6458 950 __ std(value, 24, to);
goetz@6458 951
goetz@6458 952 __ addi(to, to, 32);
goetz@6458 953 __ bge(CCR0, L_fill_32_bytes_loop);
goetz@6458 954
goetz@6458 955 __ bind(L_check_fill_8_bytes);
goetz@6458 956 __ add_(count, temp, count);
goetz@6458 957 __ beq(CCR0, L_exit);
goetz@6458 958 __ addic_(count, count, -(2 << shift));
goetz@6458 959 __ blt(CCR0, L_fill_4_bytes);
goetz@6458 960
goetz@6458 961 //
goetz@6458 962 // Length is too short, just fill 8 bytes at a time.
goetz@6458 963 //
goetz@6458 964 Label L_fill_8_bytes_loop;
goetz@6458 965 __ bind(L_fill_8_bytes_loop);
goetz@6458 966 __ std(value, 0, to);
goetz@6458 967 __ addic_(count, count, -(2 << shift));
goetz@6458 968 __ addi(to, to, 8);
goetz@6458 969 __ bge(CCR0, L_fill_8_bytes_loop);
goetz@6458 970
goetz@6458 971 // fill trailing 4 bytes
goetz@6458 972 __ bind(L_fill_4_bytes);
goetz@6458 973 __ andi_(temp, count, 1<<shift);
goetz@6458 974 __ beq(CCR0, L_fill_2_bytes);
goetz@6458 975
goetz@6458 976 __ stw(value, 0, to);
goetz@6458 977 if (t == T_BYTE || t == T_SHORT) {
goetz@6458 978 __ addi(to, to, 4);
goetz@6458 979 // fill trailing 2 bytes
goetz@6458 980 __ bind(L_fill_2_bytes);
goetz@6458 981 __ andi_(temp, count, 1<<(shift-1));
goetz@6458 982 __ beq(CCR0, L_fill_byte);
goetz@6458 983 __ sth(value, 0, to);
goetz@6458 984 if (t == T_BYTE) {
goetz@6458 985 __ addi(to, to, 2);
goetz@6458 986 // fill trailing byte
goetz@6458 987 __ bind(L_fill_byte);
goetz@6458 988 __ andi_(count, count, 1);
goetz@6458 989 __ beq(CCR0, L_exit);
goetz@6458 990 __ stb(value, 0, to);
goetz@6458 991 } else {
goetz@6458 992 __ bind(L_fill_byte);
goetz@6458 993 }
goetz@6458 994 } else {
goetz@6458 995 __ bind(L_fill_2_bytes);
goetz@6458 996 }
goetz@6458 997 __ bind(L_exit);
goetz@6458 998 __ blr();
goetz@6458 999
goetz@6458 1000 // Handle copies less than 8 bytes. Int is handled elsewhere.
goetz@6458 1001 if (t == T_BYTE) {
goetz@6458 1002 __ bind(L_fill_elements);
goetz@6458 1003 Label L_fill_2, L_fill_4;
goetz@6458 1004 __ andi_(temp, count, 1);
goetz@6458 1005 __ beq(CCR0, L_fill_2);
goetz@6458 1006 __ stb(value, 0, to);
goetz@6458 1007 __ addi(to, to, 1);
goetz@6458 1008 __ bind(L_fill_2);
goetz@6458 1009 __ andi_(temp, count, 2);
goetz@6458 1010 __ beq(CCR0, L_fill_4);
goetz@6458 1011 __ stb(value, 0, to);
goetz@6458 1012 __ stb(value, 0, to);
goetz@6458 1013 __ addi(to, to, 2);
goetz@6458 1014 __ bind(L_fill_4);
goetz@6458 1015 __ andi_(temp, count, 4);
goetz@6458 1016 __ beq(CCR0, L_exit);
goetz@6458 1017 __ stb(value, 0, to);
goetz@6458 1018 __ stb(value, 1, to);
goetz@6458 1019 __ stb(value, 2, to);
goetz@6458 1020 __ stb(value, 3, to);
goetz@6458 1021 __ blr();
goetz@6458 1022 }
goetz@6458 1023
goetz@6458 1024 if (t == T_SHORT) {
goetz@6458 1025 Label L_fill_2;
goetz@6458 1026 __ bind(L_fill_elements);
goetz@6458 1027 __ andi_(temp, count, 1);
goetz@6458 1028 __ beq(CCR0, L_fill_2);
goetz@6458 1029 __ sth(value, 0, to);
goetz@6458 1030 __ addi(to, to, 2);
goetz@6458 1031 __ bind(L_fill_2);
goetz@6458 1032 __ andi_(temp, count, 2);
goetz@6458 1033 __ beq(CCR0, L_exit);
goetz@6458 1034 __ sth(value, 0, to);
goetz@6458 1035 __ sth(value, 2, to);
goetz@6458 1036 __ blr();
goetz@6458 1037 }
goetz@6458 1038 return start;
goetz@6458 1039 }
goetz@6458 1040
goetz@6458 1041
goetz@6458 1042 // Generate overlap test for array copy stubs
goetz@6458 1043 //
goetz@6458 1044 // Input:
goetz@6458 1045 // R3_ARG1 - from
goetz@6458 1046 // R4_ARG2 - to
goetz@6458 1047 // R5_ARG3 - element count
goetz@6458 1048 //
goetz@6458 1049 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
goetz@6458 1050 Register tmp1 = R6_ARG4;
goetz@6458 1051 Register tmp2 = R7_ARG5;
goetz@6458 1052
goetz@6458 1053 Label l_overlap;
goetz@6458 1054 #ifdef ASSERT
goetz@6458 1055 __ srdi_(tmp2, R5_ARG3, 31);
goetz@6458 1056 __ asm_assert_eq("missing zero extend", 0xAFFE);
goetz@6458 1057 #endif
goetz@6458 1058
goetz@6458 1059 __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
goetz@6458 1060 __ sldi(tmp2, R5_ARG3, log2_elem_size); // size in bytes
goetz@6458 1061 __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
goetz@6458 1062 __ cmpld(CCR1, tmp1, tmp2);
goetz@6458 1063 __ crand(/*CCR0 lt*/0, /*CCR1 lt*/4+0, /*CCR0 lt*/0);
goetz@6458 1064 __ blt(CCR0, l_overlap); // Src before dst and distance smaller than size.
goetz@6458 1065
goetz@6458 1066 // need to copy forwards
goetz@6458 1067 if (__ is_within_range_of_b(no_overlap_target, __ pc())) {
goetz@6458 1068 __ b(no_overlap_target);
goetz@6458 1069 } else {
goetz@6458 1070 __ load_const(tmp1, no_overlap_target, tmp2);
goetz@6458 1071 __ mtctr(tmp1);
goetz@6458 1072 __ bctr();
goetz@6458 1073 }
goetz@6458 1074
goetz@6458 1075 __ bind(l_overlap);
goetz@6458 1076 // need to copy backwards
goetz@6458 1077 }
goetz@6458 1078
goetz@6458 1079 // The guideline in the implementations of generate_disjoint_xxx_copy
goetz@6458 1080 // (xxx=byte,short,int,long,oop) is to copy as many elements as possible with
goetz@6458 1081 // single instructions, but to avoid alignment interrupts (see subsequent
goetz@6458 1082 // comment). Furthermore, we try to minimize misaligned access, even
goetz@6458 1083 // though they cause no alignment interrupt.
goetz@6458 1084 //
goetz@6458 1085 // In Big-Endian mode, the PowerPC architecture requires implementations to
goetz@6458 1086 // handle automatically misaligned integer halfword and word accesses,
goetz@6458 1087 // word-aligned integer doubleword accesses, and word-aligned floating-point
goetz@6458 1088 // accesses. Other accesses may or may not generate an Alignment interrupt
goetz@6458 1089 // depending on the implementation.
goetz@6458 1090 // Alignment interrupt handling may require on the order of hundreds of cycles,
goetz@6458 1091 // so every effort should be made to avoid misaligned memory values.
goetz@6458 1092 //
goetz@6458 1093 //
goetz@6458 1094 // Generate stub for disjoint byte copy. If "aligned" is true, the
goetz@6458 1095 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1096 //
goetz@6458 1097 // Arguments for generated stub:
goetz@6458 1098 // from: R3_ARG1
goetz@6458 1099 // to: R4_ARG2
goetz@6458 1100 // count: R5_ARG3 treated as signed
goetz@6458 1101 //
goetz@6458 1102 address generate_disjoint_byte_copy(bool aligned, const char * name) {
goetz@6458 1103 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1104 address start = __ emit_fd();
goetz@6458 1105
goetz@6458 1106 Register tmp1 = R6_ARG4;
goetz@6458 1107 Register tmp2 = R7_ARG5;
goetz@6458 1108 Register tmp3 = R8_ARG6;
goetz@6458 1109 Register tmp4 = R9_ARG7;
goetz@6458 1110
goetz@6458 1111
goetz@6458 1112 Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9;
goetz@6458 1113 // Don't try anything fancy if arrays don't have many elements.
goetz@6458 1114 __ li(tmp3, 0);
goetz@6458 1115 __ cmpwi(CCR0, R5_ARG3, 17);
goetz@6458 1116 __ ble(CCR0, l_6); // copy 4 at a time
goetz@6458 1117
goetz@6458 1118 if (!aligned) {
goetz@6458 1119 __ xorr(tmp1, R3_ARG1, R4_ARG2);
goetz@6458 1120 __ andi_(tmp1, tmp1, 3);
goetz@6458 1121 __ bne(CCR0, l_6); // If arrays don't have the same alignment mod 4, do 4 element copy.
goetz@6458 1122
goetz@6458 1123 // Copy elements if necessary to align to 4 bytes.
goetz@6458 1124 __ neg(tmp1, R3_ARG1); // Compute distance to alignment boundary.
goetz@6458 1125 __ andi_(tmp1, tmp1, 3);
goetz@6458 1126 __ beq(CCR0, l_2);
goetz@6458 1127
goetz@6458 1128 __ subf(R5_ARG3, tmp1, R5_ARG3);
goetz@6458 1129 __ bind(l_9);
goetz@6458 1130 __ lbz(tmp2, 0, R3_ARG1);
goetz@6458 1131 __ addic_(tmp1, tmp1, -1);
goetz@6458 1132 __ stb(tmp2, 0, R4_ARG2);
goetz@6458 1133 __ addi(R3_ARG1, R3_ARG1, 1);
goetz@6458 1134 __ addi(R4_ARG2, R4_ARG2, 1);
goetz@6458 1135 __ bne(CCR0, l_9);
goetz@6458 1136
goetz@6458 1137 __ bind(l_2);
goetz@6458 1138 }
goetz@6458 1139
goetz@6458 1140 // copy 8 elements at a time
goetz@6458 1141 __ xorr(tmp2, R3_ARG1, R4_ARG2); // skip if src & dest have differing alignment mod 8
goetz@6458 1142 __ andi_(tmp1, tmp2, 7);
goetz@6458 1143 __ bne(CCR0, l_7); // not same alignment -> to or from is aligned -> copy 8
goetz@6458 1144
goetz@6458 1145 // copy a 2-element word if necessary to align to 8 bytes
goetz@6458 1146 __ andi_(R0, R3_ARG1, 7);
goetz@6458 1147 __ beq(CCR0, l_7);
goetz@6458 1148
goetz@6458 1149 __ lwzx(tmp2, R3_ARG1, tmp3);
goetz@6458 1150 __ addi(R5_ARG3, R5_ARG3, -4);
goetz@6458 1151 __ stwx(tmp2, R4_ARG2, tmp3);
goetz@6458 1152 { // FasterArrayCopy
goetz@6458 1153 __ addi(R3_ARG1, R3_ARG1, 4);
goetz@6458 1154 __ addi(R4_ARG2, R4_ARG2, 4);
goetz@6458 1155 }
goetz@6458 1156 __ bind(l_7);
goetz@6458 1157
goetz@6458 1158 { // FasterArrayCopy
goetz@6458 1159 __ cmpwi(CCR0, R5_ARG3, 31);
goetz@6458 1160 __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain
goetz@6458 1161
goetz@6458 1162 __ srdi(tmp1, R5_ARG3, 5);
goetz@6458 1163 __ andi_(R5_ARG3, R5_ARG3, 31);
goetz@6458 1164 __ mtctr(tmp1);
goetz@6458 1165
goetz@6458 1166 __ bind(l_8);
goetz@6458 1167 // Use unrolled version for mass copying (copy 32 elements a time)
goetz@6458 1168 // Load feeding store gets zero latency on Power6, however not on Power5.
goetz@6458 1169 // Therefore, the following sequence is made for the good of both.
goetz@6458 1170 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1171 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1172 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1173 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1174 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1175 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1176 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1177 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1178 __ addi(R3_ARG1, R3_ARG1, 32);
goetz@6458 1179 __ addi(R4_ARG2, R4_ARG2, 32);
goetz@6458 1180 __ bdnz(l_8);
goetz@6458 1181 }
goetz@6458 1182
goetz@6458 1183 __ bind(l_6);
goetz@6458 1184
goetz@6458 1185 // copy 4 elements at a time
goetz@6458 1186 __ cmpwi(CCR0, R5_ARG3, 4);
goetz@6458 1187 __ blt(CCR0, l_1);
goetz@6458 1188 __ srdi(tmp1, R5_ARG3, 2);
goetz@6458 1189 __ mtctr(tmp1); // is > 0
goetz@6458 1190 __ andi_(R5_ARG3, R5_ARG3, 3);
goetz@6458 1191
goetz@6458 1192 { // FasterArrayCopy
goetz@6458 1193 __ addi(R3_ARG1, R3_ARG1, -4);
goetz@6458 1194 __ addi(R4_ARG2, R4_ARG2, -4);
goetz@6458 1195 __ bind(l_3);
goetz@6458 1196 __ lwzu(tmp2, 4, R3_ARG1);
goetz@6458 1197 __ stwu(tmp2, 4, R4_ARG2);
goetz@6458 1198 __ bdnz(l_3);
goetz@6458 1199 __ addi(R3_ARG1, R3_ARG1, 4);
goetz@6458 1200 __ addi(R4_ARG2, R4_ARG2, 4);
goetz@6458 1201 }
goetz@6458 1202
goetz@6458 1203 // do single element copy
goetz@6458 1204 __ bind(l_1);
goetz@6458 1205 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1206 __ beq(CCR0, l_4);
goetz@6458 1207
goetz@6458 1208 { // FasterArrayCopy
goetz@6458 1209 __ mtctr(R5_ARG3);
goetz@6458 1210 __ addi(R3_ARG1, R3_ARG1, -1);
goetz@6458 1211 __ addi(R4_ARG2, R4_ARG2, -1);
goetz@6458 1212
goetz@6458 1213 __ bind(l_5);
goetz@6458 1214 __ lbzu(tmp2, 1, R3_ARG1);
goetz@6458 1215 __ stbu(tmp2, 1, R4_ARG2);
goetz@6458 1216 __ bdnz(l_5);
goetz@6458 1217 }
goetz@6458 1218
goetz@6458 1219 __ bind(l_4);
goetz@6458 1220 __ blr();
goetz@6458 1221
goetz@6458 1222 return start;
goetz@6458 1223 }
goetz@6458 1224
goetz@6458 1225 // Generate stub for conjoint byte copy. If "aligned" is true, the
goetz@6458 1226 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1227 //
goetz@6458 1228 // Arguments for generated stub:
goetz@6458 1229 // from: R3_ARG1
goetz@6458 1230 // to: R4_ARG2
goetz@6458 1231 // count: R5_ARG3 treated as signed
goetz@6458 1232 //
goetz@6458 1233 address generate_conjoint_byte_copy(bool aligned, const char * name) {
goetz@6458 1234 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1235 address start = __ emit_fd();
goetz@6458 1236
goetz@6458 1237 Register tmp1 = R6_ARG4;
goetz@6458 1238 Register tmp2 = R7_ARG5;
goetz@6458 1239 Register tmp3 = R8_ARG6;
goetz@6458 1240
goetz@6458 1241 address nooverlap_target = aligned ?
goetz@6458 1242 ((FunctionDescriptor*)StubRoutines::arrayof_jbyte_disjoint_arraycopy())->entry() :
goetz@6458 1243 ((FunctionDescriptor*)StubRoutines::jbyte_disjoint_arraycopy())->entry();
goetz@6458 1244
goetz@6458 1245 array_overlap_test(nooverlap_target, 0);
goetz@6458 1246 // Do reverse copy. We assume the case of actual overlap is rare enough
goetz@6458 1247 // that we don't have to optimize it.
goetz@6458 1248 Label l_1, l_2;
goetz@6458 1249
goetz@6458 1250 __ b(l_2);
goetz@6458 1251 __ bind(l_1);
goetz@6458 1252 __ stbx(tmp1, R4_ARG2, R5_ARG3);
goetz@6458 1253 __ bind(l_2);
goetz@6458 1254 __ addic_(R5_ARG3, R5_ARG3, -1);
goetz@6458 1255 __ lbzx(tmp1, R3_ARG1, R5_ARG3);
goetz@6458 1256 __ bge(CCR0, l_1);
goetz@6458 1257
goetz@6458 1258 __ blr();
goetz@6458 1259
goetz@6458 1260 return start;
goetz@6458 1261 }
goetz@6458 1262
goetz@6458 1263 // Generate stub for disjoint short copy. If "aligned" is true, the
goetz@6458 1264 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1265 //
goetz@6458 1266 // Arguments for generated stub:
goetz@6458 1267 // from: R3_ARG1
goetz@6458 1268 // to: R4_ARG2
goetz@6458 1269 // elm.count: R5_ARG3 treated as signed
goetz@6458 1270 //
goetz@6458 1271 // Strategy for aligned==true:
goetz@6458 1272 //
goetz@6458 1273 // If length <= 9:
goetz@6458 1274 // 1. copy 2 elements at a time (l_6)
goetz@6458 1275 // 2. copy last element if original element count was odd (l_1)
goetz@6458 1276 //
goetz@6458 1277 // If length > 9:
goetz@6458 1278 // 1. copy 4 elements at a time until less than 4 elements are left (l_7)
goetz@6458 1279 // 2. copy 2 elements at a time until less than 2 elements are left (l_6)
goetz@6458 1280 // 3. copy last element if one was left in step 2. (l_1)
goetz@6458 1281 //
goetz@6458 1282 //
goetz@6458 1283 // Strategy for aligned==false:
goetz@6458 1284 //
goetz@6458 1285 // If length <= 9: same as aligned==true case, but NOTE: load/stores
goetz@6458 1286 // can be unaligned (see comment below)
goetz@6458 1287 //
goetz@6458 1288 // If length > 9:
goetz@6458 1289 // 1. continue with step 6. if the alignment of from and to mod 4
goetz@6458 1290 // is different.
goetz@6458 1291 // 2. align from and to to 4 bytes by copying 1 element if necessary
goetz@6458 1292 // 3. at l_2 from and to are 4 byte aligned; continue with
goetz@6458 1293 // 5. if they cannot be aligned to 8 bytes because they have
goetz@6458 1294 // got different alignment mod 8.
goetz@6458 1295 // 4. at this point we know that both, from and to, have the same
goetz@6458 1296 // alignment mod 8, now copy one element if necessary to get
goetz@6458 1297 // 8 byte alignment of from and to.
goetz@6458 1298 // 5. copy 4 elements at a time until less than 4 elements are
goetz@6458 1299 // left; depending on step 3. all load/stores are aligned or
goetz@6458 1300 // either all loads or all stores are unaligned.
goetz@6458 1301 // 6. copy 2 elements at a time until less than 2 elements are
goetz@6458 1302 // left (l_6); arriving here from step 1., there is a chance
goetz@6458 1303 // that all accesses are unaligned.
goetz@6458 1304 // 7. copy last element if one was left in step 6. (l_1)
goetz@6458 1305 //
goetz@6458 1306 // There are unaligned data accesses using integer load/store
goetz@6458 1307 // instructions in this stub. POWER allows such accesses.
goetz@6458 1308 //
goetz@6458 1309 // According to the manuals (PowerISA_V2.06_PUBLIC, Book II,
goetz@6458 1310 // Chapter 2: Effect of Operand Placement on Performance) unaligned
goetz@6458 1311 // integer load/stores have good performance. Only unaligned
goetz@6458 1312 // floating point load/stores can have poor performance.
goetz@6458 1313 //
goetz@6458 1314 // TODO:
goetz@6458 1315 //
goetz@6458 1316 // 1. check if aligning the backbranch target of loops is beneficial
goetz@6458 1317 //
goetz@6458 1318 address generate_disjoint_short_copy(bool aligned, const char * name) {
goetz@6458 1319 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1320
goetz@6458 1321 Register tmp1 = R6_ARG4;
goetz@6458 1322 Register tmp2 = R7_ARG5;
goetz@6458 1323 Register tmp3 = R8_ARG6;
goetz@6458 1324 Register tmp4 = R9_ARG7;
goetz@6458 1325
goetz@6458 1326 address start = __ emit_fd();
goetz@6458 1327
goetz@6458 1328 Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8;
goetz@6458 1329 // don't try anything fancy if arrays don't have many elements
goetz@6458 1330 __ li(tmp3, 0);
goetz@6458 1331 __ cmpwi(CCR0, R5_ARG3, 9);
goetz@6458 1332 __ ble(CCR0, l_6); // copy 2 at a time
goetz@6458 1333
goetz@6458 1334 if (!aligned) {
goetz@6458 1335 __ xorr(tmp1, R3_ARG1, R4_ARG2);
goetz@6458 1336 __ andi_(tmp1, tmp1, 3);
goetz@6458 1337 __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy
goetz@6458 1338
goetz@6458 1339 // At this point it is guaranteed that both, from and to have the same alignment mod 4.
goetz@6458 1340
goetz@6458 1341 // Copy 1 element if necessary to align to 4 bytes.
goetz@6458 1342 __ andi_(tmp1, R3_ARG1, 3);
goetz@6458 1343 __ beq(CCR0, l_2);
goetz@6458 1344
goetz@6458 1345 __ lhz(tmp2, 0, R3_ARG1);
goetz@6458 1346 __ addi(R3_ARG1, R3_ARG1, 2);
goetz@6458 1347 __ sth(tmp2, 0, R4_ARG2);
goetz@6458 1348 __ addi(R4_ARG2, R4_ARG2, 2);
goetz@6458 1349 __ addi(R5_ARG3, R5_ARG3, -1);
goetz@6458 1350 __ bind(l_2);
goetz@6458 1351
goetz@6458 1352 // At this point the positions of both, from and to, are at least 4 byte aligned.
goetz@6458 1353
goetz@6458 1354 // Copy 4 elements at a time.
goetz@6458 1355 // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
goetz@6458 1356 __ xorr(tmp2, R3_ARG1, R4_ARG2);
goetz@6458 1357 __ andi_(tmp1, tmp2, 7);
goetz@6458 1358 __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned
goetz@6458 1359
goetz@6458 1360 // Copy a 2-element word if necessary to align to 8 bytes.
goetz@6458 1361 __ andi_(R0, R3_ARG1, 7);
goetz@6458 1362 __ beq(CCR0, l_7);
goetz@6458 1363
goetz@6458 1364 __ lwzx(tmp2, R3_ARG1, tmp3);
goetz@6458 1365 __ addi(R5_ARG3, R5_ARG3, -2);
goetz@6458 1366 __ stwx(tmp2, R4_ARG2, tmp3);
goetz@6458 1367 { // FasterArrayCopy
goetz@6458 1368 __ addi(R3_ARG1, R3_ARG1, 4);
goetz@6458 1369 __ addi(R4_ARG2, R4_ARG2, 4);
goetz@6458 1370 }
goetz@6458 1371 }
goetz@6458 1372
goetz@6458 1373 __ bind(l_7);
goetz@6458 1374
goetz@6458 1375 // Copy 4 elements at a time; either the loads or the stores can
goetz@6458 1376 // be unaligned if aligned == false.
goetz@6458 1377
goetz@6458 1378 { // FasterArrayCopy
goetz@6458 1379 __ cmpwi(CCR0, R5_ARG3, 15);
goetz@6458 1380 __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain
goetz@6458 1381
goetz@6458 1382 __ srdi(tmp1, R5_ARG3, 4);
goetz@6458 1383 __ andi_(R5_ARG3, R5_ARG3, 15);
goetz@6458 1384 __ mtctr(tmp1);
goetz@6458 1385
goetz@6458 1386 __ bind(l_8);
goetz@6458 1387 // Use unrolled version for mass copying (copy 16 elements a time).
goetz@6458 1388 // Load feeding store gets zero latency on Power6, however not on Power5.
goetz@6458 1389 // Therefore, the following sequence is made for the good of both.
goetz@6458 1390 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1391 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1392 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1393 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1394 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1395 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1396 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1397 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1398 __ addi(R3_ARG1, R3_ARG1, 32);
goetz@6458 1399 __ addi(R4_ARG2, R4_ARG2, 32);
goetz@6458 1400 __ bdnz(l_8);
goetz@6458 1401 }
goetz@6458 1402 __ bind(l_6);
goetz@6458 1403
goetz@6458 1404 // copy 2 elements at a time
goetz@6458 1405 { // FasterArrayCopy
goetz@6458 1406 __ cmpwi(CCR0, R5_ARG3, 2);
goetz@6458 1407 __ blt(CCR0, l_1);
goetz@6458 1408 __ srdi(tmp1, R5_ARG3, 1);
goetz@6458 1409 __ andi_(R5_ARG3, R5_ARG3, 1);
goetz@6458 1410
goetz@6458 1411 __ addi(R3_ARG1, R3_ARG1, -4);
goetz@6458 1412 __ addi(R4_ARG2, R4_ARG2, -4);
goetz@6458 1413 __ mtctr(tmp1);
goetz@6458 1414
goetz@6458 1415 __ bind(l_3);
goetz@6458 1416 __ lwzu(tmp2, 4, R3_ARG1);
goetz@6458 1417 __ stwu(tmp2, 4, R4_ARG2);
goetz@6458 1418 __ bdnz(l_3);
goetz@6458 1419
goetz@6458 1420 __ addi(R3_ARG1, R3_ARG1, 4);
goetz@6458 1421 __ addi(R4_ARG2, R4_ARG2, 4);
goetz@6458 1422 }
goetz@6458 1423
goetz@6458 1424 // do single element copy
goetz@6458 1425 __ bind(l_1);
goetz@6458 1426 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1427 __ beq(CCR0, l_4);
goetz@6458 1428
goetz@6458 1429 { // FasterArrayCopy
goetz@6458 1430 __ mtctr(R5_ARG3);
goetz@6458 1431 __ addi(R3_ARG1, R3_ARG1, -2);
goetz@6458 1432 __ addi(R4_ARG2, R4_ARG2, -2);
goetz@6458 1433
goetz@6458 1434 __ bind(l_5);
goetz@6458 1435 __ lhzu(tmp2, 2, R3_ARG1);
goetz@6458 1436 __ sthu(tmp2, 2, R4_ARG2);
goetz@6458 1437 __ bdnz(l_5);
goetz@6458 1438 }
goetz@6458 1439 __ bind(l_4);
goetz@6458 1440 __ blr();
goetz@6458 1441
goetz@6458 1442 return start;
goetz@6458 1443 }
goetz@6458 1444
goetz@6458 1445 // Generate stub for conjoint short copy. If "aligned" is true, the
goetz@6458 1446 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1447 //
goetz@6458 1448 // Arguments for generated stub:
goetz@6458 1449 // from: R3_ARG1
goetz@6458 1450 // to: R4_ARG2
goetz@6458 1451 // count: R5_ARG3 treated as signed
goetz@6458 1452 //
goetz@6458 1453 address generate_conjoint_short_copy(bool aligned, const char * name) {
goetz@6458 1454 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1455 address start = __ emit_fd();
goetz@6458 1456
goetz@6458 1457 Register tmp1 = R6_ARG4;
goetz@6458 1458 Register tmp2 = R7_ARG5;
goetz@6458 1459 Register tmp3 = R8_ARG6;
goetz@6458 1460
goetz@6458 1461 address nooverlap_target = aligned ?
goetz@6458 1462 ((FunctionDescriptor*)StubRoutines::arrayof_jshort_disjoint_arraycopy())->entry() :
goetz@6458 1463 ((FunctionDescriptor*)StubRoutines::jshort_disjoint_arraycopy())->entry();
goetz@6458 1464
goetz@6458 1465 array_overlap_test(nooverlap_target, 1);
goetz@6458 1466
goetz@6458 1467 Label l_1, l_2;
goetz@6458 1468 __ sldi(tmp1, R5_ARG3, 1);
goetz@6458 1469 __ b(l_2);
goetz@6458 1470 __ bind(l_1);
goetz@6458 1471 __ sthx(tmp2, R4_ARG2, tmp1);
goetz@6458 1472 __ bind(l_2);
goetz@6458 1473 __ addic_(tmp1, tmp1, -2);
goetz@6458 1474 __ lhzx(tmp2, R3_ARG1, tmp1);
goetz@6458 1475 __ bge(CCR0, l_1);
goetz@6458 1476
goetz@6458 1477 __ blr();
goetz@6458 1478
goetz@6458 1479 return start;
goetz@6458 1480 }
goetz@6458 1481
goetz@6458 1482 // Generate core code for disjoint int copy (and oop copy on 32-bit). If "aligned"
goetz@6458 1483 // is true, the "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1484 //
goetz@6458 1485 // Arguments:
goetz@6458 1486 // from: R3_ARG1
goetz@6458 1487 // to: R4_ARG2
goetz@6458 1488 // count: R5_ARG3 treated as signed
goetz@6458 1489 //
goetz@6458 1490 void generate_disjoint_int_copy_core(bool aligned) {
goetz@6458 1491 Register tmp1 = R6_ARG4;
goetz@6458 1492 Register tmp2 = R7_ARG5;
goetz@6458 1493 Register tmp3 = R8_ARG6;
goetz@6458 1494 Register tmp4 = R0;
goetz@6458 1495
goetz@6458 1496 Label l_1, l_2, l_3, l_4, l_5, l_6;
goetz@6458 1497 // for short arrays, just do single element copy
goetz@6458 1498 __ li(tmp3, 0);
goetz@6458 1499 __ cmpwi(CCR0, R5_ARG3, 5);
goetz@6458 1500 __ ble(CCR0, l_2);
goetz@6458 1501
goetz@6458 1502 if (!aligned) {
goetz@6458 1503 // check if arrays have same alignment mod 8.
goetz@6458 1504 __ xorr(tmp1, R3_ARG1, R4_ARG2);
goetz@6458 1505 __ andi_(R0, tmp1, 7);
goetz@6458 1506 // Not the same alignment, but ld and std just need to be 4 byte aligned.
goetz@6458 1507 __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time
goetz@6458 1508
goetz@6458 1509 // copy 1 element to align to and from on an 8 byte boundary
goetz@6458 1510 __ andi_(R0, R3_ARG1, 7);
goetz@6458 1511 __ beq(CCR0, l_4);
goetz@6458 1512
goetz@6458 1513 __ lwzx(tmp2, R3_ARG1, tmp3);
goetz@6458 1514 __ addi(R5_ARG3, R5_ARG3, -1);
goetz@6458 1515 __ stwx(tmp2, R4_ARG2, tmp3);
goetz@6458 1516 { // FasterArrayCopy
goetz@6458 1517 __ addi(R3_ARG1, R3_ARG1, 4);
goetz@6458 1518 __ addi(R4_ARG2, R4_ARG2, 4);
goetz@6458 1519 }
goetz@6458 1520 __ bind(l_4);
goetz@6458 1521 }
goetz@6458 1522
goetz@6458 1523 { // FasterArrayCopy
goetz@6458 1524 __ cmpwi(CCR0, R5_ARG3, 7);
goetz@6458 1525 __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain
goetz@6458 1526
goetz@6458 1527 __ srdi(tmp1, R5_ARG3, 3);
goetz@6458 1528 __ andi_(R5_ARG3, R5_ARG3, 7);
goetz@6458 1529 __ mtctr(tmp1);
goetz@6458 1530
goetz@6458 1531 __ bind(l_6);
goetz@6458 1532 // Use unrolled version for mass copying (copy 8 elements a time).
goetz@6458 1533 // Load feeding store gets zero latency on power6, however not on power 5.
goetz@6458 1534 // Therefore, the following sequence is made for the good of both.
goetz@6458 1535 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1536 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1537 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1538 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1539 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1540 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1541 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1542 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1543 __ addi(R3_ARG1, R3_ARG1, 32);
goetz@6458 1544 __ addi(R4_ARG2, R4_ARG2, 32);
goetz@6458 1545 __ bdnz(l_6);
goetz@6458 1546 }
goetz@6458 1547
goetz@6458 1548 // copy 1 element at a time
goetz@6458 1549 __ bind(l_2);
goetz@6458 1550 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1551 __ beq(CCR0, l_1);
goetz@6458 1552
goetz@6458 1553 { // FasterArrayCopy
goetz@6458 1554 __ mtctr(R5_ARG3);
goetz@6458 1555 __ addi(R3_ARG1, R3_ARG1, -4);
goetz@6458 1556 __ addi(R4_ARG2, R4_ARG2, -4);
goetz@6458 1557
goetz@6458 1558 __ bind(l_3);
goetz@6458 1559 __ lwzu(tmp2, 4, R3_ARG1);
goetz@6458 1560 __ stwu(tmp2, 4, R4_ARG2);
goetz@6458 1561 __ bdnz(l_3);
goetz@6458 1562 }
goetz@6458 1563
goetz@6458 1564 __ bind(l_1);
goetz@6458 1565 return;
goetz@6458 1566 }
goetz@6458 1567
goetz@6458 1568 // Generate stub for disjoint int copy. If "aligned" is true, the
goetz@6458 1569 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1570 //
goetz@6458 1571 // Arguments for generated stub:
goetz@6458 1572 // from: R3_ARG1
goetz@6458 1573 // to: R4_ARG2
goetz@6458 1574 // count: R5_ARG3 treated as signed
goetz@6458 1575 //
goetz@6458 1576 address generate_disjoint_int_copy(bool aligned, const char * name) {
goetz@6458 1577 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1578 address start = __ emit_fd();
goetz@6458 1579 generate_disjoint_int_copy_core(aligned);
goetz@6458 1580 __ blr();
goetz@6458 1581 return start;
goetz@6458 1582 }
goetz@6458 1583
goetz@6458 1584 // Generate core code for conjoint int copy (and oop copy on
goetz@6458 1585 // 32-bit). If "aligned" is true, the "from" and "to" addresses
goetz@6458 1586 // are assumed to be heapword aligned.
goetz@6458 1587 //
goetz@6458 1588 // Arguments:
goetz@6458 1589 // from: R3_ARG1
goetz@6458 1590 // to: R4_ARG2
goetz@6458 1591 // count: R5_ARG3 treated as signed
goetz@6458 1592 //
goetz@6458 1593 void generate_conjoint_int_copy_core(bool aligned) {
goetz@6458 1594 // Do reverse copy. We assume the case of actual overlap is rare enough
goetz@6458 1595 // that we don't have to optimize it.
goetz@6458 1596
goetz@6458 1597 Label l_1, l_2, l_3, l_4, l_5, l_6;
goetz@6458 1598
goetz@6458 1599 Register tmp1 = R6_ARG4;
goetz@6458 1600 Register tmp2 = R7_ARG5;
goetz@6458 1601 Register tmp3 = R8_ARG6;
goetz@6458 1602 Register tmp4 = R0;
goetz@6458 1603
goetz@6458 1604 { // FasterArrayCopy
goetz@6458 1605 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1606 __ beq(CCR0, l_6);
goetz@6458 1607
goetz@6458 1608 __ sldi(R5_ARG3, R5_ARG3, 2);
goetz@6458 1609 __ add(R3_ARG1, R3_ARG1, R5_ARG3);
goetz@6458 1610 __ add(R4_ARG2, R4_ARG2, R5_ARG3);
goetz@6458 1611 __ srdi(R5_ARG3, R5_ARG3, 2);
goetz@6458 1612
goetz@6458 1613 __ cmpwi(CCR0, R5_ARG3, 7);
goetz@6458 1614 __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain
goetz@6458 1615
goetz@6458 1616 __ srdi(tmp1, R5_ARG3, 3);
goetz@6458 1617 __ andi(R5_ARG3, R5_ARG3, 7);
goetz@6458 1618 __ mtctr(tmp1);
goetz@6458 1619
goetz@6458 1620 __ bind(l_4);
goetz@6458 1621 // Use unrolled version for mass copying (copy 4 elements a time).
goetz@6458 1622 // Load feeding store gets zero latency on Power6, however not on Power5.
goetz@6458 1623 // Therefore, the following sequence is made for the good of both.
goetz@6458 1624 __ addi(R3_ARG1, R3_ARG1, -32);
goetz@6458 1625 __ addi(R4_ARG2, R4_ARG2, -32);
goetz@6458 1626 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1627 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1628 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1629 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1630 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1631 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1632 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1633 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1634 __ bdnz(l_4);
goetz@6458 1635
goetz@6458 1636 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1637 __ beq(CCR0, l_6);
goetz@6458 1638
goetz@6458 1639 __ bind(l_5);
goetz@6458 1640 __ mtctr(R5_ARG3);
goetz@6458 1641 __ bind(l_3);
goetz@6458 1642 __ lwz(R0, -4, R3_ARG1);
goetz@6458 1643 __ stw(R0, -4, R4_ARG2);
goetz@6458 1644 __ addi(R3_ARG1, R3_ARG1, -4);
goetz@6458 1645 __ addi(R4_ARG2, R4_ARG2, -4);
goetz@6458 1646 __ bdnz(l_3);
goetz@6458 1647
goetz@6458 1648 __ bind(l_6);
goetz@6458 1649 }
goetz@6458 1650 }
goetz@6458 1651
goetz@6458 1652 // Generate stub for conjoint int copy. If "aligned" is true, the
goetz@6458 1653 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1654 //
goetz@6458 1655 // Arguments for generated stub:
goetz@6458 1656 // from: R3_ARG1
goetz@6458 1657 // to: R4_ARG2
goetz@6458 1658 // count: R5_ARG3 treated as signed
goetz@6458 1659 //
goetz@6458 1660 address generate_conjoint_int_copy(bool aligned, const char * name) {
goetz@6458 1661 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1662 address start = __ emit_fd();
goetz@6458 1663
goetz@6458 1664 address nooverlap_target = aligned ?
goetz@6458 1665 ((FunctionDescriptor*)StubRoutines::arrayof_jint_disjoint_arraycopy())->entry() :
goetz@6458 1666 ((FunctionDescriptor*)StubRoutines::jint_disjoint_arraycopy())->entry();
goetz@6458 1667
goetz@6458 1668 array_overlap_test(nooverlap_target, 2);
goetz@6458 1669
goetz@6458 1670 generate_conjoint_int_copy_core(aligned);
goetz@6458 1671
goetz@6458 1672 __ blr();
goetz@6458 1673
goetz@6458 1674 return start;
goetz@6458 1675 }
goetz@6458 1676
goetz@6458 1677 // Generate core code for disjoint long copy (and oop copy on
goetz@6458 1678 // 64-bit). If "aligned" is true, the "from" and "to" addresses
goetz@6458 1679 // are assumed to be heapword aligned.
goetz@6458 1680 //
goetz@6458 1681 // Arguments:
goetz@6458 1682 // from: R3_ARG1
goetz@6458 1683 // to: R4_ARG2
goetz@6458 1684 // count: R5_ARG3 treated as signed
goetz@6458 1685 //
goetz@6458 1686 void generate_disjoint_long_copy_core(bool aligned) {
goetz@6458 1687 Register tmp1 = R6_ARG4;
goetz@6458 1688 Register tmp2 = R7_ARG5;
goetz@6458 1689 Register tmp3 = R8_ARG6;
goetz@6458 1690 Register tmp4 = R0;
goetz@6458 1691
goetz@6458 1692 Label l_1, l_2, l_3, l_4;
goetz@6458 1693
goetz@6458 1694 { // FasterArrayCopy
goetz@6458 1695 __ cmpwi(CCR0, R5_ARG3, 3);
goetz@6458 1696 __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain
goetz@6458 1697
goetz@6458 1698 __ srdi(tmp1, R5_ARG3, 2);
goetz@6458 1699 __ andi_(R5_ARG3, R5_ARG3, 3);
goetz@6458 1700 __ mtctr(tmp1);
goetz@6458 1701
goetz@6458 1702 __ bind(l_4);
goetz@6458 1703 // Use unrolled version for mass copying (copy 4 elements a time).
goetz@6458 1704 // Load feeding store gets zero latency on Power6, however not on Power5.
goetz@6458 1705 // Therefore, the following sequence is made for the good of both.
goetz@6458 1706 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1707 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1708 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1709 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1710 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1711 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1712 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1713 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1714 __ addi(R3_ARG1, R3_ARG1, 32);
goetz@6458 1715 __ addi(R4_ARG2, R4_ARG2, 32);
goetz@6458 1716 __ bdnz(l_4);
goetz@6458 1717 }
goetz@6458 1718
goetz@6458 1719 // copy 1 element at a time
goetz@6458 1720 __ bind(l_3);
goetz@6458 1721 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1722 __ beq(CCR0, l_1);
goetz@6458 1723
goetz@6458 1724 { // FasterArrayCopy
goetz@6458 1725 __ mtctr(R5_ARG3);
goetz@6458 1726 __ addi(R3_ARG1, R3_ARG1, -8);
goetz@6458 1727 __ addi(R4_ARG2, R4_ARG2, -8);
goetz@6458 1728
goetz@6458 1729 __ bind(l_2);
goetz@6458 1730 __ ldu(R0, 8, R3_ARG1);
goetz@6458 1731 __ stdu(R0, 8, R4_ARG2);
goetz@6458 1732 __ bdnz(l_2);
goetz@6458 1733
goetz@6458 1734 }
goetz@6458 1735 __ bind(l_1);
goetz@6458 1736 }
goetz@6458 1737
goetz@6458 1738 // Generate stub for disjoint long copy. If "aligned" is true, the
goetz@6458 1739 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1740 //
goetz@6458 1741 // Arguments for generated stub:
goetz@6458 1742 // from: R3_ARG1
goetz@6458 1743 // to: R4_ARG2
goetz@6458 1744 // count: R5_ARG3 treated as signed
goetz@6458 1745 //
goetz@6458 1746 address generate_disjoint_long_copy(bool aligned, const char * name) {
goetz@6458 1747 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1748 address start = __ emit_fd();
goetz@6458 1749 generate_disjoint_long_copy_core(aligned);
goetz@6458 1750 __ blr();
goetz@6458 1751
goetz@6458 1752 return start;
goetz@6458 1753 }
goetz@6458 1754
goetz@6458 1755 // Generate core code for conjoint long copy (and oop copy on
goetz@6458 1756 // 64-bit). If "aligned" is true, the "from" and "to" addresses
goetz@6458 1757 // are assumed to be heapword aligned.
goetz@6458 1758 //
goetz@6458 1759 // Arguments:
goetz@6458 1760 // from: R3_ARG1
goetz@6458 1761 // to: R4_ARG2
goetz@6458 1762 // count: R5_ARG3 treated as signed
goetz@6458 1763 //
goetz@6458 1764 void generate_conjoint_long_copy_core(bool aligned) {
goetz@6458 1765 Register tmp1 = R6_ARG4;
goetz@6458 1766 Register tmp2 = R7_ARG5;
goetz@6458 1767 Register tmp3 = R8_ARG6;
goetz@6458 1768 Register tmp4 = R0;
goetz@6458 1769
goetz@6458 1770 Label l_1, l_2, l_3, l_4, l_5;
goetz@6458 1771
goetz@6458 1772 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1773 __ beq(CCR0, l_1);
goetz@6458 1774
goetz@6458 1775 { // FasterArrayCopy
goetz@6458 1776 __ sldi(R5_ARG3, R5_ARG3, 3);
goetz@6458 1777 __ add(R3_ARG1, R3_ARG1, R5_ARG3);
goetz@6458 1778 __ add(R4_ARG2, R4_ARG2, R5_ARG3);
goetz@6458 1779 __ srdi(R5_ARG3, R5_ARG3, 3);
goetz@6458 1780
goetz@6458 1781 __ cmpwi(CCR0, R5_ARG3, 3);
goetz@6458 1782 __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain
goetz@6458 1783
goetz@6458 1784 __ srdi(tmp1, R5_ARG3, 2);
goetz@6458 1785 __ andi(R5_ARG3, R5_ARG3, 3);
goetz@6458 1786 __ mtctr(tmp1);
goetz@6458 1787
goetz@6458 1788 __ bind(l_4);
goetz@6458 1789 // Use unrolled version for mass copying (copy 4 elements a time).
goetz@6458 1790 // Load feeding store gets zero latency on Power6, however not on Power5.
goetz@6458 1791 // Therefore, the following sequence is made for the good of both.
goetz@6458 1792 __ addi(R3_ARG1, R3_ARG1, -32);
goetz@6458 1793 __ addi(R4_ARG2, R4_ARG2, -32);
goetz@6458 1794 __ ld(tmp4, 24, R3_ARG1);
goetz@6458 1795 __ ld(tmp3, 16, R3_ARG1);
goetz@6458 1796 __ ld(tmp2, 8, R3_ARG1);
goetz@6458 1797 __ ld(tmp1, 0, R3_ARG1);
goetz@6458 1798 __ std(tmp4, 24, R4_ARG2);
goetz@6458 1799 __ std(tmp3, 16, R4_ARG2);
goetz@6458 1800 __ std(tmp2, 8, R4_ARG2);
goetz@6458 1801 __ std(tmp1, 0, R4_ARG2);
goetz@6458 1802 __ bdnz(l_4);
goetz@6458 1803
goetz@6458 1804 __ cmpwi(CCR0, R5_ARG3, 0);
goetz@6458 1805 __ beq(CCR0, l_1);
goetz@6458 1806
goetz@6458 1807 __ bind(l_5);
goetz@6458 1808 __ mtctr(R5_ARG3);
goetz@6458 1809 __ bind(l_3);
goetz@6458 1810 __ ld(R0, -8, R3_ARG1);
goetz@6458 1811 __ std(R0, -8, R4_ARG2);
goetz@6458 1812 __ addi(R3_ARG1, R3_ARG1, -8);
goetz@6458 1813 __ addi(R4_ARG2, R4_ARG2, -8);
goetz@6458 1814 __ bdnz(l_3);
goetz@6458 1815
goetz@6458 1816 }
goetz@6458 1817 __ bind(l_1);
goetz@6458 1818 }
goetz@6458 1819
goetz@6458 1820 // Generate stub for conjoint long copy. If "aligned" is true, the
goetz@6458 1821 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1822 //
goetz@6458 1823 // Arguments for generated stub:
goetz@6458 1824 // from: R3_ARG1
goetz@6458 1825 // to: R4_ARG2
goetz@6458 1826 // count: R5_ARG3 treated as signed
goetz@6458 1827 //
goetz@6458 1828 address generate_conjoint_long_copy(bool aligned, const char * name) {
goetz@6458 1829 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1830 address start = __ emit_fd();
goetz@6458 1831
goetz@6458 1832 address nooverlap_target = aligned ?
goetz@6458 1833 ((FunctionDescriptor*)StubRoutines::arrayof_jlong_disjoint_arraycopy())->entry() :
goetz@6458 1834 ((FunctionDescriptor*)StubRoutines::jlong_disjoint_arraycopy())->entry();
goetz@6458 1835
goetz@6458 1836 array_overlap_test(nooverlap_target, 3);
goetz@6458 1837 generate_conjoint_long_copy_core(aligned);
goetz@6458 1838
goetz@6458 1839 __ blr();
goetz@6458 1840
goetz@6458 1841 return start;
goetz@6458 1842 }
goetz@6458 1843
goetz@6458 1844 // Generate stub for conjoint oop copy. If "aligned" is true, the
goetz@6458 1845 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1846 //
goetz@6458 1847 // Arguments for generated stub:
goetz@6458 1848 // from: R3_ARG1
goetz@6458 1849 // to: R4_ARG2
goetz@6458 1850 // count: R5_ARG3 treated as signed
goetz@6458 1851 // dest_uninitialized: G1 support
goetz@6458 1852 //
goetz@6458 1853 address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
goetz@6458 1854 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1855
goetz@6458 1856 address start = __ emit_fd();
goetz@6458 1857
goetz@6458 1858 address nooverlap_target = aligned ?
goetz@6458 1859 ((FunctionDescriptor*)StubRoutines::arrayof_oop_disjoint_arraycopy())->entry() :
goetz@6458 1860 ((FunctionDescriptor*)StubRoutines::oop_disjoint_arraycopy())->entry();
goetz@6458 1861
goetz@6458 1862 gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
goetz@6458 1863
goetz@6458 1864 // Save arguments.
goetz@6458 1865 __ mr(R9_ARG7, R4_ARG2);
goetz@6458 1866 __ mr(R10_ARG8, R5_ARG3);
goetz@6458 1867
goetz@6458 1868 if (UseCompressedOops) {
goetz@6458 1869 array_overlap_test(nooverlap_target, 2);
goetz@6458 1870 generate_conjoint_int_copy_core(aligned);
goetz@6458 1871 } else {
goetz@6458 1872 array_overlap_test(nooverlap_target, 3);
goetz@6458 1873 generate_conjoint_long_copy_core(aligned);
goetz@6458 1874 }
goetz@6458 1875
goetz@6458 1876 gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1);
goetz@6458 1877
goetz@6458 1878 __ blr();
goetz@6458 1879
goetz@6458 1880 return start;
goetz@6458 1881 }
goetz@6458 1882
goetz@6458 1883 // Generate stub for disjoint oop copy. If "aligned" is true, the
goetz@6458 1884 // "from" and "to" addresses are assumed to be heapword aligned.
goetz@6458 1885 //
goetz@6458 1886 // Arguments for generated stub:
goetz@6458 1887 // from: R3_ARG1
goetz@6458 1888 // to: R4_ARG2
goetz@6458 1889 // count: R5_ARG3 treated as signed
goetz@6458 1890 // dest_uninitialized: G1 support
goetz@6458 1891 //
goetz@6458 1892 address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
goetz@6458 1893 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1894 address start = __ emit_fd();
goetz@6458 1895
goetz@6458 1896 gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
goetz@6458 1897
goetz@6458 1898 // save some arguments, disjoint_long_copy_core destroys them.
goetz@6458 1899 // needed for post barrier
goetz@6458 1900 __ mr(R9_ARG7, R4_ARG2);
goetz@6458 1901 __ mr(R10_ARG8, R5_ARG3);
goetz@6458 1902
goetz@6458 1903 if (UseCompressedOops) {
goetz@6458 1904 generate_disjoint_int_copy_core(aligned);
goetz@6458 1905 } else {
goetz@6458 1906 generate_disjoint_long_copy_core(aligned);
goetz@6458 1907 }
goetz@6458 1908
goetz@6458 1909 gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1);
goetz@6458 1910
goetz@6458 1911 __ blr();
goetz@6458 1912
goetz@6458 1913 return start;
goetz@6458 1914 }
goetz@6458 1915
goetz@6458 1916 void generate_arraycopy_stubs() {
goetz@6458 1917 // Note: the disjoint stubs must be generated first, some of
goetz@6458 1918 // the conjoint stubs use them.
goetz@6458 1919
goetz@6458 1920 // non-aligned disjoint versions
goetz@6458 1921 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
goetz@6458 1922 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
goetz@6458 1923 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
goetz@6458 1924 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
goetz@6458 1925 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false);
goetz@6458 1926 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true);
goetz@6458 1927
goetz@6458 1928 // aligned disjoint versions
goetz@6458 1929 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
goetz@6458 1930 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
goetz@6458 1931 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
goetz@6458 1932 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
goetz@6458 1933 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false);
goetz@6458 1934 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true);
goetz@6458 1935
goetz@6458 1936 // non-aligned conjoint versions
goetz@6458 1937 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
goetz@6458 1938 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
goetz@6458 1939 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
goetz@6458 1940 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
goetz@6458 1941 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy", false);
goetz@6458 1942 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true);
goetz@6458 1943
goetz@6458 1944 // aligned conjoint versions
goetz@6458 1945 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
goetz@6458 1946 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
goetz@6458 1947 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
goetz@6458 1948 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
goetz@6458 1949 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false);
goetz@6458 1950 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true);
goetz@6458 1951
goetz@6458 1952 // fill routines
goetz@6458 1953 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
goetz@6458 1954 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
goetz@6458 1955 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
goetz@6458 1956 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
goetz@6458 1957 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
goetz@6458 1958 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
goetz@6458 1959 }
goetz@6458 1960
goetz@6458 1961 // Safefetch stubs.
goetz@6458 1962 void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
goetz@6458 1963 // safefetch signatures:
goetz@6458 1964 // int SafeFetch32(int* adr, int errValue);
goetz@6458 1965 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
goetz@6458 1966 //
goetz@6458 1967 // arguments:
goetz@6458 1968 // R3_ARG1 = adr
goetz@6458 1969 // R4_ARG2 = errValue
goetz@6458 1970 //
goetz@6458 1971 // result:
goetz@6458 1972 // R3_RET = *adr or errValue
goetz@6458 1973
goetz@6458 1974 StubCodeMark mark(this, "StubRoutines", name);
goetz@6458 1975
goetz@6458 1976 // Entry point, pc or function descriptor.
goetz@6458 1977 *entry = __ emit_fd();
goetz@6458 1978
goetz@6458 1979 // Load *adr into R4_ARG2, may fault.
goetz@6458 1980 *fault_pc = __ pc();
goetz@6458 1981 switch (size) {
goetz@6458 1982 case 4:
goetz@6458 1983 // int32_t, signed extended
goetz@6458 1984 __ lwa(R4_ARG2, 0, R3_ARG1);
goetz@6458 1985 break;
goetz@6458 1986 case 8:
goetz@6458 1987 // int64_t
goetz@6458 1988 __ ld(R4_ARG2, 0, R3_ARG1);
goetz@6458 1989 break;
goetz@6458 1990 default:
goetz@6458 1991 ShouldNotReachHere();
goetz@6458 1992 }
goetz@6458 1993
goetz@6458 1994 // return errValue or *adr
goetz@6458 1995 *continuation_pc = __ pc();
goetz@6458 1996 __ mr(R3_RET, R4_ARG2);
goetz@6458 1997 __ blr();
goetz@6458 1998 }
goetz@6458 1999
goetz@6458 2000 // Initialization
goetz@6458 2001 void generate_initial() {
goetz@6458 2002 // Generates all stubs and initializes the entry points
goetz@6458 2003
goetz@6458 2004 // Entry points that exist in all platforms.
goetz@6458 2005 // Note: This is code that could be shared among different platforms - however the
goetz@6458 2006 // benefit seems to be smaller than the disadvantage of having a
goetz@6458 2007 // much more complicated generator structure. See also comment in
goetz@6458 2008 // stubRoutines.hpp.
goetz@6458 2009
goetz@6458 2010 StubRoutines::_forward_exception_entry = generate_forward_exception();
goetz@6458 2011 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
goetz@6458 2012 StubRoutines::_catch_exception_entry = generate_catch_exception();
goetz@6458 2013 }
goetz@6458 2014
goetz@6458 2015 void generate_all() {
goetz@6458 2016 // Generates all stubs and initializes the entry points
goetz@6458 2017
goetz@6458 2018 // These entry points require SharedInfo::stack0 to be set up in
goetz@6458 2019 // non-core builds
goetz@6458 2020 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
goetz@6458 2021 // Handle IncompatibleClassChangeError in itable stubs.
goetz@6458 2022 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
goetz@6458 2023 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
goetz@6458 2024 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
goetz@6458 2025
goetz@6458 2026 StubRoutines::_handler_for_unsafe_access_entry = generate_handler_for_unsafe_access();
goetz@6458 2027
goetz@6458 2028 // support for verify_oop (must happen after universe_init)
goetz@6458 2029 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
goetz@6458 2030
goetz@6458 2031 // arraycopy stubs used by compilers
goetz@6458 2032 generate_arraycopy_stubs();
goetz@6458 2033
goetz@6458 2034 // PPC uses stubs for safefetch.
goetz@6458 2035 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
goetz@6458 2036 &StubRoutines::_safefetch32_fault_pc,
goetz@6458 2037 &StubRoutines::_safefetch32_continuation_pc);
goetz@6458 2038 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
goetz@6458 2039 &StubRoutines::_safefetchN_fault_pc,
goetz@6458 2040 &StubRoutines::_safefetchN_continuation_pc);
goetz@6458 2041 }
goetz@6458 2042
goetz@6458 2043 public:
goetz@6458 2044 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
goetz@6458 2045 // replace the standard masm with a special one:
goetz@6458 2046 _masm = new MacroAssembler(code);
goetz@6458 2047 if (all) {
goetz@6458 2048 generate_all();
goetz@6458 2049 } else {
goetz@6458 2050 generate_initial();
goetz@6458 2051 }
goetz@6458 2052 }
goetz@6458 2053 };
goetz@6458 2054
goetz@6458 2055 void StubGenerator_generate(CodeBuffer* code, bool all) {
goetz@6458 2056 StubGenerator g(code, all);
goetz@6458 2057 }

mercurial