src/share/vm/opto/block.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2314
f95d63e2154a
child 3040
c7b60b601eb4
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/block.hpp"
stefank@2314 29 #include "opto/cfgnode.hpp"
stefank@2314 30 #include "opto/chaitin.hpp"
stefank@2314 31 #include "opto/loopnode.hpp"
stefank@2314 32 #include "opto/machnode.hpp"
stefank@2314 33 #include "opto/matcher.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "utilities/copy.hpp"
stefank@2314 37
duke@435 38 // Optimization - Graph Style
duke@435 39
duke@435 40
duke@435 41 //-----------------------------------------------------------------------------
duke@435 42 void Block_Array::grow( uint i ) {
duke@435 43 assert(i >= Max(), "must be an overflow");
duke@435 44 debug_only(_limit = i+1);
duke@435 45 if( i < _size ) return;
duke@435 46 if( !_size ) {
duke@435 47 _size = 1;
duke@435 48 _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
duke@435 49 _blocks[0] = NULL;
duke@435 50 }
duke@435 51 uint old = _size;
duke@435 52 while( i >= _size ) _size <<= 1; // Double to fit
duke@435 53 _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
duke@435 54 Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
duke@435 55 }
duke@435 56
duke@435 57 //=============================================================================
duke@435 58 void Block_List::remove(uint i) {
duke@435 59 assert(i < _cnt, "index out of bounds");
duke@435 60 Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
duke@435 61 pop(); // shrink list by one block
duke@435 62 }
duke@435 63
duke@435 64 void Block_List::insert(uint i, Block *b) {
duke@435 65 push(b); // grow list by one block
duke@435 66 Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
duke@435 67 _blocks[i] = b;
duke@435 68 }
duke@435 69
rasbold@853 70 #ifndef PRODUCT
rasbold@853 71 void Block_List::print() {
rasbold@853 72 for (uint i=0; i < size(); i++) {
rasbold@853 73 tty->print("B%d ", _blocks[i]->_pre_order);
rasbold@853 74 }
rasbold@853 75 tty->print("size = %d\n", size());
rasbold@853 76 }
rasbold@853 77 #endif
duke@435 78
duke@435 79 //=============================================================================
duke@435 80
duke@435 81 uint Block::code_alignment() {
duke@435 82 // Check for Root block
duke@435 83 if( _pre_order == 0 ) return CodeEntryAlignment;
duke@435 84 // Check for Start block
duke@435 85 if( _pre_order == 1 ) return InteriorEntryAlignment;
duke@435 86 // Check for loop alignment
rasbold@853 87 if (has_loop_alignment()) return loop_alignment();
rasbold@853 88
rasbold@853 89 return 1; // no particular alignment
rasbold@853 90 }
rasbold@853 91
rasbold@853 92 uint Block::compute_loop_alignment() {
duke@435 93 Node *h = head();
duke@435 94 if( h->is_Loop() && h->as_Loop()->is_inner_loop() ) {
duke@435 95 // Pre- and post-loops have low trip count so do not bother with
duke@435 96 // NOPs for align loop head. The constants are hidden from tuning
duke@435 97 // but only because my "divide by 4" heuristic surely gets nearly
duke@435 98 // all possible gain (a "do not align at all" heuristic has a
duke@435 99 // chance of getting a really tiny gain).
duke@435 100 if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
duke@435 101 h->as_CountedLoop()->is_post_loop()) )
duke@435 102 return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
duke@435 103 // Loops with low backedge frequency should not be aligned.
duke@435 104 Node *n = h->in(LoopNode::LoopBackControl)->in(0);
duke@435 105 if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
duke@435 106 return 1; // Loop does not loop, more often than not!
duke@435 107 }
duke@435 108 return OptoLoopAlignment; // Otherwise align loop head
duke@435 109 }
rasbold@853 110
duke@435 111 return 1; // no particular alignment
duke@435 112 }
duke@435 113
duke@435 114 //-----------------------------------------------------------------------------
duke@435 115 // Compute the size of first 'inst_cnt' instructions in this block.
duke@435 116 // Return the number of instructions left to compute if the block has
rasbold@853 117 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
rasbold@853 118 // exceeds OptoLoopAlignment.
duke@435 119 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
duke@435 120 PhaseRegAlloc* ra) {
duke@435 121 uint last_inst = _nodes.size();
duke@435 122 for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
duke@435 123 uint inst_size = _nodes[j]->size(ra);
duke@435 124 if( inst_size > 0 ) {
duke@435 125 inst_cnt--;
duke@435 126 uint sz = sum_size + inst_size;
duke@435 127 if( sz <= (uint)OptoLoopAlignment ) {
duke@435 128 // Compute size of instructions which fit into fetch buffer only
duke@435 129 // since all inst_cnt instructions will not fit even if we align them.
duke@435 130 sum_size = sz;
duke@435 131 } else {
duke@435 132 return 0;
duke@435 133 }
duke@435 134 }
duke@435 135 }
duke@435 136 return inst_cnt;
duke@435 137 }
duke@435 138
duke@435 139 //-----------------------------------------------------------------------------
duke@435 140 uint Block::find_node( const Node *n ) const {
duke@435 141 for( uint i = 0; i < _nodes.size(); i++ ) {
duke@435 142 if( _nodes[i] == n )
duke@435 143 return i;
duke@435 144 }
duke@435 145 ShouldNotReachHere();
duke@435 146 return 0;
duke@435 147 }
duke@435 148
duke@435 149 // Find and remove n from block list
duke@435 150 void Block::find_remove( const Node *n ) {
duke@435 151 _nodes.remove(find_node(n));
duke@435 152 }
duke@435 153
duke@435 154 //------------------------------is_Empty---------------------------------------
duke@435 155 // Return empty status of a block. Empty blocks contain only the head, other
duke@435 156 // ideal nodes, and an optional trailing goto.
duke@435 157 int Block::is_Empty() const {
duke@435 158
duke@435 159 // Root or start block is not considered empty
duke@435 160 if (head()->is_Root() || head()->is_Start()) {
duke@435 161 return not_empty;
duke@435 162 }
duke@435 163
duke@435 164 int success_result = completely_empty;
duke@435 165 int end_idx = _nodes.size()-1;
duke@435 166
duke@435 167 // Check for ending goto
duke@435 168 if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
duke@435 169 success_result = empty_with_goto;
duke@435 170 end_idx--;
duke@435 171 }
duke@435 172
duke@435 173 // Unreachable blocks are considered empty
duke@435 174 if (num_preds() <= 1) {
duke@435 175 return success_result;
duke@435 176 }
duke@435 177
duke@435 178 // Ideal nodes are allowable in empty blocks: skip them Only MachNodes
duke@435 179 // turn directly into code, because only MachNodes have non-trivial
duke@435 180 // emit() functions.
duke@435 181 while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
duke@435 182 end_idx--;
duke@435 183 }
duke@435 184
duke@435 185 // No room for any interesting instructions?
duke@435 186 if (end_idx == 0) {
duke@435 187 return success_result;
duke@435 188 }
duke@435 189
duke@435 190 return not_empty;
duke@435 191 }
duke@435 192
duke@435 193 //------------------------------has_uncommon_code------------------------------
twisti@1040 194 // Return true if the block's code implies that it is likely to be
duke@435 195 // executed infrequently. Check to see if the block ends in a Halt or
duke@435 196 // a low probability call.
duke@435 197 bool Block::has_uncommon_code() const {
duke@435 198 Node* en = end();
duke@435 199
duke@435 200 if (en->is_Goto())
duke@435 201 en = en->in(0);
duke@435 202 if (en->is_Catch())
duke@435 203 en = en->in(0);
duke@435 204 if (en->is_Proj() && en->in(0)->is_MachCall()) {
duke@435 205 MachCallNode* call = en->in(0)->as_MachCall();
duke@435 206 if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
duke@435 207 // This is true for slow-path stubs like new_{instance,array},
duke@435 208 // slow_arraycopy, complete_monitor_locking, uncommon_trap.
duke@435 209 // The magic number corresponds to the probability of an uncommon_trap,
duke@435 210 // even though it is a count not a probability.
duke@435 211 return true;
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
duke@435 216 return op == Op_Halt;
duke@435 217 }
duke@435 218
duke@435 219 //------------------------------is_uncommon------------------------------------
duke@435 220 // True if block is low enough frequency or guarded by a test which
duke@435 221 // mostly does not go here.
duke@435 222 bool Block::is_uncommon( Block_Array &bbs ) const {
duke@435 223 // Initial blocks must never be moved, so are never uncommon.
duke@435 224 if (head()->is_Root() || head()->is_Start()) return false;
duke@435 225
duke@435 226 // Check for way-low freq
duke@435 227 if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
duke@435 228
duke@435 229 // Look for code shape indicating uncommon_trap or slow path
duke@435 230 if (has_uncommon_code()) return true;
duke@435 231
duke@435 232 const float epsilon = 0.05f;
duke@435 233 const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
duke@435 234 uint uncommon_preds = 0;
duke@435 235 uint freq_preds = 0;
duke@435 236 uint uncommon_for_freq_preds = 0;
duke@435 237
duke@435 238 for( uint i=1; i<num_preds(); i++ ) {
duke@435 239 Block* guard = bbs[pred(i)->_idx];
duke@435 240 // Check to see if this block follows its guard 1 time out of 10000
duke@435 241 // or less.
duke@435 242 //
duke@435 243 // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
duke@435 244 // we intend to be "uncommon", such as slow-path TLE allocation,
duke@435 245 // predicted call failure, and uncommon trap triggers.
duke@435 246 //
duke@435 247 // Use an epsilon value of 5% to allow for variability in frequency
duke@435 248 // predictions and floating point calculations. The net effect is
duke@435 249 // that guard_factor is set to 9500.
duke@435 250 //
duke@435 251 // Ignore low-frequency blocks.
duke@435 252 // The next check is (guard->_freq < 1.e-5 * 9500.).
duke@435 253 if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
duke@435 254 uncommon_preds++;
duke@435 255 } else {
duke@435 256 freq_preds++;
duke@435 257 if( _freq < guard->_freq * guard_factor ) {
duke@435 258 uncommon_for_freq_preds++;
duke@435 259 }
duke@435 260 }
duke@435 261 }
duke@435 262 if( num_preds() > 1 &&
duke@435 263 // The block is uncommon if all preds are uncommon or
duke@435 264 (uncommon_preds == (num_preds()-1) ||
duke@435 265 // it is uncommon for all frequent preds.
duke@435 266 uncommon_for_freq_preds == freq_preds) ) {
duke@435 267 return true;
duke@435 268 }
duke@435 269 return false;
duke@435 270 }
duke@435 271
duke@435 272 //------------------------------dump-------------------------------------------
duke@435 273 #ifndef PRODUCT
duke@435 274 void Block::dump_bidx(const Block* orig) const {
duke@435 275 if (_pre_order) tty->print("B%d",_pre_order);
duke@435 276 else tty->print("N%d", head()->_idx);
duke@435 277
duke@435 278 if (Verbose && orig != this) {
duke@435 279 // Dump the original block's idx
duke@435 280 tty->print(" (");
duke@435 281 orig->dump_bidx(orig);
duke@435 282 tty->print(")");
duke@435 283 }
duke@435 284 }
duke@435 285
duke@435 286 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
duke@435 287 if (is_connector()) {
duke@435 288 for (uint i=1; i<num_preds(); i++) {
duke@435 289 Block *p = ((*bbs)[pred(i)->_idx]);
duke@435 290 p->dump_pred(bbs, orig);
duke@435 291 }
duke@435 292 } else {
duke@435 293 dump_bidx(orig);
duke@435 294 tty->print(" ");
duke@435 295 }
duke@435 296 }
duke@435 297
duke@435 298 void Block::dump_head( const Block_Array *bbs ) const {
duke@435 299 // Print the basic block
duke@435 300 dump_bidx(this);
duke@435 301 tty->print(": #\t");
duke@435 302
duke@435 303 // Print the incoming CFG edges and the outgoing CFG edges
duke@435 304 for( uint i=0; i<_num_succs; i++ ) {
duke@435 305 non_connector_successor(i)->dump_bidx(_succs[i]);
duke@435 306 tty->print(" ");
duke@435 307 }
duke@435 308 tty->print("<- ");
duke@435 309 if( head()->is_block_start() ) {
duke@435 310 for (uint i=1; i<num_preds(); i++) {
duke@435 311 Node *s = pred(i);
duke@435 312 if (bbs) {
duke@435 313 Block *p = (*bbs)[s->_idx];
duke@435 314 p->dump_pred(bbs, p);
duke@435 315 } else {
duke@435 316 while (!s->is_block_start())
duke@435 317 s = s->in(0);
duke@435 318 tty->print("N%d ", s->_idx );
duke@435 319 }
duke@435 320 }
duke@435 321 } else
duke@435 322 tty->print("BLOCK HEAD IS JUNK ");
duke@435 323
duke@435 324 // Print loop, if any
duke@435 325 const Block *bhead = this; // Head of self-loop
duke@435 326 Node *bh = bhead->head();
duke@435 327 if( bbs && bh->is_Loop() && !head()->is_Root() ) {
duke@435 328 LoopNode *loop = bh->as_Loop();
duke@435 329 const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
duke@435 330 while (bx->is_connector()) {
duke@435 331 bx = (*bbs)[bx->pred(1)->_idx];
duke@435 332 }
duke@435 333 tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
duke@435 334 // Dump any loop-specific bits, especially for CountedLoops.
duke@435 335 loop->dump_spec(tty);
rasbold@853 336 } else if (has_loop_alignment()) {
rasbold@853 337 tty->print(" top-of-loop");
duke@435 338 }
duke@435 339 tty->print(" Freq: %g",_freq);
duke@435 340 if( Verbose || WizardMode ) {
duke@435 341 tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
duke@435 342 tty->print(" RegPressure: %d",_reg_pressure);
duke@435 343 tty->print(" IHRP Index: %d",_ihrp_index);
duke@435 344 tty->print(" FRegPressure: %d",_freg_pressure);
duke@435 345 tty->print(" FHRP Index: %d",_fhrp_index);
duke@435 346 }
duke@435 347 tty->print_cr("");
duke@435 348 }
duke@435 349
duke@435 350 void Block::dump() const { dump(0); }
duke@435 351
duke@435 352 void Block::dump( const Block_Array *bbs ) const {
duke@435 353 dump_head(bbs);
duke@435 354 uint cnt = _nodes.size();
duke@435 355 for( uint i=0; i<cnt; i++ )
duke@435 356 _nodes[i]->dump();
duke@435 357 tty->print("\n");
duke@435 358 }
duke@435 359 #endif
duke@435 360
duke@435 361 //=============================================================================
duke@435 362 //------------------------------PhaseCFG---------------------------------------
duke@435 363 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
duke@435 364 Phase(CFG),
duke@435 365 _bbs(a),
kvn@2040 366 _root(r),
kvn@2040 367 _node_latency(NULL)
duke@435 368 #ifndef PRODUCT
duke@435 369 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
duke@435 370 #endif
kvn@1268 371 #ifdef ASSERT
kvn@1268 372 , _raw_oops(a)
kvn@1268 373 #endif
duke@435 374 {
duke@435 375 ResourceMark rm;
duke@435 376 // I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
duke@435 377 // then Match it into a machine-specific Node. Then clone the machine
duke@435 378 // Node on demand.
duke@435 379 Node *x = new (C, 1) GotoNode(NULL);
duke@435 380 x->init_req(0, x);
duke@435 381 _goto = m.match_tree(x);
duke@435 382 assert(_goto != NULL, "");
duke@435 383 _goto->set_req(0,_goto);
duke@435 384
duke@435 385 // Build the CFG in Reverse Post Order
duke@435 386 _num_blocks = build_cfg();
duke@435 387 _broot = _bbs[_root->_idx];
duke@435 388 }
duke@435 389
duke@435 390 //------------------------------build_cfg--------------------------------------
duke@435 391 // Build a proper looking CFG. Make every block begin with either a StartNode
duke@435 392 // or a RegionNode. Make every block end with either a Goto, If or Return.
duke@435 393 // The RootNode both starts and ends it's own block. Do this with a recursive
duke@435 394 // backwards walk over the control edges.
duke@435 395 uint PhaseCFG::build_cfg() {
duke@435 396 Arena *a = Thread::current()->resource_area();
duke@435 397 VectorSet visited(a);
duke@435 398
duke@435 399 // Allocate stack with enough space to avoid frequent realloc
duke@435 400 Node_Stack nstack(a, C->unique() >> 1);
duke@435 401 nstack.push(_root, 0);
duke@435 402 uint sum = 0; // Counter for blocks
duke@435 403
duke@435 404 while (nstack.is_nonempty()) {
duke@435 405 // node and in's index from stack's top
duke@435 406 // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
duke@435 407 // only nodes which point to the start of basic block (see below).
duke@435 408 Node *np = nstack.node();
duke@435 409 // idx > 0, except for the first node (_root) pushed on stack
duke@435 410 // at the beginning when idx == 0.
duke@435 411 // We will use the condition (idx == 0) later to end the build.
duke@435 412 uint idx = nstack.index();
duke@435 413 Node *proj = np->in(idx);
duke@435 414 const Node *x = proj->is_block_proj();
duke@435 415 // Does the block end with a proper block-ending Node? One of Return,
duke@435 416 // If or Goto? (This check should be done for visited nodes also).
duke@435 417 if (x == NULL) { // Does not end right...
duke@435 418 Node *g = _goto->clone(); // Force it to end in a Goto
duke@435 419 g->set_req(0, proj);
duke@435 420 np->set_req(idx, g);
duke@435 421 x = proj = g;
duke@435 422 }
duke@435 423 if (!visited.test_set(x->_idx)) { // Visit this block once
duke@435 424 // Skip any control-pinned middle'in stuff
duke@435 425 Node *p = proj;
duke@435 426 do {
duke@435 427 proj = p; // Update pointer to last Control
duke@435 428 p = p->in(0); // Move control forward
duke@435 429 } while( !p->is_block_proj() &&
duke@435 430 !p->is_block_start() );
duke@435 431 // Make the block begin with one of Region or StartNode.
duke@435 432 if( !p->is_block_start() ) {
duke@435 433 RegionNode *r = new (C, 2) RegionNode( 2 );
duke@435 434 r->init_req(1, p); // Insert RegionNode in the way
duke@435 435 proj->set_req(0, r); // Insert RegionNode in the way
duke@435 436 p = r;
duke@435 437 }
duke@435 438 // 'p' now points to the start of this basic block
duke@435 439
duke@435 440 // Put self in array of basic blocks
duke@435 441 Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
duke@435 442 _bbs.map(p->_idx,bb);
duke@435 443 _bbs.map(x->_idx,bb);
duke@435 444 if( x != p ) // Only for root is x == p
duke@435 445 bb->_nodes.push((Node*)x);
duke@435 446
duke@435 447 // Now handle predecessors
duke@435 448 ++sum; // Count 1 for self block
duke@435 449 uint cnt = bb->num_preds();
duke@435 450 for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
duke@435 451 Node *prevproj = p->in(i); // Get prior input
duke@435 452 assert( !prevproj->is_Con(), "dead input not removed" );
duke@435 453 // Check to see if p->in(i) is a "control-dependent" CFG edge -
duke@435 454 // i.e., it splits at the source (via an IF or SWITCH) and merges
duke@435 455 // at the destination (via a many-input Region).
duke@435 456 // This breaks critical edges. The RegionNode to start the block
duke@435 457 // will be added when <p,i> is pulled off the node stack
duke@435 458 if ( cnt > 2 ) { // Merging many things?
duke@435 459 assert( prevproj== bb->pred(i),"");
duke@435 460 if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
duke@435 461 // Force a block on the control-dependent edge
duke@435 462 Node *g = _goto->clone(); // Force it to end in a Goto
duke@435 463 g->set_req(0,prevproj);
duke@435 464 p->set_req(i,g);
duke@435 465 }
duke@435 466 }
duke@435 467 nstack.push(p, i); // 'p' is RegionNode or StartNode
duke@435 468 }
duke@435 469 } else { // Post-processing visited nodes
duke@435 470 nstack.pop(); // remove node from stack
duke@435 471 // Check if it the fist node pushed on stack at the beginning.
duke@435 472 if (idx == 0) break; // end of the build
duke@435 473 // Find predecessor basic block
duke@435 474 Block *pb = _bbs[x->_idx];
duke@435 475 // Insert into nodes array, if not already there
duke@435 476 if( !_bbs.lookup(proj->_idx) ) {
duke@435 477 assert( x != proj, "" );
duke@435 478 // Map basic block of projection
duke@435 479 _bbs.map(proj->_idx,pb);
duke@435 480 pb->_nodes.push(proj);
duke@435 481 }
duke@435 482 // Insert self as a child of my predecessor block
duke@435 483 pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
duke@435 484 assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
duke@435 485 "too many control users, not a CFG?" );
duke@435 486 }
duke@435 487 }
duke@435 488 // Return number of basic blocks for all children and self
duke@435 489 return sum;
duke@435 490 }
duke@435 491
duke@435 492 //------------------------------insert_goto_at---------------------------------
duke@435 493 // Inserts a goto & corresponding basic block between
duke@435 494 // block[block_no] and its succ_no'th successor block
duke@435 495 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
duke@435 496 // get block with block_no
duke@435 497 assert(block_no < _num_blocks, "illegal block number");
duke@435 498 Block* in = _blocks[block_no];
duke@435 499 // get successor block succ_no
duke@435 500 assert(succ_no < in->_num_succs, "illegal successor number");
duke@435 501 Block* out = in->_succs[succ_no];
rasbold@743 502 // Compute frequency of the new block. Do this before inserting
rasbold@743 503 // new block in case succ_prob() needs to infer the probability from
rasbold@743 504 // surrounding blocks.
rasbold@743 505 float freq = in->_freq * in->succ_prob(succ_no);
duke@435 506 // get ProjNode corresponding to the succ_no'th successor of the in block
duke@435 507 ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
duke@435 508 // create region for basic block
duke@435 509 RegionNode* region = new (C, 2) RegionNode(2);
duke@435 510 region->init_req(1, proj);
duke@435 511 // setup corresponding basic block
duke@435 512 Block* block = new (_bbs._arena) Block(_bbs._arena, region);
duke@435 513 _bbs.map(region->_idx, block);
duke@435 514 C->regalloc()->set_bad(region->_idx);
duke@435 515 // add a goto node
duke@435 516 Node* gto = _goto->clone(); // get a new goto node
duke@435 517 gto->set_req(0, region);
duke@435 518 // add it to the basic block
duke@435 519 block->_nodes.push(gto);
duke@435 520 _bbs.map(gto->_idx, block);
duke@435 521 C->regalloc()->set_bad(gto->_idx);
duke@435 522 // hook up successor block
duke@435 523 block->_succs.map(block->_num_succs++, out);
duke@435 524 // remap successor's predecessors if necessary
duke@435 525 for (uint i = 1; i < out->num_preds(); i++) {
duke@435 526 if (out->pred(i) == proj) out->head()->set_req(i, gto);
duke@435 527 }
duke@435 528 // remap predecessor's successor to new block
duke@435 529 in->_succs.map(succ_no, block);
rasbold@743 530 // Set the frequency of the new block
rasbold@743 531 block->_freq = freq;
duke@435 532 // add new basic block to basic block list
duke@435 533 _blocks.insert(block_no + 1, block);
duke@435 534 _num_blocks++;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------no_flip_branch---------------------------------
duke@435 538 // Does this block end in a multiway branch that cannot have the default case
duke@435 539 // flipped for another case?
duke@435 540 static bool no_flip_branch( Block *b ) {
duke@435 541 int branch_idx = b->_nodes.size() - b->_num_succs-1;
duke@435 542 if( branch_idx < 1 ) return false;
duke@435 543 Node *bra = b->_nodes[branch_idx];
rasbold@853 544 if( bra->is_Catch() )
rasbold@853 545 return true;
duke@435 546 if( bra->is_Mach() ) {
rasbold@853 547 if( bra->is_MachNullCheck() )
rasbold@853 548 return true;
duke@435 549 int iop = bra->as_Mach()->ideal_Opcode();
duke@435 550 if( iop == Op_FastLock || iop == Op_FastUnlock )
duke@435 551 return true;
duke@435 552 }
duke@435 553 return false;
duke@435 554 }
duke@435 555
duke@435 556 //------------------------------convert_NeverBranch_to_Goto--------------------
duke@435 557 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 558 // true target. NeverBranch are treated as a conditional branch that always
duke@435 559 // goes the same direction for most of the optimizer and are used to give a
duke@435 560 // fake exit path to infinite loops. At this late stage they need to turn
duke@435 561 // into Goto's so that when you enter the infinite loop you indeed hang.
duke@435 562 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
duke@435 563 // Find true target
duke@435 564 int end_idx = b->end_idx();
duke@435 565 int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
duke@435 566 Block *succ = b->_succs[idx];
duke@435 567 Node* gto = _goto->clone(); // get a new goto node
duke@435 568 gto->set_req(0, b->head());
duke@435 569 Node *bp = b->_nodes[end_idx];
duke@435 570 b->_nodes.map(end_idx,gto); // Slam over NeverBranch
duke@435 571 _bbs.map(gto->_idx, b);
duke@435 572 C->regalloc()->set_bad(gto->_idx);
duke@435 573 b->_nodes.pop(); // Yank projections
duke@435 574 b->_nodes.pop(); // Yank projections
duke@435 575 b->_succs.map(0,succ); // Map only successor
duke@435 576 b->_num_succs = 1;
duke@435 577 // remap successor's predecessors if necessary
duke@435 578 uint j;
duke@435 579 for( j = 1; j < succ->num_preds(); j++)
duke@435 580 if( succ->pred(j)->in(0) == bp )
duke@435 581 succ->head()->set_req(j, gto);
duke@435 582 // Kill alternate exit path
duke@435 583 Block *dead = b->_succs[1-idx];
duke@435 584 for( j = 1; j < dead->num_preds(); j++)
duke@435 585 if( dead->pred(j)->in(0) == bp )
duke@435 586 break;
duke@435 587 // Scan through block, yanking dead path from
duke@435 588 // all regions and phis.
duke@435 589 dead->head()->del_req(j);
duke@435 590 for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
duke@435 591 dead->_nodes[k]->del_req(j);
duke@435 592 }
duke@435 593
rasbold@853 594 //------------------------------move_to_next-----------------------------------
duke@435 595 // Helper function to move block bx to the slot following b_index. Return
duke@435 596 // true if the move is successful, otherwise false
rasbold@853 597 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
duke@435 598 if (bx == NULL) return false;
duke@435 599
duke@435 600 // Return false if bx is already scheduled.
duke@435 601 uint bx_index = bx->_pre_order;
duke@435 602 if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
duke@435 603 return false;
duke@435 604 }
duke@435 605
duke@435 606 // Find the current index of block bx on the block list
duke@435 607 bx_index = b_index + 1;
duke@435 608 while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
duke@435 609 assert(_blocks[bx_index] == bx, "block not found");
duke@435 610
duke@435 611 // If the previous block conditionally falls into bx, return false,
duke@435 612 // because moving bx will create an extra jump.
duke@435 613 for(uint k = 1; k < bx->num_preds(); k++ ) {
duke@435 614 Block* pred = _bbs[bx->pred(k)->_idx];
duke@435 615 if (pred == _blocks[bx_index-1]) {
duke@435 616 if (pred->_num_succs != 1) {
duke@435 617 return false;
duke@435 618 }
duke@435 619 }
duke@435 620 }
duke@435 621
duke@435 622 // Reinsert bx just past block 'b'
duke@435 623 _blocks.remove(bx_index);
duke@435 624 _blocks.insert(b_index + 1, bx);
duke@435 625 return true;
duke@435 626 }
duke@435 627
rasbold@853 628 //------------------------------move_to_end------------------------------------
duke@435 629 // Move empty and uncommon blocks to the end.
rasbold@853 630 void PhaseCFG::move_to_end(Block *b, uint i) {
duke@435 631 int e = b->is_Empty();
duke@435 632 if (e != Block::not_empty) {
duke@435 633 if (e == Block::empty_with_goto) {
duke@435 634 // Remove the goto, but leave the block.
duke@435 635 b->_nodes.pop();
duke@435 636 }
duke@435 637 // Mark this block as a connector block, which will cause it to be
duke@435 638 // ignored in certain functions such as non_connector_successor().
duke@435 639 b->set_connector();
duke@435 640 }
duke@435 641 // Move the empty block to the end, and don't recheck.
duke@435 642 _blocks.remove(i);
duke@435 643 _blocks.push(b);
duke@435 644 }
duke@435 645
rasbold@853 646 //---------------------------set_loop_alignment--------------------------------
rasbold@853 647 // Set loop alignment for every block
rasbold@853 648 void PhaseCFG::set_loop_alignment() {
rasbold@853 649 uint last = _num_blocks;
rasbold@853 650 assert( _blocks[0] == _broot, "" );
rasbold@853 651
rasbold@853 652 for (uint i = 1; i < last; i++ ) {
rasbold@853 653 Block *b = _blocks[i];
rasbold@853 654 if (b->head()->is_Loop()) {
rasbold@853 655 b->set_loop_alignment(b);
rasbold@853 656 }
rasbold@853 657 }
rasbold@853 658 }
rasbold@853 659
rasbold@853 660 //-----------------------------remove_empty------------------------------------
rasbold@853 661 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
rasbold@853 662 // to the end.
rasbold@853 663 void PhaseCFG::remove_empty() {
duke@435 664 // Move uncommon blocks to the end
duke@435 665 uint last = _num_blocks;
duke@435 666 assert( _blocks[0] == _broot, "" );
rasbold@853 667
rasbold@853 668 for (uint i = 1; i < last; i++) {
duke@435 669 Block *b = _blocks[i];
rasbold@853 670 if (b->is_connector()) break;
duke@435 671
duke@435 672 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 673 // true target. NeverBranch are treated as a conditional branch that
duke@435 674 // always goes the same direction for most of the optimizer and are used
duke@435 675 // to give a fake exit path to infinite loops. At this late stage they
duke@435 676 // need to turn into Goto's so that when you enter the infinite loop you
duke@435 677 // indeed hang.
duke@435 678 if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
duke@435 679 convert_NeverBranch_to_Goto(b);
duke@435 680
duke@435 681 // Look for uncommon blocks and move to end.
rasbold@853 682 if (!C->do_freq_based_layout()) {
rasbold@853 683 if( b->is_uncommon(_bbs) ) {
rasbold@853 684 move_to_end(b, i);
rasbold@853 685 last--; // No longer check for being uncommon!
rasbold@853 686 if( no_flip_branch(b) ) { // Fall-thru case must follow?
rasbold@853 687 b = _blocks[i]; // Find the fall-thru block
rasbold@853 688 move_to_end(b, i);
rasbold@853 689 last--;
rasbold@853 690 }
rasbold@853 691 i--; // backup block counter post-increment
duke@435 692 }
duke@435 693 }
duke@435 694 }
duke@435 695
rasbold@853 696 // Move empty blocks to the end
duke@435 697 last = _num_blocks;
rasbold@853 698 for (uint i = 1; i < last; i++) {
duke@435 699 Block *b = _blocks[i];
rasbold@853 700 if (b->is_Empty() != Block::not_empty) {
rasbold@853 701 move_to_end(b, i);
rasbold@853 702 last--;
rasbold@853 703 i--;
duke@435 704 }
duke@435 705 } // End of for all blocks
rasbold@853 706 }
duke@435 707
rasbold@853 708 //-----------------------------fixup_flow--------------------------------------
rasbold@853 709 // Fix up the final control flow for basic blocks.
rasbold@853 710 void PhaseCFG::fixup_flow() {
duke@435 711 // Fixup final control flow for the blocks. Remove jump-to-next
duke@435 712 // block. If neither arm of a IF follows the conditional branch, we
duke@435 713 // have to add a second jump after the conditional. We place the
duke@435 714 // TRUE branch target in succs[0] for both GOTOs and IFs.
rasbold@853 715 for (uint i=0; i < _num_blocks; i++) {
duke@435 716 Block *b = _blocks[i];
duke@435 717 b->_pre_order = i; // turn pre-order into block-index
duke@435 718
duke@435 719 // Connector blocks need no further processing.
duke@435 720 if (b->is_connector()) {
duke@435 721 assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
duke@435 722 "All connector blocks should sink to the end");
duke@435 723 continue;
duke@435 724 }
duke@435 725 assert(b->is_Empty() != Block::completely_empty,
duke@435 726 "Empty blocks should be connectors");
duke@435 727
duke@435 728 Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
duke@435 729 Block *bs0 = b->non_connector_successor(0);
duke@435 730
duke@435 731 // Check for multi-way branches where I cannot negate the test to
duke@435 732 // exchange the true and false targets.
duke@435 733 if( no_flip_branch( b ) ) {
duke@435 734 // Find fall through case - if must fall into its target
duke@435 735 int branch_idx = b->_nodes.size() - b->_num_succs;
duke@435 736 for (uint j2 = 0; j2 < b->_num_succs; j2++) {
duke@435 737 const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
duke@435 738 if (p->_con == 0) {
duke@435 739 // successor j2 is fall through case
duke@435 740 if (b->non_connector_successor(j2) != bnext) {
duke@435 741 // but it is not the next block => insert a goto
duke@435 742 insert_goto_at(i, j2);
duke@435 743 }
duke@435 744 // Put taken branch in slot 0
duke@435 745 if( j2 == 0 && b->_num_succs == 2) {
duke@435 746 // Flip targets in succs map
duke@435 747 Block *tbs0 = b->_succs[0];
duke@435 748 Block *tbs1 = b->_succs[1];
duke@435 749 b->_succs.map( 0, tbs1 );
duke@435 750 b->_succs.map( 1, tbs0 );
duke@435 751 }
duke@435 752 break;
duke@435 753 }
duke@435 754 }
duke@435 755 // Remove all CatchProjs
rasbold@853 756 for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
duke@435 757
duke@435 758 } else if (b->_num_succs == 1) {
duke@435 759 // Block ends in a Goto?
duke@435 760 if (bnext == bs0) {
duke@435 761 // We fall into next block; remove the Goto
duke@435 762 b->_nodes.pop();
duke@435 763 }
duke@435 764
duke@435 765 } else if( b->_num_succs == 2 ) { // Block ends in a If?
duke@435 766 // Get opcode of 1st projection (matches _succs[0])
duke@435 767 // Note: Since this basic block has 2 exits, the last 2 nodes must
duke@435 768 // be projections (in any order), the 3rd last node must be
duke@435 769 // the IfNode (we have excluded other 2-way exits such as
duke@435 770 // CatchNodes already).
duke@435 771 MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
duke@435 772 ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
duke@435 773 ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
duke@435 774
duke@435 775 // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
duke@435 776 assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
duke@435 777 assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
duke@435 778
duke@435 779 Block *bs1 = b->non_connector_successor(1);
duke@435 780
duke@435 781 // Check for neither successor block following the current
duke@435 782 // block ending in a conditional. If so, move one of the
duke@435 783 // successors after the current one, provided that the
duke@435 784 // successor was previously unscheduled, but moveable
duke@435 785 // (i.e., all paths to it involve a branch).
rasbold@853 786 if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
duke@435 787 // Choose the more common successor based on the probability
duke@435 788 // of the conditional branch.
duke@435 789 Block *bx = bs0;
duke@435 790 Block *by = bs1;
duke@435 791
duke@435 792 // _prob is the probability of taking the true path. Make
duke@435 793 // p the probability of taking successor #1.
duke@435 794 float p = iff->as_MachIf()->_prob;
duke@435 795 if( proj0->Opcode() == Op_IfTrue ) {
duke@435 796 p = 1.0 - p;
duke@435 797 }
duke@435 798
duke@435 799 // Prefer successor #1 if p > 0.5
duke@435 800 if (p > PROB_FAIR) {
duke@435 801 bx = bs1;
duke@435 802 by = bs0;
duke@435 803 }
duke@435 804
duke@435 805 // Attempt the more common successor first
rasbold@853 806 if (move_to_next(bx, i)) {
duke@435 807 bnext = bx;
rasbold@853 808 } else if (move_to_next(by, i)) {
duke@435 809 bnext = by;
duke@435 810 }
duke@435 811 }
duke@435 812
duke@435 813 // Check for conditional branching the wrong way. Negate
duke@435 814 // conditional, if needed, so it falls into the following block
duke@435 815 // and branches to the not-following block.
duke@435 816
duke@435 817 // Check for the next block being in succs[0]. We are going to branch
duke@435 818 // to succs[0], so we want the fall-thru case as the next block in
duke@435 819 // succs[1].
duke@435 820 if (bnext == bs0) {
duke@435 821 // Fall-thru case in succs[0], so flip targets in succs map
duke@435 822 Block *tbs0 = b->_succs[0];
duke@435 823 Block *tbs1 = b->_succs[1];
duke@435 824 b->_succs.map( 0, tbs1 );
duke@435 825 b->_succs.map( 1, tbs0 );
duke@435 826 // Flip projection for each target
duke@435 827 { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
duke@435 828
rasbold@853 829 } else if( bnext != bs1 ) {
rasbold@853 830 // Need a double-branch
duke@435 831 // The existing conditional branch need not change.
duke@435 832 // Add a unconditional branch to the false target.
duke@435 833 // Alas, it must appear in its own block and adding a
duke@435 834 // block this late in the game is complicated. Sigh.
duke@435 835 insert_goto_at(i, 1);
duke@435 836 }
duke@435 837
duke@435 838 // Make sure we TRUE branch to the target
rasbold@853 839 if( proj0->Opcode() == Op_IfFalse ) {
duke@435 840 iff->negate();
rasbold@853 841 }
duke@435 842
duke@435 843 b->_nodes.pop(); // Remove IfFalse & IfTrue projections
duke@435 844 b->_nodes.pop();
duke@435 845
duke@435 846 } else {
duke@435 847 // Multi-exit block, e.g. a switch statement
duke@435 848 // But we don't need to do anything here
duke@435 849 }
duke@435 850 } // End of for all blocks
duke@435 851 }
duke@435 852
duke@435 853
duke@435 854 //------------------------------dump-------------------------------------------
duke@435 855 #ifndef PRODUCT
duke@435 856 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
duke@435 857 const Node *x = end->is_block_proj();
duke@435 858 assert( x, "not a CFG" );
duke@435 859
duke@435 860 // Do not visit this block again
duke@435 861 if( visited.test_set(x->_idx) ) return;
duke@435 862
duke@435 863 // Skip through this block
duke@435 864 const Node *p = x;
duke@435 865 do {
duke@435 866 p = p->in(0); // Move control forward
duke@435 867 assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
duke@435 868 } while( !p->is_block_start() );
duke@435 869
duke@435 870 // Recursively visit
duke@435 871 for( uint i=1; i<p->req(); i++ )
duke@435 872 _dump_cfg(p->in(i),visited);
duke@435 873
duke@435 874 // Dump the block
duke@435 875 _bbs[p->_idx]->dump(&_bbs);
duke@435 876 }
duke@435 877
duke@435 878 void PhaseCFG::dump( ) const {
duke@435 879 tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
duke@435 880 if( _blocks.size() ) { // Did we do basic-block layout?
duke@435 881 for( uint i=0; i<_num_blocks; i++ )
duke@435 882 _blocks[i]->dump(&_bbs);
duke@435 883 } else { // Else do it with a DFS
duke@435 884 VectorSet visited(_bbs._arena);
duke@435 885 _dump_cfg(_root,visited);
duke@435 886 }
duke@435 887 }
duke@435 888
duke@435 889 void PhaseCFG::dump_headers() {
duke@435 890 for( uint i = 0; i < _num_blocks; i++ ) {
duke@435 891 if( _blocks[i] == NULL ) continue;
duke@435 892 _blocks[i]->dump_head(&_bbs);
duke@435 893 }
duke@435 894 }
duke@435 895
duke@435 896 void PhaseCFG::verify( ) const {
kvn@1001 897 #ifdef ASSERT
duke@435 898 // Verify sane CFG
duke@435 899 for( uint i = 0; i < _num_blocks; i++ ) {
duke@435 900 Block *b = _blocks[i];
duke@435 901 uint cnt = b->_nodes.size();
duke@435 902 uint j;
duke@435 903 for( j = 0; j < cnt; j++ ) {
duke@435 904 Node *n = b->_nodes[j];
duke@435 905 assert( _bbs[n->_idx] == b, "" );
duke@435 906 if( j >= 1 && n->is_Mach() &&
duke@435 907 n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
duke@435 908 assert( j == 1 || b->_nodes[j-1]->is_Phi(),
duke@435 909 "CreateEx must be first instruction in block" );
duke@435 910 }
duke@435 911 for( uint k = 0; k < n->req(); k++ ) {
kvn@1001 912 Node *def = n->in(k);
kvn@1001 913 if( def && def != n ) {
kvn@1001 914 assert( _bbs[def->_idx] || def->is_Con(),
duke@435 915 "must have block; constants for debug info ok" );
kvn@1001 916 // Verify that instructions in the block is in correct order.
kvn@1001 917 // Uses must follow their definition if they are at the same block.
kvn@1001 918 // Mostly done to check that MachSpillCopy nodes are placed correctly
kvn@1001 919 // when CreateEx node is moved in build_ifg_physical().
kvn@1001 920 if( _bbs[def->_idx] == b &&
kvn@1001 921 !(b->head()->is_Loop() && n->is_Phi()) &&
kvn@1001 922 // See (+++) comment in reg_split.cpp
kvn@1001 923 !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
kvn@1328 924 bool is_loop = false;
kvn@1328 925 if (n->is_Phi()) {
kvn@1328 926 for( uint l = 1; l < def->req(); l++ ) {
kvn@1328 927 if (n == def->in(l)) {
kvn@1328 928 is_loop = true;
kvn@1328 929 break; // Some kind of loop
kvn@1328 930 }
kvn@1328 931 }
kvn@1328 932 }
kvn@1328 933 assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
kvn@1001 934 }
kvn@1036 935 if( def->is_SafePointScalarObject() ) {
kvn@1036 936 assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
kvn@1036 937 assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
kvn@1036 938 }
duke@435 939 }
duke@435 940 }
duke@435 941 }
duke@435 942
duke@435 943 j = b->end_idx();
duke@435 944 Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
duke@435 945 assert( bp, "last instruction must be a block proj" );
duke@435 946 assert( bp == b->_nodes[j], "wrong number of successors for this block" );
duke@435 947 if( bp->is_Catch() ) {
duke@435 948 while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
duke@435 949 assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
duke@435 950 }
duke@435 951 else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
duke@435 952 assert( b->_num_succs == 2, "Conditional branch must have two targets");
duke@435 953 }
duke@435 954 }
kvn@1001 955 #endif
duke@435 956 }
duke@435 957 #endif
duke@435 958
duke@435 959 //=============================================================================
duke@435 960 //------------------------------UnionFind--------------------------------------
duke@435 961 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 962 Copy::zero_to_bytes( _indices, sizeof(uint)*max );
duke@435 963 }
duke@435 964
duke@435 965 void UnionFind::extend( uint from_idx, uint to_idx ) {
duke@435 966 _nesting.check();
duke@435 967 if( from_idx >= _max ) {
duke@435 968 uint size = 16;
duke@435 969 while( size <= from_idx ) size <<=1;
duke@435 970 _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
duke@435 971 _max = size;
duke@435 972 }
duke@435 973 while( _cnt <= from_idx ) _indices[_cnt++] = 0;
duke@435 974 _indices[from_idx] = to_idx;
duke@435 975 }
duke@435 976
duke@435 977 void UnionFind::reset( uint max ) {
duke@435 978 assert( max <= max_uint, "Must fit within uint" );
duke@435 979 // Force the Union-Find mapping to be at least this large
duke@435 980 extend(max,0);
duke@435 981 // Initialize to be the ID mapping.
rasbold@853 982 for( uint i=0; i<max; i++ ) map(i,i);
duke@435 983 }
duke@435 984
duke@435 985 //------------------------------Find_compress----------------------------------
duke@435 986 // Straight out of Tarjan's union-find algorithm
duke@435 987 uint UnionFind::Find_compress( uint idx ) {
duke@435 988 uint cur = idx;
duke@435 989 uint next = lookup(cur);
duke@435 990 while( next != cur ) { // Scan chain of equivalences
duke@435 991 assert( next < cur, "always union smaller" );
duke@435 992 cur = next; // until find a fixed-point
duke@435 993 next = lookup(cur);
duke@435 994 }
duke@435 995 // Core of union-find algorithm: update chain of
duke@435 996 // equivalences to be equal to the root.
duke@435 997 while( idx != next ) {
duke@435 998 uint tmp = lookup(idx);
duke@435 999 map(idx, next);
duke@435 1000 idx = tmp;
duke@435 1001 }
duke@435 1002 return idx;
duke@435 1003 }
duke@435 1004
duke@435 1005 //------------------------------Find_const-------------------------------------
duke@435 1006 // Like Find above, but no path compress, so bad asymptotic behavior
duke@435 1007 uint UnionFind::Find_const( uint idx ) const {
duke@435 1008 if( idx == 0 ) return idx; // Ignore the zero idx
duke@435 1009 // Off the end? This can happen during debugging dumps
duke@435 1010 // when data structures have not finished being updated.
duke@435 1011 if( idx >= _max ) return idx;
duke@435 1012 uint next = lookup(idx);
duke@435 1013 while( next != idx ) { // Scan chain of equivalences
duke@435 1014 idx = next; // until find a fixed-point
duke@435 1015 next = lookup(idx);
duke@435 1016 }
duke@435 1017 return next;
duke@435 1018 }
duke@435 1019
duke@435 1020 //------------------------------Union------------------------------------------
duke@435 1021 // union 2 sets together.
duke@435 1022 void UnionFind::Union( uint idx1, uint idx2 ) {
duke@435 1023 uint src = Find(idx1);
duke@435 1024 uint dst = Find(idx2);
duke@435 1025 assert( src, "" );
duke@435 1026 assert( dst, "" );
duke@435 1027 assert( src < _max, "oob" );
duke@435 1028 assert( dst < _max, "oob" );
duke@435 1029 assert( src < dst, "always union smaller" );
duke@435 1030 map(dst,src);
duke@435 1031 }
rasbold@853 1032
rasbold@853 1033 #ifndef PRODUCT
rasbold@853 1034 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
rasbold@853 1035 tty->print_cr("---- Edges ----");
rasbold@853 1036 for (int i = 0; i < edges->length(); i++) {
rasbold@853 1037 CFGEdge *e = edges->at(i);
rasbold@853 1038 if (e != NULL) {
rasbold@853 1039 edges->at(i)->dump();
rasbold@853 1040 }
rasbold@853 1041 }
rasbold@853 1042 }
rasbold@853 1043
rasbold@853 1044 static void trace_dump(Trace *traces[], int count) {
rasbold@853 1045 tty->print_cr("---- Traces ----");
rasbold@853 1046 for (int i = 0; i < count; i++) {
rasbold@853 1047 Trace *tr = traces[i];
rasbold@853 1048 if (tr != NULL) {
rasbold@853 1049 tr->dump();
rasbold@853 1050 }
rasbold@853 1051 }
rasbold@853 1052 }
rasbold@853 1053
rasbold@853 1054 void Trace::dump( ) const {
rasbold@853 1055 tty->print_cr("Trace (freq %f)", first_block()->_freq);
rasbold@853 1056 for (Block *b = first_block(); b != NULL; b = next(b)) {
rasbold@853 1057 tty->print(" B%d", b->_pre_order);
rasbold@853 1058 if (b->head()->is_Loop()) {
rasbold@853 1059 tty->print(" (L%d)", b->compute_loop_alignment());
rasbold@853 1060 }
rasbold@853 1061 if (b->has_loop_alignment()) {
rasbold@853 1062 tty->print(" (T%d)", b->code_alignment());
rasbold@853 1063 }
rasbold@853 1064 }
rasbold@853 1065 tty->cr();
rasbold@853 1066 }
rasbold@853 1067
rasbold@853 1068 void CFGEdge::dump( ) const {
rasbold@853 1069 tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
rasbold@853 1070 from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
rasbold@853 1071 switch(state()) {
rasbold@853 1072 case connected:
rasbold@853 1073 tty->print("connected");
rasbold@853 1074 break;
rasbold@853 1075 case open:
rasbold@853 1076 tty->print("open");
rasbold@853 1077 break;
rasbold@853 1078 case interior:
rasbold@853 1079 tty->print("interior");
rasbold@853 1080 break;
rasbold@853 1081 }
rasbold@853 1082 if (infrequent()) {
rasbold@853 1083 tty->print(" infrequent");
rasbold@853 1084 }
rasbold@853 1085 tty->cr();
rasbold@853 1086 }
rasbold@853 1087 #endif
rasbold@853 1088
rasbold@853 1089 //=============================================================================
rasbold@853 1090
rasbold@853 1091 //------------------------------edge_order-------------------------------------
rasbold@853 1092 // Comparison function for edges
rasbold@853 1093 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
rasbold@853 1094 float freq0 = (*e0)->freq();
rasbold@853 1095 float freq1 = (*e1)->freq();
rasbold@853 1096 if (freq0 != freq1) {
rasbold@853 1097 return freq0 > freq1 ? -1 : 1;
rasbold@853 1098 }
rasbold@853 1099
rasbold@853 1100 int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
rasbold@853 1101 int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
rasbold@853 1102
rasbold@853 1103 return dist1 - dist0;
rasbold@853 1104 }
rasbold@853 1105
rasbold@853 1106 //------------------------------trace_frequency_order--------------------------
rasbold@853 1107 // Comparison function for edges
rasbold@853 1108 static int trace_frequency_order(const void *p0, const void *p1) {
rasbold@853 1109 Trace *tr0 = *(Trace **) p0;
rasbold@853 1110 Trace *tr1 = *(Trace **) p1;
rasbold@853 1111 Block *b0 = tr0->first_block();
rasbold@853 1112 Block *b1 = tr1->first_block();
rasbold@853 1113
rasbold@853 1114 // The trace of connector blocks goes at the end;
rasbold@853 1115 // we only expect one such trace
rasbold@853 1116 if (b0->is_connector() != b1->is_connector()) {
rasbold@853 1117 return b1->is_connector() ? -1 : 1;
rasbold@853 1118 }
rasbold@853 1119
rasbold@853 1120 // Pull more frequently executed blocks to the beginning
rasbold@853 1121 float freq0 = b0->_freq;
rasbold@853 1122 float freq1 = b1->_freq;
rasbold@853 1123 if (freq0 != freq1) {
rasbold@853 1124 return freq0 > freq1 ? -1 : 1;
rasbold@853 1125 }
rasbold@853 1126
rasbold@853 1127 int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
rasbold@853 1128
rasbold@853 1129 return diff;
rasbold@853 1130 }
rasbold@853 1131
rasbold@853 1132 //------------------------------find_edges-------------------------------------
rasbold@853 1133 // Find edges of interest, i.e, those which can fall through. Presumes that
rasbold@853 1134 // edges which don't fall through are of low frequency and can be generally
rasbold@853 1135 // ignored. Initialize the list of traces.
rasbold@853 1136 void PhaseBlockLayout::find_edges()
rasbold@853 1137 {
rasbold@853 1138 // Walk the blocks, creating edges and Traces
rasbold@853 1139 uint i;
rasbold@853 1140 Trace *tr = NULL;
rasbold@853 1141 for (i = 0; i < _cfg._num_blocks; i++) {
rasbold@853 1142 Block *b = _cfg._blocks[i];
rasbold@853 1143 tr = new Trace(b, next, prev);
rasbold@853 1144 traces[tr->id()] = tr;
rasbold@853 1145
rasbold@853 1146 // All connector blocks should be at the end of the list
rasbold@853 1147 if (b->is_connector()) break;
rasbold@853 1148
rasbold@853 1149 // If this block and the next one have a one-to-one successor
rasbold@853 1150 // predecessor relationship, simply append the next block
rasbold@853 1151 int nfallthru = b->num_fall_throughs();
rasbold@853 1152 while (nfallthru == 1 &&
rasbold@853 1153 b->succ_fall_through(0)) {
rasbold@853 1154 Block *n = b->_succs[0];
rasbold@853 1155
rasbold@853 1156 // Skip over single-entry connector blocks, we don't want to
rasbold@853 1157 // add them to the trace.
rasbold@853 1158 while (n->is_connector() && n->num_preds() == 1) {
rasbold@853 1159 n = n->_succs[0];
rasbold@853 1160 }
rasbold@853 1161
rasbold@853 1162 // We see a merge point, so stop search for the next block
rasbold@853 1163 if (n->num_preds() != 1) break;
rasbold@853 1164
rasbold@853 1165 i++;
rasbold@853 1166 assert(n = _cfg._blocks[i], "expecting next block");
rasbold@853 1167 tr->append(n);
rasbold@853 1168 uf->map(n->_pre_order, tr->id());
rasbold@853 1169 traces[n->_pre_order] = NULL;
rasbold@853 1170 nfallthru = b->num_fall_throughs();
rasbold@853 1171 b = n;
rasbold@853 1172 }
rasbold@853 1173
rasbold@853 1174 if (nfallthru > 0) {
rasbold@853 1175 // Create a CFGEdge for each outgoing
rasbold@853 1176 // edge that could be a fall-through.
rasbold@853 1177 for (uint j = 0; j < b->_num_succs; j++ ) {
rasbold@853 1178 if (b->succ_fall_through(j)) {
rasbold@853 1179 Block *target = b->non_connector_successor(j);
rasbold@853 1180 float freq = b->_freq * b->succ_prob(j);
rasbold@853 1181 int from_pct = (int) ((100 * freq) / b->_freq);
rasbold@853 1182 int to_pct = (int) ((100 * freq) / target->_freq);
rasbold@853 1183 edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
rasbold@853 1184 }
rasbold@853 1185 }
rasbold@853 1186 }
rasbold@853 1187 }
rasbold@853 1188
rasbold@853 1189 // Group connector blocks into one trace
rasbold@853 1190 for (i++; i < _cfg._num_blocks; i++) {
rasbold@853 1191 Block *b = _cfg._blocks[i];
rasbold@853 1192 assert(b->is_connector(), "connector blocks at the end");
rasbold@853 1193 tr->append(b);
rasbold@853 1194 uf->map(b->_pre_order, tr->id());
rasbold@853 1195 traces[b->_pre_order] = NULL;
rasbold@853 1196 }
rasbold@853 1197 }
rasbold@853 1198
rasbold@853 1199 //------------------------------union_traces----------------------------------
rasbold@853 1200 // Union two traces together in uf, and null out the trace in the list
rasbold@853 1201 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
rasbold@853 1202 {
rasbold@853 1203 uint old_id = old_trace->id();
rasbold@853 1204 uint updated_id = updated_trace->id();
rasbold@853 1205
rasbold@853 1206 uint lo_id = updated_id;
rasbold@853 1207 uint hi_id = old_id;
rasbold@853 1208
rasbold@853 1209 // If from is greater than to, swap values to meet
rasbold@853 1210 // UnionFind guarantee.
rasbold@853 1211 if (updated_id > old_id) {
rasbold@853 1212 lo_id = old_id;
rasbold@853 1213 hi_id = updated_id;
rasbold@853 1214
rasbold@853 1215 // Fix up the trace ids
rasbold@853 1216 traces[lo_id] = traces[updated_id];
rasbold@853 1217 updated_trace->set_id(lo_id);
rasbold@853 1218 }
rasbold@853 1219
rasbold@853 1220 // Union the lower with the higher and remove the pointer
rasbold@853 1221 // to the higher.
rasbold@853 1222 uf->Union(lo_id, hi_id);
rasbold@853 1223 traces[hi_id] = NULL;
rasbold@853 1224 }
rasbold@853 1225
rasbold@853 1226 //------------------------------grow_traces-------------------------------------
rasbold@853 1227 // Append traces together via the most frequently executed edges
rasbold@853 1228 void PhaseBlockLayout::grow_traces()
rasbold@853 1229 {
rasbold@853 1230 // Order the edges, and drive the growth of Traces via the most
rasbold@853 1231 // frequently executed edges.
rasbold@853 1232 edges->sort(edge_order);
rasbold@853 1233 for (int i = 0; i < edges->length(); i++) {
rasbold@853 1234 CFGEdge *e = edges->at(i);
rasbold@853 1235
rasbold@853 1236 if (e->state() != CFGEdge::open) continue;
rasbold@853 1237
rasbold@853 1238 Block *src_block = e->from();
rasbold@853 1239 Block *targ_block = e->to();
rasbold@853 1240
rasbold@853 1241 // Don't grow traces along backedges?
rasbold@853 1242 if (!BlockLayoutRotateLoops) {
rasbold@853 1243 if (targ_block->_rpo <= src_block->_rpo) {
rasbold@853 1244 targ_block->set_loop_alignment(targ_block);
rasbold@853 1245 continue;
rasbold@853 1246 }
rasbold@853 1247 }
rasbold@853 1248
rasbold@853 1249 Trace *src_trace = trace(src_block);
rasbold@853 1250 Trace *targ_trace = trace(targ_block);
rasbold@853 1251
rasbold@853 1252 // If the edge in question can join two traces at their ends,
rasbold@853 1253 // append one trace to the other.
rasbold@853 1254 if (src_trace->last_block() == src_block) {
rasbold@853 1255 if (src_trace == targ_trace) {
rasbold@853 1256 e->set_state(CFGEdge::interior);
rasbold@853 1257 if (targ_trace->backedge(e)) {
rasbold@853 1258 // Reset i to catch any newly eligible edge
rasbold@853 1259 // (Or we could remember the first "open" edge, and reset there)
rasbold@853 1260 i = 0;
rasbold@853 1261 }
rasbold@853 1262 } else if (targ_trace->first_block() == targ_block) {
rasbold@853 1263 e->set_state(CFGEdge::connected);
rasbold@853 1264 src_trace->append(targ_trace);
rasbold@853 1265 union_traces(src_trace, targ_trace);
rasbold@853 1266 }
rasbold@853 1267 }
rasbold@853 1268 }
rasbold@853 1269 }
rasbold@853 1270
rasbold@853 1271 //------------------------------merge_traces-----------------------------------
rasbold@853 1272 // Embed one trace into another, if the fork or join points are sufficiently
rasbold@853 1273 // balanced.
rasbold@853 1274 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
rasbold@853 1275 {
rasbold@853 1276 // Walk the edge list a another time, looking at unprocessed edges.
rasbold@853 1277 // Fold in diamonds
rasbold@853 1278 for (int i = 0; i < edges->length(); i++) {
rasbold@853 1279 CFGEdge *e = edges->at(i);
rasbold@853 1280
rasbold@853 1281 if (e->state() != CFGEdge::open) continue;
rasbold@853 1282 if (fall_thru_only) {
rasbold@853 1283 if (e->infrequent()) continue;
rasbold@853 1284 }
rasbold@853 1285
rasbold@853 1286 Block *src_block = e->from();
rasbold@853 1287 Trace *src_trace = trace(src_block);
rasbold@853 1288 bool src_at_tail = src_trace->last_block() == src_block;
rasbold@853 1289
rasbold@853 1290 Block *targ_block = e->to();
rasbold@853 1291 Trace *targ_trace = trace(targ_block);
rasbold@853 1292 bool targ_at_start = targ_trace->first_block() == targ_block;
rasbold@853 1293
rasbold@853 1294 if (src_trace == targ_trace) {
rasbold@853 1295 // This may be a loop, but we can't do much about it.
rasbold@853 1296 e->set_state(CFGEdge::interior);
rasbold@853 1297 continue;
rasbold@853 1298 }
rasbold@853 1299
rasbold@853 1300 if (fall_thru_only) {
rasbold@853 1301 // If the edge links the middle of two traces, we can't do anything.
rasbold@853 1302 // Mark the edge and continue.
rasbold@853 1303 if (!src_at_tail & !targ_at_start) {
rasbold@853 1304 continue;
rasbold@853 1305 }
rasbold@853 1306
rasbold@853 1307 // Don't grow traces along backedges?
rasbold@853 1308 if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
rasbold@853 1309 continue;
rasbold@853 1310 }
rasbold@853 1311
rasbold@853 1312 // If both ends of the edge are available, why didn't we handle it earlier?
rasbold@853 1313 assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
rasbold@853 1314
rasbold@853 1315 if (targ_at_start) {
rasbold@853 1316 // Insert the "targ" trace in the "src" trace if the insertion point
rasbold@853 1317 // is a two way branch.
rasbold@853 1318 // Better profitability check possible, but may not be worth it.
rasbold@853 1319 // Someday, see if the this "fork" has an associated "join";
rasbold@853 1320 // then make a policy on merging this trace at the fork or join.
rasbold@853 1321 // For example, other things being equal, it may be better to place this
rasbold@853 1322 // trace at the join point if the "src" trace ends in a two-way, but
rasbold@853 1323 // the insertion point is one-way.
rasbold@853 1324 assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
rasbold@853 1325 e->set_state(CFGEdge::connected);
rasbold@853 1326 src_trace->insert_after(src_block, targ_trace);
rasbold@853 1327 union_traces(src_trace, targ_trace);
rasbold@853 1328 } else if (src_at_tail) {
rasbold@853 1329 if (src_trace != trace(_cfg._broot)) {
rasbold@853 1330 e->set_state(CFGEdge::connected);
rasbold@853 1331 targ_trace->insert_before(targ_block, src_trace);
rasbold@853 1332 union_traces(targ_trace, src_trace);
rasbold@853 1333 }
rasbold@853 1334 }
rasbold@853 1335 } else if (e->state() == CFGEdge::open) {
rasbold@853 1336 // Append traces, even without a fall-thru connection.
twisti@1040 1337 // But leave root entry at the beginning of the block list.
rasbold@853 1338 if (targ_trace != trace(_cfg._broot)) {
rasbold@853 1339 e->set_state(CFGEdge::connected);
rasbold@853 1340 src_trace->append(targ_trace);
rasbold@853 1341 union_traces(src_trace, targ_trace);
rasbold@853 1342 }
rasbold@853 1343 }
rasbold@853 1344 }
rasbold@853 1345 }
rasbold@853 1346
rasbold@853 1347 //----------------------------reorder_traces-----------------------------------
rasbold@853 1348 // Order the sequence of the traces in some desirable way, and fixup the
rasbold@853 1349 // jumps at the end of each block.
rasbold@853 1350 void PhaseBlockLayout::reorder_traces(int count)
rasbold@853 1351 {
rasbold@853 1352 ResourceArea *area = Thread::current()->resource_area();
rasbold@853 1353 Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
rasbold@853 1354 Block_List worklist;
rasbold@853 1355 int new_count = 0;
rasbold@853 1356
rasbold@853 1357 // Compact the traces.
rasbold@853 1358 for (int i = 0; i < count; i++) {
rasbold@853 1359 Trace *tr = traces[i];
rasbold@853 1360 if (tr != NULL) {
rasbold@853 1361 new_traces[new_count++] = tr;
rasbold@853 1362 }
rasbold@853 1363 }
rasbold@853 1364
rasbold@853 1365 // The entry block should be first on the new trace list.
rasbold@853 1366 Trace *tr = trace(_cfg._broot);
rasbold@853 1367 assert(tr == new_traces[0], "entry trace misplaced");
rasbold@853 1368
rasbold@853 1369 // Sort the new trace list by frequency
rasbold@853 1370 qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
rasbold@853 1371
rasbold@853 1372 // Patch up the successor blocks
rasbold@853 1373 _cfg._blocks.reset();
rasbold@853 1374 _cfg._num_blocks = 0;
rasbold@853 1375 for (int i = 0; i < new_count; i++) {
rasbold@853 1376 Trace *tr = new_traces[i];
rasbold@853 1377 if (tr != NULL) {
rasbold@853 1378 tr->fixup_blocks(_cfg);
rasbold@853 1379 }
rasbold@853 1380 }
rasbold@853 1381 }
rasbold@853 1382
rasbold@853 1383 //------------------------------PhaseBlockLayout-------------------------------
rasbold@853 1384 // Order basic blocks based on frequency
rasbold@853 1385 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
rasbold@853 1386 Phase(BlockLayout),
rasbold@853 1387 _cfg(cfg)
rasbold@853 1388 {
rasbold@853 1389 ResourceMark rm;
rasbold@853 1390 ResourceArea *area = Thread::current()->resource_area();
rasbold@853 1391
rasbold@853 1392 // List of traces
rasbold@853 1393 int size = _cfg._num_blocks + 1;
rasbold@853 1394 traces = NEW_ARENA_ARRAY(area, Trace *, size);
rasbold@853 1395 memset(traces, 0, size*sizeof(Trace*));
rasbold@853 1396 next = NEW_ARENA_ARRAY(area, Block *, size);
rasbold@853 1397 memset(next, 0, size*sizeof(Block *));
rasbold@853 1398 prev = NEW_ARENA_ARRAY(area, Block *, size);
rasbold@853 1399 memset(prev , 0, size*sizeof(Block *));
rasbold@853 1400
rasbold@853 1401 // List of edges
rasbold@853 1402 edges = new GrowableArray<CFGEdge*>;
rasbold@853 1403
rasbold@853 1404 // Mapping block index --> block_trace
rasbold@853 1405 uf = new UnionFind(size);
rasbold@853 1406 uf->reset(size);
rasbold@853 1407
rasbold@853 1408 // Find edges and create traces.
rasbold@853 1409 find_edges();
rasbold@853 1410
rasbold@853 1411 // Grow traces at their ends via most frequent edges.
rasbold@853 1412 grow_traces();
rasbold@853 1413
rasbold@853 1414 // Merge one trace into another, but only at fall-through points.
rasbold@853 1415 // This may make diamonds and other related shapes in a trace.
rasbold@853 1416 merge_traces(true);
rasbold@853 1417
rasbold@853 1418 // Run merge again, allowing two traces to be catenated, even if
rasbold@853 1419 // one does not fall through into the other. This appends loosely
rasbold@853 1420 // related traces to be near each other.
rasbold@853 1421 merge_traces(false);
rasbold@853 1422
rasbold@853 1423 // Re-order all the remaining traces by frequency
rasbold@853 1424 reorder_traces(size);
rasbold@853 1425
rasbold@853 1426 assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
rasbold@853 1427 }
rasbold@853 1428
rasbold@853 1429
rasbold@853 1430 //------------------------------backedge---------------------------------------
rasbold@853 1431 // Edge e completes a loop in a trace. If the target block is head of the
rasbold@853 1432 // loop, rotate the loop block so that the loop ends in a conditional branch.
rasbold@853 1433 bool Trace::backedge(CFGEdge *e) {
rasbold@853 1434 bool loop_rotated = false;
rasbold@853 1435 Block *src_block = e->from();
rasbold@853 1436 Block *targ_block = e->to();
rasbold@853 1437
rasbold@853 1438 assert(last_block() == src_block, "loop discovery at back branch");
rasbold@853 1439 if (first_block() == targ_block) {
rasbold@853 1440 if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
rasbold@853 1441 // Find the last block in the trace that has a conditional
rasbold@853 1442 // branch.
rasbold@853 1443 Block *b;
rasbold@853 1444 for (b = last_block(); b != NULL; b = prev(b)) {
rasbold@853 1445 if (b->num_fall_throughs() == 2) {
rasbold@853 1446 break;
rasbold@853 1447 }
rasbold@853 1448 }
rasbold@853 1449
rasbold@853 1450 if (b != last_block() && b != NULL) {
rasbold@853 1451 loop_rotated = true;
rasbold@853 1452
rasbold@853 1453 // Rotate the loop by doing two-part linked-list surgery.
rasbold@853 1454 append(first_block());
rasbold@853 1455 break_loop_after(b);
rasbold@853 1456 }
rasbold@853 1457 }
rasbold@853 1458
rasbold@853 1459 // Backbranch to the top of a trace
twisti@1040 1460 // Scroll forward through the trace from the targ_block. If we find
rasbold@853 1461 // a loop head before another loop top, use the the loop head alignment.
rasbold@853 1462 for (Block *b = targ_block; b != NULL; b = next(b)) {
rasbold@853 1463 if (b->has_loop_alignment()) {
rasbold@853 1464 break;
rasbold@853 1465 }
rasbold@853 1466 if (b->head()->is_Loop()) {
rasbold@853 1467 targ_block = b;
rasbold@853 1468 break;
rasbold@853 1469 }
rasbold@853 1470 }
rasbold@853 1471
rasbold@853 1472 first_block()->set_loop_alignment(targ_block);
rasbold@853 1473
rasbold@853 1474 } else {
rasbold@853 1475 // Backbranch into the middle of a trace
rasbold@853 1476 targ_block->set_loop_alignment(targ_block);
rasbold@853 1477 }
rasbold@853 1478
rasbold@853 1479 return loop_rotated;
rasbold@853 1480 }
rasbold@853 1481
rasbold@853 1482 //------------------------------fixup_blocks-----------------------------------
rasbold@853 1483 // push blocks onto the CFG list
rasbold@853 1484 // ensure that blocks have the correct two-way branch sense
rasbold@853 1485 void Trace::fixup_blocks(PhaseCFG &cfg) {
rasbold@853 1486 Block *last = last_block();
rasbold@853 1487 for (Block *b = first_block(); b != NULL; b = next(b)) {
rasbold@853 1488 cfg._blocks.push(b);
rasbold@853 1489 cfg._num_blocks++;
rasbold@853 1490 if (!b->is_connector()) {
rasbold@853 1491 int nfallthru = b->num_fall_throughs();
rasbold@853 1492 if (b != last) {
rasbold@853 1493 if (nfallthru == 2) {
rasbold@853 1494 // Ensure that the sense of the branch is correct
rasbold@853 1495 Block *bnext = next(b);
rasbold@853 1496 Block *bs0 = b->non_connector_successor(0);
rasbold@853 1497
rasbold@853 1498 MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
rasbold@853 1499 ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
rasbold@853 1500 ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
rasbold@853 1501
rasbold@853 1502 if (bnext == bs0) {
rasbold@853 1503 // Fall-thru case in succs[0], should be in succs[1]
rasbold@853 1504
rasbold@853 1505 // Flip targets in _succs map
rasbold@853 1506 Block *tbs0 = b->_succs[0];
rasbold@853 1507 Block *tbs1 = b->_succs[1];
rasbold@853 1508 b->_succs.map( 0, tbs1 );
rasbold@853 1509 b->_succs.map( 1, tbs0 );
rasbold@853 1510
rasbold@853 1511 // Flip projections to match targets
rasbold@853 1512 b->_nodes.map(b->_nodes.size()-2, proj1);
rasbold@853 1513 b->_nodes.map(b->_nodes.size()-1, proj0);
rasbold@853 1514 }
rasbold@853 1515 }
rasbold@853 1516 }
rasbold@853 1517 }
rasbold@853 1518 }
rasbold@853 1519 }

mercurial