src/share/vm/opto/compile.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1364
cd18bd5e667c
child 1515
7c57aead6d3e
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_compile.cpp.incl"
duke@435 27
duke@435 28 /// Support for intrinsics.
duke@435 29
duke@435 30 // Return the index at which m must be inserted (or already exists).
duke@435 31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 33 #ifdef ASSERT
duke@435 34 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 35 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 36 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 37 assert(cg1->method() != cg2->method()
duke@435 38 ? cg1->method() < cg2->method()
duke@435 39 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 40 "compiler intrinsics list must stay sorted");
duke@435 41 }
duke@435 42 #endif
duke@435 43 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 44 int lo = 0, hi = _intrinsics->length()-1;
duke@435 45 while (lo <= hi) {
duke@435 46 int mid = (uint)(hi + lo) / 2;
duke@435 47 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 48 if (m < mid_m) {
duke@435 49 hi = mid-1;
duke@435 50 } else if (m > mid_m) {
duke@435 51 lo = mid+1;
duke@435 52 } else {
duke@435 53 // look at minor sort key
duke@435 54 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 55 if (is_virtual < mid_virt) {
duke@435 56 hi = mid-1;
duke@435 57 } else if (is_virtual > mid_virt) {
duke@435 58 lo = mid+1;
duke@435 59 } else {
duke@435 60 return mid; // exact match
duke@435 61 }
duke@435 62 }
duke@435 63 }
duke@435 64 return lo; // inexact match
duke@435 65 }
duke@435 66
duke@435 67 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 68 if (_intrinsics == NULL) {
duke@435 69 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 70 }
duke@435 71 // This code is stolen from ciObjectFactory::insert.
duke@435 72 // Really, GrowableArray should have methods for
duke@435 73 // insert_at, remove_at, and binary_search.
duke@435 74 int len = _intrinsics->length();
duke@435 75 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 76 if (index == len) {
duke@435 77 _intrinsics->append(cg);
duke@435 78 } else {
duke@435 79 #ifdef ASSERT
duke@435 80 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 81 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 82 #endif
duke@435 83 _intrinsics->append(_intrinsics->at(len-1));
duke@435 84 int pos;
duke@435 85 for (pos = len-2; pos >= index; pos--) {
duke@435 86 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 87 }
duke@435 88 _intrinsics->at_put(index, cg);
duke@435 89 }
duke@435 90 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 91 }
duke@435 92
duke@435 93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 94 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 95 if (_intrinsics != NULL) {
duke@435 96 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 97 if (index < _intrinsics->length()
duke@435 98 && _intrinsics->at(index)->method() == m
duke@435 99 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 100 return _intrinsics->at(index);
duke@435 101 }
duke@435 102 }
duke@435 103 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 104 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 105 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 106 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 107 if (cg != NULL) {
duke@435 108 // Save it for next time:
duke@435 109 register_intrinsic(cg);
duke@435 110 return cg;
duke@435 111 } else {
duke@435 112 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 113 }
duke@435 114 }
duke@435 115 return NULL;
duke@435 116 }
duke@435 117
duke@435 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 119 // in library_call.cpp.
duke@435 120
duke@435 121
duke@435 122 #ifndef PRODUCT
duke@435 123 // statistics gathering...
duke@435 124
duke@435 125 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 127
duke@435 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 129 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 130 int oflags = _intrinsic_hist_flags[id];
duke@435 131 assert(flags != 0, "what happened?");
duke@435 132 if (is_virtual) {
duke@435 133 flags |= _intrinsic_virtual;
duke@435 134 }
duke@435 135 bool changed = (flags != oflags);
duke@435 136 if ((flags & _intrinsic_worked) != 0) {
duke@435 137 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 138 if (count == 1) {
duke@435 139 changed = true; // first time
duke@435 140 }
duke@435 141 // increment the overall count also:
duke@435 142 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 143 }
duke@435 144 if (changed) {
duke@435 145 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 146 // Something changed about the intrinsic's virtuality.
duke@435 147 if ((flags & _intrinsic_virtual) != 0) {
duke@435 148 // This is the first use of this intrinsic as a virtual call.
duke@435 149 if (oflags != 0) {
duke@435 150 // We already saw it as a non-virtual, so note both cases.
duke@435 151 flags |= _intrinsic_both;
duke@435 152 }
duke@435 153 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 154 // This is the first use of this intrinsic as a non-virtual
duke@435 155 flags |= _intrinsic_both;
duke@435 156 }
duke@435 157 }
duke@435 158 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 159 }
duke@435 160 // update the overall flags also:
duke@435 161 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 162 return changed;
duke@435 163 }
duke@435 164
duke@435 165 static char* format_flags(int flags, char* buf) {
duke@435 166 buf[0] = 0;
duke@435 167 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 168 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 169 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 170 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 171 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 172 if (buf[0] == 0) strcat(buf, ",");
duke@435 173 assert(buf[0] == ',', "must be");
duke@435 174 return &buf[1];
duke@435 175 }
duke@435 176
duke@435 177 void Compile::print_intrinsic_statistics() {
duke@435 178 char flagsbuf[100];
duke@435 179 ttyLocker ttyl;
duke@435 180 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 181 tty->print_cr("Compiler intrinsic usage:");
duke@435 182 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 183 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 184 #define PRINT_STAT_LINE(name, c, f) \
duke@435 185 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 186 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 187 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 188 int flags = _intrinsic_hist_flags[id];
duke@435 189 juint count = _intrinsic_hist_count[id];
duke@435 190 if ((flags | count) != 0) {
duke@435 191 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 192 }
duke@435 193 }
duke@435 194 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 195 if (xtty != NULL) xtty->tail("statistics");
duke@435 196 }
duke@435 197
duke@435 198 void Compile::print_statistics() {
duke@435 199 { ttyLocker ttyl;
duke@435 200 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 201 Parse::print_statistics();
duke@435 202 PhaseCCP::print_statistics();
duke@435 203 PhaseRegAlloc::print_statistics();
duke@435 204 Scheduling::print_statistics();
duke@435 205 PhasePeephole::print_statistics();
duke@435 206 PhaseIdealLoop::print_statistics();
duke@435 207 if (xtty != NULL) xtty->tail("statistics");
duke@435 208 }
duke@435 209 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 210 // put this under its own <statistics> element.
duke@435 211 print_intrinsic_statistics();
duke@435 212 }
duke@435 213 }
duke@435 214 #endif //PRODUCT
duke@435 215
duke@435 216 // Support for bundling info
duke@435 217 Bundle* Compile::node_bundling(const Node *n) {
duke@435 218 assert(valid_bundle_info(n), "oob");
duke@435 219 return &_node_bundling_base[n->_idx];
duke@435 220 }
duke@435 221
duke@435 222 bool Compile::valid_bundle_info(const Node *n) {
duke@435 223 return (_node_bundling_limit > n->_idx);
duke@435 224 }
duke@435 225
duke@435 226
duke@435 227 // Identify all nodes that are reachable from below, useful.
duke@435 228 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 229 // recursive traversal is slower.
duke@435 230 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 231 int estimated_worklist_size = unique();
duke@435 232 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 233
duke@435 234 // Initialize worklist
duke@435 235 if (root() != NULL) { useful.push(root()); }
duke@435 236 // If 'top' is cached, declare it useful to preserve cached node
duke@435 237 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 238
duke@435 239 // Push all useful nodes onto the list, breadthfirst
duke@435 240 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 241 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 242 Node *n = useful.at(next);
duke@435 243 uint max = n->len();
duke@435 244 for( uint i = 0; i < max; ++i ) {
duke@435 245 Node *m = n->in(i);
duke@435 246 if( m == NULL ) continue;
duke@435 247 useful.push(m);
duke@435 248 }
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 253 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 254 uint next = 0;
duke@435 255 while( next < useful.size() ) {
duke@435 256 Node *n = useful.at(next++);
duke@435 257 // Use raw traversal of out edges since this code removes out edges
duke@435 258 int max = n->outcnt();
duke@435 259 for (int j = 0; j < max; ++j ) {
duke@435 260 Node* child = n->raw_out(j);
duke@435 261 if( ! useful.member(child) ) {
duke@435 262 assert( !child->is_top() || child != top(),
duke@435 263 "If top is cached in Compile object it is in useful list");
duke@435 264 // Only need to remove this out-edge to the useless node
duke@435 265 n->raw_del_out(j);
duke@435 266 --j;
duke@435 267 --max;
duke@435 268 }
duke@435 269 }
duke@435 270 if (n->outcnt() == 1 && n->has_special_unique_user()) {
duke@435 271 record_for_igvn( n->unique_out() );
duke@435 272 }
duke@435 273 }
duke@435 274 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 275 }
duke@435 276
duke@435 277 //------------------------------frame_size_in_words-----------------------------
duke@435 278 // frame_slots in units of words
duke@435 279 int Compile::frame_size_in_words() const {
duke@435 280 // shift is 0 in LP32 and 1 in LP64
duke@435 281 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 282 int words = _frame_slots >> shift;
duke@435 283 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 284 return words;
duke@435 285 }
duke@435 286
duke@435 287 // ============================================================================
duke@435 288 //------------------------------CompileWrapper---------------------------------
duke@435 289 class CompileWrapper : public StackObj {
duke@435 290 Compile *const _compile;
duke@435 291 public:
duke@435 292 CompileWrapper(Compile* compile);
duke@435 293
duke@435 294 ~CompileWrapper();
duke@435 295 };
duke@435 296
duke@435 297 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 298 // the Compile* pointer is stored in the current ciEnv:
duke@435 299 ciEnv* env = compile->env();
duke@435 300 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 301 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 302 env->set_compiler_data(compile);
duke@435 303 assert(compile == Compile::current(), "sanity");
duke@435 304
duke@435 305 compile->set_type_dict(NULL);
duke@435 306 compile->set_type_hwm(NULL);
duke@435 307 compile->set_type_last_size(0);
duke@435 308 compile->set_last_tf(NULL, NULL);
duke@435 309 compile->set_indexSet_arena(NULL);
duke@435 310 compile->set_indexSet_free_block_list(NULL);
duke@435 311 compile->init_type_arena();
duke@435 312 Type::Initialize(compile);
duke@435 313 _compile->set_scratch_buffer_blob(NULL);
duke@435 314 _compile->begin_method();
duke@435 315 }
duke@435 316 CompileWrapper::~CompileWrapper() {
duke@435 317 _compile->end_method();
duke@435 318 if (_compile->scratch_buffer_blob() != NULL)
duke@435 319 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 320 _compile->env()->set_compiler_data(NULL);
duke@435 321 }
duke@435 322
duke@435 323
duke@435 324 //----------------------------print_compile_messages---------------------------
duke@435 325 void Compile::print_compile_messages() {
duke@435 326 #ifndef PRODUCT
duke@435 327 // Check if recompiling
duke@435 328 if (_subsume_loads == false && PrintOpto) {
duke@435 329 // Recompiling without allowing machine instructions to subsume loads
duke@435 330 tty->print_cr("*********************************************************");
duke@435 331 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 332 tty->print_cr("*********************************************************");
duke@435 333 }
kvn@473 334 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 335 // Recompiling without escape analysis
kvn@473 336 tty->print_cr("*********************************************************");
kvn@473 337 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 338 tty->print_cr("*********************************************************");
kvn@473 339 }
duke@435 340 if (env()->break_at_compile()) {
twisti@1040 341 // Open the debugger when compiling this method.
duke@435 342 tty->print("### Breaking when compiling: ");
duke@435 343 method()->print_short_name();
duke@435 344 tty->cr();
duke@435 345 BREAKPOINT;
duke@435 346 }
duke@435 347
duke@435 348 if( PrintOpto ) {
duke@435 349 if (is_osr_compilation()) {
duke@435 350 tty->print("[OSR]%3d", _compile_id);
duke@435 351 } else {
duke@435 352 tty->print("%3d", _compile_id);
duke@435 353 }
duke@435 354 }
duke@435 355 #endif
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 void Compile::init_scratch_buffer_blob() {
duke@435 360 if( scratch_buffer_blob() != NULL ) return;
duke@435 361
duke@435 362 // Construct a temporary CodeBuffer to have it construct a BufferBlob
duke@435 363 // Cache this BufferBlob for this compile.
duke@435 364 ResourceMark rm;
duke@435 365 int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
duke@435 366 BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
duke@435 367 // Record the buffer blob for next time.
duke@435 368 set_scratch_buffer_blob(blob);
kvn@598 369 // Have we run out of code space?
kvn@598 370 if (scratch_buffer_blob() == NULL) {
kvn@598 371 // Let CompilerBroker disable further compilations.
kvn@598 372 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@598 373 return;
kvn@598 374 }
duke@435 375
duke@435 376 // Initialize the relocation buffers
duke@435 377 relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
duke@435 378 set_scratch_locs_memory(locs_buf);
duke@435 379 }
duke@435 380
duke@435 381
duke@435 382 //-----------------------scratch_emit_size-------------------------------------
duke@435 383 // Helper function that computes size by emitting code
duke@435 384 uint Compile::scratch_emit_size(const Node* n) {
duke@435 385 // Emit into a trash buffer and count bytes emitted.
duke@435 386 // This is a pretty expensive way to compute a size,
duke@435 387 // but it works well enough if seldom used.
duke@435 388 // All common fixed-size instructions are given a size
duke@435 389 // method by the AD file.
duke@435 390 // Note that the scratch buffer blob and locs memory are
duke@435 391 // allocated at the beginning of the compile task, and
duke@435 392 // may be shared by several calls to scratch_emit_size.
duke@435 393 // The allocation of the scratch buffer blob is particularly
duke@435 394 // expensive, since it has to grab the code cache lock.
duke@435 395 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 396 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 397 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 398 relocInfo* locs_buf = scratch_locs_memory();
duke@435 399 address blob_begin = blob->instructions_begin();
duke@435 400 address blob_end = (address)locs_buf;
duke@435 401 assert(blob->instructions_contains(blob_end), "sanity");
duke@435 402 CodeBuffer buf(blob_begin, blob_end - blob_begin);
duke@435 403 buf.initialize_consts_size(MAX_const_size);
duke@435 404 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 405 assert(locs_buf != NULL, "sanity");
duke@435 406 int lsize = MAX_locs_size / 2;
duke@435 407 buf.insts()->initialize_shared_locs(&locs_buf[0], lsize);
duke@435 408 buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
duke@435 409 n->emit(buf, this->regalloc());
duke@435 410 return buf.code_size();
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 // ============================================================================
duke@435 415 //------------------------------Compile standard-------------------------------
duke@435 416 debug_only( int Compile::_debug_idx = 100000; )
duke@435 417
duke@435 418 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 419 // the continuation bci for on stack replacement.
duke@435 420
duke@435 421
kvn@473 422 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 423 : Phase(Compiler),
duke@435 424 _env(ci_env),
duke@435 425 _log(ci_env->log()),
duke@435 426 _compile_id(ci_env->compile_id()),
duke@435 427 _save_argument_registers(false),
duke@435 428 _stub_name(NULL),
duke@435 429 _stub_function(NULL),
duke@435 430 _stub_entry_point(NULL),
duke@435 431 _method(target),
duke@435 432 _entry_bci(osr_bci),
duke@435 433 _initial_gvn(NULL),
duke@435 434 _for_igvn(NULL),
duke@435 435 _warm_calls(NULL),
duke@435 436 _subsume_loads(subsume_loads),
kvn@473 437 _do_escape_analysis(do_escape_analysis),
duke@435 438 _failure_reason(NULL),
duke@435 439 _code_buffer("Compile::Fill_buffer"),
duke@435 440 _orig_pc_slot(0),
duke@435 441 _orig_pc_slot_offset_in_bytes(0),
duke@435 442 _node_bundling_limit(0),
duke@435 443 _node_bundling_base(NULL),
kvn@1294 444 _java_calls(0),
kvn@1294 445 _inner_loops(0),
duke@435 446 #ifndef PRODUCT
duke@435 447 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 448 _printer(IdealGraphPrinter::printer()),
duke@435 449 #endif
duke@435 450 _congraph(NULL) {
duke@435 451 C = this;
duke@435 452
duke@435 453 CompileWrapper cw(this);
duke@435 454 #ifndef PRODUCT
duke@435 455 if (TimeCompiler2) {
duke@435 456 tty->print(" ");
duke@435 457 target->holder()->name()->print();
duke@435 458 tty->print(".");
duke@435 459 target->print_short_name();
duke@435 460 tty->print(" ");
duke@435 461 }
duke@435 462 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 463 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 464 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 465 if (!print_opto_assembly) {
jrose@535 466 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 467 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 468 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 469 print_opto_assembly = true;
jrose@535 470 }
jrose@535 471 }
jrose@535 472 set_print_assembly(print_opto_assembly);
never@802 473 set_parsed_irreducible_loop(false);
duke@435 474 #endif
duke@435 475
duke@435 476 if (ProfileTraps) {
duke@435 477 // Make sure the method being compiled gets its own MDO,
duke@435 478 // so we can at least track the decompile_count().
duke@435 479 method()->build_method_data();
duke@435 480 }
duke@435 481
duke@435 482 Init(::AliasLevel);
duke@435 483
duke@435 484
duke@435 485 print_compile_messages();
duke@435 486
duke@435 487 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 488 _ilt = InlineTree::build_inline_tree_root();
duke@435 489 else
duke@435 490 _ilt = NULL;
duke@435 491
duke@435 492 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 493 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 494
duke@435 495 #define MINIMUM_NODE_HASH 1023
duke@435 496 // Node list that Iterative GVN will start with
duke@435 497 Unique_Node_List for_igvn(comp_arena());
duke@435 498 set_for_igvn(&for_igvn);
duke@435 499
duke@435 500 // GVN that will be run immediately on new nodes
duke@435 501 uint estimated_size = method()->code_size()*4+64;
duke@435 502 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 503 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 504 set_initial_gvn(&gvn);
duke@435 505
duke@435 506 { // Scope for timing the parser
duke@435 507 TracePhase t3("parse", &_t_parser, true);
duke@435 508
duke@435 509 // Put top into the hash table ASAP.
duke@435 510 initial_gvn()->transform_no_reclaim(top());
duke@435 511
duke@435 512 // Set up tf(), start(), and find a CallGenerator.
duke@435 513 CallGenerator* cg;
duke@435 514 if (is_osr_compilation()) {
duke@435 515 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 516 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 517 init_tf(TypeFunc::make(domain, range));
duke@435 518 StartNode* s = new (this, 2) StartOSRNode(root(), domain);
duke@435 519 initial_gvn()->set_type_bottom(s);
duke@435 520 init_start(s);
duke@435 521 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 522 } else {
duke@435 523 // Normal case.
duke@435 524 init_tf(TypeFunc::make(method()));
duke@435 525 StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
duke@435 526 initial_gvn()->set_type_bottom(s);
duke@435 527 init_start(s);
duke@435 528 float past_uses = method()->interpreter_invocation_count();
duke@435 529 float expected_uses = past_uses;
duke@435 530 cg = CallGenerator::for_inline(method(), expected_uses);
duke@435 531 }
duke@435 532 if (failing()) return;
duke@435 533 if (cg == NULL) {
duke@435 534 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 535 return;
duke@435 536 }
duke@435 537 JVMState* jvms = build_start_state(start(), tf());
duke@435 538 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 539 record_method_not_compilable("method parse failed");
duke@435 540 return;
duke@435 541 }
duke@435 542 GraphKit kit(jvms);
duke@435 543
duke@435 544 if (!kit.stopped()) {
duke@435 545 // Accept return values, and transfer control we know not where.
duke@435 546 // This is done by a special, unique ReturnNode bound to root.
duke@435 547 return_values(kit.jvms());
duke@435 548 }
duke@435 549
duke@435 550 if (kit.has_exceptions()) {
duke@435 551 // Any exceptions that escape from this call must be rethrown
duke@435 552 // to whatever caller is dynamically above us on the stack.
duke@435 553 // This is done by a special, unique RethrowNode bound to root.
duke@435 554 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 555 }
duke@435 556
never@852 557 print_method("Before RemoveUseless", 3);
never@802 558
duke@435 559 // Remove clutter produced by parsing.
duke@435 560 if (!failing()) {
duke@435 561 ResourceMark rm;
duke@435 562 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 563 }
duke@435 564 }
duke@435 565
duke@435 566 // Note: Large methods are capped off in do_one_bytecode().
duke@435 567 if (failing()) return;
duke@435 568
duke@435 569 // After parsing, node notes are no longer automagic.
duke@435 570 // They must be propagated by register_new_node_with_optimizer(),
duke@435 571 // clone(), or the like.
duke@435 572 set_default_node_notes(NULL);
duke@435 573
duke@435 574 for (;;) {
duke@435 575 int successes = Inline_Warm();
duke@435 576 if (failing()) return;
duke@435 577 if (successes == 0) break;
duke@435 578 }
duke@435 579
duke@435 580 // Drain the list.
duke@435 581 Finish_Warm();
duke@435 582 #ifndef PRODUCT
duke@435 583 if (_printer) {
duke@435 584 _printer->print_inlining(this);
duke@435 585 }
duke@435 586 #endif
duke@435 587
duke@435 588 if (failing()) return;
duke@435 589 NOT_PRODUCT( verify_graph_edges(); )
duke@435 590
duke@435 591 // Perform escape analysis
kvn@679 592 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@679 593 TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
kvn@688 594 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
kvn@688 595 PhaseGVN* igvn = initial_gvn();
kvn@688 596 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 597 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@679 598
kvn@679 599 _congraph = new(comp_arena()) ConnectionGraph(this);
kvn@679 600 bool has_non_escaping_obj = _congraph->compute_escape();
kvn@473 601
duke@435 602 #ifndef PRODUCT
duke@435 603 if (PrintEscapeAnalysis) {
duke@435 604 _congraph->dump();
duke@435 605 }
duke@435 606 #endif
kvn@688 607 // Cleanup.
kvn@688 608 if (oop_null->outcnt() == 0)
kvn@688 609 igvn->hash_delete(oop_null);
kvn@688 610 if (noop_null->outcnt() == 0)
kvn@688 611 igvn->hash_delete(noop_null);
kvn@688 612
kvn@679 613 if (!has_non_escaping_obj) {
kvn@679 614 _congraph = NULL;
kvn@679 615 }
kvn@679 616
kvn@679 617 if (failing()) return;
duke@435 618 }
duke@435 619 // Now optimize
duke@435 620 Optimize();
duke@435 621 if (failing()) return;
duke@435 622 NOT_PRODUCT( verify_graph_edges(); )
duke@435 623
duke@435 624 #ifndef PRODUCT
duke@435 625 if (PrintIdeal) {
duke@435 626 ttyLocker ttyl; // keep the following output all in one block
duke@435 627 // This output goes directly to the tty, not the compiler log.
duke@435 628 // To enable tools to match it up with the compilation activity,
duke@435 629 // be sure to tag this tty output with the compile ID.
duke@435 630 if (xtty != NULL) {
duke@435 631 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 632 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 633 "");
duke@435 634 }
duke@435 635 root()->dump(9999);
duke@435 636 if (xtty != NULL) {
duke@435 637 xtty->tail("ideal");
duke@435 638 }
duke@435 639 }
duke@435 640 #endif
duke@435 641
duke@435 642 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 643 // for the original deopt pc.
duke@435 644
duke@435 645 _orig_pc_slot = fixed_slots();
duke@435 646 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 647 set_fixed_slots(next_slot);
duke@435 648
duke@435 649 // Now generate code
duke@435 650 Code_Gen();
duke@435 651 if (failing()) return;
duke@435 652
duke@435 653 // Check if we want to skip execution of all compiled code.
duke@435 654 {
duke@435 655 #ifndef PRODUCT
duke@435 656 if (OptoNoExecute) {
duke@435 657 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 658 return;
duke@435 659 }
duke@435 660 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 661 #endif
duke@435 662
duke@435 663 if (is_osr_compilation()) {
duke@435 664 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 665 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 666 } else {
duke@435 667 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 668 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 669 }
duke@435 670
duke@435 671 env()->register_method(_method, _entry_bci,
duke@435 672 &_code_offsets,
duke@435 673 _orig_pc_slot_offset_in_bytes,
duke@435 674 code_buffer(),
duke@435 675 frame_size_in_words(), _oop_map_set,
duke@435 676 &_handler_table, &_inc_table,
duke@435 677 compiler,
duke@435 678 env()->comp_level(),
duke@435 679 true, /*has_debug_info*/
duke@435 680 has_unsafe_access()
duke@435 681 );
duke@435 682 }
duke@435 683 }
duke@435 684
duke@435 685 //------------------------------Compile----------------------------------------
duke@435 686 // Compile a runtime stub
duke@435 687 Compile::Compile( ciEnv* ci_env,
duke@435 688 TypeFunc_generator generator,
duke@435 689 address stub_function,
duke@435 690 const char *stub_name,
duke@435 691 int is_fancy_jump,
duke@435 692 bool pass_tls,
duke@435 693 bool save_arg_registers,
duke@435 694 bool return_pc )
duke@435 695 : Phase(Compiler),
duke@435 696 _env(ci_env),
duke@435 697 _log(ci_env->log()),
duke@435 698 _compile_id(-1),
duke@435 699 _save_argument_registers(save_arg_registers),
duke@435 700 _method(NULL),
duke@435 701 _stub_name(stub_name),
duke@435 702 _stub_function(stub_function),
duke@435 703 _stub_entry_point(NULL),
duke@435 704 _entry_bci(InvocationEntryBci),
duke@435 705 _initial_gvn(NULL),
duke@435 706 _for_igvn(NULL),
duke@435 707 _warm_calls(NULL),
duke@435 708 _orig_pc_slot(0),
duke@435 709 _orig_pc_slot_offset_in_bytes(0),
duke@435 710 _subsume_loads(true),
kvn@473 711 _do_escape_analysis(false),
duke@435 712 _failure_reason(NULL),
duke@435 713 _code_buffer("Compile::Fill_buffer"),
duke@435 714 _node_bundling_limit(0),
duke@435 715 _node_bundling_base(NULL),
kvn@1294 716 _java_calls(0),
kvn@1294 717 _inner_loops(0),
duke@435 718 #ifndef PRODUCT
duke@435 719 _trace_opto_output(TraceOptoOutput),
duke@435 720 _printer(NULL),
duke@435 721 #endif
duke@435 722 _congraph(NULL) {
duke@435 723 C = this;
duke@435 724
duke@435 725 #ifndef PRODUCT
duke@435 726 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 727 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 728 set_print_assembly(PrintFrameConverterAssembly);
never@802 729 set_parsed_irreducible_loop(false);
duke@435 730 #endif
duke@435 731 CompileWrapper cw(this);
duke@435 732 Init(/*AliasLevel=*/ 0);
duke@435 733 init_tf((*generator)());
duke@435 734
duke@435 735 {
duke@435 736 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 737 Unique_Node_List for_igvn(comp_arena());
duke@435 738 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 739 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 740 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 741 gvn.transform_no_reclaim(top());
duke@435 742
duke@435 743 GraphKit kit;
duke@435 744 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 745 }
duke@435 746
duke@435 747 NOT_PRODUCT( verify_graph_edges(); )
duke@435 748 Code_Gen();
duke@435 749 if (failing()) return;
duke@435 750
duke@435 751
duke@435 752 // Entry point will be accessed using compile->stub_entry_point();
duke@435 753 if (code_buffer() == NULL) {
duke@435 754 Matcher::soft_match_failure();
duke@435 755 } else {
duke@435 756 if (PrintAssembly && (WizardMode || Verbose))
duke@435 757 tty->print_cr("### Stub::%s", stub_name);
duke@435 758
duke@435 759 if (!failing()) {
duke@435 760 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 761
duke@435 762 // Make the NMethod
duke@435 763 // For now we mark the frame as never safe for profile stackwalking
duke@435 764 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 765 code_buffer(),
duke@435 766 CodeOffsets::frame_never_safe,
duke@435 767 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 768 frame_size_in_words(),
duke@435 769 _oop_map_set,
duke@435 770 save_arg_registers);
duke@435 771 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 772
duke@435 773 _stub_entry_point = rs->entry_point();
duke@435 774 }
duke@435 775 }
duke@435 776 }
duke@435 777
duke@435 778 #ifndef PRODUCT
duke@435 779 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
duke@435 780 if(PrintOpto && Verbose) {
duke@435 781 tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
duke@435 782 }
duke@435 783 }
duke@435 784 #endif
duke@435 785
duke@435 786 void Compile::print_codes() {
duke@435 787 }
duke@435 788
duke@435 789 //------------------------------Init-------------------------------------------
duke@435 790 // Prepare for a single compilation
duke@435 791 void Compile::Init(int aliaslevel) {
duke@435 792 _unique = 0;
duke@435 793 _regalloc = NULL;
duke@435 794
duke@435 795 _tf = NULL; // filled in later
duke@435 796 _top = NULL; // cached later
duke@435 797 _matcher = NULL; // filled in later
duke@435 798 _cfg = NULL; // filled in later
duke@435 799
duke@435 800 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 801
duke@435 802 _node_note_array = NULL;
duke@435 803 _default_node_notes = NULL;
duke@435 804
duke@435 805 _immutable_memory = NULL; // filled in at first inquiry
duke@435 806
duke@435 807 // Globally visible Nodes
duke@435 808 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 809 set_cached_top_node(NULL);
duke@435 810 set_root(new (this, 3) RootNode());
duke@435 811 // Now that you have a Root to point to, create the real TOP
duke@435 812 set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
duke@435 813 set_recent_alloc(NULL, NULL);
duke@435 814
duke@435 815 // Create Debug Information Recorder to record scopes, oopmaps, etc.
duke@435 816 env()->set_oop_recorder(new OopRecorder(comp_arena()));
duke@435 817 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 818 env()->set_dependencies(new Dependencies(env()));
duke@435 819
duke@435 820 _fixed_slots = 0;
duke@435 821 set_has_split_ifs(false);
duke@435 822 set_has_loops(has_method() && method()->has_loops()); // first approximation
duke@435 823 _deopt_happens = true; // start out assuming the worst
duke@435 824 _trap_can_recompile = false; // no traps emitted yet
duke@435 825 _major_progress = true; // start out assuming good things will happen
duke@435 826 set_has_unsafe_access(false);
duke@435 827 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 828 set_decompile_count(0);
duke@435 829
rasbold@853 830 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
duke@435 831 // Compilation level related initialization
duke@435 832 if (env()->comp_level() == CompLevel_fast_compile) {
duke@435 833 set_num_loop_opts(Tier1LoopOptsCount);
duke@435 834 set_do_inlining(Tier1Inline != 0);
duke@435 835 set_max_inline_size(Tier1MaxInlineSize);
duke@435 836 set_freq_inline_size(Tier1FreqInlineSize);
duke@435 837 set_do_scheduling(false);
duke@435 838 set_do_count_invocations(Tier1CountInvocations);
duke@435 839 set_do_method_data_update(Tier1UpdateMethodData);
duke@435 840 } else {
duke@435 841 assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
duke@435 842 set_num_loop_opts(LoopOptsCount);
duke@435 843 set_do_inlining(Inline);
duke@435 844 set_max_inline_size(MaxInlineSize);
duke@435 845 set_freq_inline_size(FreqInlineSize);
duke@435 846 set_do_scheduling(OptoScheduling);
duke@435 847 set_do_count_invocations(false);
duke@435 848 set_do_method_data_update(false);
duke@435 849 }
duke@435 850
duke@435 851 if (debug_info()->recording_non_safepoints()) {
duke@435 852 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 853 (comp_arena(), 8, 0, NULL));
duke@435 854 set_default_node_notes(Node_Notes::make(this));
duke@435 855 }
duke@435 856
duke@435 857 // // -- Initialize types before each compile --
duke@435 858 // // Update cached type information
duke@435 859 // if( _method && _method->constants() )
duke@435 860 // Type::update_loaded_types(_method, _method->constants());
duke@435 861
duke@435 862 // Init alias_type map.
kvn@473 863 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 864 aliaslevel = 2; // No unique types without escape analysis
duke@435 865 _AliasLevel = aliaslevel;
duke@435 866 const int grow_ats = 16;
duke@435 867 _max_alias_types = grow_ats;
duke@435 868 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 869 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 870 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 871 {
duke@435 872 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 873 }
duke@435 874 // Initialize the first few types.
duke@435 875 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 876 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 877 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 878 _num_alias_types = AliasIdxRaw+1;
duke@435 879 // Zero out the alias type cache.
duke@435 880 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 881 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 882 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 883
duke@435 884 _intrinsics = NULL;
duke@435 885 _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 886 register_library_intrinsics();
duke@435 887 }
duke@435 888
duke@435 889 //---------------------------init_start----------------------------------------
duke@435 890 // Install the StartNode on this compile object.
duke@435 891 void Compile::init_start(StartNode* s) {
duke@435 892 if (failing())
duke@435 893 return; // already failing
duke@435 894 assert(s == start(), "");
duke@435 895 }
duke@435 896
duke@435 897 StartNode* Compile::start() const {
duke@435 898 assert(!failing(), "");
duke@435 899 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 900 Node* start = root()->fast_out(i);
duke@435 901 if( start->is_Start() )
duke@435 902 return start->as_Start();
duke@435 903 }
duke@435 904 ShouldNotReachHere();
duke@435 905 return NULL;
duke@435 906 }
duke@435 907
duke@435 908 //-------------------------------immutable_memory-------------------------------------
duke@435 909 // Access immutable memory
duke@435 910 Node* Compile::immutable_memory() {
duke@435 911 if (_immutable_memory != NULL) {
duke@435 912 return _immutable_memory;
duke@435 913 }
duke@435 914 StartNode* s = start();
duke@435 915 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 916 Node *p = s->fast_out(i);
duke@435 917 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 918 _immutable_memory = p;
duke@435 919 return _immutable_memory;
duke@435 920 }
duke@435 921 }
duke@435 922 ShouldNotReachHere();
duke@435 923 return NULL;
duke@435 924 }
duke@435 925
duke@435 926 //----------------------set_cached_top_node------------------------------------
duke@435 927 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 928 void Compile::set_cached_top_node(Node* tn) {
duke@435 929 if (tn != NULL) verify_top(tn);
duke@435 930 Node* old_top = _top;
duke@435 931 _top = tn;
duke@435 932 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 933 // their _out arrays.
duke@435 934 if (_top != NULL) _top->setup_is_top();
duke@435 935 if (old_top != NULL) old_top->setup_is_top();
duke@435 936 assert(_top == NULL || top()->is_top(), "");
duke@435 937 }
duke@435 938
duke@435 939 #ifndef PRODUCT
duke@435 940 void Compile::verify_top(Node* tn) const {
duke@435 941 if (tn != NULL) {
duke@435 942 assert(tn->is_Con(), "top node must be a constant");
duke@435 943 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 944 assert(tn->in(0) != NULL, "must have live top node");
duke@435 945 }
duke@435 946 }
duke@435 947 #endif
duke@435 948
duke@435 949
duke@435 950 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 951
duke@435 952 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 953 guarantee(arr != NULL, "");
duke@435 954 int num_blocks = arr->length();
duke@435 955 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 956 int num_notes = grow_by * _node_notes_block_size;
duke@435 957 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 958 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 959 while (num_notes > 0) {
duke@435 960 arr->append(notes);
duke@435 961 notes += _node_notes_block_size;
duke@435 962 num_notes -= _node_notes_block_size;
duke@435 963 }
duke@435 964 assert(num_notes == 0, "exact multiple, please");
duke@435 965 }
duke@435 966
duke@435 967 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 968 if (source == NULL || dest == NULL) return false;
duke@435 969
duke@435 970 if (dest->is_Con())
duke@435 971 return false; // Do not push debug info onto constants.
duke@435 972
duke@435 973 #ifdef ASSERT
duke@435 974 // Leave a bread crumb trail pointing to the original node:
duke@435 975 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 976 dest->set_debug_orig(source);
duke@435 977 }
duke@435 978 #endif
duke@435 979
duke@435 980 if (node_note_array() == NULL)
duke@435 981 return false; // Not collecting any notes now.
duke@435 982
duke@435 983 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 984 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 985 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 986 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 987 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 988 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 989 return set_node_notes_at(dest->_idx, source_notes);
duke@435 990 }
duke@435 991
duke@435 992 Node_Notes merged_notes = (*source_notes);
duke@435 993 // The order of operations here ensures that dest notes will win...
duke@435 994 merged_notes.update_from(dest_notes);
duke@435 995 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 996 }
duke@435 997
duke@435 998
duke@435 999 //--------------------------allow_range_check_smearing-------------------------
duke@435 1000 // Gating condition for coalescing similar range checks.
duke@435 1001 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1002 // single covering check that is at least as strong as any of them.
duke@435 1003 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1004 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1005 // on the optimization.
duke@435 1006 bool Compile::allow_range_check_smearing() const {
duke@435 1007 // If this method has already thrown a range-check,
duke@435 1008 // assume it was because we already tried range smearing
duke@435 1009 // and it failed.
duke@435 1010 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1011 return !already_trapped;
duke@435 1012 }
duke@435 1013
duke@435 1014
duke@435 1015 //------------------------------flatten_alias_type-----------------------------
duke@435 1016 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1017 int offset = tj->offset();
duke@435 1018 TypePtr::PTR ptr = tj->ptr();
duke@435 1019
kvn@682 1020 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1021 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1022 tj->is_oopptr()->is_known_instance();
kvn@682 1023
duke@435 1024 // Process weird unsafe references.
duke@435 1025 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1026 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1027 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1028 tj = TypeOopPtr::BOTTOM;
duke@435 1029 ptr = tj->ptr();
duke@435 1030 offset = tj->offset();
duke@435 1031 }
duke@435 1032
duke@435 1033 // Array pointers need some flattening
duke@435 1034 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1035 if( ta && is_known_inst ) {
kvn@682 1036 if ( offset != Type::OffsetBot &&
kvn@682 1037 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1038 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1039 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1040 }
kvn@682 1041 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1042 // For arrays indexed by constant indices, we flatten the alias
duke@435 1043 // space to include all of the array body. Only the header, klass
duke@435 1044 // and array length can be accessed un-aliased.
duke@435 1045 if( offset != Type::OffsetBot ) {
duke@435 1046 if( ta->const_oop() ) { // methodDataOop or methodOop
duke@435 1047 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1048 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1049 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1050 // range is OK as-is.
duke@435 1051 tj = ta = TypeAryPtr::RANGE;
duke@435 1052 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1053 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1054 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1055 ptr = TypePtr::BotPTR;
duke@435 1056 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1057 tj = TypeInstPtr::MARK;
duke@435 1058 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1059 ptr = TypePtr::BotPTR;
duke@435 1060 } else { // Random constant offset into array body
duke@435 1061 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1062 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1063 }
duke@435 1064 }
duke@435 1065 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1066 if (ta->size() != TypeInt::POS) {
duke@435 1067 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1068 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1069 }
duke@435 1070 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1071 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1072 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1073 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1074 }
duke@435 1075 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1076 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1077 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1078 }
duke@435 1079 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1080 // cannot be distinguished by bytecode alone.
duke@435 1081 if (ta->elem() == TypeInt::BOOL) {
duke@435 1082 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1083 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1084 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1085 }
duke@435 1086 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1087 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1088 // Also, make sure exact and non-exact variants alias the same.
duke@435 1089 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
duke@435 1090 if (ta->const_oop()) {
duke@435 1091 tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1092 } else {
duke@435 1093 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1094 }
duke@435 1095 }
duke@435 1096 }
duke@435 1097
duke@435 1098 // Oop pointers need some flattening
duke@435 1099 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1100 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
duke@435 1101 if( ptr == TypePtr::Constant ) {
duke@435 1102 // No constant oop pointers (such as Strings); they alias with
duke@435 1103 // unknown strings.
kvn@682 1104 assert(!is_known_inst, "not scalarizable allocation");
duke@435 1105 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
kvn@682 1106 } else if( is_known_inst ) {
kvn@598 1107 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1108 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1109 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1110 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1111 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1112 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1113 }
duke@435 1114 // Canonicalize the holder of this field
duke@435 1115 ciInstanceKlass *k = to->klass()->as_instance_klass();
coleenp@548 1116 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1117 // First handle header references such as a LoadKlassNode, even if the
duke@435 1118 // object's klass is unloaded at compile time (4965979).
kvn@682 1119 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1120 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1121 }
duke@435 1122 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
duke@435 1123 to = NULL;
duke@435 1124 tj = TypeOopPtr::BOTTOM;
duke@435 1125 offset = tj->offset();
duke@435 1126 } else {
duke@435 1127 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1128 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1129 if( is_known_inst ) {
kvn@682 1130 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1131 } else {
kvn@682 1132 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1133 }
duke@435 1134 }
duke@435 1135 }
duke@435 1136 }
duke@435 1137
duke@435 1138 // Klass pointers to object array klasses need some flattening
duke@435 1139 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1140 if( tk ) {
duke@435 1141 // If we are referencing a field within a Klass, we need
duke@435 1142 // to assume the worst case of an Object. Both exact and
duke@435 1143 // inexact types must flatten to the same alias class.
duke@435 1144 // Since the flattened result for a klass is defined to be
duke@435 1145 // precisely java.lang.Object, use a constant ptr.
duke@435 1146 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1147
duke@435 1148 tj = tk = TypeKlassPtr::make(TypePtr::Constant,
duke@435 1149 TypeKlassPtr::OBJECT->klass(),
duke@435 1150 offset);
duke@435 1151 }
duke@435 1152
duke@435 1153 ciKlass* klass = tk->klass();
duke@435 1154 if( klass->is_obj_array_klass() ) {
duke@435 1155 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1156 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1157 k = TypeInstPtr::BOTTOM->klass();
duke@435 1158 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1159 }
duke@435 1160
duke@435 1161 // Check for precise loads from the primary supertype array and force them
duke@435 1162 // to the supertype cache alias index. Check for generic array loads from
duke@435 1163 // the primary supertype array and also force them to the supertype cache
duke@435 1164 // alias index. Since the same load can reach both, we need to merge
duke@435 1165 // these 2 disparate memories into the same alias class. Since the
duke@435 1166 // primary supertype array is read-only, there's no chance of confusion
duke@435 1167 // where we bypass an array load and an array store.
duke@435 1168 uint off2 = offset - Klass::primary_supers_offset_in_bytes();
duke@435 1169 if( offset == Type::OffsetBot ||
duke@435 1170 off2 < Klass::primary_super_limit()*wordSize ) {
duke@435 1171 offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
duke@435 1172 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1173 }
duke@435 1174 }
duke@435 1175
duke@435 1176 // Flatten all Raw pointers together.
duke@435 1177 if (tj->base() == Type::RawPtr)
duke@435 1178 tj = TypeRawPtr::BOTTOM;
duke@435 1179
duke@435 1180 if (tj->base() == Type::AnyPtr)
duke@435 1181 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1182
duke@435 1183 // Flatten all to bottom for now
duke@435 1184 switch( _AliasLevel ) {
duke@435 1185 case 0:
duke@435 1186 tj = TypePtr::BOTTOM;
duke@435 1187 break;
duke@435 1188 case 1: // Flatten to: oop, static, field or array
duke@435 1189 switch (tj->base()) {
duke@435 1190 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1191 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1192 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1193 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1194 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1195 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1196 default: ShouldNotReachHere();
duke@435 1197 }
duke@435 1198 break;
twisti@1040 1199 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1200 case 3: // No collapsing at level 3; keep all splits
duke@435 1201 break;
duke@435 1202 default:
duke@435 1203 Unimplemented();
duke@435 1204 }
duke@435 1205
duke@435 1206 offset = tj->offset();
duke@435 1207 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1208
duke@435 1209 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1210 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1211 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1212 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1213 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1214 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1215 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1216 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1217 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1218 tj->ptr() != TypePtr::AnyNull &&
duke@435 1219 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1220 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1221 // tj->base() == Type::RawPtr ||
duke@435 1222 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1223
duke@435 1224 return tj;
duke@435 1225 }
duke@435 1226
duke@435 1227 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1228 _index = i;
duke@435 1229 _adr_type = at;
duke@435 1230 _field = NULL;
duke@435 1231 _is_rewritable = true; // default
duke@435 1232 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1233 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1234 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1235 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1236 } else {
duke@435 1237 _general_index = 0;
duke@435 1238 }
duke@435 1239 }
duke@435 1240
duke@435 1241 //---------------------------------print_on------------------------------------
duke@435 1242 #ifndef PRODUCT
duke@435 1243 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1244 if (index() < 10)
duke@435 1245 st->print("@ <%d> ", index());
duke@435 1246 else st->print("@ <%d>", index());
duke@435 1247 st->print(is_rewritable() ? " " : " RO");
duke@435 1248 int offset = adr_type()->offset();
duke@435 1249 if (offset == Type::OffsetBot)
duke@435 1250 st->print(" +any");
duke@435 1251 else st->print(" +%-3d", offset);
duke@435 1252 st->print(" in ");
duke@435 1253 adr_type()->dump_on(st);
duke@435 1254 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1255 if (field() != NULL && tjp) {
duke@435 1256 if (tjp->klass() != field()->holder() ||
duke@435 1257 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1258 st->print(" != ");
duke@435 1259 field()->print();
duke@435 1260 st->print(" ***");
duke@435 1261 }
duke@435 1262 }
duke@435 1263 }
duke@435 1264
duke@435 1265 void print_alias_types() {
duke@435 1266 Compile* C = Compile::current();
duke@435 1267 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1268 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1269 C->alias_type(idx)->print_on(tty);
duke@435 1270 tty->cr();
duke@435 1271 }
duke@435 1272 }
duke@435 1273 #endif
duke@435 1274
duke@435 1275
duke@435 1276 //----------------------------probe_alias_cache--------------------------------
duke@435 1277 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1278 intptr_t key = (intptr_t) adr_type;
duke@435 1279 key ^= key >> logAliasCacheSize;
duke@435 1280 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1281 }
duke@435 1282
duke@435 1283
duke@435 1284 //-----------------------------grow_alias_types--------------------------------
duke@435 1285 void Compile::grow_alias_types() {
duke@435 1286 const int old_ats = _max_alias_types; // how many before?
duke@435 1287 const int new_ats = old_ats; // how many more?
duke@435 1288 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1289 _max_alias_types = grow_ats;
duke@435 1290 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1291 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1292 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1293 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1294 }
duke@435 1295
duke@435 1296
duke@435 1297 //--------------------------------find_alias_type------------------------------
duke@435 1298 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
duke@435 1299 if (_AliasLevel == 0)
duke@435 1300 return alias_type(AliasIdxBot);
duke@435 1301
duke@435 1302 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1303 if (ace->_adr_type == adr_type) {
duke@435 1304 return alias_type(ace->_index);
duke@435 1305 }
duke@435 1306
duke@435 1307 // Handle special cases.
duke@435 1308 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1309 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1310
duke@435 1311 // Do it the slow way.
duke@435 1312 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1313
duke@435 1314 #ifdef ASSERT
duke@435 1315 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1316 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1317 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1318 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1319 // Scalarizable allocations have exact klass always.
kvn@682 1320 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1321 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1322 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1323 }
duke@435 1324 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1325 #endif
duke@435 1326
duke@435 1327 int idx = AliasIdxTop;
duke@435 1328 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1329 if (alias_type(i)->adr_type() == flat) {
duke@435 1330 idx = i;
duke@435 1331 break;
duke@435 1332 }
duke@435 1333 }
duke@435 1334
duke@435 1335 if (idx == AliasIdxTop) {
duke@435 1336 if (no_create) return NULL;
duke@435 1337 // Grow the array if necessary.
duke@435 1338 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1339 // Add a new alias type.
duke@435 1340 idx = _num_alias_types++;
duke@435 1341 _alias_types[idx]->Init(idx, flat);
duke@435 1342 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1343 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1344 if (flat->isa_instptr()) {
duke@435 1345 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1346 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1347 alias_type(idx)->set_rewritable(false);
duke@435 1348 }
duke@435 1349 if (flat->isa_klassptr()) {
duke@435 1350 if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1351 alias_type(idx)->set_rewritable(false);
duke@435 1352 if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1353 alias_type(idx)->set_rewritable(false);
duke@435 1354 if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1355 alias_type(idx)->set_rewritable(false);
duke@435 1356 if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1357 alias_type(idx)->set_rewritable(false);
duke@435 1358 }
duke@435 1359 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1360 // but the base pointer type is not distinctive enough to identify
duke@435 1361 // references into JavaThread.)
duke@435 1362
duke@435 1363 // Check for final instance fields.
duke@435 1364 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1365 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
duke@435 1366 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
duke@435 1367 ciField* field = k->get_field_by_offset(tinst->offset(), false);
duke@435 1368 // Set field() and is_rewritable() attributes.
duke@435 1369 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1370 }
duke@435 1371 const TypeKlassPtr* tklass = flat->isa_klassptr();
duke@435 1372 // Check for final static fields.
duke@435 1373 if (tklass && tklass->klass()->is_instance_klass()) {
duke@435 1374 ciInstanceKlass *k = tklass->klass()->as_instance_klass();
duke@435 1375 ciField* field = k->get_field_by_offset(tklass->offset(), true);
duke@435 1376 // Set field() and is_rewritable() attributes.
duke@435 1377 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1378 }
duke@435 1379 }
duke@435 1380
duke@435 1381 // Fill the cache for next time.
duke@435 1382 ace->_adr_type = adr_type;
duke@435 1383 ace->_index = idx;
duke@435 1384 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1385
duke@435 1386 // Might as well try to fill the cache for the flattened version, too.
duke@435 1387 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1388 if (face->_adr_type == NULL) {
duke@435 1389 face->_adr_type = flat;
duke@435 1390 face->_index = idx;
duke@435 1391 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1392 }
duke@435 1393
duke@435 1394 return alias_type(idx);
duke@435 1395 }
duke@435 1396
duke@435 1397
duke@435 1398 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1399 const TypeOopPtr* t;
duke@435 1400 if (field->is_static())
duke@435 1401 t = TypeKlassPtr::make(field->holder());
duke@435 1402 else
duke@435 1403 t = TypeOopPtr::make_from_klass_raw(field->holder());
duke@435 1404 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
duke@435 1405 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1406 return atp;
duke@435 1407 }
duke@435 1408
duke@435 1409
duke@435 1410 //------------------------------have_alias_type--------------------------------
duke@435 1411 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1412 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1413 if (ace->_adr_type == adr_type) {
duke@435 1414 return true;
duke@435 1415 }
duke@435 1416
duke@435 1417 // Handle special cases.
duke@435 1418 if (adr_type == NULL) return true;
duke@435 1419 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1420
duke@435 1421 return find_alias_type(adr_type, true) != NULL;
duke@435 1422 }
duke@435 1423
duke@435 1424 //-----------------------------must_alias--------------------------------------
duke@435 1425 // True if all values of the given address type are in the given alias category.
duke@435 1426 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1427 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1428 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1429 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1430 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1431
duke@435 1432 // the only remaining possible overlap is identity
duke@435 1433 int adr_idx = get_alias_index(adr_type);
duke@435 1434 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1435 assert(adr_idx == alias_idx ||
duke@435 1436 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1437 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1438 "should not be testing for overlap with an unsafe pointer");
duke@435 1439 return adr_idx == alias_idx;
duke@435 1440 }
duke@435 1441
duke@435 1442 //------------------------------can_alias--------------------------------------
duke@435 1443 // True if any values of the given address type are in the given alias category.
duke@435 1444 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1445 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1446 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1447 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1448 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1449
duke@435 1450 // the only remaining possible overlap is identity
duke@435 1451 int adr_idx = get_alias_index(adr_type);
duke@435 1452 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1453 return adr_idx == alias_idx;
duke@435 1454 }
duke@435 1455
duke@435 1456
duke@435 1457
duke@435 1458 //---------------------------pop_warm_call-------------------------------------
duke@435 1459 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1460 WarmCallInfo* wci = _warm_calls;
duke@435 1461 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1462 return wci;
duke@435 1463 }
duke@435 1464
duke@435 1465 //----------------------------Inline_Warm--------------------------------------
duke@435 1466 int Compile::Inline_Warm() {
duke@435 1467 // If there is room, try to inline some more warm call sites.
duke@435 1468 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1469 if (!InlineWarmCalls) return 0;
duke@435 1470
duke@435 1471 int calls_made_hot = 0;
duke@435 1472 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1473 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1474 int amount_grown = 0;
duke@435 1475 WarmCallInfo* call;
duke@435 1476 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1477 int est_size = (int)call->size();
duke@435 1478 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1479 // This one won't fit anyway. Get rid of it.
duke@435 1480 call->make_cold();
duke@435 1481 continue;
duke@435 1482 }
duke@435 1483 call->make_hot();
duke@435 1484 calls_made_hot++;
duke@435 1485 amount_grown += est_size;
duke@435 1486 amount_to_grow -= est_size;
duke@435 1487 }
duke@435 1488
duke@435 1489 if (calls_made_hot > 0) set_major_progress();
duke@435 1490 return calls_made_hot;
duke@435 1491 }
duke@435 1492
duke@435 1493
duke@435 1494 //----------------------------Finish_Warm--------------------------------------
duke@435 1495 void Compile::Finish_Warm() {
duke@435 1496 if (!InlineWarmCalls) return;
duke@435 1497 if (failing()) return;
duke@435 1498 if (warm_calls() == NULL) return;
duke@435 1499
duke@435 1500 // Clean up loose ends, if we are out of space for inlining.
duke@435 1501 WarmCallInfo* call;
duke@435 1502 while ((call = pop_warm_call()) != NULL) {
duke@435 1503 call->make_cold();
duke@435 1504 }
duke@435 1505 }
duke@435 1506
duke@435 1507
duke@435 1508 //------------------------------Optimize---------------------------------------
duke@435 1509 // Given a graph, optimize it.
duke@435 1510 void Compile::Optimize() {
duke@435 1511 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1512
duke@435 1513 #ifndef PRODUCT
duke@435 1514 if (env()->break_at_compile()) {
duke@435 1515 BREAKPOINT;
duke@435 1516 }
duke@435 1517
duke@435 1518 #endif
duke@435 1519
duke@435 1520 ResourceMark rm;
duke@435 1521 int loop_opts_cnt;
duke@435 1522
duke@435 1523 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1524
never@657 1525 print_method("After Parsing");
duke@435 1526
duke@435 1527 {
duke@435 1528 // Iterative Global Value Numbering, including ideal transforms
duke@435 1529 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1530 PhaseIterGVN igvn(initial_gvn());
duke@435 1531 {
duke@435 1532 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1533 igvn.optimize();
duke@435 1534 }
duke@435 1535
duke@435 1536 print_method("Iter GVN 1", 2);
duke@435 1537
duke@435 1538 if (failing()) return;
duke@435 1539
duke@435 1540 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1541 // peeling, unrolling, etc.
duke@435 1542
duke@435 1543 // Set loop opts counter
duke@435 1544 loop_opts_cnt = num_loop_opts();
duke@435 1545 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1546 {
duke@435 1547 TracePhase t2("idealLoop", &_t_idealLoop, true);
never@1356 1548 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1549 loop_opts_cnt--;
duke@435 1550 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1551 if (failing()) return;
duke@435 1552 }
duke@435 1553 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1554 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1555 TracePhase t3("idealLoop", &_t_idealLoop, true);
never@1356 1556 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1557 loop_opts_cnt--;
duke@435 1558 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1559 if (failing()) return;
duke@435 1560 }
duke@435 1561 // Loop opts pass for loop-unrolling before CCP
duke@435 1562 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1563 TracePhase t4("idealLoop", &_t_idealLoop, true);
never@1356 1564 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1565 loop_opts_cnt--;
duke@435 1566 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1567 }
never@1356 1568 if (!failing()) {
never@1356 1569 // Verify that last round of loop opts produced a valid graph
never@1356 1570 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1571 PhaseIdealLoop::verify(igvn);
never@1356 1572 }
duke@435 1573 }
duke@435 1574 if (failing()) return;
duke@435 1575
duke@435 1576 // Conditional Constant Propagation;
duke@435 1577 PhaseCCP ccp( &igvn );
duke@435 1578 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1579 {
duke@435 1580 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1581 ccp.do_transform();
duke@435 1582 }
duke@435 1583 print_method("PhaseCPP 1", 2);
duke@435 1584
duke@435 1585 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1586
duke@435 1587 // Iterative Global Value Numbering, including ideal transforms
duke@435 1588 {
duke@435 1589 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1590 igvn = ccp;
duke@435 1591 igvn.optimize();
duke@435 1592 }
duke@435 1593
duke@435 1594 print_method("Iter GVN 2", 2);
duke@435 1595
duke@435 1596 if (failing()) return;
duke@435 1597
duke@435 1598 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1599 // peeling, unrolling, etc.
duke@435 1600 if(loop_opts_cnt > 0) {
duke@435 1601 debug_only( int cnt = 0; );
duke@435 1602 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1603 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1604 assert( cnt++ < 40, "infinite cycle in loop optimization" );
never@1356 1605 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1606 loop_opts_cnt--;
duke@435 1607 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1608 if (failing()) return;
duke@435 1609 }
duke@435 1610 }
never@1356 1611
never@1356 1612 {
never@1356 1613 // Verify that all previous optimizations produced a valid graph
never@1356 1614 // at least to this point, even if no loop optimizations were done.
never@1356 1615 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1616 PhaseIdealLoop::verify(igvn);
never@1356 1617 }
never@1356 1618
duke@435 1619 {
duke@435 1620 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1621 PhaseMacroExpand mex(igvn);
duke@435 1622 if (mex.expand_macro_nodes()) {
duke@435 1623 assert(failing(), "must bail out w/ explicit message");
duke@435 1624 return;
duke@435 1625 }
duke@435 1626 }
duke@435 1627
duke@435 1628 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1629
duke@435 1630 // A method with only infinite loops has no edges entering loops from root
duke@435 1631 {
duke@435 1632 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1633 if (final_graph_reshaping()) {
duke@435 1634 assert(failing(), "must bail out w/ explicit message");
duke@435 1635 return;
duke@435 1636 }
duke@435 1637 }
duke@435 1638
duke@435 1639 print_method("Optimize finished", 2);
duke@435 1640 }
duke@435 1641
duke@435 1642
duke@435 1643 //------------------------------Code_Gen---------------------------------------
duke@435 1644 // Given a graph, generate code for it
duke@435 1645 void Compile::Code_Gen() {
duke@435 1646 if (failing()) return;
duke@435 1647
duke@435 1648 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1649 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1650 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1651 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1652 // set a bit in reclaimed memory.
duke@435 1653
duke@435 1654 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1655 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1656 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1657
duke@435 1658 Node_List proj_list;
duke@435 1659 Matcher m(proj_list);
duke@435 1660 _matcher = &m;
duke@435 1661 {
duke@435 1662 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1663 m.match();
duke@435 1664 }
duke@435 1665 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1666 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1667 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1668
duke@435 1669 // If you have too many nodes, or if matching has failed, bail out
duke@435 1670 check_node_count(0, "out of nodes matching instructions");
duke@435 1671 if (failing()) return;
duke@435 1672
duke@435 1673 // Build a proper-looking CFG
duke@435 1674 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1675 _cfg = &cfg;
duke@435 1676 {
duke@435 1677 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1678 cfg.Dominators();
duke@435 1679 if (failing()) return;
duke@435 1680
duke@435 1681 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1682
duke@435 1683 cfg.Estimate_Block_Frequency();
duke@435 1684 cfg.GlobalCodeMotion(m,unique(),proj_list);
duke@435 1685
duke@435 1686 print_method("Global code motion", 2);
duke@435 1687
duke@435 1688 if (failing()) return;
duke@435 1689 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1690
duke@435 1691 debug_only( cfg.verify(); )
duke@435 1692 }
duke@435 1693 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1694
duke@435 1695 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1696 _regalloc = &regalloc;
duke@435 1697 {
duke@435 1698 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1699 // Perform any platform dependent preallocation actions. This is used,
duke@435 1700 // for example, to avoid taking an implicit null pointer exception
duke@435 1701 // using the frame pointer on win95.
duke@435 1702 _regalloc->pd_preallocate_hook();
duke@435 1703
duke@435 1704 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1705 // no longer accurate (at spill code) and so must be ignored.
duke@435 1706 // Node->LRG->reg mappings are still accurate.
duke@435 1707 _regalloc->Register_Allocate();
duke@435 1708
duke@435 1709 // Bail out if the allocator builds too many nodes
duke@435 1710 if (failing()) return;
duke@435 1711 }
duke@435 1712
duke@435 1713 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1714 // the allocator needed a place to spill. After register allocation we
duke@435 1715 // are not adding any new instructions. If any basic block is empty, we
duke@435 1716 // can now safely remove it.
duke@435 1717 {
rasbold@853 1718 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1719 cfg.remove_empty();
rasbold@853 1720 if (do_freq_based_layout()) {
rasbold@853 1721 PhaseBlockLayout layout(cfg);
rasbold@853 1722 } else {
rasbold@853 1723 cfg.set_loop_alignment();
rasbold@853 1724 }
rasbold@853 1725 cfg.fixup_flow();
duke@435 1726 }
duke@435 1727
duke@435 1728 // Perform any platform dependent postallocation verifications.
duke@435 1729 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 1730
duke@435 1731 // Apply peephole optimizations
duke@435 1732 if( OptoPeephole ) {
duke@435 1733 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 1734 PhasePeephole peep( _regalloc, cfg);
duke@435 1735 peep.do_transform();
duke@435 1736 }
duke@435 1737
duke@435 1738 // Convert Nodes to instruction bits in a buffer
duke@435 1739 {
duke@435 1740 // %%%% workspace merge brought two timers together for one job
duke@435 1741 TracePhase t2a("output", &_t_output, true);
duke@435 1742 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 1743 Output();
duke@435 1744 }
duke@435 1745
never@657 1746 print_method("Final Code");
duke@435 1747
duke@435 1748 // He's dead, Jim.
duke@435 1749 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 1750 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 1751 }
duke@435 1752
duke@435 1753
duke@435 1754 //------------------------------dump_asm---------------------------------------
duke@435 1755 // Dump formatted assembly
duke@435 1756 #ifndef PRODUCT
duke@435 1757 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 1758 bool cut_short = false;
duke@435 1759 tty->print_cr("#");
duke@435 1760 tty->print("# "); _tf->dump(); tty->cr();
duke@435 1761 tty->print_cr("#");
duke@435 1762
duke@435 1763 // For all blocks
duke@435 1764 int pc = 0x0; // Program counter
duke@435 1765 char starts_bundle = ' ';
duke@435 1766 _regalloc->dump_frame();
duke@435 1767
duke@435 1768 Node *n = NULL;
duke@435 1769 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1770 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1771 Block *b = _cfg->_blocks[i];
duke@435 1772 if (b->is_connector() && !Verbose) continue;
duke@435 1773 n = b->_nodes[0];
duke@435 1774 if (pcs && n->_idx < pc_limit)
duke@435 1775 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 1776 else
duke@435 1777 tty->print(" ");
duke@435 1778 b->dump_head( &_cfg->_bbs );
duke@435 1779 if (b->is_connector()) {
duke@435 1780 tty->print_cr(" # Empty connector block");
duke@435 1781 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 1782 tty->print_cr(" # Block is sole successor of call");
duke@435 1783 }
duke@435 1784
duke@435 1785 // For all instructions
duke@435 1786 Node *delay = NULL;
duke@435 1787 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 1788 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1789 n = b->_nodes[j];
duke@435 1790 if (valid_bundle_info(n)) {
duke@435 1791 Bundle *bundle = node_bundling(n);
duke@435 1792 if (bundle->used_in_unconditional_delay()) {
duke@435 1793 delay = n;
duke@435 1794 continue;
duke@435 1795 }
duke@435 1796 if (bundle->starts_bundle())
duke@435 1797 starts_bundle = '+';
duke@435 1798 }
duke@435 1799
coleenp@548 1800 if (WizardMode) n->dump();
coleenp@548 1801
duke@435 1802 if( !n->is_Region() && // Dont print in the Assembly
duke@435 1803 !n->is_Phi() && // a few noisely useless nodes
duke@435 1804 !n->is_Proj() &&
duke@435 1805 !n->is_MachTemp() &&
duke@435 1806 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 1807 !n->is_MergeMem() && // Not very interesting
duke@435 1808 !n->is_top() && // Debug info table constants
duke@435 1809 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 1810 ) {
duke@435 1811 if (pcs && n->_idx < pc_limit)
duke@435 1812 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1813 else
duke@435 1814 tty->print(" ");
duke@435 1815 tty->print(" %c ", starts_bundle);
duke@435 1816 starts_bundle = ' ';
duke@435 1817 tty->print("\t");
duke@435 1818 n->format(_regalloc, tty);
duke@435 1819 tty->cr();
duke@435 1820 }
duke@435 1821
duke@435 1822 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 1823 // then back up and print it
duke@435 1824 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1825 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 1826 if (WizardMode) delay->dump();
coleenp@548 1827
duke@435 1828 if (node_bundling(delay)->starts_bundle())
duke@435 1829 starts_bundle = '+';
duke@435 1830 if (pcs && n->_idx < pc_limit)
duke@435 1831 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1832 else
duke@435 1833 tty->print(" ");
duke@435 1834 tty->print(" %c ", starts_bundle);
duke@435 1835 starts_bundle = ' ';
duke@435 1836 tty->print("\t");
duke@435 1837 delay->format(_regalloc, tty);
duke@435 1838 tty->print_cr("");
duke@435 1839 delay = NULL;
duke@435 1840 }
duke@435 1841
duke@435 1842 // Dump the exception table as well
duke@435 1843 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 1844 // Print the exception table for this offset
duke@435 1845 _handler_table.print_subtable_for(pc);
duke@435 1846 }
duke@435 1847 }
duke@435 1848
duke@435 1849 if (pcs && n->_idx < pc_limit)
duke@435 1850 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 1851 else
duke@435 1852 tty->print_cr("");
duke@435 1853
duke@435 1854 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 1855
duke@435 1856 } // End of per-block dump
duke@435 1857 tty->print_cr("");
duke@435 1858
duke@435 1859 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 1860 }
duke@435 1861 #endif
duke@435 1862
duke@435 1863 //------------------------------Final_Reshape_Counts---------------------------
duke@435 1864 // This class defines counters to help identify when a method
duke@435 1865 // may/must be executed using hardware with only 24-bit precision.
duke@435 1866 struct Final_Reshape_Counts : public StackObj {
duke@435 1867 int _call_count; // count non-inlined 'common' calls
duke@435 1868 int _float_count; // count float ops requiring 24-bit precision
duke@435 1869 int _double_count; // count double ops requiring more precision
duke@435 1870 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 1871 int _inner_loop_count; // count loops which need alignment
duke@435 1872 VectorSet _visited; // Visitation flags
duke@435 1873 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 1874
duke@435 1875 Final_Reshape_Counts() :
kvn@1294 1876 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 1877 _java_call_count(0), _inner_loop_count(0),
duke@435 1878 _visited( Thread::current()->resource_area() ) { }
duke@435 1879
duke@435 1880 void inc_call_count () { _call_count ++; }
duke@435 1881 void inc_float_count () { _float_count ++; }
duke@435 1882 void inc_double_count() { _double_count++; }
duke@435 1883 void inc_java_call_count() { _java_call_count++; }
kvn@1294 1884 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 1885
duke@435 1886 int get_call_count () const { return _call_count ; }
duke@435 1887 int get_float_count () const { return _float_count ; }
duke@435 1888 int get_double_count() const { return _double_count; }
duke@435 1889 int get_java_call_count() const { return _java_call_count; }
kvn@1294 1890 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 1891 };
duke@435 1892
duke@435 1893 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 1894 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 1895 // Make sure the offset goes inside the instance layout.
coleenp@548 1896 return k->contains_field_offset(tp->offset());
duke@435 1897 // Note that OffsetBot and OffsetTop are very negative.
duke@435 1898 }
duke@435 1899
duke@435 1900 //------------------------------final_graph_reshaping_impl----------------------
duke@435 1901 // Implement items 1-5 from final_graph_reshaping below.
kvn@1294 1902 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
duke@435 1903
kvn@603 1904 if ( n->outcnt() == 0 ) return; // dead node
duke@435 1905 uint nop = n->Opcode();
duke@435 1906
duke@435 1907 // Check for 2-input instruction with "last use" on right input.
duke@435 1908 // Swap to left input. Implements item (2).
duke@435 1909 if( n->req() == 3 && // two-input instruction
duke@435 1910 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 1911 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 1912 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 1913 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 1914 // Check for commutative opcode
duke@435 1915 switch( nop ) {
duke@435 1916 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 1917 case Op_MaxI: case Op_MinI:
duke@435 1918 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 1919 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 1920 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 1921 // Move "last use" input to left by swapping inputs
duke@435 1922 n->swap_edges(1, 2);
duke@435 1923 break;
duke@435 1924 }
duke@435 1925 default:
duke@435 1926 break;
duke@435 1927 }
duke@435 1928 }
duke@435 1929
duke@435 1930 // Count FPU ops and common calls, implements item (3)
duke@435 1931 switch( nop ) {
duke@435 1932 // Count all float operations that may use FPU
duke@435 1933 case Op_AddF:
duke@435 1934 case Op_SubF:
duke@435 1935 case Op_MulF:
duke@435 1936 case Op_DivF:
duke@435 1937 case Op_NegF:
duke@435 1938 case Op_ModF:
duke@435 1939 case Op_ConvI2F:
duke@435 1940 case Op_ConF:
duke@435 1941 case Op_CmpF:
duke@435 1942 case Op_CmpF3:
duke@435 1943 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 1944 frc.inc_float_count();
duke@435 1945 break;
duke@435 1946
duke@435 1947 case Op_ConvF2D:
duke@435 1948 case Op_ConvD2F:
kvn@1294 1949 frc.inc_float_count();
kvn@1294 1950 frc.inc_double_count();
duke@435 1951 break;
duke@435 1952
duke@435 1953 // Count all double operations that may use FPU
duke@435 1954 case Op_AddD:
duke@435 1955 case Op_SubD:
duke@435 1956 case Op_MulD:
duke@435 1957 case Op_DivD:
duke@435 1958 case Op_NegD:
duke@435 1959 case Op_ModD:
duke@435 1960 case Op_ConvI2D:
duke@435 1961 case Op_ConvD2I:
duke@435 1962 // case Op_ConvL2D: // handled by leaf call
duke@435 1963 // case Op_ConvD2L: // handled by leaf call
duke@435 1964 case Op_ConD:
duke@435 1965 case Op_CmpD:
duke@435 1966 case Op_CmpD3:
kvn@1294 1967 frc.inc_double_count();
duke@435 1968 break;
duke@435 1969 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 1970 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@603 1971 n->subsume_by(n->in(1));
duke@435 1972 break;
duke@435 1973 case Op_CallStaticJava:
duke@435 1974 case Op_CallJava:
duke@435 1975 case Op_CallDynamicJava:
kvn@1294 1976 frc.inc_java_call_count(); // Count java call site;
duke@435 1977 case Op_CallRuntime:
duke@435 1978 case Op_CallLeaf:
duke@435 1979 case Op_CallLeafNoFP: {
duke@435 1980 assert( n->is_Call(), "" );
duke@435 1981 CallNode *call = n->as_Call();
duke@435 1982 // Count call sites where the FP mode bit would have to be flipped.
duke@435 1983 // Do not count uncommon runtime calls:
duke@435 1984 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 1985 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 1986 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 1987 frc.inc_call_count(); // Count the call site
duke@435 1988 } else { // See if uncommon argument is shared
duke@435 1989 Node *n = call->in(TypeFunc::Parms);
duke@435 1990 int nop = n->Opcode();
duke@435 1991 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 1992 if( n->outcnt() > 1 &&
duke@435 1993 !n->is_Proj() &&
duke@435 1994 nop != Op_CreateEx &&
duke@435 1995 nop != Op_CheckCastPP &&
kvn@766 1996 nop != Op_DecodeN &&
duke@435 1997 !n->is_Mem() ) {
duke@435 1998 Node *x = n->clone();
duke@435 1999 call->set_req( TypeFunc::Parms, x );
duke@435 2000 }
duke@435 2001 }
duke@435 2002 break;
duke@435 2003 }
duke@435 2004
duke@435 2005 case Op_StoreD:
duke@435 2006 case Op_LoadD:
duke@435 2007 case Op_LoadD_unaligned:
kvn@1294 2008 frc.inc_double_count();
duke@435 2009 goto handle_mem;
duke@435 2010 case Op_StoreF:
duke@435 2011 case Op_LoadF:
kvn@1294 2012 frc.inc_float_count();
duke@435 2013 goto handle_mem;
duke@435 2014
duke@435 2015 case Op_StoreB:
duke@435 2016 case Op_StoreC:
duke@435 2017 case Op_StoreCM:
duke@435 2018 case Op_StorePConditional:
duke@435 2019 case Op_StoreI:
duke@435 2020 case Op_StoreL:
kvn@855 2021 case Op_StoreIConditional:
duke@435 2022 case Op_StoreLConditional:
duke@435 2023 case Op_CompareAndSwapI:
duke@435 2024 case Op_CompareAndSwapL:
duke@435 2025 case Op_CompareAndSwapP:
coleenp@548 2026 case Op_CompareAndSwapN:
duke@435 2027 case Op_StoreP:
coleenp@548 2028 case Op_StoreN:
duke@435 2029 case Op_LoadB:
twisti@1059 2030 case Op_LoadUB:
twisti@993 2031 case Op_LoadUS:
duke@435 2032 case Op_LoadI:
twisti@1059 2033 case Op_LoadUI2L:
duke@435 2034 case Op_LoadKlass:
kvn@599 2035 case Op_LoadNKlass:
duke@435 2036 case Op_LoadL:
duke@435 2037 case Op_LoadL_unaligned:
duke@435 2038 case Op_LoadPLocked:
duke@435 2039 case Op_LoadLLocked:
duke@435 2040 case Op_LoadP:
coleenp@548 2041 case Op_LoadN:
duke@435 2042 case Op_LoadRange:
duke@435 2043 case Op_LoadS: {
duke@435 2044 handle_mem:
duke@435 2045 #ifdef ASSERT
duke@435 2046 if( VerifyOptoOopOffsets ) {
duke@435 2047 assert( n->is_Mem(), "" );
duke@435 2048 MemNode *mem = (MemNode*)n;
duke@435 2049 // Check to see if address types have grounded out somehow.
duke@435 2050 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2051 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2052 }
duke@435 2053 #endif
duke@435 2054 break;
duke@435 2055 }
duke@435 2056
duke@435 2057 case Op_AddP: { // Assert sane base pointers
kvn@617 2058 Node *addp = n->in(AddPNode::Address);
duke@435 2059 assert( !addp->is_AddP() ||
duke@435 2060 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2061 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2062 "Base pointers must match" );
kvn@617 2063 #ifdef _LP64
kvn@617 2064 if (UseCompressedOops &&
kvn@617 2065 addp->Opcode() == Op_ConP &&
kvn@617 2066 addp == n->in(AddPNode::Base) &&
kvn@617 2067 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2068 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2069 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2070 // instructions (4) then load 64-bits constant (7).
kvn@617 2071 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2072 const Type* t = addp->bottom_type();
kvn@617 2073 if (t->isa_oopptr()) {
kvn@617 2074 Node* nn = NULL;
kvn@617 2075
kvn@617 2076 // Look for existing ConN node of the same exact type.
kvn@617 2077 Compile* C = Compile::current();
kvn@617 2078 Node* r = C->root();
kvn@617 2079 uint cnt = r->outcnt();
kvn@617 2080 for (uint i = 0; i < cnt; i++) {
kvn@617 2081 Node* m = r->raw_out(i);
kvn@617 2082 if (m!= NULL && m->Opcode() == Op_ConN &&
kvn@656 2083 m->bottom_type()->make_ptr() == t) {
kvn@617 2084 nn = m;
kvn@617 2085 break;
kvn@617 2086 }
kvn@617 2087 }
kvn@617 2088 if (nn != NULL) {
kvn@617 2089 // Decode a narrow oop to match address
kvn@617 2090 // [R12 + narrow_oop_reg<<3 + offset]
kvn@617 2091 nn = new (C, 2) DecodeNNode(nn, t);
kvn@617 2092 n->set_req(AddPNode::Base, nn);
kvn@617 2093 n->set_req(AddPNode::Address, nn);
kvn@617 2094 if (addp->outcnt() == 0) {
kvn@617 2095 addp->disconnect_inputs(NULL);
kvn@617 2096 }
kvn@617 2097 }
kvn@617 2098 }
kvn@617 2099 }
kvn@617 2100 #endif
duke@435 2101 break;
duke@435 2102 }
duke@435 2103
kvn@599 2104 #ifdef _LP64
kvn@803 2105 case Op_CastPP:
kvn@1077 2106 if (n->in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks()) {
kvn@803 2107 Compile* C = Compile::current();
kvn@803 2108 Node* in1 = n->in(1);
kvn@803 2109 const Type* t = n->bottom_type();
kvn@803 2110 Node* new_in1 = in1->clone();
kvn@803 2111 new_in1->as_DecodeN()->set_type(t);
kvn@803 2112
kvn@803 2113 if (!Matcher::clone_shift_expressions) {
kvn@803 2114 //
kvn@803 2115 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2116 // and Matcher can fold a DecodeN node into address by using
kvn@803 2117 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2118 //
kvn@803 2119 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2120 // NullCheck narrow_oop_reg
kvn@803 2121 //
kvn@803 2122 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2123 // use it to do implicit NULL check in address:
kvn@803 2124 //
kvn@803 2125 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2126 // [base_reg + offset]
kvn@803 2127 // NullCheck base_reg
kvn@803 2128 //
twisti@1040 2129 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2130 // to keep the information to which NULL check the new DecodeN node
kvn@803 2131 // corresponds to use it as value in implicit_null_check().
kvn@803 2132 //
kvn@803 2133 new_in1->set_req(0, n->in(0));
kvn@803 2134 }
kvn@803 2135
kvn@803 2136 n->subsume_by(new_in1);
kvn@803 2137 if (in1->outcnt() == 0) {
kvn@803 2138 in1->disconnect_inputs(NULL);
kvn@803 2139 }
kvn@803 2140 }
kvn@803 2141 break;
kvn@803 2142
kvn@599 2143 case Op_CmpP:
kvn@603 2144 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2145 // other TypePtr related Ideal optimizations (for example, ptr nullness).
kvn@766 2146 if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
kvn@766 2147 Node* in1 = n->in(1);
kvn@766 2148 Node* in2 = n->in(2);
kvn@766 2149 if (!in1->is_DecodeN()) {
kvn@766 2150 in2 = in1;
kvn@766 2151 in1 = n->in(2);
kvn@766 2152 }
kvn@766 2153 assert(in1->is_DecodeN(), "sanity");
kvn@766 2154
kvn@599 2155 Compile* C = Compile::current();
kvn@766 2156 Node* new_in2 = NULL;
kvn@766 2157 if (in2->is_DecodeN()) {
kvn@766 2158 new_in2 = in2->in(1);
kvn@766 2159 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2160 const Type* t = in2->bottom_type();
kvn@1077 2161 if (t == TypePtr::NULL_PTR && Universe::narrow_oop_use_implicit_null_checks()) {
kvn@803 2162 new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
kvn@803 2163 //
kvn@803 2164 // This transformation together with CastPP transformation above
kvn@803 2165 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2166 //
kvn@803 2167 // The original code after Optimize()
kvn@803 2168 //
kvn@803 2169 // LoadN memory, narrow_oop_reg
kvn@803 2170 // decode narrow_oop_reg, base_reg
kvn@803 2171 // CmpP base_reg, NULL
kvn@803 2172 // CastPP base_reg // NotNull
kvn@803 2173 // Load [base_reg + offset], val_reg
kvn@803 2174 //
kvn@803 2175 // after these transformations will be
kvn@803 2176 //
kvn@803 2177 // LoadN memory, narrow_oop_reg
kvn@803 2178 // CmpN narrow_oop_reg, NULL
kvn@803 2179 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2180 // Load [base_reg + offset], val_reg
kvn@803 2181 //
kvn@803 2182 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2183 // since narrow oops can be used in debug info now (see the code in
kvn@803 2184 // final_graph_reshaping_walk()).
kvn@803 2185 //
kvn@803 2186 // At the end the code will be matched to
kvn@803 2187 // on x86:
kvn@803 2188 //
kvn@803 2189 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2190 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2191 // NullCheck narrow_oop_reg
kvn@803 2192 //
kvn@803 2193 // and on sparc:
kvn@803 2194 //
kvn@803 2195 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2196 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2197 // Load [base_reg + offset], val_reg
kvn@803 2198 // NullCheck base_reg
kvn@803 2199 //
kvn@599 2200 } else if (t->isa_oopptr()) {
kvn@766 2201 new_in2 = ConNode::make(C, t->make_narrowoop());
kvn@599 2202 }
kvn@599 2203 }
kvn@766 2204 if (new_in2 != NULL) {
kvn@766 2205 Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
kvn@603 2206 n->subsume_by( cmpN );
kvn@766 2207 if (in1->outcnt() == 0) {
kvn@766 2208 in1->disconnect_inputs(NULL);
kvn@766 2209 }
kvn@766 2210 if (in2->outcnt() == 0) {
kvn@766 2211 in2->disconnect_inputs(NULL);
kvn@766 2212 }
kvn@599 2213 }
kvn@599 2214 }
kvn@728 2215 break;
kvn@803 2216
kvn@803 2217 case Op_DecodeN:
kvn@803 2218 assert(!n->in(1)->is_EncodeP(), "should be optimized out");
kvn@927 2219 // DecodeN could be pinned on Sparc where it can't be fold into
kvn@927 2220 // an address expression, see the code for Op_CastPP above.
kvn@927 2221 assert(n->in(0) == NULL || !Matcher::clone_shift_expressions, "no control except on sparc");
kvn@803 2222 break;
kvn@803 2223
kvn@803 2224 case Op_EncodeP: {
kvn@803 2225 Node* in1 = n->in(1);
kvn@803 2226 if (in1->is_DecodeN()) {
kvn@803 2227 n->subsume_by(in1->in(1));
kvn@803 2228 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2229 Compile* C = Compile::current();
kvn@803 2230 const Type* t = in1->bottom_type();
kvn@803 2231 if (t == TypePtr::NULL_PTR) {
kvn@803 2232 n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
kvn@803 2233 } else if (t->isa_oopptr()) {
kvn@803 2234 n->subsume_by(ConNode::make(C, t->make_narrowoop()));
kvn@803 2235 }
kvn@803 2236 }
kvn@803 2237 if (in1->outcnt() == 0) {
kvn@803 2238 in1->disconnect_inputs(NULL);
kvn@803 2239 }
kvn@803 2240 break;
kvn@803 2241 }
kvn@803 2242
kvn@803 2243 case Op_Phi:
kvn@803 2244 if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
kvn@803 2245 // The EncodeP optimization may create Phi with the same edges
kvn@803 2246 // for all paths. It is not handled well by Register Allocator.
kvn@803 2247 Node* unique_in = n->in(1);
kvn@803 2248 assert(unique_in != NULL, "");
kvn@803 2249 uint cnt = n->req();
kvn@803 2250 for (uint i = 2; i < cnt; i++) {
kvn@803 2251 Node* m = n->in(i);
kvn@803 2252 assert(m != NULL, "");
kvn@803 2253 if (unique_in != m)
kvn@803 2254 unique_in = NULL;
kvn@803 2255 }
kvn@803 2256 if (unique_in != NULL) {
kvn@803 2257 n->subsume_by(unique_in);
kvn@803 2258 }
kvn@803 2259 }
kvn@803 2260 break;
kvn@803 2261
kvn@599 2262 #endif
kvn@599 2263
duke@435 2264 case Op_ModI:
duke@435 2265 if (UseDivMod) {
duke@435 2266 // Check if a%b and a/b both exist
duke@435 2267 Node* d = n->find_similar(Op_DivI);
duke@435 2268 if (d) {
duke@435 2269 // Replace them with a fused divmod if supported
duke@435 2270 Compile* C = Compile::current();
duke@435 2271 if (Matcher::has_match_rule(Op_DivModI)) {
duke@435 2272 DivModINode* divmod = DivModINode::make(C, n);
kvn@603 2273 d->subsume_by(divmod->div_proj());
kvn@603 2274 n->subsume_by(divmod->mod_proj());
duke@435 2275 } else {
duke@435 2276 // replace a%b with a-((a/b)*b)
duke@435 2277 Node* mult = new (C, 3) MulINode(d, d->in(2));
duke@435 2278 Node* sub = new (C, 3) SubINode(d->in(1), mult);
kvn@603 2279 n->subsume_by( sub );
duke@435 2280 }
duke@435 2281 }
duke@435 2282 }
duke@435 2283 break;
duke@435 2284
duke@435 2285 case Op_ModL:
duke@435 2286 if (UseDivMod) {
duke@435 2287 // Check if a%b and a/b both exist
duke@435 2288 Node* d = n->find_similar(Op_DivL);
duke@435 2289 if (d) {
duke@435 2290 // Replace them with a fused divmod if supported
duke@435 2291 Compile* C = Compile::current();
duke@435 2292 if (Matcher::has_match_rule(Op_DivModL)) {
duke@435 2293 DivModLNode* divmod = DivModLNode::make(C, n);
kvn@603 2294 d->subsume_by(divmod->div_proj());
kvn@603 2295 n->subsume_by(divmod->mod_proj());
duke@435 2296 } else {
duke@435 2297 // replace a%b with a-((a/b)*b)
duke@435 2298 Node* mult = new (C, 3) MulLNode(d, d->in(2));
duke@435 2299 Node* sub = new (C, 3) SubLNode(d->in(1), mult);
kvn@603 2300 n->subsume_by( sub );
duke@435 2301 }
duke@435 2302 }
duke@435 2303 }
duke@435 2304 break;
duke@435 2305
duke@435 2306 case Op_Load16B:
duke@435 2307 case Op_Load8B:
duke@435 2308 case Op_Load4B:
duke@435 2309 case Op_Load8S:
duke@435 2310 case Op_Load4S:
duke@435 2311 case Op_Load2S:
duke@435 2312 case Op_Load8C:
duke@435 2313 case Op_Load4C:
duke@435 2314 case Op_Load2C:
duke@435 2315 case Op_Load4I:
duke@435 2316 case Op_Load2I:
duke@435 2317 case Op_Load2L:
duke@435 2318 case Op_Load4F:
duke@435 2319 case Op_Load2F:
duke@435 2320 case Op_Load2D:
duke@435 2321 case Op_Store16B:
duke@435 2322 case Op_Store8B:
duke@435 2323 case Op_Store4B:
duke@435 2324 case Op_Store8C:
duke@435 2325 case Op_Store4C:
duke@435 2326 case Op_Store2C:
duke@435 2327 case Op_Store4I:
duke@435 2328 case Op_Store2I:
duke@435 2329 case Op_Store2L:
duke@435 2330 case Op_Store4F:
duke@435 2331 case Op_Store2F:
duke@435 2332 case Op_Store2D:
duke@435 2333 break;
duke@435 2334
duke@435 2335 case Op_PackB:
duke@435 2336 case Op_PackS:
duke@435 2337 case Op_PackC:
duke@435 2338 case Op_PackI:
duke@435 2339 case Op_PackF:
duke@435 2340 case Op_PackL:
duke@435 2341 case Op_PackD:
duke@435 2342 if (n->req()-1 > 2) {
duke@435 2343 // Replace many operand PackNodes with a binary tree for matching
duke@435 2344 PackNode* p = (PackNode*) n;
duke@435 2345 Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
kvn@603 2346 n->subsume_by(btp);
duke@435 2347 }
duke@435 2348 break;
kvn@1294 2349 case Op_Loop:
kvn@1294 2350 case Op_CountedLoop:
kvn@1294 2351 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2352 frc.inc_inner_loop_count();
kvn@1294 2353 }
kvn@1294 2354 break;
duke@435 2355 default:
duke@435 2356 assert( !n->is_Call(), "" );
duke@435 2357 assert( !n->is_Mem(), "" );
duke@435 2358 break;
duke@435 2359 }
never@562 2360
never@562 2361 // Collect CFG split points
never@562 2362 if (n->is_MultiBranch())
kvn@1294 2363 frc._tests.push(n);
duke@435 2364 }
duke@435 2365
duke@435 2366 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2367 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2368 // requires that the walk visits a node's inputs before visiting the node.
kvn@1294 2369 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2370 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2371 Unique_Node_List sfpt(area);
kvn@766 2372
kvn@1294 2373 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2374 uint cnt = root->req();
duke@435 2375 Node *n = root;
duke@435 2376 uint i = 0;
duke@435 2377 while (true) {
duke@435 2378 if (i < cnt) {
duke@435 2379 // Place all non-visited non-null inputs onto stack
duke@435 2380 Node* m = n->in(i);
duke@435 2381 ++i;
kvn@1294 2382 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2383 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2384 sfpt.push(m);
duke@435 2385 cnt = m->req();
duke@435 2386 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2387 n = m;
duke@435 2388 i = 0;
duke@435 2389 }
duke@435 2390 } else {
duke@435 2391 // Now do post-visit work
kvn@1294 2392 final_graph_reshaping_impl( n, frc );
duke@435 2393 if (nstack.is_empty())
duke@435 2394 break; // finished
duke@435 2395 n = nstack.node(); // Get node from stack
duke@435 2396 cnt = n->req();
duke@435 2397 i = nstack.index();
duke@435 2398 nstack.pop(); // Shift to the next node on stack
duke@435 2399 }
duke@435 2400 }
kvn@766 2401
kvn@766 2402 // Go over safepoints nodes to skip DecodeN nodes for debug edges.
kvn@766 2403 // It could be done for an uncommon traps or any safepoints/calls
kvn@766 2404 // if the DecodeN node is referenced only in a debug info.
kvn@766 2405 while (sfpt.size() > 0) {
kvn@766 2406 n = sfpt.pop();
kvn@766 2407 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2408 assert(jvms != NULL, "sanity");
kvn@766 2409 int start = jvms->debug_start();
kvn@766 2410 int end = n->req();
kvn@766 2411 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2412 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2413 for (int j = start; j < end; j++) {
kvn@766 2414 Node* in = n->in(j);
kvn@766 2415 if (in->is_DecodeN()) {
kvn@766 2416 bool safe_to_skip = true;
kvn@766 2417 if (!is_uncommon ) {
kvn@766 2418 // Is it safe to skip?
kvn@766 2419 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2420 Node* u = in->raw_out(i);
kvn@766 2421 if (!u->is_SafePoint() ||
kvn@766 2422 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2423 safe_to_skip = false;
kvn@766 2424 }
kvn@766 2425 }
kvn@766 2426 }
kvn@766 2427 if (safe_to_skip) {
kvn@766 2428 n->set_req(j, in->in(1));
kvn@766 2429 }
kvn@766 2430 if (in->outcnt() == 0) {
kvn@766 2431 in->disconnect_inputs(NULL);
kvn@766 2432 }
kvn@766 2433 }
kvn@766 2434 }
kvn@766 2435 }
duke@435 2436 }
duke@435 2437
duke@435 2438 //------------------------------final_graph_reshaping--------------------------
duke@435 2439 // Final Graph Reshaping.
duke@435 2440 //
duke@435 2441 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2442 // and not commoned up and forced early. Must come after regular
duke@435 2443 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2444 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2445 // Remove Opaque nodes.
duke@435 2446 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2447 // Intel update-in-place two-address operations and better register usage
duke@435 2448 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2449 // calls canonicalizing them back.
duke@435 2450 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2451 // and call sites. On Intel, we can get correct rounding either by
duke@435 2452 // forcing singles to memory (requires extra stores and loads after each
duke@435 2453 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2454 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2455 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2456 // This is a key transform for SPEC mpeg_audio.
duke@435 2457 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2458 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2459 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2460 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2461 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2462 // reachable from below or CatchNodes missing some targets.
duke@435 2463 // (5) Assert for insane oop offsets in debug mode.
duke@435 2464
duke@435 2465 bool Compile::final_graph_reshaping() {
duke@435 2466 // an infinite loop may have been eliminated by the optimizer,
duke@435 2467 // in which case the graph will be empty.
duke@435 2468 if (root()->req() == 1) {
duke@435 2469 record_method_not_compilable("trivial infinite loop");
duke@435 2470 return true;
duke@435 2471 }
duke@435 2472
kvn@1294 2473 Final_Reshape_Counts frc;
duke@435 2474
duke@435 2475 // Visit everybody reachable!
duke@435 2476 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2477 Node_Stack nstack(unique() >> 1);
kvn@1294 2478 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2479
duke@435 2480 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2481 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2482 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2483 // Get number of CFG targets.
duke@435 2484 // Note that PCTables include exception targets after calls.
never@562 2485 uint required_outcnt = n->required_outcnt();
never@562 2486 if (n->outcnt() != required_outcnt) {
duke@435 2487 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2488 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2489 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2490 if (n->in(0)->in(0)->is_Call()) {
duke@435 2491 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2492 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2493 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2494 } else if (call->req() > TypeFunc::Parms &&
duke@435 2495 call->is_CallDynamicJava()) {
duke@435 2496 // Check for null receiver. In such case, the optimizer has
duke@435 2497 // detected that the virtual call will always result in a null
duke@435 2498 // pointer exception. The fall-through projection of this CatchNode
duke@435 2499 // will not be populated.
duke@435 2500 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2501 if (arg0->is_Type() &&
duke@435 2502 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2503 required_outcnt--;
duke@435 2504 }
duke@435 2505 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2506 call->req() > TypeFunc::Parms+1 &&
duke@435 2507 call->is_CallStaticJava()) {
duke@435 2508 // Check for negative array length. In such case, the optimizer has
duke@435 2509 // detected that the allocation attempt will always result in an
duke@435 2510 // exception. There is no fall-through projection of this CatchNode .
duke@435 2511 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2512 if (arg1->is_Type() &&
duke@435 2513 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2514 required_outcnt--;
duke@435 2515 }
duke@435 2516 }
duke@435 2517 }
duke@435 2518 }
never@562 2519 // Recheck with a better notion of 'required_outcnt'
never@562 2520 if (n->outcnt() != required_outcnt) {
duke@435 2521 record_method_not_compilable("malformed control flow");
duke@435 2522 return true; // Not all targets reachable!
duke@435 2523 }
duke@435 2524 }
duke@435 2525 // Check that I actually visited all kids. Unreached kids
duke@435 2526 // must be infinite loops.
duke@435 2527 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2528 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2529 record_method_not_compilable("infinite loop");
duke@435 2530 return true; // Found unvisited kid; must be unreach
duke@435 2531 }
duke@435 2532 }
duke@435 2533
duke@435 2534 // If original bytecodes contained a mixture of floats and doubles
duke@435 2535 // check if the optimizer has made it homogenous, item (3).
never@1364 2536 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2537 frc.get_float_count() > 32 &&
kvn@1294 2538 frc.get_double_count() == 0 &&
kvn@1294 2539 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2540 set_24_bit_selection_and_mode( false, true );
duke@435 2541 }
duke@435 2542
kvn@1294 2543 set_java_calls(frc.get_java_call_count());
kvn@1294 2544 set_inner_loops(frc.get_inner_loop_count());
duke@435 2545
duke@435 2546 // No infinite loops, no reason to bail out.
duke@435 2547 return false;
duke@435 2548 }
duke@435 2549
duke@435 2550 //-----------------------------too_many_traps----------------------------------
duke@435 2551 // Report if there are too many traps at the current method and bci.
duke@435 2552 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2553 bool Compile::too_many_traps(ciMethod* method,
duke@435 2554 int bci,
duke@435 2555 Deoptimization::DeoptReason reason) {
duke@435 2556 ciMethodData* md = method->method_data();
duke@435 2557 if (md->is_empty()) {
duke@435 2558 // Assume the trap has not occurred, or that it occurred only
duke@435 2559 // because of a transient condition during start-up in the interpreter.
duke@435 2560 return false;
duke@435 2561 }
duke@435 2562 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2563 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2564 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2565 // assume the worst.
duke@435 2566 if (log())
duke@435 2567 log()->elem("observe trap='%s' count='%d'",
duke@435 2568 Deoptimization::trap_reason_name(reason),
duke@435 2569 md->trap_count(reason));
duke@435 2570 return true;
duke@435 2571 } else {
duke@435 2572 // Ignore method/bci and see if there have been too many globally.
duke@435 2573 return too_many_traps(reason, md);
duke@435 2574 }
duke@435 2575 }
duke@435 2576
duke@435 2577 // Less-accurate variant which does not require a method and bci.
duke@435 2578 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2579 ciMethodData* logmd) {
duke@435 2580 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2581 // Too many traps globally.
duke@435 2582 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2583 if (log()) {
duke@435 2584 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2585 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2586 Deoptimization::trap_reason_name(reason),
duke@435 2587 mcount, trap_count(reason));
duke@435 2588 }
duke@435 2589 return true;
duke@435 2590 } else {
duke@435 2591 // The coast is clear.
duke@435 2592 return false;
duke@435 2593 }
duke@435 2594 }
duke@435 2595
duke@435 2596 //--------------------------too_many_recompiles--------------------------------
duke@435 2597 // Report if there are too many recompiles at the current method and bci.
duke@435 2598 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2599 // Is not eager to return true, since this will cause the compiler to use
duke@435 2600 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2601 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2602 int bci,
duke@435 2603 Deoptimization::DeoptReason reason) {
duke@435 2604 ciMethodData* md = method->method_data();
duke@435 2605 if (md->is_empty()) {
duke@435 2606 // Assume the trap has not occurred, or that it occurred only
duke@435 2607 // because of a transient condition during start-up in the interpreter.
duke@435 2608 return false;
duke@435 2609 }
duke@435 2610 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 2611 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 2612 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 2613 Deoptimization::DeoptReason per_bc_reason
duke@435 2614 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 2615 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 2616 || md->has_trap_at(bci, reason) != 0)
duke@435 2617 // The trap frequency measure we care about is the recompile count:
duke@435 2618 && md->trap_recompiled_at(bci)
duke@435 2619 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 2620 // Do not emit a trap here if it has already caused recompilations.
duke@435 2621 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2622 // assume the worst.
duke@435 2623 if (log())
duke@435 2624 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 2625 Deoptimization::trap_reason_name(reason),
duke@435 2626 md->trap_count(reason),
duke@435 2627 md->overflow_recompile_count());
duke@435 2628 return true;
duke@435 2629 } else if (trap_count(reason) != 0
duke@435 2630 && decompile_count() >= m_cutoff) {
duke@435 2631 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 2632 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 2633 if (log())
duke@435 2634 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 2635 Deoptimization::trap_reason_name(reason),
duke@435 2636 md->trap_count(reason), trap_count(reason),
duke@435 2637 md->decompile_count(), decompile_count());
duke@435 2638 return true;
duke@435 2639 } else {
duke@435 2640 // The coast is clear.
duke@435 2641 return false;
duke@435 2642 }
duke@435 2643 }
duke@435 2644
duke@435 2645
duke@435 2646 #ifndef PRODUCT
duke@435 2647 //------------------------------verify_graph_edges---------------------------
duke@435 2648 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 2649 // between Use-Def edges and Def-Use edges in the graph.
duke@435 2650 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 2651 if (VerifyGraphEdges) {
duke@435 2652 ResourceArea *area = Thread::current()->resource_area();
duke@435 2653 Unique_Node_List visited(area);
duke@435 2654 // Call recursive graph walk to check edges
duke@435 2655 _root->verify_edges(visited);
duke@435 2656 if (no_dead_code) {
duke@435 2657 // Now make sure that no visited node is used by an unvisited node.
duke@435 2658 bool dead_nodes = 0;
duke@435 2659 Unique_Node_List checked(area);
duke@435 2660 while (visited.size() > 0) {
duke@435 2661 Node* n = visited.pop();
duke@435 2662 checked.push(n);
duke@435 2663 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 2664 Node* use = n->raw_out(i);
duke@435 2665 if (checked.member(use)) continue; // already checked
duke@435 2666 if (visited.member(use)) continue; // already in the graph
duke@435 2667 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 2668 // At this point, we have found a dead node which is DU-reachable.
duke@435 2669 if (dead_nodes++ == 0)
duke@435 2670 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 2671 use->dump(2);
duke@435 2672 tty->print_cr("---");
duke@435 2673 checked.push(use); // No repeats; pretend it is now checked.
duke@435 2674 }
duke@435 2675 }
duke@435 2676 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 2677 }
duke@435 2678 }
duke@435 2679 }
duke@435 2680 #endif
duke@435 2681
duke@435 2682 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 2683 // This is required because there is not quite a 1-1 relation between the
duke@435 2684 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 2685 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 2686 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 2687 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 2688 // by the logic in C2Compiler.
duke@435 2689 void Compile::record_failure(const char* reason) {
duke@435 2690 if (log() != NULL) {
duke@435 2691 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 2692 }
duke@435 2693 if (_failure_reason == NULL) {
duke@435 2694 // Record the first failure reason.
duke@435 2695 _failure_reason = reason;
duke@435 2696 }
never@657 2697 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 2698 C->print_method(_failure_reason);
never@657 2699 }
duke@435 2700 _root = NULL; // flush the graph, too
duke@435 2701 }
duke@435 2702
duke@435 2703 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
duke@435 2704 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
duke@435 2705 {
duke@435 2706 if (dolog) {
duke@435 2707 C = Compile::current();
duke@435 2708 _log = C->log();
duke@435 2709 } else {
duke@435 2710 C = NULL;
duke@435 2711 _log = NULL;
duke@435 2712 }
duke@435 2713 if (_log != NULL) {
duke@435 2714 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
duke@435 2715 _log->stamp();
duke@435 2716 _log->end_head();
duke@435 2717 }
duke@435 2718 }
duke@435 2719
duke@435 2720 Compile::TracePhase::~TracePhase() {
duke@435 2721 if (_log != NULL) {
duke@435 2722 _log->done("phase nodes='%d'", C->unique());
duke@435 2723 }
duke@435 2724 }

mercurial