src/share/vm/gc_implementation/g1/concurrentMark.cpp

Tue, 05 Jun 2012 22:30:24 +0200

author
brutisso
date
Tue, 05 Jun 2012 22:30:24 +0200
changeset 3823
37552638d24a
parent 3731
8a2e5a6a19a4
child 3900
d2a62e0f25eb
child 3923
922993931b3d
permissions
-rw-r--r--

7172388: G1: _total_full_collections should not be incremented for concurrent cycles
Reviewed-by: azeemj, jmasa

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
tonyp@2968 27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
stefank@2314 28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
tonyp@3114 31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
brutisso@3710 32 #include "gc_implementation/g1/g1Log.hpp"
tonyp@2968 33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
stefank@2314 34 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@3416 35 #include "gc_implementation/g1/heapRegion.inline.hpp"
stefank@2314 36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
stefank@2314 37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
kamg@2445 38 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 39 #include "memory/genOopClosures.inline.hpp"
stefank@2314 40 #include "memory/referencePolicy.hpp"
stefank@2314 41 #include "memory/resourceArea.hpp"
stefank@2314 42 #include "oops/oop.inline.hpp"
stefank@2314 43 #include "runtime/handles.inline.hpp"
stefank@2314 44 #include "runtime/java.hpp"
ysr@777 45
brutisso@3455 46 // Concurrent marking bit map wrapper
ysr@777 47
johnc@3292 48 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
ysr@777 49 _bm((uintptr_t*)NULL,0),
ysr@777 50 _shifter(shifter) {
ysr@777 51 _bmStartWord = (HeapWord*)(rs.base());
ysr@777 52 _bmWordSize = rs.size()/HeapWordSize; // rs.size() is in bytes
ysr@777 53 ReservedSpace brs(ReservedSpace::allocation_align_size_up(
ysr@777 54 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
ysr@777 55
brutisso@3455 56 guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
ysr@777 57 // For now we'll just commit all of the bit map up fromt.
ysr@777 58 // Later on we'll try to be more parsimonious with swap.
ysr@777 59 guarantee(_virtual_space.initialize(brs, brs.size()),
brutisso@3455 60 "couldn't reseve backing store for concurrent marking bit map");
ysr@777 61 assert(_virtual_space.committed_size() == brs.size(),
brutisso@3455 62 "didn't reserve backing store for all of concurrent marking bit map?");
ysr@777 63 _bm.set_map((uintptr_t*)_virtual_space.low());
ysr@777 64 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
ysr@777 65 _bmWordSize, "inconsistency in bit map sizing");
ysr@777 66 _bm.set_size(_bmWordSize >> _shifter);
ysr@777 67 }
ysr@777 68
ysr@777 69 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
ysr@777 70 HeapWord* limit) const {
ysr@777 71 // First we must round addr *up* to a possible object boundary.
ysr@777 72 addr = (HeapWord*)align_size_up((intptr_t)addr,
ysr@777 73 HeapWordSize << _shifter);
ysr@777 74 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 75 if (limit == NULL) {
tonyp@2973 76 limit = _bmStartWord + _bmWordSize;
tonyp@2973 77 }
ysr@777 78 size_t limitOffset = heapWordToOffset(limit);
ysr@777 79 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
ysr@777 80 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 81 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 82 assert(nextAddr == limit || isMarked(nextAddr),
ysr@777 83 "get_next_one postcondition");
ysr@777 84 return nextAddr;
ysr@777 85 }
ysr@777 86
ysr@777 87 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 88 HeapWord* limit) const {
ysr@777 89 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 90 if (limit == NULL) {
tonyp@2973 91 limit = _bmStartWord + _bmWordSize;
tonyp@2973 92 }
ysr@777 93 size_t limitOffset = heapWordToOffset(limit);
ysr@777 94 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
ysr@777 95 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 96 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 97 assert(nextAddr == limit || !isMarked(nextAddr),
ysr@777 98 "get_next_one postcondition");
ysr@777 99 return nextAddr;
ysr@777 100 }
ysr@777 101
ysr@777 102 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
ysr@777 103 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
ysr@777 104 return (int) (diff >> _shifter);
ysr@777 105 }
ysr@777 106
ysr@777 107 #ifndef PRODUCT
ysr@777 108 bool CMBitMapRO::covers(ReservedSpace rs) const {
ysr@777 109 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
kvn@1080 110 assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
ysr@777 111 "size inconsistency");
ysr@777 112 return _bmStartWord == (HeapWord*)(rs.base()) &&
ysr@777 113 _bmWordSize == rs.size()>>LogHeapWordSize;
ysr@777 114 }
ysr@777 115 #endif
ysr@777 116
ysr@777 117 void CMBitMap::clearAll() {
ysr@777 118 _bm.clear();
ysr@777 119 return;
ysr@777 120 }
ysr@777 121
ysr@777 122 void CMBitMap::markRange(MemRegion mr) {
ysr@777 123 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 124 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 125 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
ysr@777 126 ((HeapWord *) mr.end())),
ysr@777 127 "markRange memory region end is not card aligned");
ysr@777 128 // convert address range into offset range
ysr@777 129 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 130 heapWordToOffset(mr.end()), true);
ysr@777 131 }
ysr@777 132
ysr@777 133 void CMBitMap::clearRange(MemRegion mr) {
ysr@777 134 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 135 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 136 // convert address range into offset range
ysr@777 137 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 138 heapWordToOffset(mr.end()), false);
ysr@777 139 }
ysr@777 140
ysr@777 141 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
ysr@777 142 HeapWord* end_addr) {
ysr@777 143 HeapWord* start = getNextMarkedWordAddress(addr);
ysr@777 144 start = MIN2(start, end_addr);
ysr@777 145 HeapWord* end = getNextUnmarkedWordAddress(start);
ysr@777 146 end = MIN2(end, end_addr);
ysr@777 147 assert(start <= end, "Consistency check");
ysr@777 148 MemRegion mr(start, end);
ysr@777 149 if (!mr.is_empty()) {
ysr@777 150 clearRange(mr);
ysr@777 151 }
ysr@777 152 return mr;
ysr@777 153 }
ysr@777 154
ysr@777 155 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
ysr@777 156 _base(NULL), _cm(cm)
ysr@777 157 #ifdef ASSERT
ysr@777 158 , _drain_in_progress(false)
ysr@777 159 , _drain_in_progress_yields(false)
ysr@777 160 #endif
ysr@777 161 {}
ysr@777 162
ysr@777 163 void CMMarkStack::allocate(size_t size) {
ysr@777 164 _base = NEW_C_HEAP_ARRAY(oop, size);
tonyp@2973 165 if (_base == NULL) {
tonyp@3416 166 vm_exit_during_initialization("Failed to allocate CM region mark stack");
tonyp@2973 167 }
ysr@777 168 _index = 0;
ysr@777 169 _capacity = (jint) size;
tonyp@3416 170 _saved_index = -1;
ysr@777 171 NOT_PRODUCT(_max_depth = 0);
ysr@777 172 }
ysr@777 173
ysr@777 174 CMMarkStack::~CMMarkStack() {
tonyp@2973 175 if (_base != NULL) {
tonyp@2973 176 FREE_C_HEAP_ARRAY(oop, _base);
tonyp@2973 177 }
ysr@777 178 }
ysr@777 179
ysr@777 180 void CMMarkStack::par_push(oop ptr) {
ysr@777 181 while (true) {
ysr@777 182 if (isFull()) {
ysr@777 183 _overflow = true;
ysr@777 184 return;
ysr@777 185 }
ysr@777 186 // Otherwise...
ysr@777 187 jint index = _index;
ysr@777 188 jint next_index = index+1;
ysr@777 189 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 190 if (res == index) {
ysr@777 191 _base[index] = ptr;
ysr@777 192 // Note that we don't maintain this atomically. We could, but it
ysr@777 193 // doesn't seem necessary.
ysr@777 194 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 195 return;
ysr@777 196 }
ysr@777 197 // Otherwise, we need to try again.
ysr@777 198 }
ysr@777 199 }
ysr@777 200
ysr@777 201 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
ysr@777 202 while (true) {
ysr@777 203 if (isFull()) {
ysr@777 204 _overflow = true;
ysr@777 205 return;
ysr@777 206 }
ysr@777 207 // Otherwise...
ysr@777 208 jint index = _index;
ysr@777 209 jint next_index = index + n;
ysr@777 210 if (next_index > _capacity) {
ysr@777 211 _overflow = true;
ysr@777 212 return;
ysr@777 213 }
ysr@777 214 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 215 if (res == index) {
ysr@777 216 for (int i = 0; i < n; i++) {
ysr@777 217 int ind = index + i;
ysr@777 218 assert(ind < _capacity, "By overflow test above.");
ysr@777 219 _base[ind] = ptr_arr[i];
ysr@777 220 }
ysr@777 221 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 222 return;
ysr@777 223 }
ysr@777 224 // Otherwise, we need to try again.
ysr@777 225 }
ysr@777 226 }
ysr@777 227
ysr@777 228
ysr@777 229 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
ysr@777 230 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 231 jint start = _index;
ysr@777 232 jint next_index = start + n;
ysr@777 233 if (next_index > _capacity) {
ysr@777 234 _overflow = true;
ysr@777 235 return;
ysr@777 236 }
ysr@777 237 // Otherwise.
ysr@777 238 _index = next_index;
ysr@777 239 for (int i = 0; i < n; i++) {
ysr@777 240 int ind = start + i;
tonyp@1458 241 assert(ind < _capacity, "By overflow test above.");
ysr@777 242 _base[ind] = ptr_arr[i];
ysr@777 243 }
ysr@777 244 }
ysr@777 245
ysr@777 246
ysr@777 247 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
ysr@777 248 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 249 jint index = _index;
ysr@777 250 if (index == 0) {
ysr@777 251 *n = 0;
ysr@777 252 return false;
ysr@777 253 } else {
ysr@777 254 int k = MIN2(max, index);
ysr@777 255 jint new_ind = index - k;
ysr@777 256 for (int j = 0; j < k; j++) {
ysr@777 257 ptr_arr[j] = _base[new_ind + j];
ysr@777 258 }
ysr@777 259 _index = new_ind;
ysr@777 260 *n = k;
ysr@777 261 return true;
ysr@777 262 }
ysr@777 263 }
ysr@777 264
ysr@777 265 template<class OopClosureClass>
ysr@777 266 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
ysr@777 267 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
ysr@777 268 || SafepointSynchronize::is_at_safepoint(),
ysr@777 269 "Drain recursion must be yield-safe.");
ysr@777 270 bool res = true;
ysr@777 271 debug_only(_drain_in_progress = true);
ysr@777 272 debug_only(_drain_in_progress_yields = yield_after);
ysr@777 273 while (!isEmpty()) {
ysr@777 274 oop newOop = pop();
ysr@777 275 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
ysr@777 276 assert(newOop->is_oop(), "Expected an oop");
ysr@777 277 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
ysr@777 278 "only grey objects on this stack");
ysr@777 279 newOop->oop_iterate(cl);
ysr@777 280 if (yield_after && _cm->do_yield_check()) {
tonyp@2973 281 res = false;
tonyp@2973 282 break;
ysr@777 283 }
ysr@777 284 }
ysr@777 285 debug_only(_drain_in_progress = false);
ysr@777 286 return res;
ysr@777 287 }
ysr@777 288
tonyp@3416 289 void CMMarkStack::note_start_of_gc() {
tonyp@3416 290 assert(_saved_index == -1,
tonyp@3416 291 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
tonyp@3416 292 _saved_index = _index;
tonyp@3416 293 }
tonyp@3416 294
tonyp@3416 295 void CMMarkStack::note_end_of_gc() {
tonyp@3416 296 // This is intentionally a guarantee, instead of an assert. If we
tonyp@3416 297 // accidentally add something to the mark stack during GC, it
tonyp@3416 298 // will be a correctness issue so it's better if we crash. we'll
tonyp@3416 299 // only check this once per GC anyway, so it won't be a performance
tonyp@3416 300 // issue in any way.
tonyp@3416 301 guarantee(_saved_index == _index,
tonyp@3416 302 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 303 _saved_index = -1;
tonyp@3416 304 }
tonyp@3416 305
ysr@777 306 void CMMarkStack::oops_do(OopClosure* f) {
tonyp@3416 307 assert(_saved_index == _index,
tonyp@3416 308 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 309 for (int i = 0; i < _index; i += 1) {
ysr@777 310 f->do_oop(&_base[i]);
ysr@777 311 }
ysr@777 312 }
ysr@777 313
ysr@777 314 bool ConcurrentMark::not_yet_marked(oop obj) const {
ysr@777 315 return (_g1h->is_obj_ill(obj)
ysr@777 316 || (_g1h->is_in_permanent(obj)
ysr@777 317 && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
ysr@777 318 }
ysr@777 319
tonyp@3464 320 CMRootRegions::CMRootRegions() :
tonyp@3464 321 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
tonyp@3464 322 _should_abort(false), _next_survivor(NULL) { }
tonyp@3464 323
tonyp@3464 324 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
tonyp@3464 325 _young_list = g1h->young_list();
tonyp@3464 326 _cm = cm;
tonyp@3464 327 }
tonyp@3464 328
tonyp@3464 329 void CMRootRegions::prepare_for_scan() {
tonyp@3464 330 assert(!scan_in_progress(), "pre-condition");
tonyp@3464 331
tonyp@3464 332 // Currently, only survivors can be root regions.
tonyp@3464 333 assert(_next_survivor == NULL, "pre-condition");
tonyp@3464 334 _next_survivor = _young_list->first_survivor_region();
tonyp@3464 335 _scan_in_progress = (_next_survivor != NULL);
tonyp@3464 336 _should_abort = false;
tonyp@3464 337 }
tonyp@3464 338
tonyp@3464 339 HeapRegion* CMRootRegions::claim_next() {
tonyp@3464 340 if (_should_abort) {
tonyp@3464 341 // If someone has set the should_abort flag, we return NULL to
tonyp@3464 342 // force the caller to bail out of their loop.
tonyp@3464 343 return NULL;
tonyp@3464 344 }
tonyp@3464 345
tonyp@3464 346 // Currently, only survivors can be root regions.
tonyp@3464 347 HeapRegion* res = _next_survivor;
tonyp@3464 348 if (res != NULL) {
tonyp@3464 349 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 350 // Read it again in case it changed while we were waiting for the lock.
tonyp@3464 351 res = _next_survivor;
tonyp@3464 352 if (res != NULL) {
tonyp@3464 353 if (res == _young_list->last_survivor_region()) {
tonyp@3464 354 // We just claimed the last survivor so store NULL to indicate
tonyp@3464 355 // that we're done.
tonyp@3464 356 _next_survivor = NULL;
tonyp@3464 357 } else {
tonyp@3464 358 _next_survivor = res->get_next_young_region();
tonyp@3464 359 }
tonyp@3464 360 } else {
tonyp@3464 361 // Someone else claimed the last survivor while we were trying
tonyp@3464 362 // to take the lock so nothing else to do.
tonyp@3464 363 }
tonyp@3464 364 }
tonyp@3464 365 assert(res == NULL || res->is_survivor(), "post-condition");
tonyp@3464 366
tonyp@3464 367 return res;
tonyp@3464 368 }
tonyp@3464 369
tonyp@3464 370 void CMRootRegions::scan_finished() {
tonyp@3464 371 assert(scan_in_progress(), "pre-condition");
tonyp@3464 372
tonyp@3464 373 // Currently, only survivors can be root regions.
tonyp@3464 374 if (!_should_abort) {
tonyp@3464 375 assert(_next_survivor == NULL, "we should have claimed all survivors");
tonyp@3464 376 }
tonyp@3464 377 _next_survivor = NULL;
tonyp@3464 378
tonyp@3464 379 {
tonyp@3464 380 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 381 _scan_in_progress = false;
tonyp@3464 382 RootRegionScan_lock->notify_all();
tonyp@3464 383 }
tonyp@3464 384 }
tonyp@3464 385
tonyp@3464 386 bool CMRootRegions::wait_until_scan_finished() {
tonyp@3464 387 if (!scan_in_progress()) return false;
tonyp@3464 388
tonyp@3464 389 {
tonyp@3464 390 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 391 while (scan_in_progress()) {
tonyp@3464 392 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
tonyp@3464 393 }
tonyp@3464 394 }
tonyp@3464 395 return true;
tonyp@3464 396 }
tonyp@3464 397
ysr@777 398 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 399 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 400 #endif // _MSC_VER
ysr@777 401
jmasa@3357 402 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
jmasa@3357 403 return MAX2((n_par_threads + 2) / 4, 1U);
jmasa@3294 404 }
jmasa@3294 405
tonyp@3713 406 ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
ysr@777 407 _markBitMap1(rs, MinObjAlignment - 1),
ysr@777 408 _markBitMap2(rs, MinObjAlignment - 1),
ysr@777 409
ysr@777 410 _parallel_marking_threads(0),
jmasa@3294 411 _max_parallel_marking_threads(0),
ysr@777 412 _sleep_factor(0.0),
ysr@777 413 _marking_task_overhead(1.0),
ysr@777 414 _cleanup_sleep_factor(0.0),
ysr@777 415 _cleanup_task_overhead(1.0),
tonyp@2472 416 _cleanup_list("Cleanup List"),
tonyp@3713 417 _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
ysr@777 418 _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
ysr@777 419 CardTableModRefBS::card_shift,
ysr@777 420 false /* in_resource_area*/),
johnc@3463 421
ysr@777 422 _prevMarkBitMap(&_markBitMap1),
ysr@777 423 _nextMarkBitMap(&_markBitMap2),
ysr@777 424
ysr@777 425 _markStack(this),
ysr@777 426 // _finger set in set_non_marking_state
ysr@777 427
jmasa@3357 428 _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
ysr@777 429 // _active_tasks set in set_non_marking_state
ysr@777 430 // _tasks set inside the constructor
ysr@777 431 _task_queues(new CMTaskQueueSet((int) _max_task_num)),
ysr@777 432 _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
ysr@777 433
ysr@777 434 _has_overflown(false),
ysr@777 435 _concurrent(false),
tonyp@1054 436 _has_aborted(false),
tonyp@1054 437 _restart_for_overflow(false),
tonyp@1054 438 _concurrent_marking_in_progress(false),
ysr@777 439
ysr@777 440 // _verbose_level set below
ysr@777 441
ysr@777 442 _init_times(),
ysr@777 443 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
ysr@777 444 _cleanup_times(),
ysr@777 445 _total_counting_time(0.0),
ysr@777 446 _total_rs_scrub_time(0.0),
johnc@3463 447
johnc@3463 448 _parallel_workers(NULL),
johnc@3463 449
johnc@3463 450 _count_card_bitmaps(NULL),
johnc@3463 451 _count_marked_bytes(NULL) {
tonyp@2973 452 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
tonyp@2973 453 if (verbose_level < no_verbose) {
ysr@777 454 verbose_level = no_verbose;
tonyp@2973 455 }
tonyp@2973 456 if (verbose_level > high_verbose) {
ysr@777 457 verbose_level = high_verbose;
tonyp@2973 458 }
ysr@777 459 _verbose_level = verbose_level;
ysr@777 460
tonyp@2973 461 if (verbose_low()) {
ysr@777 462 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
ysr@777 463 "heap end = "PTR_FORMAT, _heap_start, _heap_end);
tonyp@2973 464 }
ysr@777 465
jmasa@1719 466 _markStack.allocate(MarkStackSize);
ysr@777 467
ysr@777 468 // Create & start a ConcurrentMark thread.
ysr@1280 469 _cmThread = new ConcurrentMarkThread(this);
ysr@1280 470 assert(cmThread() != NULL, "CM Thread should have been created");
ysr@1280 471 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
ysr@1280 472
ysr@777 473 _g1h = G1CollectedHeap::heap();
ysr@777 474 assert(CGC_lock != NULL, "Where's the CGC_lock?");
ysr@777 475 assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
ysr@777 476 assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
ysr@777 477
ysr@777 478 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@1717 479 satb_qs.set_buffer_size(G1SATBBufferSize);
ysr@777 480
tonyp@3464 481 _root_regions.init(_g1h, this);
tonyp@3464 482
ysr@777 483 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
ysr@777 484 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);
ysr@777 485
johnc@3463 486 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_task_num);
johnc@3463 487 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num);
johnc@3463 488
johnc@3463 489 BitMap::idx_t card_bm_size = _card_bm.size();
johnc@3463 490
ysr@777 491 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
ysr@777 492 _active_tasks = _max_task_num;
ysr@777 493 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 494 CMTaskQueue* task_queue = new CMTaskQueue();
ysr@777 495 task_queue->initialize();
ysr@777 496 _task_queues->register_queue(i, task_queue);
ysr@777 497
johnc@3463 498 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
tonyp@3713 499 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions);
johnc@3463 500
johnc@3463 501 _tasks[i] = new CMTask(i, this,
johnc@3463 502 _count_marked_bytes[i],
johnc@3463 503 &_count_card_bitmaps[i],
johnc@3463 504 task_queue, _task_queues);
johnc@3463 505
ysr@777 506 _accum_task_vtime[i] = 0.0;
ysr@777 507 }
ysr@777 508
johnc@3463 509 // Calculate the card number for the bottom of the heap. Used
johnc@3463 510 // in biasing indexes into the accounting card bitmaps.
johnc@3463 511 _heap_bottom_card_num =
johnc@3463 512 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
johnc@3463 513 CardTableModRefBS::card_shift);
johnc@3463 514
johnc@3463 515 // Clear all the liveness counting data
johnc@3463 516 clear_all_count_data();
johnc@3463 517
jmasa@1719 518 if (ConcGCThreads > ParallelGCThreads) {
jmasa@1719 519 vm_exit_during_initialization("Can't have more ConcGCThreads "
ysr@777 520 "than ParallelGCThreads.");
ysr@777 521 }
ysr@777 522 if (ParallelGCThreads == 0) {
ysr@777 523 // if we are not running with any parallel GC threads we will not
ysr@777 524 // spawn any marking threads either
jmasa@3294 525 _parallel_marking_threads = 0;
jmasa@3294 526 _max_parallel_marking_threads = 0;
jmasa@3294 527 _sleep_factor = 0.0;
jmasa@3294 528 _marking_task_overhead = 1.0;
ysr@777 529 } else {
jmasa@1719 530 if (ConcGCThreads > 0) {
jmasa@1719 531 // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
ysr@777 532 // if both are set
ysr@777 533
jmasa@3357 534 _parallel_marking_threads = (uint) ConcGCThreads;
jmasa@3294 535 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 536 _sleep_factor = 0.0;
ysr@777 537 _marking_task_overhead = 1.0;
johnc@1186 538 } else if (G1MarkingOverheadPercent > 0) {
ysr@777 539 // we will calculate the number of parallel marking threads
ysr@777 540 // based on a target overhead with respect to the soft real-time
ysr@777 541 // goal
ysr@777 542
johnc@1186 543 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
ysr@777 544 double overall_cm_overhead =
johnc@1186 545 (double) MaxGCPauseMillis * marking_overhead /
johnc@1186 546 (double) GCPauseIntervalMillis;
ysr@777 547 double cpu_ratio = 1.0 / (double) os::processor_count();
ysr@777 548 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
ysr@777 549 double marking_task_overhead =
ysr@777 550 overall_cm_overhead / marking_thread_num *
ysr@777 551 (double) os::processor_count();
ysr@777 552 double sleep_factor =
ysr@777 553 (1.0 - marking_task_overhead) / marking_task_overhead;
ysr@777 554
jmasa@3357 555 _parallel_marking_threads = (uint) marking_thread_num;
jmasa@3294 556 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 557 _sleep_factor = sleep_factor;
ysr@777 558 _marking_task_overhead = marking_task_overhead;
ysr@777 559 } else {
jmasa@3357 560 _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
jmasa@3294 561 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 562 _sleep_factor = 0.0;
ysr@777 563 _marking_task_overhead = 1.0;
ysr@777 564 }
ysr@777 565
tonyp@2973 566 if (parallel_marking_threads() > 1) {
ysr@777 567 _cleanup_task_overhead = 1.0;
tonyp@2973 568 } else {
ysr@777 569 _cleanup_task_overhead = marking_task_overhead();
tonyp@2973 570 }
ysr@777 571 _cleanup_sleep_factor =
ysr@777 572 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
ysr@777 573
ysr@777 574 #if 0
ysr@777 575 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
ysr@777 576 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
ysr@777 577 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
ysr@777 578 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
ysr@777 579 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
ysr@777 580 #endif
ysr@777 581
tonyp@1458 582 guarantee(parallel_marking_threads() > 0, "peace of mind");
jmasa@2188 583 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
jmasa@3357 584 _max_parallel_marking_threads, false, true);
jmasa@2188 585 if (_parallel_workers == NULL) {
ysr@777 586 vm_exit_during_initialization("Failed necessary allocation.");
jmasa@2188 587 } else {
jmasa@2188 588 _parallel_workers->initialize_workers();
jmasa@2188 589 }
ysr@777 590 }
ysr@777 591
ysr@777 592 // so that the call below can read a sensible value
ysr@777 593 _heap_start = (HeapWord*) rs.base();
ysr@777 594 set_non_marking_state();
ysr@777 595 }
ysr@777 596
ysr@777 597 void ConcurrentMark::update_g1_committed(bool force) {
ysr@777 598 // If concurrent marking is not in progress, then we do not need to
tonyp@3691 599 // update _heap_end.
tonyp@2973 600 if (!concurrent_marking_in_progress() && !force) return;
ysr@777 601
ysr@777 602 MemRegion committed = _g1h->g1_committed();
tonyp@1458 603 assert(committed.start() == _heap_start, "start shouldn't change");
ysr@777 604 HeapWord* new_end = committed.end();
ysr@777 605 if (new_end > _heap_end) {
ysr@777 606 // The heap has been expanded.
ysr@777 607
ysr@777 608 _heap_end = new_end;
ysr@777 609 }
ysr@777 610 // Notice that the heap can also shrink. However, this only happens
ysr@777 611 // during a Full GC (at least currently) and the entire marking
ysr@777 612 // phase will bail out and the task will not be restarted. So, let's
ysr@777 613 // do nothing.
ysr@777 614 }
ysr@777 615
ysr@777 616 void ConcurrentMark::reset() {
ysr@777 617 // Starting values for these two. This should be called in a STW
ysr@777 618 // phase. CM will be notified of any future g1_committed expansions
ysr@777 619 // will be at the end of evacuation pauses, when tasks are
ysr@777 620 // inactive.
ysr@777 621 MemRegion committed = _g1h->g1_committed();
ysr@777 622 _heap_start = committed.start();
ysr@777 623 _heap_end = committed.end();
ysr@777 624
tonyp@1458 625 // Separated the asserts so that we know which one fires.
tonyp@1458 626 assert(_heap_start != NULL, "heap bounds should look ok");
tonyp@1458 627 assert(_heap_end != NULL, "heap bounds should look ok");
tonyp@1458 628 assert(_heap_start < _heap_end, "heap bounds should look ok");
ysr@777 629
ysr@777 630 // reset all the marking data structures and any necessary flags
ysr@777 631 clear_marking_state();
ysr@777 632
tonyp@2973 633 if (verbose_low()) {
ysr@777 634 gclog_or_tty->print_cr("[global] resetting");
tonyp@2973 635 }
ysr@777 636
ysr@777 637 // We do reset all of them, since different phases will use
ysr@777 638 // different number of active threads. So, it's easiest to have all
ysr@777 639 // of them ready.
johnc@2190 640 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 641 _tasks[i]->reset(_nextMarkBitMap);
johnc@2190 642 }
ysr@777 643
ysr@777 644 // we need this to make sure that the flag is on during the evac
ysr@777 645 // pause with initial mark piggy-backed
ysr@777 646 set_concurrent_marking_in_progress();
ysr@777 647 }
ysr@777 648
jmasa@3357 649 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
tonyp@1458 650 assert(active_tasks <= _max_task_num, "we should not have more");
ysr@777 651
ysr@777 652 _active_tasks = active_tasks;
ysr@777 653 // Need to update the three data structures below according to the
ysr@777 654 // number of active threads for this phase.
ysr@777 655 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
ysr@777 656 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 657 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 658
ysr@777 659 _concurrent = concurrent;
ysr@777 660 // We propagate this to all tasks, not just the active ones.
ysr@777 661 for (int i = 0; i < (int) _max_task_num; ++i)
ysr@777 662 _tasks[i]->set_concurrent(concurrent);
ysr@777 663
ysr@777 664 if (concurrent) {
ysr@777 665 set_concurrent_marking_in_progress();
ysr@777 666 } else {
ysr@777 667 // We currently assume that the concurrent flag has been set to
ysr@777 668 // false before we start remark. At this point we should also be
ysr@777 669 // in a STW phase.
tonyp@1458 670 assert(!concurrent_marking_in_progress(), "invariant");
tonyp@1458 671 assert(_finger == _heap_end, "only way to get here");
ysr@777 672 update_g1_committed(true);
ysr@777 673 }
ysr@777 674 }
ysr@777 675
ysr@777 676 void ConcurrentMark::set_non_marking_state() {
ysr@777 677 // We set the global marking state to some default values when we're
ysr@777 678 // not doing marking.
ysr@777 679 clear_marking_state();
ysr@777 680 _active_tasks = 0;
ysr@777 681 clear_concurrent_marking_in_progress();
ysr@777 682 }
ysr@777 683
ysr@777 684 ConcurrentMark::~ConcurrentMark() {
stefank@3364 685 // The ConcurrentMark instance is never freed.
stefank@3364 686 ShouldNotReachHere();
ysr@777 687 }
ysr@777 688
ysr@777 689 void ConcurrentMark::clearNextBitmap() {
tonyp@1794 690 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@1794 691 G1CollectorPolicy* g1p = g1h->g1_policy();
tonyp@1794 692
tonyp@1794 693 // Make sure that the concurrent mark thread looks to still be in
tonyp@1794 694 // the current cycle.
tonyp@1794 695 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 696
tonyp@1794 697 // We are finishing up the current cycle by clearing the next
tonyp@1794 698 // marking bitmap and getting it ready for the next cycle. During
tonyp@1794 699 // this time no other cycle can start. So, let's make sure that this
tonyp@1794 700 // is the case.
tonyp@1794 701 guarantee(!g1h->mark_in_progress(), "invariant");
tonyp@1794 702
tonyp@1794 703 // clear the mark bitmap (no grey objects to start with).
tonyp@1794 704 // We need to do this in chunks and offer to yield in between
tonyp@1794 705 // each chunk.
tonyp@1794 706 HeapWord* start = _nextMarkBitMap->startWord();
tonyp@1794 707 HeapWord* end = _nextMarkBitMap->endWord();
tonyp@1794 708 HeapWord* cur = start;
tonyp@1794 709 size_t chunkSize = M;
tonyp@1794 710 while (cur < end) {
tonyp@1794 711 HeapWord* next = cur + chunkSize;
tonyp@2973 712 if (next > end) {
tonyp@1794 713 next = end;
tonyp@2973 714 }
tonyp@1794 715 MemRegion mr(cur,next);
tonyp@1794 716 _nextMarkBitMap->clearRange(mr);
tonyp@1794 717 cur = next;
tonyp@1794 718 do_yield_check();
tonyp@1794 719
tonyp@1794 720 // Repeat the asserts from above. We'll do them as asserts here to
tonyp@1794 721 // minimize their overhead on the product. However, we'll have
tonyp@1794 722 // them as guarantees at the beginning / end of the bitmap
tonyp@1794 723 // clearing to get some checking in the product.
tonyp@1794 724 assert(cmThread()->during_cycle(), "invariant");
tonyp@1794 725 assert(!g1h->mark_in_progress(), "invariant");
tonyp@1794 726 }
tonyp@1794 727
johnc@3463 728 // Clear the liveness counting data
johnc@3463 729 clear_all_count_data();
johnc@3463 730
tonyp@1794 731 // Repeat the asserts from above.
tonyp@1794 732 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 733 guarantee(!g1h->mark_in_progress(), "invariant");
ysr@777 734 }
ysr@777 735
ysr@777 736 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
ysr@777 737 public:
ysr@777 738 bool doHeapRegion(HeapRegion* r) {
ysr@777 739 if (!r->continuesHumongous()) {
tonyp@3416 740 r->note_start_of_marking();
ysr@777 741 }
ysr@777 742 return false;
ysr@777 743 }
ysr@777 744 };
ysr@777 745
ysr@777 746 void ConcurrentMark::checkpointRootsInitialPre() {
ysr@777 747 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 748 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 749
ysr@777 750 _has_aborted = false;
ysr@777 751
jcoomes@1902 752 #ifndef PRODUCT
tonyp@1479 753 if (G1PrintReachableAtInitialMark) {
tonyp@1823 754 print_reachable("at-cycle-start",
johnc@2969 755 VerifyOption_G1UsePrevMarking, true /* all */);
tonyp@1479 756 }
jcoomes@1902 757 #endif
ysr@777 758
ysr@777 759 // Initialise marking structures. This has to be done in a STW phase.
ysr@777 760 reset();
tonyp@3416 761
tonyp@3416 762 // For each region note start of marking.
tonyp@3416 763 NoteStartOfMarkHRClosure startcl;
tonyp@3416 764 g1h->heap_region_iterate(&startcl);
ysr@777 765 }
ysr@777 766
ysr@777 767
ysr@777 768 void ConcurrentMark::checkpointRootsInitialPost() {
ysr@777 769 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 770
tonyp@2848 771 // If we force an overflow during remark, the remark operation will
tonyp@2848 772 // actually abort and we'll restart concurrent marking. If we always
tonyp@2848 773 // force an oveflow during remark we'll never actually complete the
tonyp@2848 774 // marking phase. So, we initilize this here, at the start of the
tonyp@2848 775 // cycle, so that at the remaining overflow number will decrease at
tonyp@2848 776 // every remark and we'll eventually not need to cause one.
tonyp@2848 777 force_overflow_stw()->init();
tonyp@2848 778
johnc@3175 779 // Start Concurrent Marking weak-reference discovery.
johnc@3175 780 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3175 781 // enable ("weak") refs discovery
johnc@3175 782 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 783 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
ysr@777 784
ysr@777 785 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1752 786 // This is the start of the marking cycle, we're expected all
tonyp@1752 787 // threads to have SATB queues with active set to false.
tonyp@1752 788 satb_mq_set.set_active_all_threads(true, /* new active value */
tonyp@1752 789 false /* expected_active */);
ysr@777 790
tonyp@3464 791 _root_regions.prepare_for_scan();
tonyp@3464 792
ysr@777 793 // update_g1_committed() will be called at the end of an evac pause
ysr@777 794 // when marking is on. So, it's also called at the end of the
ysr@777 795 // initial-mark pause to update the heap end, if the heap expands
ysr@777 796 // during it. No need to call it here.
ysr@777 797 }
ysr@777 798
ysr@777 799 /*
tonyp@2848 800 * Notice that in the next two methods, we actually leave the STS
tonyp@2848 801 * during the barrier sync and join it immediately afterwards. If we
tonyp@2848 802 * do not do this, the following deadlock can occur: one thread could
tonyp@2848 803 * be in the barrier sync code, waiting for the other thread to also
tonyp@2848 804 * sync up, whereas another one could be trying to yield, while also
tonyp@2848 805 * waiting for the other threads to sync up too.
tonyp@2848 806 *
tonyp@2848 807 * Note, however, that this code is also used during remark and in
tonyp@2848 808 * this case we should not attempt to leave / enter the STS, otherwise
tonyp@2848 809 * we'll either hit an asseert (debug / fastdebug) or deadlock
tonyp@2848 810 * (product). So we should only leave / enter the STS if we are
tonyp@2848 811 * operating concurrently.
tonyp@2848 812 *
tonyp@2848 813 * Because the thread that does the sync barrier has left the STS, it
tonyp@2848 814 * is possible to be suspended for a Full GC or an evacuation pause
tonyp@2848 815 * could occur. This is actually safe, since the entering the sync
tonyp@2848 816 * barrier is one of the last things do_marking_step() does, and it
tonyp@2848 817 * doesn't manipulate any data structures afterwards.
tonyp@2848 818 */
ysr@777 819
ysr@777 820 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
tonyp@2973 821 if (verbose_low()) {
ysr@777 822 gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
tonyp@2973 823 }
ysr@777 824
tonyp@2848 825 if (concurrent()) {
tonyp@2848 826 ConcurrentGCThread::stsLeave();
tonyp@2848 827 }
ysr@777 828 _first_overflow_barrier_sync.enter();
tonyp@2848 829 if (concurrent()) {
tonyp@2848 830 ConcurrentGCThread::stsJoin();
tonyp@2848 831 }
ysr@777 832 // at this point everyone should have synced up and not be doing any
ysr@777 833 // more work
ysr@777 834
tonyp@2973 835 if (verbose_low()) {
ysr@777 836 gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
tonyp@2973 837 }
ysr@777 838
ysr@777 839 // let task 0 do this
ysr@777 840 if (task_num == 0) {
ysr@777 841 // task 0 is responsible for clearing the global data structures
tonyp@2848 842 // We should be here because of an overflow. During STW we should
tonyp@2848 843 // not clear the overflow flag since we rely on it being true when
tonyp@2848 844 // we exit this method to abort the pause and restart concurent
tonyp@2848 845 // marking.
tonyp@2848 846 clear_marking_state(concurrent() /* clear_overflow */);
tonyp@2848 847 force_overflow()->update();
ysr@777 848
brutisso@3710 849 if (G1Log::fine()) {
ysr@777 850 gclog_or_tty->date_stamp(PrintGCDateStamps);
ysr@777 851 gclog_or_tty->stamp(PrintGCTimeStamps);
ysr@777 852 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
ysr@777 853 }
ysr@777 854 }
ysr@777 855
ysr@777 856 // after this, each task should reset its own data structures then
ysr@777 857 // then go into the second barrier
ysr@777 858 }
ysr@777 859
ysr@777 860 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
tonyp@2973 861 if (verbose_low()) {
ysr@777 862 gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
tonyp@2973 863 }
ysr@777 864
tonyp@2848 865 if (concurrent()) {
tonyp@2848 866 ConcurrentGCThread::stsLeave();
tonyp@2848 867 }
ysr@777 868 _second_overflow_barrier_sync.enter();
tonyp@2848 869 if (concurrent()) {
tonyp@2848 870 ConcurrentGCThread::stsJoin();
tonyp@2848 871 }
ysr@777 872 // at this point everything should be re-initialised and ready to go
ysr@777 873
tonyp@2973 874 if (verbose_low()) {
ysr@777 875 gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
tonyp@2973 876 }
ysr@777 877 }
ysr@777 878
tonyp@2848 879 #ifndef PRODUCT
tonyp@2848 880 void ForceOverflowSettings::init() {
tonyp@2848 881 _num_remaining = G1ConcMarkForceOverflow;
tonyp@2848 882 _force = false;
tonyp@2848 883 update();
tonyp@2848 884 }
tonyp@2848 885
tonyp@2848 886 void ForceOverflowSettings::update() {
tonyp@2848 887 if (_num_remaining > 0) {
tonyp@2848 888 _num_remaining -= 1;
tonyp@2848 889 _force = true;
tonyp@2848 890 } else {
tonyp@2848 891 _force = false;
tonyp@2848 892 }
tonyp@2848 893 }
tonyp@2848 894
tonyp@2848 895 bool ForceOverflowSettings::should_force() {
tonyp@2848 896 if (_force) {
tonyp@2848 897 _force = false;
tonyp@2848 898 return true;
tonyp@2848 899 } else {
tonyp@2848 900 return false;
tonyp@2848 901 }
tonyp@2848 902 }
tonyp@2848 903 #endif // !PRODUCT
tonyp@2848 904
ysr@777 905 class CMConcurrentMarkingTask: public AbstractGangTask {
ysr@777 906 private:
ysr@777 907 ConcurrentMark* _cm;
ysr@777 908 ConcurrentMarkThread* _cmt;
ysr@777 909
ysr@777 910 public:
jmasa@3357 911 void work(uint worker_id) {
tonyp@1458 912 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@1458 913 "this should only be done by a conc GC thread");
johnc@2316 914 ResourceMark rm;
ysr@777 915
ysr@777 916 double start_vtime = os::elapsedVTime();
ysr@777 917
ysr@777 918 ConcurrentGCThread::stsJoin();
ysr@777 919
jmasa@3357 920 assert(worker_id < _cm->active_tasks(), "invariant");
jmasa@3357 921 CMTask* the_task = _cm->task(worker_id);
ysr@777 922 the_task->record_start_time();
ysr@777 923 if (!_cm->has_aborted()) {
ysr@777 924 do {
ysr@777 925 double start_vtime_sec = os::elapsedVTime();
ysr@777 926 double start_time_sec = os::elapsedTime();
johnc@2494 927 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 928
johnc@2494 929 the_task->do_marking_step(mark_step_duration_ms,
johnc@2494 930 true /* do_stealing */,
johnc@2494 931 true /* do_termination */);
johnc@2494 932
ysr@777 933 double end_time_sec = os::elapsedTime();
ysr@777 934 double end_vtime_sec = os::elapsedVTime();
ysr@777 935 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
ysr@777 936 double elapsed_time_sec = end_time_sec - start_time_sec;
ysr@777 937 _cm->clear_has_overflown();
ysr@777 938
jmasa@3357 939 bool ret = _cm->do_yield_check(worker_id);
ysr@777 940
ysr@777 941 jlong sleep_time_ms;
ysr@777 942 if (!_cm->has_aborted() && the_task->has_aborted()) {
ysr@777 943 sleep_time_ms =
ysr@777 944 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
ysr@777 945 ConcurrentGCThread::stsLeave();
ysr@777 946 os::sleep(Thread::current(), sleep_time_ms, false);
ysr@777 947 ConcurrentGCThread::stsJoin();
ysr@777 948 }
ysr@777 949 double end_time2_sec = os::elapsedTime();
ysr@777 950 double elapsed_time2_sec = end_time2_sec - start_time_sec;
ysr@777 951
ysr@777 952 #if 0
ysr@777 953 gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
ysr@777 954 "overhead %1.4lf",
ysr@777 955 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
ysr@777 956 the_task->conc_overhead(os::elapsedTime()) * 8.0);
ysr@777 957 gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
ysr@777 958 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
ysr@777 959 #endif
ysr@777 960 } while (!_cm->has_aborted() && the_task->has_aborted());
ysr@777 961 }
ysr@777 962 the_task->record_end_time();
tonyp@1458 963 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ysr@777 964
ysr@777 965 ConcurrentGCThread::stsLeave();
ysr@777 966
ysr@777 967 double end_vtime = os::elapsedVTime();
jmasa@3357 968 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
ysr@777 969 }
ysr@777 970
ysr@777 971 CMConcurrentMarkingTask(ConcurrentMark* cm,
ysr@777 972 ConcurrentMarkThread* cmt) :
ysr@777 973 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
ysr@777 974
ysr@777 975 ~CMConcurrentMarkingTask() { }
ysr@777 976 };
ysr@777 977
jmasa@3294 978 // Calculates the number of active workers for a concurrent
jmasa@3294 979 // phase.
jmasa@3357 980 uint ConcurrentMark::calc_parallel_marking_threads() {
johnc@3338 981 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 982 uint n_conc_workers = 0;
jmasa@3294 983 if (!UseDynamicNumberOfGCThreads ||
jmasa@3294 984 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
jmasa@3294 985 !ForceDynamicNumberOfGCThreads)) {
jmasa@3294 986 n_conc_workers = max_parallel_marking_threads();
jmasa@3294 987 } else {
jmasa@3294 988 n_conc_workers =
jmasa@3294 989 AdaptiveSizePolicy::calc_default_active_workers(
jmasa@3294 990 max_parallel_marking_threads(),
jmasa@3294 991 1, /* Minimum workers */
jmasa@3294 992 parallel_marking_threads(),
jmasa@3294 993 Threads::number_of_non_daemon_threads());
jmasa@3294 994 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
jmasa@3294 995 // that scaling has already gone into "_max_parallel_marking_threads".
jmasa@3294 996 }
johnc@3338 997 assert(n_conc_workers > 0, "Always need at least 1");
johnc@3338 998 return n_conc_workers;
jmasa@3294 999 }
johnc@3338 1000 // If we are not running with any parallel GC threads we will not
johnc@3338 1001 // have spawned any marking threads either. Hence the number of
johnc@3338 1002 // concurrent workers should be 0.
johnc@3338 1003 return 0;
jmasa@3294 1004 }
jmasa@3294 1005
tonyp@3464 1006 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
tonyp@3464 1007 // Currently, only survivors can be root regions.
tonyp@3464 1008 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
tonyp@3464 1009 G1RootRegionScanClosure cl(_g1h, this, worker_id);
tonyp@3464 1010
tonyp@3464 1011 const uintx interval = PrefetchScanIntervalInBytes;
tonyp@3464 1012 HeapWord* curr = hr->bottom();
tonyp@3464 1013 const HeapWord* end = hr->top();
tonyp@3464 1014 while (curr < end) {
tonyp@3464 1015 Prefetch::read(curr, interval);
tonyp@3464 1016 oop obj = oop(curr);
tonyp@3464 1017 int size = obj->oop_iterate(&cl);
tonyp@3464 1018 assert(size == obj->size(), "sanity");
tonyp@3464 1019 curr += size;
tonyp@3464 1020 }
tonyp@3464 1021 }
tonyp@3464 1022
tonyp@3464 1023 class CMRootRegionScanTask : public AbstractGangTask {
tonyp@3464 1024 private:
tonyp@3464 1025 ConcurrentMark* _cm;
tonyp@3464 1026
tonyp@3464 1027 public:
tonyp@3464 1028 CMRootRegionScanTask(ConcurrentMark* cm) :
tonyp@3464 1029 AbstractGangTask("Root Region Scan"), _cm(cm) { }
tonyp@3464 1030
tonyp@3464 1031 void work(uint worker_id) {
tonyp@3464 1032 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@3464 1033 "this should only be done by a conc GC thread");
tonyp@3464 1034
tonyp@3464 1035 CMRootRegions* root_regions = _cm->root_regions();
tonyp@3464 1036 HeapRegion* hr = root_regions->claim_next();
tonyp@3464 1037 while (hr != NULL) {
tonyp@3464 1038 _cm->scanRootRegion(hr, worker_id);
tonyp@3464 1039 hr = root_regions->claim_next();
tonyp@3464 1040 }
tonyp@3464 1041 }
tonyp@3464 1042 };
tonyp@3464 1043
tonyp@3464 1044 void ConcurrentMark::scanRootRegions() {
tonyp@3464 1045 // scan_in_progress() will have been set to true only if there was
tonyp@3464 1046 // at least one root region to scan. So, if it's false, we
tonyp@3464 1047 // should not attempt to do any further work.
tonyp@3464 1048 if (root_regions()->scan_in_progress()) {
tonyp@3464 1049 _parallel_marking_threads = calc_parallel_marking_threads();
tonyp@3464 1050 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
tonyp@3464 1051 "Maximum number of marking threads exceeded");
tonyp@3464 1052 uint active_workers = MAX2(1U, parallel_marking_threads());
tonyp@3464 1053
tonyp@3464 1054 CMRootRegionScanTask task(this);
tonyp@3464 1055 if (parallel_marking_threads() > 0) {
tonyp@3464 1056 _parallel_workers->set_active_workers((int) active_workers);
tonyp@3464 1057 _parallel_workers->run_task(&task);
tonyp@3464 1058 } else {
tonyp@3464 1059 task.work(0);
tonyp@3464 1060 }
tonyp@3464 1061
tonyp@3464 1062 // It's possible that has_aborted() is true here without actually
tonyp@3464 1063 // aborting the survivor scan earlier. This is OK as it's
tonyp@3464 1064 // mainly used for sanity checking.
tonyp@3464 1065 root_regions()->scan_finished();
tonyp@3464 1066 }
tonyp@3464 1067 }
tonyp@3464 1068
ysr@777 1069 void ConcurrentMark::markFromRoots() {
ysr@777 1070 // we might be tempted to assert that:
ysr@777 1071 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
ysr@777 1072 // "inconsistent argument?");
ysr@777 1073 // However that wouldn't be right, because it's possible that
ysr@777 1074 // a safepoint is indeed in progress as a younger generation
ysr@777 1075 // stop-the-world GC happens even as we mark in this generation.
ysr@777 1076
ysr@777 1077 _restart_for_overflow = false;
tonyp@2848 1078 force_overflow_conc()->init();
jmasa@3294 1079
jmasa@3294 1080 // _g1h has _n_par_threads
jmasa@3294 1081 _parallel_marking_threads = calc_parallel_marking_threads();
jmasa@3294 1082 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
jmasa@3294 1083 "Maximum number of marking threads exceeded");
johnc@3338 1084
jmasa@3357 1085 uint active_workers = MAX2(1U, parallel_marking_threads());
johnc@3338 1086
johnc@3338 1087 // Parallel task terminator is set in "set_phase()"
johnc@3338 1088 set_phase(active_workers, true /* concurrent */);
ysr@777 1089
ysr@777 1090 CMConcurrentMarkingTask markingTask(this, cmThread());
tonyp@2973 1091 if (parallel_marking_threads() > 0) {
johnc@3338 1092 _parallel_workers->set_active_workers((int)active_workers);
johnc@3338 1093 // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
johnc@3338 1094 // and the decisions on that MT processing is made elsewhere.
johnc@3338 1095 assert(_parallel_workers->active_workers() > 0, "Should have been set");
ysr@777 1096 _parallel_workers->run_task(&markingTask);
tonyp@2973 1097 } else {
ysr@777 1098 markingTask.work(0);
tonyp@2973 1099 }
ysr@777 1100 print_stats();
ysr@777 1101 }
ysr@777 1102
ysr@777 1103 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
ysr@777 1104 // world is stopped at this checkpoint
ysr@777 1105 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1106 "world should be stopped");
johnc@3175 1107
ysr@777 1108 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1109
ysr@777 1110 // If a full collection has happened, we shouldn't do this.
ysr@777 1111 if (has_aborted()) {
ysr@777 1112 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1113 return;
ysr@777 1114 }
ysr@777 1115
kamg@2445 1116 SvcGCMarker sgcm(SvcGCMarker::OTHER);
kamg@2445 1117
ysr@1280 1118 if (VerifyDuringGC) {
ysr@1280 1119 HandleMark hm; // handle scope
ysr@1280 1120 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1121 Universe::heap()->prepare_for_verify();
brutisso@3711 1122 Universe::verify(/* silent */ false,
johnc@2969 1123 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1124 }
ysr@1280 1125
ysr@777 1126 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 1127 g1p->record_concurrent_mark_remark_start();
ysr@777 1128
ysr@777 1129 double start = os::elapsedTime();
ysr@777 1130
ysr@777 1131 checkpointRootsFinalWork();
ysr@777 1132
ysr@777 1133 double mark_work_end = os::elapsedTime();
ysr@777 1134
ysr@777 1135 weakRefsWork(clear_all_soft_refs);
ysr@777 1136
ysr@777 1137 if (has_overflown()) {
ysr@777 1138 // Oops. We overflowed. Restart concurrent marking.
ysr@777 1139 _restart_for_overflow = true;
ysr@777 1140 // Clear the flag. We do not need it any more.
ysr@777 1141 clear_has_overflown();
tonyp@2973 1142 if (G1TraceMarkStackOverflow) {
ysr@777 1143 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
tonyp@2973 1144 }
ysr@777 1145 } else {
johnc@3463 1146 // Aggregate the per-task counting data that we have accumulated
johnc@3463 1147 // while marking.
johnc@3463 1148 aggregate_count_data();
johnc@3463 1149
tonyp@2469 1150 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 1151 // We're done with marking.
tonyp@1752 1152 // This is the end of the marking cycle, we're expected all
tonyp@1752 1153 // threads to have SATB queues with active set to true.
tonyp@2469 1154 satb_mq_set.set_active_all_threads(false, /* new active value */
tonyp@2469 1155 true /* expected_active */);
tonyp@1246 1156
tonyp@1246 1157 if (VerifyDuringGC) {
ysr@1280 1158 HandleMark hm; // handle scope
ysr@1280 1159 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1160 Universe::heap()->prepare_for_verify();
brutisso@3711 1161 Universe::verify(/* silent */ false,
johnc@2969 1162 /* option */ VerifyOption_G1UseNextMarking);
tonyp@1246 1163 }
johnc@2494 1164 assert(!restart_for_overflow(), "sanity");
johnc@2494 1165 }
johnc@2494 1166
johnc@2494 1167 // Reset the marking state if marking completed
johnc@2494 1168 if (!restart_for_overflow()) {
johnc@2494 1169 set_non_marking_state();
ysr@777 1170 }
ysr@777 1171
ysr@777 1172 #if VERIFY_OBJS_PROCESSED
ysr@777 1173 _scan_obj_cl.objs_processed = 0;
ysr@777 1174 ThreadLocalObjQueue::objs_enqueued = 0;
ysr@777 1175 #endif
ysr@777 1176
ysr@777 1177 // Statistics
ysr@777 1178 double now = os::elapsedTime();
ysr@777 1179 _remark_mark_times.add((mark_work_end - start) * 1000.0);
ysr@777 1180 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
ysr@777 1181 _remark_times.add((now - start) * 1000.0);
ysr@777 1182
ysr@777 1183 g1p->record_concurrent_mark_remark_end();
ysr@777 1184 }
ysr@777 1185
johnc@3731 1186 // Base class of the closures that finalize and verify the
johnc@3731 1187 // liveness counting data.
johnc@3731 1188 class CMCountDataClosureBase: public HeapRegionClosure {
johnc@3731 1189 protected:
ysr@777 1190 ConcurrentMark* _cm;
johnc@3463 1191 BitMap* _region_bm;
johnc@3463 1192 BitMap* _card_bm;
johnc@3463 1193
johnc@3731 1194 void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
johnc@3731 1195 assert(start_idx <= last_idx, "sanity");
johnc@3731 1196
johnc@3731 1197 // Set the inclusive bit range [start_idx, last_idx].
johnc@3731 1198 // For small ranges (up to 8 cards) use a simple loop; otherwise
johnc@3731 1199 // use par_at_put_range.
johnc@3731 1200 if ((last_idx - start_idx) < 8) {
johnc@3731 1201 for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
johnc@3731 1202 _card_bm->par_set_bit(i);
johnc@3731 1203 }
johnc@3731 1204 } else {
johnc@3731 1205 assert(last_idx < _card_bm->size(), "sanity");
johnc@3731 1206 // Note BitMap::par_at_put_range() is exclusive.
johnc@3731 1207 _card_bm->par_at_put_range(start_idx, last_idx+1, true);
ysr@777 1208 }
ysr@777 1209 }
ysr@777 1210
tonyp@1264 1211 // It takes a region that's not empty (i.e., it has at least one
tonyp@1264 1212 // live object in it and sets its corresponding bit on the region
tonyp@1264 1213 // bitmap to 1. If the region is "starts humongous" it will also set
tonyp@1264 1214 // to 1 the bits on the region bitmap that correspond to its
tonyp@1264 1215 // associated "continues humongous" regions.
tonyp@1264 1216 void set_bit_for_region(HeapRegion* hr) {
tonyp@1264 1217 assert(!hr->continuesHumongous(), "should have filtered those out");
tonyp@1264 1218
tonyp@3713 1219 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
tonyp@1264 1220 if (!hr->startsHumongous()) {
tonyp@1264 1221 // Normal (non-humongous) case: just set the bit.
tonyp@3713 1222 _region_bm->par_at_put(index, true);
tonyp@1264 1223 } else {
tonyp@1264 1224 // Starts humongous case: calculate how many regions are part of
johnc@3463 1225 // this humongous region and then set the bit range.
tonyp@1264 1226 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3463 1227 HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
tonyp@3713 1228 BitMap::idx_t end_index = (BitMap::idx_t) last_hr->hrs_index() + 1;
tonyp@3713 1229 _region_bm->par_at_put_range(index, end_index, true);
tonyp@1264 1230 }
tonyp@1264 1231 }
tonyp@1264 1232
johnc@3731 1233 public:
johnc@3731 1234 CMCountDataClosureBase(ConcurrentMark *cm,
johnc@3731 1235 BitMap* region_bm, BitMap* card_bm):
johnc@3731 1236 _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
johnc@3731 1237 };
johnc@3731 1238
johnc@3731 1239 // Closure that calculates the # live objects per region. Used
johnc@3731 1240 // for verification purposes during the cleanup pause.
johnc@3731 1241 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
johnc@3731 1242 CMBitMapRO* _bm;
johnc@3731 1243 size_t _region_marked_bytes;
johnc@3731 1244
johnc@3731 1245 public:
johnc@3731 1246 CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
johnc@3731 1247 BitMap* region_bm, BitMap* card_bm) :
johnc@3731 1248 CMCountDataClosureBase(cm, region_bm, card_bm),
johnc@3731 1249 _bm(bm), _region_marked_bytes(0) { }
johnc@3731 1250
ysr@777 1251 bool doHeapRegion(HeapRegion* hr) {
ysr@777 1252
iveresov@1074 1253 if (hr->continuesHumongous()) {
tonyp@1264 1254 // We will ignore these here and process them when their
tonyp@1264 1255 // associated "starts humongous" region is processed (see
tonyp@1264 1256 // set_bit_for_heap_region()). Note that we cannot rely on their
tonyp@1264 1257 // associated "starts humongous" region to have their bit set to
tonyp@1264 1258 // 1 since, due to the region chunking in the parallel region
tonyp@1264 1259 // iteration, a "continues humongous" region might be visited
tonyp@1264 1260 // before its associated "starts humongous".
iveresov@1074 1261 return false;
iveresov@1074 1262 }
ysr@777 1263
ysr@777 1264 HeapWord* nextTop = hr->next_top_at_mark_start();
johnc@3463 1265 HeapWord* start = hr->bottom();
johnc@3463 1266
johnc@3463 1267 assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
johnc@3463 1268 err_msg("Preconditions not met - "
johnc@3463 1269 "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 1270 start, nextTop, hr->end()));
johnc@3463 1271
ysr@777 1272 // Find the first marked object at or after "start".
ysr@777 1273 start = _bm->getNextMarkedWordAddress(start, nextTop);
johnc@3463 1274
ysr@777 1275 size_t marked_bytes = 0;
ysr@777 1276
ysr@777 1277 while (start < nextTop) {
ysr@777 1278 oop obj = oop(start);
ysr@777 1279 int obj_sz = obj->size();
ysr@777 1280 HeapWord* obj_last = start + obj_sz - 1;
johnc@3731 1281
johnc@3731 1282 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3731 1283 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);
johnc@3731 1284
johnc@3731 1285 // Set the bits in the card BM for this object (inclusive).
johnc@3731 1286 set_card_bitmap_range(start_idx, last_idx);
johnc@3731 1287
johnc@3731 1288 // Add the size of this object to the number of marked bytes.
apetrusenko@1465 1289 marked_bytes += (size_t)obj_sz * HeapWordSize;
johnc@3463 1290
ysr@777 1291 // Find the next marked object after this one.
johnc@3731 1292 start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
tonyp@2973 1293 }
johnc@3463 1294
johnc@3463 1295 // Mark the allocated-since-marking portion...
johnc@3463 1296 HeapWord* top = hr->top();
johnc@3463 1297 if (nextTop < top) {
johnc@3731 1298 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
johnc@3731 1299 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
johnc@3731 1300
johnc@3731 1301 set_card_bitmap_range(start_idx, last_idx);
johnc@3463 1302
johnc@3463 1303 // This definitely means the region has live objects.
johnc@3463 1304 set_bit_for_region(hr);
ysr@777 1305 }
ysr@777 1306
ysr@777 1307 // Update the live region bitmap.
ysr@777 1308 if (marked_bytes > 0) {
tonyp@1264 1309 set_bit_for_region(hr);
ysr@777 1310 }
johnc@3463 1311
johnc@3463 1312 // Set the marked bytes for the current region so that
johnc@3463 1313 // it can be queried by a calling verificiation routine
johnc@3463 1314 _region_marked_bytes = marked_bytes;
johnc@3463 1315
johnc@3463 1316 return false;
johnc@3463 1317 }
johnc@3463 1318
johnc@3463 1319 size_t region_marked_bytes() const { return _region_marked_bytes; }
johnc@3463 1320 };
johnc@3463 1321
johnc@3463 1322 // Heap region closure used for verifying the counting data
johnc@3463 1323 // that was accumulated concurrently and aggregated during
johnc@3463 1324 // the remark pause. This closure is applied to the heap
johnc@3463 1325 // regions during the STW cleanup pause.
johnc@3463 1326
johnc@3463 1327 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
johnc@3463 1328 ConcurrentMark* _cm;
johnc@3463 1329 CalcLiveObjectsClosure _calc_cl;
johnc@3463 1330 BitMap* _region_bm; // Region BM to be verified
johnc@3463 1331 BitMap* _card_bm; // Card BM to be verified
johnc@3463 1332 bool _verbose; // verbose output?
johnc@3463 1333
johnc@3463 1334 BitMap* _exp_region_bm; // Expected Region BM values
johnc@3463 1335 BitMap* _exp_card_bm; // Expected card BM values
johnc@3463 1336
johnc@3463 1337 int _failures;
johnc@3463 1338
johnc@3463 1339 public:
johnc@3463 1340 VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
johnc@3463 1341 BitMap* region_bm,
johnc@3463 1342 BitMap* card_bm,
johnc@3463 1343 BitMap* exp_region_bm,
johnc@3463 1344 BitMap* exp_card_bm,
johnc@3463 1345 bool verbose) :
johnc@3463 1346 _cm(cm),
johnc@3463 1347 _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
johnc@3463 1348 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
johnc@3463 1349 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
johnc@3463 1350 _failures(0) { }
johnc@3463 1351
johnc@3463 1352 int failures() const { return _failures; }
johnc@3463 1353
johnc@3463 1354 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1355 if (hr->continuesHumongous()) {
johnc@3463 1356 // We will ignore these here and process them when their
johnc@3463 1357 // associated "starts humongous" region is processed (see
johnc@3463 1358 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1359 // associated "starts humongous" region to have their bit set to
johnc@3463 1360 // 1 since, due to the region chunking in the parallel region
johnc@3463 1361 // iteration, a "continues humongous" region might be visited
johnc@3463 1362 // before its associated "starts humongous".
johnc@3463 1363 return false;
johnc@3463 1364 }
johnc@3463 1365
johnc@3463 1366 int failures = 0;
johnc@3463 1367
johnc@3463 1368 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
johnc@3463 1369 // this region and set the corresponding bits in the expected region
johnc@3463 1370 // and card bitmaps.
johnc@3463 1371 bool res = _calc_cl.doHeapRegion(hr);
johnc@3463 1372 assert(res == false, "should be continuing");
johnc@3463 1373
johnc@3463 1374 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
johnc@3463 1375 Mutex::_no_safepoint_check_flag);
johnc@3463 1376
johnc@3463 1377 // Verify the marked bytes for this region.
johnc@3463 1378 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
johnc@3463 1379 size_t act_marked_bytes = hr->next_marked_bytes();
johnc@3463 1380
johnc@3463 1381 // We're not OK if expected marked bytes > actual marked bytes. It means
johnc@3463 1382 // we have missed accounting some objects during the actual marking.
johnc@3463 1383 if (exp_marked_bytes > act_marked_bytes) {
johnc@3463 1384 if (_verbose) {
tonyp@3713 1385 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
johnc@3463 1386 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
johnc@3463 1387 hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
johnc@3463 1388 }
johnc@3463 1389 failures += 1;
johnc@3463 1390 }
johnc@3463 1391
johnc@3463 1392 // Verify the bit, for this region, in the actual and expected
johnc@3463 1393 // (which was just calculated) region bit maps.
johnc@3463 1394 // We're not OK if the bit in the calculated expected region
johnc@3463 1395 // bitmap is set and the bit in the actual region bitmap is not.
tonyp@3713 1396 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
johnc@3463 1397
johnc@3463 1398 bool expected = _exp_region_bm->at(index);
johnc@3463 1399 bool actual = _region_bm->at(index);
johnc@3463 1400 if (expected && !actual) {
johnc@3463 1401 if (_verbose) {
tonyp@3713 1402 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
tonyp@3713 1403 "expected: %s, actual: %s",
tonyp@3713 1404 hr->hrs_index(),
tonyp@3713 1405 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
johnc@3463 1406 }
johnc@3463 1407 failures += 1;
johnc@3463 1408 }
johnc@3463 1409
johnc@3463 1410 // Verify that the card bit maps for the cards spanned by the current
johnc@3463 1411 // region match. We have an error if we have a set bit in the expected
johnc@3463 1412 // bit map and the corresponding bit in the actual bitmap is not set.
johnc@3463 1413
johnc@3463 1414 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
johnc@3463 1415 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
johnc@3463 1416
johnc@3463 1417 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
johnc@3463 1418 expected = _exp_card_bm->at(i);
johnc@3463 1419 actual = _card_bm->at(i);
johnc@3463 1420
johnc@3463 1421 if (expected && !actual) {
johnc@3463 1422 if (_verbose) {
tonyp@3713 1423 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
tonyp@3713 1424 "expected: %s, actual: %s",
tonyp@3713 1425 hr->hrs_index(), i,
tonyp@3713 1426 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
ysr@777 1427 }
johnc@3463 1428 failures += 1;
ysr@777 1429 }
ysr@777 1430 }
ysr@777 1431
johnc@3463 1432 if (failures > 0 && _verbose) {
johnc@3463 1433 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
johnc@3463 1434 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
johnc@3463 1435 HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
johnc@3463 1436 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
johnc@3463 1437 }
johnc@3463 1438
johnc@3463 1439 _failures += failures;
johnc@3463 1440
johnc@3463 1441 // We could stop iteration over the heap when we
johnc@3731 1442 // find the first violating region by returning true.
ysr@777 1443 return false;
ysr@777 1444 }
ysr@777 1445 };
ysr@777 1446
ysr@777 1447
johnc@3463 1448 class G1ParVerifyFinalCountTask: public AbstractGangTask {
johnc@3463 1449 protected:
johnc@3463 1450 G1CollectedHeap* _g1h;
johnc@3463 1451 ConcurrentMark* _cm;
johnc@3463 1452 BitMap* _actual_region_bm;
johnc@3463 1453 BitMap* _actual_card_bm;
johnc@3463 1454
johnc@3463 1455 uint _n_workers;
johnc@3463 1456
johnc@3463 1457 BitMap* _expected_region_bm;
johnc@3463 1458 BitMap* _expected_card_bm;
johnc@3463 1459
johnc@3463 1460 int _failures;
johnc@3463 1461 bool _verbose;
johnc@3463 1462
johnc@3463 1463 public:
johnc@3463 1464 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
johnc@3463 1465 BitMap* region_bm, BitMap* card_bm,
johnc@3463 1466 BitMap* expected_region_bm, BitMap* expected_card_bm)
johnc@3463 1467 : AbstractGangTask("G1 verify final counting"),
johnc@3463 1468 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1469 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1470 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
johnc@3463 1471 _failures(0), _verbose(false),
johnc@3463 1472 _n_workers(0) {
johnc@3463 1473 assert(VerifyDuringGC, "don't call this otherwise");
johnc@3463 1474
johnc@3463 1475 // Use the value already set as the number of active threads
johnc@3463 1476 // in the call to run_task().
johnc@3463 1477 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1478 assert( _g1h->workers()->active_workers() > 0,
johnc@3463 1479 "Should have been previously set");
johnc@3463 1480 _n_workers = _g1h->workers()->active_workers();
johnc@3463 1481 } else {
johnc@3463 1482 _n_workers = 1;
johnc@3463 1483 }
johnc@3463 1484
johnc@3463 1485 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
johnc@3463 1486 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
johnc@3463 1487
johnc@3463 1488 _verbose = _cm->verbose_medium();
johnc@3463 1489 }
johnc@3463 1490
johnc@3463 1491 void work(uint worker_id) {
johnc@3463 1492 assert(worker_id < _n_workers, "invariant");
johnc@3463 1493
johnc@3463 1494 VerifyLiveObjectDataHRClosure verify_cl(_cm,
johnc@3463 1495 _actual_region_bm, _actual_card_bm,
johnc@3463 1496 _expected_region_bm,
johnc@3463 1497 _expected_card_bm,
johnc@3463 1498 _verbose);
johnc@3463 1499
johnc@3463 1500 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1501 _g1h->heap_region_par_iterate_chunked(&verify_cl,
johnc@3463 1502 worker_id,
johnc@3463 1503 _n_workers,
johnc@3463 1504 HeapRegion::VerifyCountClaimValue);
johnc@3463 1505 } else {
johnc@3463 1506 _g1h->heap_region_iterate(&verify_cl);
johnc@3463 1507 }
johnc@3463 1508
johnc@3463 1509 Atomic::add(verify_cl.failures(), &_failures);
johnc@3463 1510 }
johnc@3463 1511
johnc@3463 1512 int failures() const { return _failures; }
johnc@3463 1513 };
johnc@3463 1514
johnc@3731 1515 // Closure that finalizes the liveness counting data.
johnc@3731 1516 // Used during the cleanup pause.
johnc@3731 1517 // Sets the bits corresponding to the interval [NTAMS, top]
johnc@3731 1518 // (which contains the implicitly live objects) in the
johnc@3731 1519 // card liveness bitmap. Also sets the bit for each region,
johnc@3731 1520 // containing live data, in the region liveness bitmap.
johnc@3731 1521
johnc@3731 1522 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
johnc@3463 1523 public:
johnc@3463 1524 FinalCountDataUpdateClosure(ConcurrentMark* cm,
johnc@3463 1525 BitMap* region_bm,
johnc@3463 1526 BitMap* card_bm) :
johnc@3731 1527 CMCountDataClosureBase(cm, region_bm, card_bm) { }
johnc@3463 1528
johnc@3463 1529 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1530
johnc@3463 1531 if (hr->continuesHumongous()) {
johnc@3463 1532 // We will ignore these here and process them when their
johnc@3463 1533 // associated "starts humongous" region is processed (see
johnc@3463 1534 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1535 // associated "starts humongous" region to have their bit set to
johnc@3463 1536 // 1 since, due to the region chunking in the parallel region
johnc@3463 1537 // iteration, a "continues humongous" region might be visited
johnc@3463 1538 // before its associated "starts humongous".
johnc@3463 1539 return false;
johnc@3463 1540 }
johnc@3463 1541
johnc@3463 1542 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@3463 1543 HeapWord* top = hr->top();
johnc@3463 1544
johnc@3731 1545 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
johnc@3463 1546
johnc@3463 1547 // Mark the allocated-since-marking portion...
johnc@3463 1548 if (ntams < top) {
johnc@3463 1549 // This definitely means the region has live objects.
johnc@3463 1550 set_bit_for_region(hr);
johnc@3463 1551 }
johnc@3463 1552
johnc@3731 1553 // Now set the bits for [ntams, top]
johnc@3731 1554 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@3463 1555 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
johnc@3463 1556 set_card_bitmap_range(start_idx, last_idx);
johnc@3463 1557
johnc@3463 1558 // Set the bit for the region if it contains live data
johnc@3463 1559 if (hr->next_marked_bytes() > 0) {
johnc@3463 1560 set_bit_for_region(hr);
johnc@3463 1561 }
johnc@3463 1562
johnc@3463 1563 return false;
johnc@3463 1564 }
johnc@3463 1565 };
ysr@777 1566
ysr@777 1567 class G1ParFinalCountTask: public AbstractGangTask {
ysr@777 1568 protected:
ysr@777 1569 G1CollectedHeap* _g1h;
johnc@3463 1570 ConcurrentMark* _cm;
johnc@3463 1571 BitMap* _actual_region_bm;
johnc@3463 1572 BitMap* _actual_card_bm;
johnc@3463 1573
jmasa@3357 1574 uint _n_workers;
johnc@3463 1575
ysr@777 1576 public:
johnc@3463 1577 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
johnc@3463 1578 : AbstractGangTask("G1 final counting"),
johnc@3463 1579 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1580 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1581 _n_workers(0) {
jmasa@3294 1582 // Use the value already set as the number of active threads
tonyp@3714 1583 // in the call to run_task().
jmasa@3294 1584 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1585 assert( _g1h->workers()->active_workers() > 0,
jmasa@3294 1586 "Should have been previously set");
jmasa@3294 1587 _n_workers = _g1h->workers()->active_workers();
tonyp@2973 1588 } else {
ysr@777 1589 _n_workers = 1;
tonyp@2973 1590 }
ysr@777 1591 }
ysr@777 1592
jmasa@3357 1593 void work(uint worker_id) {
johnc@3463 1594 assert(worker_id < _n_workers, "invariant");
johnc@3463 1595
johnc@3463 1596 FinalCountDataUpdateClosure final_update_cl(_cm,
johnc@3463 1597 _actual_region_bm,
johnc@3463 1598 _actual_card_bm);
johnc@3463 1599
jmasa@2188 1600 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1601 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
johnc@3463 1602 worker_id,
johnc@3463 1603 _n_workers,
tonyp@790 1604 HeapRegion::FinalCountClaimValue);
ysr@777 1605 } else {
johnc@3463 1606 _g1h->heap_region_iterate(&final_update_cl);
ysr@777 1607 }
ysr@777 1608 }
ysr@777 1609 };
ysr@777 1610
ysr@777 1611 class G1ParNoteEndTask;
ysr@777 1612
ysr@777 1613 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
ysr@777 1614 G1CollectedHeap* _g1;
ysr@777 1615 int _worker_num;
ysr@777 1616 size_t _max_live_bytes;
tonyp@3713 1617 uint _regions_claimed;
ysr@777 1618 size_t _freed_bytes;
tonyp@2493 1619 FreeRegionList* _local_cleanup_list;
tonyp@3268 1620 OldRegionSet* _old_proxy_set;
tonyp@2493 1621 HumongousRegionSet* _humongous_proxy_set;
tonyp@2493 1622 HRRSCleanupTask* _hrrs_cleanup_task;
ysr@777 1623 double _claimed_region_time;
ysr@777 1624 double _max_region_time;
ysr@777 1625
ysr@777 1626 public:
ysr@777 1627 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
tonyp@2493 1628 int worker_num,
tonyp@2493 1629 FreeRegionList* local_cleanup_list,
tonyp@3268 1630 OldRegionSet* old_proxy_set,
tonyp@2493 1631 HumongousRegionSet* humongous_proxy_set,
johnc@3292 1632 HRRSCleanupTask* hrrs_cleanup_task) :
johnc@3292 1633 _g1(g1), _worker_num(worker_num),
johnc@3292 1634 _max_live_bytes(0), _regions_claimed(0),
johnc@3292 1635 _freed_bytes(0),
johnc@3292 1636 _claimed_region_time(0.0), _max_region_time(0.0),
johnc@3292 1637 _local_cleanup_list(local_cleanup_list),
johnc@3292 1638 _old_proxy_set(old_proxy_set),
johnc@3292 1639 _humongous_proxy_set(humongous_proxy_set),
johnc@3292 1640 _hrrs_cleanup_task(hrrs_cleanup_task) { }
johnc@3292 1641
ysr@777 1642 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1643
johnc@3292 1644 bool doHeapRegion(HeapRegion *hr) {
johnc@3292 1645 // We use a claim value of zero here because all regions
johnc@3292 1646 // were claimed with value 1 in the FinalCount task.
johnc@3292 1647 hr->reset_gc_time_stamp();
johnc@3292 1648 if (!hr->continuesHumongous()) {
johnc@3292 1649 double start = os::elapsedTime();
johnc@3292 1650 _regions_claimed++;
johnc@3292 1651 hr->note_end_of_marking();
johnc@3292 1652 _max_live_bytes += hr->max_live_bytes();
johnc@3292 1653 _g1->free_region_if_empty(hr,
johnc@3292 1654 &_freed_bytes,
johnc@3292 1655 _local_cleanup_list,
johnc@3292 1656 _old_proxy_set,
johnc@3292 1657 _humongous_proxy_set,
johnc@3292 1658 _hrrs_cleanup_task,
johnc@3292 1659 true /* par */);
johnc@3292 1660 double region_time = (os::elapsedTime() - start);
johnc@3292 1661 _claimed_region_time += region_time;
johnc@3292 1662 if (region_time > _max_region_time) {
johnc@3292 1663 _max_region_time = region_time;
johnc@3292 1664 }
johnc@3292 1665 }
johnc@3292 1666 return false;
johnc@3292 1667 }
ysr@777 1668
ysr@777 1669 size_t max_live_bytes() { return _max_live_bytes; }
tonyp@3713 1670 uint regions_claimed() { return _regions_claimed; }
ysr@777 1671 double claimed_region_time_sec() { return _claimed_region_time; }
ysr@777 1672 double max_region_time_sec() { return _max_region_time; }
ysr@777 1673 };
ysr@777 1674
ysr@777 1675 class G1ParNoteEndTask: public AbstractGangTask {
ysr@777 1676 friend class G1NoteEndOfConcMarkClosure;
tonyp@2472 1677
ysr@777 1678 protected:
ysr@777 1679 G1CollectedHeap* _g1h;
ysr@777 1680 size_t _max_live_bytes;
ysr@777 1681 size_t _freed_bytes;
tonyp@2472 1682 FreeRegionList* _cleanup_list;
tonyp@2472 1683
ysr@777 1684 public:
ysr@777 1685 G1ParNoteEndTask(G1CollectedHeap* g1h,
tonyp@2472 1686 FreeRegionList* cleanup_list) :
ysr@777 1687 AbstractGangTask("G1 note end"), _g1h(g1h),
tonyp@2472 1688 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
ysr@777 1689
jmasa@3357 1690 void work(uint worker_id) {
ysr@777 1691 double start = os::elapsedTime();
tonyp@2493 1692 FreeRegionList local_cleanup_list("Local Cleanup List");
tonyp@3268 1693 OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
tonyp@2493 1694 HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
tonyp@2493 1695 HRRSCleanupTask hrrs_cleanup_task;
jmasa@3357 1696 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
tonyp@3268 1697 &old_proxy_set,
tonyp@2493 1698 &humongous_proxy_set,
tonyp@2493 1699 &hrrs_cleanup_task);
jmasa@2188 1700 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1701 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
jmasa@3294 1702 _g1h->workers()->active_workers(),
tonyp@790 1703 HeapRegion::NoteEndClaimValue);
ysr@777 1704 } else {
ysr@777 1705 _g1h->heap_region_iterate(&g1_note_end);
ysr@777 1706 }
ysr@777 1707 assert(g1_note_end.complete(), "Shouldn't have yielded!");
ysr@777 1708
tonyp@2472 1709 // Now update the lists
tonyp@2472 1710 _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
tonyp@2472 1711 NULL /* free_list */,
tonyp@3268 1712 &old_proxy_set,
tonyp@2493 1713 &humongous_proxy_set,
tonyp@2472 1714 true /* par */);
ysr@777 1715 {
ysr@777 1716 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 1717 _max_live_bytes += g1_note_end.max_live_bytes();
ysr@777 1718 _freed_bytes += g1_note_end.freed_bytes();
tonyp@2472 1719
tonyp@2975 1720 // If we iterate over the global cleanup list at the end of
tonyp@2975 1721 // cleanup to do this printing we will not guarantee to only
tonyp@2975 1722 // generate output for the newly-reclaimed regions (the list
tonyp@2975 1723 // might not be empty at the beginning of cleanup; we might
tonyp@2975 1724 // still be working on its previous contents). So we do the
tonyp@2975 1725 // printing here, before we append the new regions to the global
tonyp@2975 1726 // cleanup list.
tonyp@2975 1727
tonyp@2975 1728 G1HRPrinter* hr_printer = _g1h->hr_printer();
tonyp@2975 1729 if (hr_printer->is_active()) {
tonyp@2975 1730 HeapRegionLinkedListIterator iter(&local_cleanup_list);
tonyp@2975 1731 while (iter.more_available()) {
tonyp@2975 1732 HeapRegion* hr = iter.get_next();
tonyp@2975 1733 hr_printer->cleanup(hr);
tonyp@2975 1734 }
tonyp@2975 1735 }
tonyp@2975 1736
tonyp@2493 1737 _cleanup_list->add_as_tail(&local_cleanup_list);
tonyp@2493 1738 assert(local_cleanup_list.is_empty(), "post-condition");
tonyp@2493 1739
tonyp@2493 1740 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
ysr@777 1741 }
ysr@777 1742 }
ysr@777 1743 size_t max_live_bytes() { return _max_live_bytes; }
ysr@777 1744 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1745 };
ysr@777 1746
ysr@777 1747 class G1ParScrubRemSetTask: public AbstractGangTask {
ysr@777 1748 protected:
ysr@777 1749 G1RemSet* _g1rs;
ysr@777 1750 BitMap* _region_bm;
ysr@777 1751 BitMap* _card_bm;
ysr@777 1752 public:
ysr@777 1753 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
ysr@777 1754 BitMap* region_bm, BitMap* card_bm) :
ysr@777 1755 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
johnc@3463 1756 _region_bm(region_bm), _card_bm(card_bm) { }
ysr@777 1757
jmasa@3357 1758 void work(uint worker_id) {
jmasa@2188 1759 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1760 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
tonyp@790 1761 HeapRegion::ScrubRemSetClaimValue);
ysr@777 1762 } else {
ysr@777 1763 _g1rs->scrub(_region_bm, _card_bm);
ysr@777 1764 }
ysr@777 1765 }
ysr@777 1766
ysr@777 1767 };
ysr@777 1768
ysr@777 1769 void ConcurrentMark::cleanup() {
ysr@777 1770 // world is stopped at this checkpoint
ysr@777 1771 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1772 "world should be stopped");
ysr@777 1773 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1774
ysr@777 1775 // If a full collection has happened, we shouldn't do this.
ysr@777 1776 if (has_aborted()) {
ysr@777 1777 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1778 return;
ysr@777 1779 }
ysr@777 1780
tonyp@3268 1781 HRSPhaseSetter x(HRSPhaseCleanup);
tonyp@2472 1782 g1h->verify_region_sets_optional();
tonyp@2472 1783
ysr@1280 1784 if (VerifyDuringGC) {
ysr@1280 1785 HandleMark hm; // handle scope
ysr@1280 1786 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1787 Universe::heap()->prepare_for_verify();
brutisso@3711 1788 Universe::verify(/* silent */ false,
johnc@2969 1789 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1790 }
ysr@1280 1791
ysr@777 1792 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
ysr@777 1793 g1p->record_concurrent_mark_cleanup_start();
ysr@777 1794
ysr@777 1795 double start = os::elapsedTime();
ysr@777 1796
tonyp@2493 1797 HeapRegionRemSet::reset_for_cleanup_tasks();
tonyp@2493 1798
jmasa@3357 1799 uint n_workers;
jmasa@3294 1800
ysr@777 1801 // Do counting once more with the world stopped for good measure.
johnc@3463 1802 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
johnc@3463 1803
jmasa@2188 1804 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1805 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@790 1806 "sanity check");
tonyp@790 1807
johnc@3338 1808 g1h->set_par_threads();
johnc@3338 1809 n_workers = g1h->n_par_threads();
jmasa@3357 1810 assert(g1h->n_par_threads() == n_workers,
johnc@3338 1811 "Should not have been reset");
ysr@777 1812 g1h->workers()->run_task(&g1_par_count_task);
jmasa@3294 1813 // Done with the parallel phase so reset to 0.
ysr@777 1814 g1h->set_par_threads(0);
tonyp@790 1815
johnc@3463 1816 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
tonyp@790 1817 "sanity check");
ysr@777 1818 } else {
johnc@3338 1819 n_workers = 1;
ysr@777 1820 g1_par_count_task.work(0);
ysr@777 1821 }
ysr@777 1822
johnc@3463 1823 if (VerifyDuringGC) {
johnc@3463 1824 // Verify that the counting data accumulated during marking matches
johnc@3463 1825 // that calculated by walking the marking bitmap.
johnc@3463 1826
johnc@3463 1827 // Bitmaps to hold expected values
johnc@3463 1828 BitMap expected_region_bm(_region_bm.size(), false);
johnc@3463 1829 BitMap expected_card_bm(_card_bm.size(), false);
johnc@3463 1830
johnc@3463 1831 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
johnc@3463 1832 &_region_bm,
johnc@3463 1833 &_card_bm,
johnc@3463 1834 &expected_region_bm,
johnc@3463 1835 &expected_card_bm);
johnc@3463 1836
johnc@3463 1837 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1838 g1h->set_par_threads((int)n_workers);
johnc@3463 1839 g1h->workers()->run_task(&g1_par_verify_task);
johnc@3463 1840 // Done with the parallel phase so reset to 0.
johnc@3463 1841 g1h->set_par_threads(0);
johnc@3463 1842
johnc@3463 1843 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
johnc@3463 1844 "sanity check");
johnc@3463 1845 } else {
johnc@3463 1846 g1_par_verify_task.work(0);
johnc@3463 1847 }
johnc@3463 1848
johnc@3463 1849 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
johnc@3463 1850 }
johnc@3463 1851
ysr@777 1852 size_t start_used_bytes = g1h->used();
ysr@777 1853 g1h->set_marking_complete();
ysr@777 1854
ysr@777 1855 double count_end = os::elapsedTime();
ysr@777 1856 double this_final_counting_time = (count_end - start);
ysr@777 1857 _total_counting_time += this_final_counting_time;
ysr@777 1858
tonyp@2717 1859 if (G1PrintRegionLivenessInfo) {
tonyp@2717 1860 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
tonyp@2717 1861 _g1h->heap_region_iterate(&cl);
tonyp@2717 1862 }
tonyp@2717 1863
ysr@777 1864 // Install newly created mark bitMap as "prev".
ysr@777 1865 swapMarkBitMaps();
ysr@777 1866
ysr@777 1867 g1h->reset_gc_time_stamp();
ysr@777 1868
ysr@777 1869 // Note end of marking in all heap regions.
tonyp@2472 1870 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
jmasa@2188 1871 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1872 g1h->set_par_threads((int)n_workers);
ysr@777 1873 g1h->workers()->run_task(&g1_par_note_end_task);
ysr@777 1874 g1h->set_par_threads(0);
tonyp@790 1875
tonyp@790 1876 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
tonyp@790 1877 "sanity check");
ysr@777 1878 } else {
ysr@777 1879 g1_par_note_end_task.work(0);
ysr@777 1880 }
tonyp@2472 1881
tonyp@2472 1882 if (!cleanup_list_is_empty()) {
tonyp@2472 1883 // The cleanup list is not empty, so we'll have to process it
tonyp@2472 1884 // concurrently. Notify anyone else that might be wanting free
tonyp@2472 1885 // regions that there will be more free regions coming soon.
tonyp@2472 1886 g1h->set_free_regions_coming();
tonyp@2472 1887 }
ysr@777 1888
ysr@777 1889 // call below, since it affects the metric by which we sort the heap
ysr@777 1890 // regions.
ysr@777 1891 if (G1ScrubRemSets) {
ysr@777 1892 double rs_scrub_start = os::elapsedTime();
ysr@777 1893 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
jmasa@2188 1894 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1895 g1h->set_par_threads((int)n_workers);
ysr@777 1896 g1h->workers()->run_task(&g1_par_scrub_rs_task);
ysr@777 1897 g1h->set_par_threads(0);
tonyp@790 1898
tonyp@790 1899 assert(g1h->check_heap_region_claim_values(
tonyp@790 1900 HeapRegion::ScrubRemSetClaimValue),
tonyp@790 1901 "sanity check");
ysr@777 1902 } else {
ysr@777 1903 g1_par_scrub_rs_task.work(0);
ysr@777 1904 }
ysr@777 1905
ysr@777 1906 double rs_scrub_end = os::elapsedTime();
ysr@777 1907 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
ysr@777 1908 _total_rs_scrub_time += this_rs_scrub_time;
ysr@777 1909 }
ysr@777 1910
ysr@777 1911 // this will also free any regions totally full of garbage objects,
ysr@777 1912 // and sort the regions.
jmasa@3294 1913 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
ysr@777 1914
ysr@777 1915 // Statistics.
ysr@777 1916 double end = os::elapsedTime();
ysr@777 1917 _cleanup_times.add((end - start) * 1000.0);
ysr@777 1918
brutisso@3710 1919 if (G1Log::fine()) {
ysr@777 1920 g1h->print_size_transition(gclog_or_tty,
ysr@777 1921 start_used_bytes,
ysr@777 1922 g1h->used(),
ysr@777 1923 g1h->capacity());
ysr@777 1924 }
ysr@777 1925
johnc@3175 1926 // Clean up will have freed any regions completely full of garbage.
johnc@3175 1927 // Update the soft reference policy with the new heap occupancy.
johnc@3175 1928 Universe::update_heap_info_at_gc();
johnc@3175 1929
ysr@777 1930 // We need to make this be a "collection" so any collection pause that
ysr@777 1931 // races with it goes around and waits for completeCleanup to finish.
ysr@777 1932 g1h->increment_total_collections();
ysr@777 1933
tonyp@3457 1934 // We reclaimed old regions so we should calculate the sizes to make
tonyp@3457 1935 // sure we update the old gen/space data.
tonyp@3457 1936 g1h->g1mm()->update_sizes();
tonyp@3457 1937
johnc@1186 1938 if (VerifyDuringGC) {
ysr@1280 1939 HandleMark hm; // handle scope
ysr@1280 1940 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1941 Universe::heap()->prepare_for_verify();
brutisso@3711 1942 Universe::verify(/* silent */ false,
johnc@2969 1943 /* option */ VerifyOption_G1UsePrevMarking);
ysr@777 1944 }
tonyp@2472 1945
tonyp@2472 1946 g1h->verify_region_sets_optional();
ysr@777 1947 }
ysr@777 1948
ysr@777 1949 void ConcurrentMark::completeCleanup() {
ysr@777 1950 if (has_aborted()) return;
ysr@777 1951
tonyp@2472 1952 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2472 1953
tonyp@2472 1954 _cleanup_list.verify_optional();
tonyp@2643 1955 FreeRegionList tmp_free_list("Tmp Free List");
tonyp@2472 1956
tonyp@2472 1957 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1958 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1959 "cleanup list has %u entries",
tonyp@2472 1960 _cleanup_list.length());
tonyp@2472 1961 }
tonyp@2472 1962
tonyp@2472 1963 // Noone else should be accessing the _cleanup_list at this point,
tonyp@2472 1964 // so it's not necessary to take any locks
tonyp@2472 1965 while (!_cleanup_list.is_empty()) {
tonyp@2472 1966 HeapRegion* hr = _cleanup_list.remove_head();
tonyp@2472 1967 assert(hr != NULL, "the list was not empty");
tonyp@2849 1968 hr->par_clear();
tonyp@2643 1969 tmp_free_list.add_as_tail(hr);
tonyp@2472 1970
tonyp@2472 1971 // Instead of adding one region at a time to the secondary_free_list,
tonyp@2472 1972 // we accumulate them in the local list and move them a few at a
tonyp@2472 1973 // time. This also cuts down on the number of notify_all() calls
tonyp@2472 1974 // we do during this process. We'll also append the local list when
tonyp@2472 1975 // _cleanup_list is empty (which means we just removed the last
tonyp@2472 1976 // region from the _cleanup_list).
tonyp@2643 1977 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
tonyp@2472 1978 _cleanup_list.is_empty()) {
tonyp@2472 1979 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1980 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1981 "appending %u entries to the secondary_free_list, "
tonyp@3713 1982 "cleanup list still has %u entries",
tonyp@2643 1983 tmp_free_list.length(),
tonyp@2472 1984 _cleanup_list.length());
ysr@777 1985 }
tonyp@2472 1986
tonyp@2472 1987 {
tonyp@2472 1988 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2643 1989 g1h->secondary_free_list_add_as_tail(&tmp_free_list);
tonyp@2472 1990 SecondaryFreeList_lock->notify_all();
tonyp@2472 1991 }
tonyp@2472 1992
tonyp@2472 1993 if (G1StressConcRegionFreeing) {
tonyp@2472 1994 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
tonyp@2472 1995 os::sleep(Thread::current(), (jlong) 1, false);
tonyp@2472 1996 }
tonyp@2472 1997 }
ysr@777 1998 }
ysr@777 1999 }
tonyp@2643 2000 assert(tmp_free_list.is_empty(), "post-condition");
ysr@777 2001 }
ysr@777 2002
johnc@2494 2003 // Support closures for reference procssing in G1
johnc@2494 2004
johnc@2379 2005 bool G1CMIsAliveClosure::do_object_b(oop obj) {
johnc@2379 2006 HeapWord* addr = (HeapWord*)obj;
johnc@2379 2007 return addr != NULL &&
johnc@2379 2008 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
johnc@2379 2009 }
ysr@777 2010
ysr@777 2011 class G1CMKeepAliveClosure: public OopClosure {
ysr@777 2012 G1CollectedHeap* _g1;
ysr@777 2013 ConcurrentMark* _cm;
ysr@777 2014 public:
johnc@3463 2015 G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
johnc@3463 2016 _g1(g1), _cm(cm) {
johnc@3463 2017 assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
johnc@3463 2018 }
ysr@777 2019
ysr@1280 2020 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2021 virtual void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2022
ysr@1280 2023 template <class T> void do_oop_work(T* p) {
johnc@2494 2024 oop obj = oopDesc::load_decode_heap_oop(p);
johnc@2494 2025 HeapWord* addr = (HeapWord*)obj;
johnc@2494 2026
tonyp@2973 2027 if (_cm->verbose_high()) {
johnc@2494 2028 gclog_or_tty->print_cr("\t[0] we're looking at location "
tonyp@2973 2029 "*"PTR_FORMAT" = "PTR_FORMAT,
tonyp@2973 2030 p, (void*) obj);
tonyp@2973 2031 }
johnc@2494 2032
johnc@2494 2033 if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
johnc@3463 2034 _cm->mark_and_count(obj);
johnc@2494 2035 _cm->mark_stack_push(obj);
ysr@777 2036 }
ysr@777 2037 }
ysr@777 2038 };
ysr@777 2039
ysr@777 2040 class G1CMDrainMarkingStackClosure: public VoidClosure {
johnc@3463 2041 ConcurrentMark* _cm;
ysr@777 2042 CMMarkStack* _markStack;
ysr@777 2043 G1CMKeepAliveClosure* _oopClosure;
ysr@777 2044 public:
johnc@3463 2045 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
ysr@777 2046 G1CMKeepAliveClosure* oopClosure) :
johnc@3463 2047 _cm(cm),
ysr@777 2048 _markStack(markStack),
johnc@3463 2049 _oopClosure(oopClosure) { }
ysr@777 2050
ysr@777 2051 void do_void() {
johnc@3463 2052 _markStack->drain((OopClosure*)_oopClosure, _cm->nextMarkBitMap(), false);
ysr@777 2053 }
ysr@777 2054 };
ysr@777 2055
johnc@2494 2056 // 'Keep Alive' closure used by parallel reference processing.
johnc@2494 2057 // An instance of this closure is used in the parallel reference processing
johnc@2494 2058 // code rather than an instance of G1CMKeepAliveClosure. We could have used
johnc@2494 2059 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
johnc@2494 2060 // placed on to discovered ref lists once so we can mark and push with no
johnc@2494 2061 // need to check whether the object has already been marked. Using the
johnc@2494 2062 // G1CMKeepAliveClosure would mean, however, having all the worker threads
johnc@2494 2063 // operating on the global mark stack. This means that an individual
johnc@2494 2064 // worker would be doing lock-free pushes while it processes its own
johnc@2494 2065 // discovered ref list followed by drain call. If the discovered ref lists
johnc@2494 2066 // are unbalanced then this could cause interference with the other
johnc@2494 2067 // workers. Using a CMTask (and its embedded local data structures)
johnc@2494 2068 // avoids that potential interference.
johnc@2494 2069 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
johnc@2494 2070 ConcurrentMark* _cm;
johnc@2494 2071 CMTask* _task;
johnc@2494 2072 int _ref_counter_limit;
johnc@2494 2073 int _ref_counter;
johnc@2494 2074 public:
johnc@3292 2075 G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3292 2076 _cm(cm), _task(task),
johnc@3292 2077 _ref_counter_limit(G1RefProcDrainInterval) {
johnc@2494 2078 assert(_ref_counter_limit > 0, "sanity");
johnc@2494 2079 _ref_counter = _ref_counter_limit;
johnc@2494 2080 }
johnc@2494 2081
johnc@2494 2082 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
johnc@2494 2083 virtual void do_oop( oop* p) { do_oop_work(p); }
johnc@2494 2084
johnc@2494 2085 template <class T> void do_oop_work(T* p) {
johnc@2494 2086 if (!_cm->has_overflown()) {
johnc@2494 2087 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@2973 2088 if (_cm->verbose_high()) {
johnc@2494 2089 gclog_or_tty->print_cr("\t[%d] we're looking at location "
johnc@2494 2090 "*"PTR_FORMAT" = "PTR_FORMAT,
johnc@2494 2091 _task->task_id(), p, (void*) obj);
tonyp@2973 2092 }
johnc@2494 2093
johnc@2494 2094 _task->deal_with_reference(obj);
johnc@2494 2095 _ref_counter--;
johnc@2494 2096
johnc@2494 2097 if (_ref_counter == 0) {
johnc@2494 2098 // We have dealt with _ref_counter_limit references, pushing them and objects
johnc@2494 2099 // reachable from them on to the local stack (and possibly the global stack).
johnc@2494 2100 // Call do_marking_step() to process these entries. We call the routine in a
johnc@2494 2101 // loop, which we'll exit if there's nothing more to do (i.e. we're done
johnc@2494 2102 // with the entries that we've pushed as a result of the deal_with_reference
johnc@2494 2103 // calls above) or we overflow.
johnc@2494 2104 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2105 // while there may still be some work to do. (See the comment at the
johnc@2494 2106 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2107 // is reaching the specified time target.) It is only when
johnc@2494 2108 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2109 // that the marking has completed.
johnc@2494 2110 do {
johnc@2494 2111 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 2112 _task->do_marking_step(mark_step_duration_ms,
johnc@2494 2113 false /* do_stealing */,
johnc@2494 2114 false /* do_termination */);
johnc@2494 2115 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2116 _ref_counter = _ref_counter_limit;
johnc@2494 2117 }
johnc@2494 2118 } else {
tonyp@2973 2119 if (_cm->verbose_high()) {
johnc@2494 2120 gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
tonyp@2973 2121 }
johnc@2494 2122 }
johnc@2494 2123 }
johnc@2494 2124 };
johnc@2494 2125
johnc@2494 2126 class G1CMParDrainMarkingStackClosure: public VoidClosure {
johnc@2494 2127 ConcurrentMark* _cm;
johnc@2494 2128 CMTask* _task;
johnc@2494 2129 public:
johnc@2494 2130 G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3463 2131 _cm(cm), _task(task) { }
johnc@2494 2132
johnc@2494 2133 void do_void() {
johnc@2494 2134 do {
tonyp@2973 2135 if (_cm->verbose_high()) {
tonyp@2973 2136 gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
tonyp@2973 2137 _task->task_id());
tonyp@2973 2138 }
johnc@2494 2139
johnc@2494 2140 // We call CMTask::do_marking_step() to completely drain the local and
johnc@2494 2141 // global marking stacks. The routine is called in a loop, which we'll
johnc@2494 2142 // exit if there's nothing more to do (i.e. we'completely drained the
johnc@2494 2143 // entries that were pushed as a result of applying the
johnc@2494 2144 // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
johnc@2494 2145 // lists above) or we overflow the global marking stack.
johnc@2494 2146 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2147 // while there may still be some work to do. (See the comment at the
johnc@2494 2148 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2149 // is reaching the specified time target.) It is only when
johnc@2494 2150 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2151 // that the marking has completed.
johnc@2494 2152
johnc@2494 2153 _task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2154 true /* do_stealing */,
johnc@2494 2155 true /* do_termination */);
johnc@2494 2156 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2157 }
johnc@2494 2158 };
johnc@2494 2159
johnc@3175 2160 // Implementation of AbstractRefProcTaskExecutor for parallel
johnc@3175 2161 // reference processing at the end of G1 concurrent marking
johnc@3175 2162
johnc@3175 2163 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
johnc@2494 2164 private:
johnc@2494 2165 G1CollectedHeap* _g1h;
johnc@2494 2166 ConcurrentMark* _cm;
johnc@2494 2167 WorkGang* _workers;
johnc@2494 2168 int _active_workers;
johnc@2494 2169
johnc@2494 2170 public:
johnc@3175 2171 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
johnc@2494 2172 ConcurrentMark* cm,
johnc@2494 2173 WorkGang* workers,
johnc@2494 2174 int n_workers) :
johnc@3292 2175 _g1h(g1h), _cm(cm),
johnc@3292 2176 _workers(workers), _active_workers(n_workers) { }
johnc@2494 2177
johnc@2494 2178 // Executes the given task using concurrent marking worker threads.
johnc@2494 2179 virtual void execute(ProcessTask& task);
johnc@2494 2180 virtual void execute(EnqueueTask& task);
johnc@2494 2181 };
johnc@2494 2182
johnc@3175 2183 class G1CMRefProcTaskProxy: public AbstractGangTask {
johnc@2494 2184 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
johnc@2494 2185 ProcessTask& _proc_task;
johnc@2494 2186 G1CollectedHeap* _g1h;
johnc@2494 2187 ConcurrentMark* _cm;
johnc@2494 2188
johnc@2494 2189 public:
johnc@3175 2190 G1CMRefProcTaskProxy(ProcessTask& proc_task,
johnc@2494 2191 G1CollectedHeap* g1h,
johnc@3292 2192 ConcurrentMark* cm) :
johnc@2494 2193 AbstractGangTask("Process reference objects in parallel"),
johnc@3292 2194 _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
johnc@2494 2195
jmasa@3357 2196 virtual void work(uint worker_id) {
jmasa@3357 2197 CMTask* marking_task = _cm->task(worker_id);
johnc@2494 2198 G1CMIsAliveClosure g1_is_alive(_g1h);
johnc@3292 2199 G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
johnc@2494 2200 G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
johnc@2494 2201
jmasa@3357 2202 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
johnc@2494 2203 }
johnc@2494 2204 };
johnc@2494 2205
johnc@3175 2206 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
johnc@2494 2207 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2208
johnc@3292 2209 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
johnc@2494 2210
johnc@2494 2211 // We need to reset the phase for each task execution so that
johnc@2494 2212 // the termination protocol of CMTask::do_marking_step works.
johnc@2494 2213 _cm->set_phase(_active_workers, false /* concurrent */);
johnc@2494 2214 _g1h->set_par_threads(_active_workers);
johnc@2494 2215 _workers->run_task(&proc_task_proxy);
johnc@2494 2216 _g1h->set_par_threads(0);
johnc@2494 2217 }
johnc@2494 2218
johnc@3175 2219 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
johnc@2494 2220 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
johnc@2494 2221 EnqueueTask& _enq_task;
johnc@2494 2222
johnc@2494 2223 public:
johnc@3175 2224 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
johnc@2494 2225 AbstractGangTask("Enqueue reference objects in parallel"),
johnc@3292 2226 _enq_task(enq_task) { }
johnc@2494 2227
jmasa@3357 2228 virtual void work(uint worker_id) {
jmasa@3357 2229 _enq_task.work(worker_id);
johnc@2494 2230 }
johnc@2494 2231 };
johnc@2494 2232
johnc@3175 2233 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
johnc@2494 2234 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2235
johnc@3175 2236 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
johnc@2494 2237
johnc@2494 2238 _g1h->set_par_threads(_active_workers);
johnc@2494 2239 _workers->run_task(&enq_task_proxy);
johnc@2494 2240 _g1h->set_par_threads(0);
johnc@2494 2241 }
johnc@2494 2242
ysr@777 2243 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
ysr@777 2244 ResourceMark rm;
ysr@777 2245 HandleMark hm;
johnc@3171 2246
johnc@3171 2247 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3171 2248
johnc@3171 2249 // Is alive closure.
johnc@3171 2250 G1CMIsAliveClosure g1_is_alive(g1h);
johnc@3171 2251
johnc@3171 2252 // Inner scope to exclude the cleaning of the string and symbol
johnc@3171 2253 // tables from the displayed time.
johnc@3171 2254 {
brutisso@3710 2255 if (G1Log::finer()) {
johnc@3171 2256 gclog_or_tty->put(' ');
johnc@3171 2257 }
brutisso@3710 2258 TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
johnc@3171 2259
johnc@3175 2260 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3171 2261
johnc@3171 2262 // See the comment in G1CollectedHeap::ref_processing_init()
johnc@3171 2263 // about how reference processing currently works in G1.
johnc@3171 2264
johnc@3171 2265 // Process weak references.
johnc@3171 2266 rp->setup_policy(clear_all_soft_refs);
johnc@3171 2267 assert(_markStack.isEmpty(), "mark stack should be empty");
johnc@3171 2268
johnc@3463 2269 G1CMKeepAliveClosure g1_keep_alive(g1h, this);
johnc@3171 2270 G1CMDrainMarkingStackClosure
johnc@3463 2271 g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
johnc@3171 2272
johnc@3171 2273 // We use the work gang from the G1CollectedHeap and we utilize all
johnc@3171 2274 // the worker threads.
jmasa@3357 2275 uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
jmasa@3357 2276 active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
johnc@3171 2277
johnc@3292 2278 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
johnc@3175 2279 g1h->workers(), active_workers);
johnc@3171 2280
johnc@3171 2281 if (rp->processing_is_mt()) {
johnc@3171 2282 // Set the degree of MT here. If the discovery is done MT, there
johnc@3171 2283 // may have been a different number of threads doing the discovery
johnc@3171 2284 // and a different number of discovered lists may have Ref objects.
johnc@3171 2285 // That is OK as long as the Reference lists are balanced (see
johnc@3171 2286 // balance_all_queues() and balance_queues()).
johnc@3171 2287 rp->set_active_mt_degree(active_workers);
johnc@3171 2288
johnc@3171 2289 rp->process_discovered_references(&g1_is_alive,
johnc@2494 2290 &g1_keep_alive,
johnc@2494 2291 &g1_drain_mark_stack,
johnc@2494 2292 &par_task_executor);
johnc@2494 2293
johnc@3171 2294 // The work routines of the parallel keep_alive and drain_marking_stack
johnc@3171 2295 // will set the has_overflown flag if we overflow the global marking
johnc@3171 2296 // stack.
johnc@3171 2297 } else {
johnc@3171 2298 rp->process_discovered_references(&g1_is_alive,
johnc@3171 2299 &g1_keep_alive,
johnc@3171 2300 &g1_drain_mark_stack,
johnc@3171 2301 NULL);
johnc@3171 2302 }
johnc@3171 2303
johnc@3171 2304 assert(_markStack.overflow() || _markStack.isEmpty(),
johnc@3171 2305 "mark stack should be empty (unless it overflowed)");
johnc@3171 2306 if (_markStack.overflow()) {
johnc@3171 2307 // Should have been done already when we tried to push an
johnc@3171 2308 // entry on to the global mark stack. But let's do it again.
johnc@3171 2309 set_has_overflown();
johnc@3171 2310 }
johnc@3171 2311
johnc@3171 2312 if (rp->processing_is_mt()) {
johnc@3171 2313 assert(rp->num_q() == active_workers, "why not");
johnc@3171 2314 rp->enqueue_discovered_references(&par_task_executor);
johnc@3171 2315 } else {
johnc@3171 2316 rp->enqueue_discovered_references();
johnc@3171 2317 }
johnc@3171 2318
johnc@3171 2319 rp->verify_no_references_recorded();
johnc@3175 2320 assert(!rp->discovery_enabled(), "Post condition");
johnc@2494 2321 }
johnc@2494 2322
coleenp@2497 2323 // Now clean up stale oops in StringTable
johnc@2379 2324 StringTable::unlink(&g1_is_alive);
coleenp@2497 2325 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2326 SymbolTable::unlink();
ysr@777 2327 }
ysr@777 2328
ysr@777 2329 void ConcurrentMark::swapMarkBitMaps() {
ysr@777 2330 CMBitMapRO* temp = _prevMarkBitMap;
ysr@777 2331 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
ysr@777 2332 _nextMarkBitMap = (CMBitMap*) temp;
ysr@777 2333 }
ysr@777 2334
ysr@777 2335 class CMRemarkTask: public AbstractGangTask {
ysr@777 2336 private:
ysr@777 2337 ConcurrentMark *_cm;
ysr@777 2338
ysr@777 2339 public:
jmasa@3357 2340 void work(uint worker_id) {
ysr@777 2341 // Since all available tasks are actually started, we should
ysr@777 2342 // only proceed if we're supposed to be actived.
jmasa@3357 2343 if (worker_id < _cm->active_tasks()) {
jmasa@3357 2344 CMTask* task = _cm->task(worker_id);
ysr@777 2345 task->record_start_time();
ysr@777 2346 do {
johnc@2494 2347 task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2348 true /* do_stealing */,
johnc@2494 2349 true /* do_termination */);
ysr@777 2350 } while (task->has_aborted() && !_cm->has_overflown());
ysr@777 2351 // If we overflow, then we do not want to restart. We instead
ysr@777 2352 // want to abort remark and do concurrent marking again.
ysr@777 2353 task->record_end_time();
ysr@777 2354 }
ysr@777 2355 }
ysr@777 2356
johnc@3338 2357 CMRemarkTask(ConcurrentMark* cm, int active_workers) :
jmasa@3294 2358 AbstractGangTask("Par Remark"), _cm(cm) {
johnc@3338 2359 _cm->terminator()->reset_for_reuse(active_workers);
jmasa@3294 2360 }
ysr@777 2361 };
ysr@777 2362
ysr@777 2363 void ConcurrentMark::checkpointRootsFinalWork() {
ysr@777 2364 ResourceMark rm;
ysr@777 2365 HandleMark hm;
ysr@777 2366 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 2367
ysr@777 2368 g1h->ensure_parsability(false);
ysr@777 2369
jmasa@2188 2370 if (G1CollectedHeap::use_parallel_gc_threads()) {
jrose@1424 2371 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3294 2372 // this is remark, so we'll use up all active threads
jmasa@3357 2373 uint active_workers = g1h->workers()->active_workers();
jmasa@3294 2374 if (active_workers == 0) {
jmasa@3294 2375 assert(active_workers > 0, "Should have been set earlier");
jmasa@3357 2376 active_workers = (uint) ParallelGCThreads;
jmasa@3294 2377 g1h->workers()->set_active_workers(active_workers);
jmasa@3294 2378 }
johnc@2494 2379 set_phase(active_workers, false /* concurrent */);
jmasa@3294 2380 // Leave _parallel_marking_threads at it's
jmasa@3294 2381 // value originally calculated in the ConcurrentMark
jmasa@3294 2382 // constructor and pass values of the active workers
jmasa@3294 2383 // through the gang in the task.
ysr@777 2384
johnc@3338 2385 CMRemarkTask remarkTask(this, active_workers);
jmasa@3294 2386 g1h->set_par_threads(active_workers);
ysr@777 2387 g1h->workers()->run_task(&remarkTask);
ysr@777 2388 g1h->set_par_threads(0);
ysr@777 2389 } else {
jrose@1424 2390 G1CollectedHeap::StrongRootsScope srs(g1h);
ysr@777 2391 // this is remark, so we'll use up all available threads
jmasa@3357 2392 uint active_workers = 1;
johnc@2494 2393 set_phase(active_workers, false /* concurrent */);
ysr@777 2394
johnc@3338 2395 CMRemarkTask remarkTask(this, active_workers);
ysr@777 2396 // We will start all available threads, even if we decide that the
ysr@777 2397 // active_workers will be fewer. The extra ones will just bail out
ysr@777 2398 // immediately.
ysr@777 2399 remarkTask.work(0);
ysr@777 2400 }
tonyp@1458 2401 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1458 2402 guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 2403
ysr@777 2404 print_stats();
ysr@777 2405
ysr@777 2406 #if VERIFY_OBJS_PROCESSED
ysr@777 2407 if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
ysr@777 2408 gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
ysr@777 2409 _scan_obj_cl.objs_processed,
ysr@777 2410 ThreadLocalObjQueue::objs_enqueued);
ysr@777 2411 guarantee(_scan_obj_cl.objs_processed ==
ysr@777 2412 ThreadLocalObjQueue::objs_enqueued,
ysr@777 2413 "Different number of objs processed and enqueued.");
ysr@777 2414 }
ysr@777 2415 #endif
ysr@777 2416 }
ysr@777 2417
tonyp@1479 2418 #ifndef PRODUCT
tonyp@1479 2419
tonyp@1823 2420 class PrintReachableOopClosure: public OopClosure {
ysr@777 2421 private:
ysr@777 2422 G1CollectedHeap* _g1h;
ysr@777 2423 outputStream* _out;
johnc@2969 2424 VerifyOption _vo;
tonyp@1823 2425 bool _all;
ysr@777 2426
ysr@777 2427 public:
johnc@2969 2428 PrintReachableOopClosure(outputStream* out,
johnc@2969 2429 VerifyOption vo,
tonyp@1823 2430 bool all) :
tonyp@1479 2431 _g1h(G1CollectedHeap::heap()),
johnc@2969 2432 _out(out), _vo(vo), _all(all) { }
ysr@777 2433
ysr@1280 2434 void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2435 void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2436
ysr@1280 2437 template <class T> void do_oop_work(T* p) {
ysr@1280 2438 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@777 2439 const char* str = NULL;
ysr@777 2440 const char* str2 = "";
ysr@777 2441
tonyp@1823 2442 if (obj == NULL) {
tonyp@1823 2443 str = "";
tonyp@1823 2444 } else if (!_g1h->is_in_g1_reserved(obj)) {
tonyp@1823 2445 str = " O";
tonyp@1823 2446 } else {
ysr@777 2447 HeapRegion* hr = _g1h->heap_region_containing(obj);
tonyp@1458 2448 guarantee(hr != NULL, "invariant");
tonyp@1479 2449 bool over_tams = false;
johnc@2969 2450 bool marked = false;
johnc@2969 2451
johnc@2969 2452 switch (_vo) {
johnc@2969 2453 case VerifyOption_G1UsePrevMarking:
johnc@2969 2454 over_tams = hr->obj_allocated_since_prev_marking(obj);
johnc@2969 2455 marked = _g1h->isMarkedPrev(obj);
johnc@2969 2456 break;
johnc@2969 2457 case VerifyOption_G1UseNextMarking:
johnc@2969 2458 over_tams = hr->obj_allocated_since_next_marking(obj);
johnc@2969 2459 marked = _g1h->isMarkedNext(obj);
johnc@2969 2460 break;
johnc@2969 2461 case VerifyOption_G1UseMarkWord:
johnc@2969 2462 marked = obj->is_gc_marked();
johnc@2969 2463 break;
johnc@2969 2464 default:
johnc@2969 2465 ShouldNotReachHere();
tonyp@1479 2466 }
tonyp@1479 2467
tonyp@1479 2468 if (over_tams) {
tonyp@1823 2469 str = " >";
tonyp@1823 2470 if (marked) {
ysr@777 2471 str2 = " AND MARKED";
tonyp@1479 2472 }
tonyp@1823 2473 } else if (marked) {
tonyp@1823 2474 str = " M";
tonyp@1479 2475 } else {
tonyp@1823 2476 str = " NOT";
tonyp@1479 2477 }
ysr@777 2478 }
ysr@777 2479
tonyp@1823 2480 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
ysr@777 2481 p, (void*) obj, str, str2);
ysr@777 2482 }
ysr@777 2483 };
ysr@777 2484
tonyp@1823 2485 class PrintReachableObjectClosure : public ObjectClosure {
ysr@777 2486 private:
johnc@2969 2487 G1CollectedHeap* _g1h;
johnc@2969 2488 outputStream* _out;
johnc@2969 2489 VerifyOption _vo;
johnc@2969 2490 bool _all;
johnc@2969 2491 HeapRegion* _hr;
ysr@777 2492
ysr@777 2493 public:
johnc@2969 2494 PrintReachableObjectClosure(outputStream* out,
johnc@2969 2495 VerifyOption vo,
tonyp@1823 2496 bool all,
tonyp@1823 2497 HeapRegion* hr) :
johnc@2969 2498 _g1h(G1CollectedHeap::heap()),
johnc@2969 2499 _out(out), _vo(vo), _all(all), _hr(hr) { }
tonyp@1823 2500
tonyp@1823 2501 void do_object(oop o) {
johnc@2969 2502 bool over_tams = false;
johnc@2969 2503 bool marked = false;
johnc@2969 2504
johnc@2969 2505 switch (_vo) {
johnc@2969 2506 case VerifyOption_G1UsePrevMarking:
johnc@2969 2507 over_tams = _hr->obj_allocated_since_prev_marking(o);
johnc@2969 2508 marked = _g1h->isMarkedPrev(o);
johnc@2969 2509 break;
johnc@2969 2510 case VerifyOption_G1UseNextMarking:
johnc@2969 2511 over_tams = _hr->obj_allocated_since_next_marking(o);
johnc@2969 2512 marked = _g1h->isMarkedNext(o);
johnc@2969 2513 break;
johnc@2969 2514 case VerifyOption_G1UseMarkWord:
johnc@2969 2515 marked = o->is_gc_marked();
johnc@2969 2516 break;
johnc@2969 2517 default:
johnc@2969 2518 ShouldNotReachHere();
tonyp@1823 2519 }
tonyp@1823 2520 bool print_it = _all || over_tams || marked;
tonyp@1823 2521
tonyp@1823 2522 if (print_it) {
tonyp@1823 2523 _out->print_cr(" "PTR_FORMAT"%s",
tonyp@1823 2524 o, (over_tams) ? " >" : (marked) ? " M" : "");
johnc@2969 2525 PrintReachableOopClosure oopCl(_out, _vo, _all);
tonyp@1823 2526 o->oop_iterate(&oopCl);
tonyp@1823 2527 }
ysr@777 2528 }
ysr@777 2529 };
ysr@777 2530
tonyp@1823 2531 class PrintReachableRegionClosure : public HeapRegionClosure {
ysr@777 2532 private:
ysr@777 2533 outputStream* _out;
johnc@2969 2534 VerifyOption _vo;
tonyp@1823 2535 bool _all;
ysr@777 2536
ysr@777 2537 public:
ysr@777 2538 bool doHeapRegion(HeapRegion* hr) {
ysr@777 2539 HeapWord* b = hr->bottom();
ysr@777 2540 HeapWord* e = hr->end();
ysr@777 2541 HeapWord* t = hr->top();
tonyp@1479 2542 HeapWord* p = NULL;
johnc@2969 2543
johnc@2969 2544 switch (_vo) {
johnc@2969 2545 case VerifyOption_G1UsePrevMarking:
johnc@2969 2546 p = hr->prev_top_at_mark_start();
johnc@2969 2547 break;
johnc@2969 2548 case VerifyOption_G1UseNextMarking:
johnc@2969 2549 p = hr->next_top_at_mark_start();
johnc@2969 2550 break;
johnc@2969 2551 case VerifyOption_G1UseMarkWord:
johnc@2969 2552 // When we are verifying marking using the mark word
johnc@2969 2553 // TAMS has no relevance.
johnc@2969 2554 assert(p == NULL, "post-condition");
johnc@2969 2555 break;
johnc@2969 2556 default:
johnc@2969 2557 ShouldNotReachHere();
tonyp@1479 2558 }
ysr@777 2559 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
tonyp@1479 2560 "TAMS: "PTR_FORMAT, b, e, t, p);
tonyp@1823 2561 _out->cr();
tonyp@1823 2562
tonyp@1823 2563 HeapWord* from = b;
tonyp@1823 2564 HeapWord* to = t;
tonyp@1823 2565
tonyp@1823 2566 if (to > from) {
tonyp@1823 2567 _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
tonyp@1823 2568 _out->cr();
johnc@2969 2569 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
tonyp@1823 2570 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
tonyp@1823 2571 _out->cr();
tonyp@1823 2572 }
ysr@777 2573
ysr@777 2574 return false;
ysr@777 2575 }
ysr@777 2576
johnc@2969 2577 PrintReachableRegionClosure(outputStream* out,
johnc@2969 2578 VerifyOption vo,
tonyp@1823 2579 bool all) :
johnc@2969 2580 _out(out), _vo(vo), _all(all) { }
ysr@777 2581 };
ysr@777 2582
johnc@2969 2583 static const char* verify_option_to_tams(VerifyOption vo) {
johnc@2969 2584 switch (vo) {
johnc@2969 2585 case VerifyOption_G1UsePrevMarking:
johnc@2969 2586 return "PTAMS";
johnc@2969 2587 case VerifyOption_G1UseNextMarking:
johnc@2969 2588 return "NTAMS";
johnc@2969 2589 default:
johnc@2969 2590 return "NONE";
johnc@2969 2591 }
johnc@2969 2592 }
johnc@2969 2593
tonyp@1823 2594 void ConcurrentMark::print_reachable(const char* str,
johnc@2969 2595 VerifyOption vo,
tonyp@1823 2596 bool all) {
tonyp@1823 2597 gclog_or_tty->cr();
tonyp@1823 2598 gclog_or_tty->print_cr("== Doing heap dump... ");
tonyp@1479 2599
tonyp@1479 2600 if (G1PrintReachableBaseFile == NULL) {
tonyp@1479 2601 gclog_or_tty->print_cr(" #### error: no base file defined");
tonyp@1479 2602 return;
tonyp@1479 2603 }
tonyp@1479 2604
tonyp@1479 2605 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
tonyp@1479 2606 (JVM_MAXPATHLEN - 1)) {
tonyp@1479 2607 gclog_or_tty->print_cr(" #### error: file name too long");
tonyp@1479 2608 return;
tonyp@1479 2609 }
tonyp@1479 2610
tonyp@1479 2611 char file_name[JVM_MAXPATHLEN];
tonyp@1479 2612 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
tonyp@1479 2613 gclog_or_tty->print_cr(" dumping to file %s", file_name);
tonyp@1479 2614
tonyp@1479 2615 fileStream fout(file_name);
tonyp@1479 2616 if (!fout.is_open()) {
tonyp@1479 2617 gclog_or_tty->print_cr(" #### error: could not open file");
tonyp@1479 2618 return;
tonyp@1479 2619 }
tonyp@1479 2620
tonyp@1479 2621 outputStream* out = &fout;
johnc@2969 2622 out->print_cr("-- USING %s", verify_option_to_tams(vo));
tonyp@1479 2623 out->cr();
tonyp@1479 2624
tonyp@1823 2625 out->print_cr("--- ITERATING OVER REGIONS");
tonyp@1479 2626 out->cr();
johnc@2969 2627 PrintReachableRegionClosure rcl(out, vo, all);
ysr@777 2628 _g1h->heap_region_iterate(&rcl);
tonyp@1479 2629 out->cr();
tonyp@1479 2630
tonyp@1479 2631 gclog_or_tty->print_cr(" done");
tonyp@1823 2632 gclog_or_tty->flush();
ysr@777 2633 }
ysr@777 2634
tonyp@1479 2635 #endif // PRODUCT
tonyp@1479 2636
tonyp@3416 2637 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
ysr@777 2638 // Note we are overriding the read-only view of the prev map here, via
ysr@777 2639 // the cast.
ysr@777 2640 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
tonyp@3416 2641 }
tonyp@3416 2642
tonyp@3416 2643 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
ysr@777 2644 _nextMarkBitMap->clearRange(mr);
ysr@777 2645 }
ysr@777 2646
tonyp@3416 2647 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
tonyp@3416 2648 clearRangePrevBitmap(mr);
tonyp@3416 2649 clearRangeNextBitmap(mr);
tonyp@3416 2650 }
tonyp@3416 2651
ysr@777 2652 HeapRegion*
ysr@777 2653 ConcurrentMark::claim_region(int task_num) {
ysr@777 2654 // "checkpoint" the finger
ysr@777 2655 HeapWord* finger = _finger;
ysr@777 2656
ysr@777 2657 // _heap_end will not change underneath our feet; it only changes at
ysr@777 2658 // yield points.
ysr@777 2659 while (finger < _heap_end) {
tonyp@1458 2660 assert(_g1h->is_in_g1_reserved(finger), "invariant");
ysr@777 2661
tonyp@2968 2662 // Note on how this code handles humongous regions. In the
tonyp@2968 2663 // normal case the finger will reach the start of a "starts
tonyp@2968 2664 // humongous" (SH) region. Its end will either be the end of the
tonyp@2968 2665 // last "continues humongous" (CH) region in the sequence, or the
tonyp@2968 2666 // standard end of the SH region (if the SH is the only region in
tonyp@2968 2667 // the sequence). That way claim_region() will skip over the CH
tonyp@2968 2668 // regions. However, there is a subtle race between a CM thread
tonyp@2968 2669 // executing this method and a mutator thread doing a humongous
tonyp@2968 2670 // object allocation. The two are not mutually exclusive as the CM
tonyp@2968 2671 // thread does not need to hold the Heap_lock when it gets
tonyp@2968 2672 // here. So there is a chance that claim_region() will come across
tonyp@2968 2673 // a free region that's in the progress of becoming a SH or a CH
tonyp@2968 2674 // region. In the former case, it will either
tonyp@2968 2675 // a) Miss the update to the region's end, in which case it will
tonyp@2968 2676 // visit every subsequent CH region, will find their bitmaps
tonyp@2968 2677 // empty, and do nothing, or
tonyp@2968 2678 // b) Will observe the update of the region's end (in which case
tonyp@2968 2679 // it will skip the subsequent CH regions).
tonyp@2968 2680 // If it comes across a region that suddenly becomes CH, the
tonyp@2968 2681 // scenario will be similar to b). So, the race between
tonyp@2968 2682 // claim_region() and a humongous object allocation might force us
tonyp@2968 2683 // to do a bit of unnecessary work (due to some unnecessary bitmap
tonyp@2968 2684 // iterations) but it should not introduce and correctness issues.
tonyp@2968 2685 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
ysr@777 2686 HeapWord* bottom = curr_region->bottom();
ysr@777 2687 HeapWord* end = curr_region->end();
ysr@777 2688 HeapWord* limit = curr_region->next_top_at_mark_start();
ysr@777 2689
tonyp@2968 2690 if (verbose_low()) {
ysr@777 2691 gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
ysr@777 2692 "["PTR_FORMAT", "PTR_FORMAT"), "
ysr@777 2693 "limit = "PTR_FORMAT,
ysr@777 2694 task_num, curr_region, bottom, end, limit);
tonyp@2968 2695 }
tonyp@2968 2696
tonyp@2968 2697 // Is the gap between reading the finger and doing the CAS too long?
tonyp@2968 2698 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
ysr@777 2699 if (res == finger) {
ysr@777 2700 // we succeeded
ysr@777 2701
ysr@777 2702 // notice that _finger == end cannot be guaranteed here since,
ysr@777 2703 // someone else might have moved the finger even further
tonyp@1458 2704 assert(_finger >= end, "the finger should have moved forward");
ysr@777 2705
tonyp@2973 2706 if (verbose_low()) {
ysr@777 2707 gclog_or_tty->print_cr("[%d] we were successful with region = "
ysr@777 2708 PTR_FORMAT, task_num, curr_region);
tonyp@2973 2709 }
ysr@777 2710
ysr@777 2711 if (limit > bottom) {
tonyp@2973 2712 if (verbose_low()) {
ysr@777 2713 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
ysr@777 2714 "returning it ", task_num, curr_region);
tonyp@2973 2715 }
ysr@777 2716 return curr_region;
ysr@777 2717 } else {
tonyp@1458 2718 assert(limit == bottom,
tonyp@1458 2719 "the region limit should be at bottom");
tonyp@2973 2720 if (verbose_low()) {
ysr@777 2721 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
ysr@777 2722 "returning NULL", task_num, curr_region);
tonyp@2973 2723 }
ysr@777 2724 // we return NULL and the caller should try calling
ysr@777 2725 // claim_region() again.
ysr@777 2726 return NULL;
ysr@777 2727 }
ysr@777 2728 } else {
tonyp@1458 2729 assert(_finger > finger, "the finger should have moved forward");
tonyp@2973 2730 if (verbose_low()) {
ysr@777 2731 gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
ysr@777 2732 "global finger = "PTR_FORMAT", "
ysr@777 2733 "our finger = "PTR_FORMAT,
ysr@777 2734 task_num, _finger, finger);
tonyp@2973 2735 }
ysr@777 2736
ysr@777 2737 // read it again
ysr@777 2738 finger = _finger;
ysr@777 2739 }
ysr@777 2740 }
ysr@777 2741
ysr@777 2742 return NULL;
ysr@777 2743 }
ysr@777 2744
tonyp@3416 2745 #ifndef PRODUCT
tonyp@3416 2746 enum VerifyNoCSetOopsPhase {
tonyp@3416 2747 VerifyNoCSetOopsStack,
tonyp@3416 2748 VerifyNoCSetOopsQueues,
tonyp@3416 2749 VerifyNoCSetOopsSATBCompleted,
tonyp@3416 2750 VerifyNoCSetOopsSATBThread
tonyp@3416 2751 };
tonyp@3416 2752
tonyp@3416 2753 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
tonyp@3416 2754 private:
tonyp@3416 2755 G1CollectedHeap* _g1h;
tonyp@3416 2756 VerifyNoCSetOopsPhase _phase;
tonyp@3416 2757 int _info;
tonyp@3416 2758
tonyp@3416 2759 const char* phase_str() {
tonyp@3416 2760 switch (_phase) {
tonyp@3416 2761 case VerifyNoCSetOopsStack: return "Stack";
tonyp@3416 2762 case VerifyNoCSetOopsQueues: return "Queue";
tonyp@3416 2763 case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
tonyp@3416 2764 case VerifyNoCSetOopsSATBThread: return "Thread SATB Buffers";
tonyp@3416 2765 default: ShouldNotReachHere();
tonyp@3416 2766 }
tonyp@3416 2767 return NULL;
ysr@777 2768 }
johnc@2190 2769
tonyp@3416 2770 void do_object_work(oop obj) {
tonyp@3416 2771 guarantee(!_g1h->obj_in_cs(obj),
tonyp@3416 2772 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
tonyp@3416 2773 (void*) obj, phase_str(), _info));
johnc@2190 2774 }
johnc@2190 2775
tonyp@3416 2776 public:
tonyp@3416 2777 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
tonyp@3416 2778
tonyp@3416 2779 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
tonyp@3416 2780 _phase = phase;
tonyp@3416 2781 _info = info;
tonyp@3416 2782 }
tonyp@3416 2783
tonyp@3416 2784 virtual void do_oop(oop* p) {
tonyp@3416 2785 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@3416 2786 do_object_work(obj);
tonyp@3416 2787 }
tonyp@3416 2788
tonyp@3416 2789 virtual void do_oop(narrowOop* p) {
tonyp@3416 2790 // We should not come across narrow oops while scanning marking
tonyp@3416 2791 // stacks and SATB buffers.
tonyp@3416 2792 ShouldNotReachHere();
tonyp@3416 2793 }
tonyp@3416 2794
tonyp@3416 2795 virtual void do_object(oop obj) {
tonyp@3416 2796 do_object_work(obj);
tonyp@3416 2797 }
tonyp@3416 2798 };
tonyp@3416 2799
tonyp@3416 2800 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
tonyp@3416 2801 bool verify_enqueued_buffers,
tonyp@3416 2802 bool verify_thread_buffers,
tonyp@3416 2803 bool verify_fingers) {
tonyp@3416 2804 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
tonyp@3416 2805 if (!G1CollectedHeap::heap()->mark_in_progress()) {
tonyp@3416 2806 return;
tonyp@3416 2807 }
tonyp@3416 2808
tonyp@3416 2809 VerifyNoCSetOopsClosure cl;
tonyp@3416 2810
tonyp@3416 2811 if (verify_stacks) {
tonyp@3416 2812 // Verify entries on the global mark stack
tonyp@3416 2813 cl.set_phase(VerifyNoCSetOopsStack);
tonyp@3416 2814 _markStack.oops_do(&cl);
tonyp@3416 2815
tonyp@3416 2816 // Verify entries on the task queues
tonyp@3416 2817 for (int i = 0; i < (int) _max_task_num; i += 1) {
tonyp@3416 2818 cl.set_phase(VerifyNoCSetOopsQueues, i);
tonyp@3416 2819 OopTaskQueue* queue = _task_queues->queue(i);
tonyp@3416 2820 queue->oops_do(&cl);
tonyp@3416 2821 }
tonyp@3416 2822 }
tonyp@3416 2823
tonyp@3416 2824 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@3416 2825
tonyp@3416 2826 // Verify entries on the enqueued SATB buffers
tonyp@3416 2827 if (verify_enqueued_buffers) {
tonyp@3416 2828 cl.set_phase(VerifyNoCSetOopsSATBCompleted);
tonyp@3416 2829 satb_qs.iterate_completed_buffers_read_only(&cl);
tonyp@3416 2830 }
tonyp@3416 2831
tonyp@3416 2832 // Verify entries on the per-thread SATB buffers
tonyp@3416 2833 if (verify_thread_buffers) {
tonyp@3416 2834 cl.set_phase(VerifyNoCSetOopsSATBThread);
tonyp@3416 2835 satb_qs.iterate_thread_buffers_read_only(&cl);
tonyp@3416 2836 }
tonyp@3416 2837
tonyp@3416 2838 if (verify_fingers) {
tonyp@3416 2839 // Verify the global finger
tonyp@3416 2840 HeapWord* global_finger = finger();
tonyp@3416 2841 if (global_finger != NULL && global_finger < _heap_end) {
tonyp@3416 2842 // The global finger always points to a heap region boundary. We
tonyp@3416 2843 // use heap_region_containing_raw() to get the containing region
tonyp@3416 2844 // given that the global finger could be pointing to a free region
tonyp@3416 2845 // which subsequently becomes continues humongous. If that
tonyp@3416 2846 // happens, heap_region_containing() will return the bottom of the
tonyp@3416 2847 // corresponding starts humongous region and the check below will
tonyp@3416 2848 // not hold any more.
tonyp@3416 2849 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
tonyp@3416 2850 guarantee(global_finger == global_hr->bottom(),
tonyp@3416 2851 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2852 global_finger, HR_FORMAT_PARAMS(global_hr)));
tonyp@3416 2853 }
tonyp@3416 2854
tonyp@3416 2855 // Verify the task fingers
tonyp@3416 2856 assert(parallel_marking_threads() <= _max_task_num, "sanity");
tonyp@3416 2857 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
tonyp@3416 2858 CMTask* task = _tasks[i];
tonyp@3416 2859 HeapWord* task_finger = task->finger();
tonyp@3416 2860 if (task_finger != NULL && task_finger < _heap_end) {
tonyp@3416 2861 // See above note on the global finger verification.
tonyp@3416 2862 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
tonyp@3416 2863 guarantee(task_finger == task_hr->bottom() ||
tonyp@3416 2864 !task_hr->in_collection_set(),
tonyp@3416 2865 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2866 task_finger, HR_FORMAT_PARAMS(task_hr)));
tonyp@3416 2867 }
tonyp@3416 2868 }
tonyp@3416 2869 }
ysr@777 2870 }
tonyp@3416 2871 #endif // PRODUCT
ysr@777 2872
tonyp@2848 2873 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
ysr@777 2874 _markStack.setEmpty();
ysr@777 2875 _markStack.clear_overflow();
tonyp@2848 2876 if (clear_overflow) {
tonyp@2848 2877 clear_has_overflown();
tonyp@2848 2878 } else {
tonyp@2848 2879 assert(has_overflown(), "pre-condition");
tonyp@2848 2880 }
ysr@777 2881 _finger = _heap_start;
ysr@777 2882
ysr@777 2883 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 2884 OopTaskQueue* queue = _task_queues->queue(i);
ysr@777 2885 queue->set_empty();
ysr@777 2886 }
ysr@777 2887 }
ysr@777 2888
johnc@3463 2889 // Aggregate the counting data that was constructed concurrently
johnc@3463 2890 // with marking.
johnc@3463 2891 class AggregateCountDataHRClosure: public HeapRegionClosure {
johnc@3463 2892 ConcurrentMark* _cm;
johnc@3463 2893 BitMap* _cm_card_bm;
johnc@3463 2894 size_t _max_task_num;
johnc@3463 2895
johnc@3463 2896 public:
johnc@3463 2897 AggregateCountDataHRClosure(ConcurrentMark *cm,
johnc@3463 2898 BitMap* cm_card_bm,
johnc@3463 2899 size_t max_task_num) :
johnc@3463 2900 _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 2901 _max_task_num(max_task_num) { }
johnc@3463 2902
johnc@3463 2903 bool is_card_aligned(HeapWord* p) {
johnc@3463 2904 return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
johnc@3463 2905 }
johnc@3463 2906
johnc@3463 2907 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 2908 if (hr->continuesHumongous()) {
johnc@3463 2909 // We will ignore these here and process them when their
johnc@3463 2910 // associated "starts humongous" region is processed.
johnc@3463 2911 // Note that we cannot rely on their associated
johnc@3463 2912 // "starts humongous" region to have their bit set to 1
johnc@3463 2913 // since, due to the region chunking in the parallel region
johnc@3463 2914 // iteration, a "continues humongous" region might be visited
johnc@3463 2915 // before its associated "starts humongous".
johnc@3463 2916 return false;
johnc@3463 2917 }
johnc@3463 2918
johnc@3463 2919 HeapWord* start = hr->bottom();
johnc@3463 2920 HeapWord* limit = hr->next_top_at_mark_start();
johnc@3463 2921 HeapWord* end = hr->end();
johnc@3463 2922
johnc@3463 2923 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
johnc@3463 2924 err_msg("Preconditions not met - "
johnc@3463 2925 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
johnc@3463 2926 "top: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 2927 start, limit, hr->top(), hr->end()));
johnc@3463 2928
johnc@3463 2929 assert(hr->next_marked_bytes() == 0, "Precondition");
johnc@3463 2930
johnc@3463 2931 if (start == limit) {
johnc@3463 2932 // NTAMS of this region has not been set so nothing to do.
johnc@3463 2933 return false;
johnc@3463 2934 }
johnc@3463 2935
johnc@3463 2936 assert(is_card_aligned(start), "sanity");
johnc@3463 2937 assert(is_card_aligned(end), "sanity");
johnc@3463 2938
johnc@3463 2939 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3463 2940 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
johnc@3463 2941 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
johnc@3463 2942
johnc@3463 2943 // If ntams is not card aligned then we bump the index for
johnc@3463 2944 // limit so that we get the card spanning ntams.
johnc@3463 2945 if (!is_card_aligned(limit)) {
johnc@3463 2946 limit_idx += 1;
johnc@3463 2947 }
johnc@3463 2948
johnc@3463 2949 assert(limit_idx <= end_idx, "or else use atomics");
johnc@3463 2950
johnc@3463 2951 // Aggregate the "stripe" in the count data associated with hr.
tonyp@3713 2952 uint hrs_index = hr->hrs_index();
johnc@3463 2953 size_t marked_bytes = 0;
johnc@3463 2954
johnc@3463 2955 for (int i = 0; (size_t)i < _max_task_num; i += 1) {
johnc@3463 2956 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
johnc@3463 2957 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
johnc@3463 2958
johnc@3463 2959 // Fetch the marked_bytes in this region for task i and
johnc@3463 2960 // add it to the running total for this region.
johnc@3463 2961 marked_bytes += marked_bytes_array[hrs_index];
johnc@3463 2962
johnc@3463 2963 // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
johnc@3463 2964 // into the global card bitmap.
johnc@3463 2965 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
johnc@3463 2966
johnc@3463 2967 while (scan_idx < limit_idx) {
johnc@3463 2968 assert(task_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2969 _cm_card_bm->set_bit(scan_idx);
johnc@3463 2970 assert(_cm_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2971
johnc@3463 2972 // BitMap::get_next_one_offset() can handle the case when
johnc@3463 2973 // its left_offset parameter is greater than its right_offset
johnc@3463 2974 // parameter. If does, however, have an early exit if
johnc@3463 2975 // left_offset == right_offset. So let's limit the value
johnc@3463 2976 // passed in for left offset here.
johnc@3463 2977 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
johnc@3463 2978 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
johnc@3463 2979 }
johnc@3463 2980 }
johnc@3463 2981
johnc@3463 2982 // Update the marked bytes for this region.
johnc@3463 2983 hr->add_to_marked_bytes(marked_bytes);
johnc@3463 2984
johnc@3463 2985 // Next heap region
johnc@3463 2986 return false;
johnc@3463 2987 }
johnc@3463 2988 };
johnc@3463 2989
johnc@3463 2990 class G1AggregateCountDataTask: public AbstractGangTask {
johnc@3463 2991 protected:
johnc@3463 2992 G1CollectedHeap* _g1h;
johnc@3463 2993 ConcurrentMark* _cm;
johnc@3463 2994 BitMap* _cm_card_bm;
johnc@3463 2995 size_t _max_task_num;
johnc@3463 2996 int _active_workers;
johnc@3463 2997
johnc@3463 2998 public:
johnc@3463 2999 G1AggregateCountDataTask(G1CollectedHeap* g1h,
johnc@3463 3000 ConcurrentMark* cm,
johnc@3463 3001 BitMap* cm_card_bm,
johnc@3463 3002 size_t max_task_num,
johnc@3463 3003 int n_workers) :
johnc@3463 3004 AbstractGangTask("Count Aggregation"),
johnc@3463 3005 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 3006 _max_task_num(max_task_num),
johnc@3463 3007 _active_workers(n_workers) { }
johnc@3463 3008
johnc@3463 3009 void work(uint worker_id) {
johnc@3463 3010 AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);
johnc@3463 3011
johnc@3463 3012 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3013 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
johnc@3463 3014 _active_workers,
johnc@3463 3015 HeapRegion::AggregateCountClaimValue);
johnc@3463 3016 } else {
johnc@3463 3017 _g1h->heap_region_iterate(&cl);
johnc@3463 3018 }
johnc@3463 3019 }
johnc@3463 3020 };
johnc@3463 3021
johnc@3463 3022
johnc@3463 3023 void ConcurrentMark::aggregate_count_data() {
johnc@3463 3024 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
johnc@3463 3025 _g1h->workers()->active_workers() :
johnc@3463 3026 1);
johnc@3463 3027
johnc@3463 3028 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
johnc@3463 3029 _max_task_num, n_workers);
johnc@3463 3030
johnc@3463 3031 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3032 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
johnc@3463 3033 "sanity check");
johnc@3463 3034 _g1h->set_par_threads(n_workers);
johnc@3463 3035 _g1h->workers()->run_task(&g1_par_agg_task);
johnc@3463 3036 _g1h->set_par_threads(0);
johnc@3463 3037
johnc@3463 3038 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
johnc@3463 3039 "sanity check");
johnc@3463 3040 _g1h->reset_heap_region_claim_values();
johnc@3463 3041 } else {
johnc@3463 3042 g1_par_agg_task.work(0);
johnc@3463 3043 }
johnc@3463 3044 }
johnc@3463 3045
johnc@3463 3046 // Clear the per-worker arrays used to store the per-region counting data
johnc@3463 3047 void ConcurrentMark::clear_all_count_data() {
johnc@3463 3048 // Clear the global card bitmap - it will be filled during
johnc@3463 3049 // liveness count aggregation (during remark) and the
johnc@3463 3050 // final counting task.
johnc@3463 3051 _card_bm.clear();
johnc@3463 3052
johnc@3463 3053 // Clear the global region bitmap - it will be filled as part
johnc@3463 3054 // of the final counting task.
johnc@3463 3055 _region_bm.clear();
johnc@3463 3056
tonyp@3713 3057 uint max_regions = _g1h->max_regions();
johnc@3463 3058 assert(_max_task_num != 0, "unitialized");
johnc@3463 3059
johnc@3463 3060 for (int i = 0; (size_t) i < _max_task_num; i += 1) {
johnc@3463 3061 BitMap* task_card_bm = count_card_bitmap_for(i);
johnc@3463 3062 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
johnc@3463 3063
johnc@3463 3064 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 3065 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 3066
tonyp@3713 3067 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
johnc@3463 3068 task_card_bm->clear();
johnc@3463 3069 }
johnc@3463 3070 }
johnc@3463 3071
ysr@777 3072 void ConcurrentMark::print_stats() {
ysr@777 3073 if (verbose_stats()) {
ysr@777 3074 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3075 for (size_t i = 0; i < _active_tasks; ++i) {
ysr@777 3076 _tasks[i]->print_stats();
ysr@777 3077 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3078 }
ysr@777 3079 }
ysr@777 3080 }
ysr@777 3081
ysr@777 3082 // abandon current marking iteration due to a Full GC
ysr@777 3083 void ConcurrentMark::abort() {
ysr@777 3084 // Clear all marks to force marking thread to do nothing
ysr@777 3085 _nextMarkBitMap->clearAll();
johnc@3463 3086 // Clear the liveness counting data
johnc@3463 3087 clear_all_count_data();
ysr@777 3088 // Empty mark stack
ysr@777 3089 clear_marking_state();
johnc@2190 3090 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 3091 _tasks[i]->clear_region_fields();
johnc@2190 3092 }
ysr@777 3093 _has_aborted = true;
ysr@777 3094
ysr@777 3095 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3096 satb_mq_set.abandon_partial_marking();
tonyp@1752 3097 // This can be called either during or outside marking, we'll read
tonyp@1752 3098 // the expected_active value from the SATB queue set.
tonyp@1752 3099 satb_mq_set.set_active_all_threads(
tonyp@1752 3100 false, /* new active value */
tonyp@1752 3101 satb_mq_set.is_active() /* expected_active */);
ysr@777 3102 }
ysr@777 3103
ysr@777 3104 static void print_ms_time_info(const char* prefix, const char* name,
ysr@777 3105 NumberSeq& ns) {
ysr@777 3106 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3107 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
ysr@777 3108 if (ns.num() > 0) {
ysr@777 3109 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
ysr@777 3110 prefix, ns.sd(), ns.maximum());
ysr@777 3111 }
ysr@777 3112 }
ysr@777 3113
ysr@777 3114 void ConcurrentMark::print_summary_info() {
ysr@777 3115 gclog_or_tty->print_cr(" Concurrent marking:");
ysr@777 3116 print_ms_time_info(" ", "init marks", _init_times);
ysr@777 3117 print_ms_time_info(" ", "remarks", _remark_times);
ysr@777 3118 {
ysr@777 3119 print_ms_time_info(" ", "final marks", _remark_mark_times);
ysr@777 3120 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
ysr@777 3121
ysr@777 3122 }
ysr@777 3123 print_ms_time_info(" ", "cleanups", _cleanup_times);
ysr@777 3124 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3125 _total_counting_time,
ysr@777 3126 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
ysr@777 3127 (double)_cleanup_times.num()
ysr@777 3128 : 0.0));
ysr@777 3129 if (G1ScrubRemSets) {
ysr@777 3130 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3131 _total_rs_scrub_time,
ysr@777 3132 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
ysr@777 3133 (double)_cleanup_times.num()
ysr@777 3134 : 0.0));
ysr@777 3135 }
ysr@777 3136 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
ysr@777 3137 (_init_times.sum() + _remark_times.sum() +
ysr@777 3138 _cleanup_times.sum())/1000.0);
ysr@777 3139 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
johnc@3463 3140 "(%8.2f s marking).",
ysr@777 3141 cmThread()->vtime_accum(),
johnc@3463 3142 cmThread()->vtime_mark_accum());
ysr@777 3143 }
ysr@777 3144
tonyp@1454 3145 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
tonyp@1454 3146 _parallel_workers->print_worker_threads_on(st);
tonyp@1454 3147 }
tonyp@1454 3148
ysr@777 3149 // We take a break if someone is trying to stop the world.
jmasa@3357 3150 bool ConcurrentMark::do_yield_check(uint worker_id) {
ysr@777 3151 if (should_yield()) {
jmasa@3357 3152 if (worker_id == 0) {
ysr@777 3153 _g1h->g1_policy()->record_concurrent_pause();
tonyp@2973 3154 }
ysr@777 3155 cmThread()->yield();
jmasa@3357 3156 if (worker_id == 0) {
ysr@777 3157 _g1h->g1_policy()->record_concurrent_pause_end();
tonyp@2973 3158 }
ysr@777 3159 return true;
ysr@777 3160 } else {
ysr@777 3161 return false;
ysr@777 3162 }
ysr@777 3163 }
ysr@777 3164
ysr@777 3165 bool ConcurrentMark::should_yield() {
ysr@777 3166 return cmThread()->should_yield();
ysr@777 3167 }
ysr@777 3168
ysr@777 3169 bool ConcurrentMark::containing_card_is_marked(void* p) {
ysr@777 3170 size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
ysr@777 3171 return _card_bm.at(offset >> CardTableModRefBS::card_shift);
ysr@777 3172 }
ysr@777 3173
ysr@777 3174 bool ConcurrentMark::containing_cards_are_marked(void* start,
ysr@777 3175 void* last) {
tonyp@2973 3176 return containing_card_is_marked(start) &&
tonyp@2973 3177 containing_card_is_marked(last);
ysr@777 3178 }
ysr@777 3179
ysr@777 3180 #ifndef PRODUCT
ysr@777 3181 // for debugging purposes
ysr@777 3182 void ConcurrentMark::print_finger() {
ysr@777 3183 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
ysr@777 3184 _heap_start, _heap_end, _finger);
ysr@777 3185 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 3186 gclog_or_tty->print(" %d: "PTR_FORMAT, i, _tasks[i]->finger());
ysr@777 3187 }
ysr@777 3188 gclog_or_tty->print_cr("");
ysr@777 3189 }
ysr@777 3190 #endif
ysr@777 3191
tonyp@2968 3192 void CMTask::scan_object(oop obj) {
tonyp@2968 3193 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
tonyp@2968 3194
tonyp@2968 3195 if (_cm->verbose_high()) {
tonyp@2968 3196 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
tonyp@2968 3197 _task_id, (void*) obj);
tonyp@2968 3198 }
tonyp@2968 3199
tonyp@2968 3200 size_t obj_size = obj->size();
tonyp@2968 3201 _words_scanned += obj_size;
tonyp@2968 3202
tonyp@2968 3203 obj->oop_iterate(_cm_oop_closure);
tonyp@2968 3204 statsOnly( ++_objs_scanned );
tonyp@2968 3205 check_limits();
tonyp@2968 3206 }
tonyp@2968 3207
ysr@777 3208 // Closure for iteration over bitmaps
ysr@777 3209 class CMBitMapClosure : public BitMapClosure {
ysr@777 3210 private:
ysr@777 3211 // the bitmap that is being iterated over
ysr@777 3212 CMBitMap* _nextMarkBitMap;
ysr@777 3213 ConcurrentMark* _cm;
ysr@777 3214 CMTask* _task;
ysr@777 3215
ysr@777 3216 public:
tonyp@3691 3217 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
tonyp@3691 3218 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
ysr@777 3219
ysr@777 3220 bool do_bit(size_t offset) {
ysr@777 3221 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tonyp@1458 3222 assert(_nextMarkBitMap->isMarked(addr), "invariant");
tonyp@1458 3223 assert( addr < _cm->finger(), "invariant");
ysr@777 3224
tonyp@3691 3225 statsOnly( _task->increase_objs_found_on_bitmap() );
tonyp@3691 3226 assert(addr >= _task->finger(), "invariant");
tonyp@3691 3227
tonyp@3691 3228 // We move that task's local finger along.
tonyp@3691 3229 _task->move_finger_to(addr);
ysr@777 3230
ysr@777 3231 _task->scan_object(oop(addr));
ysr@777 3232 // we only partially drain the local queue and global stack
ysr@777 3233 _task->drain_local_queue(true);
ysr@777 3234 _task->drain_global_stack(true);
ysr@777 3235
ysr@777 3236 // if the has_aborted flag has been raised, we need to bail out of
ysr@777 3237 // the iteration
ysr@777 3238 return !_task->has_aborted();
ysr@777 3239 }
ysr@777 3240 };
ysr@777 3241
ysr@777 3242 // Closure for iterating over objects, currently only used for
ysr@777 3243 // processing SATB buffers.
ysr@777 3244 class CMObjectClosure : public ObjectClosure {
ysr@777 3245 private:
ysr@777 3246 CMTask* _task;
ysr@777 3247
ysr@777 3248 public:
ysr@777 3249 void do_object(oop obj) {
ysr@777 3250 _task->deal_with_reference(obj);
ysr@777 3251 }
ysr@777 3252
ysr@777 3253 CMObjectClosure(CMTask* task) : _task(task) { }
ysr@777 3254 };
ysr@777 3255
tonyp@2968 3256 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
tonyp@2968 3257 ConcurrentMark* cm,
tonyp@2968 3258 CMTask* task)
tonyp@2968 3259 : _g1h(g1h), _cm(cm), _task(task) {
tonyp@2968 3260 assert(_ref_processor == NULL, "should be initialized to NULL");
tonyp@2968 3261
tonyp@2968 3262 if (G1UseConcMarkReferenceProcessing) {
johnc@3175 3263 _ref_processor = g1h->ref_processor_cm();
tonyp@2968 3264 assert(_ref_processor != NULL, "should not be NULL");
ysr@777 3265 }
tonyp@2968 3266 }
ysr@777 3267
ysr@777 3268 void CMTask::setup_for_region(HeapRegion* hr) {
tonyp@1458 3269 // Separated the asserts so that we know which one fires.
tonyp@1458 3270 assert(hr != NULL,
tonyp@1458 3271 "claim_region() should have filtered out continues humongous regions");
tonyp@1458 3272 assert(!hr->continuesHumongous(),
tonyp@1458 3273 "claim_region() should have filtered out continues humongous regions");
ysr@777 3274
tonyp@2973 3275 if (_cm->verbose_low()) {
ysr@777 3276 gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
ysr@777 3277 _task_id, hr);
tonyp@2973 3278 }
ysr@777 3279
ysr@777 3280 _curr_region = hr;
ysr@777 3281 _finger = hr->bottom();
ysr@777 3282 update_region_limit();
ysr@777 3283 }
ysr@777 3284
ysr@777 3285 void CMTask::update_region_limit() {
ysr@777 3286 HeapRegion* hr = _curr_region;
ysr@777 3287 HeapWord* bottom = hr->bottom();
ysr@777 3288 HeapWord* limit = hr->next_top_at_mark_start();
ysr@777 3289
ysr@777 3290 if (limit == bottom) {
tonyp@2973 3291 if (_cm->verbose_low()) {
ysr@777 3292 gclog_or_tty->print_cr("[%d] found an empty region "
ysr@777 3293 "["PTR_FORMAT", "PTR_FORMAT")",
ysr@777 3294 _task_id, bottom, limit);
tonyp@2973 3295 }
ysr@777 3296 // The region was collected underneath our feet.
ysr@777 3297 // We set the finger to bottom to ensure that the bitmap
ysr@777 3298 // iteration that will follow this will not do anything.
ysr@777 3299 // (this is not a condition that holds when we set the region up,
ysr@777 3300 // as the region is not supposed to be empty in the first place)
ysr@777 3301 _finger = bottom;
ysr@777 3302 } else if (limit >= _region_limit) {
tonyp@1458 3303 assert(limit >= _finger, "peace of mind");
ysr@777 3304 } else {
tonyp@1458 3305 assert(limit < _region_limit, "only way to get here");
ysr@777 3306 // This can happen under some pretty unusual circumstances. An
ysr@777 3307 // evacuation pause empties the region underneath our feet (NTAMS
ysr@777 3308 // at bottom). We then do some allocation in the region (NTAMS
ysr@777 3309 // stays at bottom), followed by the region being used as a GC
ysr@777 3310 // alloc region (NTAMS will move to top() and the objects
ysr@777 3311 // originally below it will be grayed). All objects now marked in
ysr@777 3312 // the region are explicitly grayed, if below the global finger,
ysr@777 3313 // and we do not need in fact to scan anything else. So, we simply
ysr@777 3314 // set _finger to be limit to ensure that the bitmap iteration
ysr@777 3315 // doesn't do anything.
ysr@777 3316 _finger = limit;
ysr@777 3317 }
ysr@777 3318
ysr@777 3319 _region_limit = limit;
ysr@777 3320 }
ysr@777 3321
ysr@777 3322 void CMTask::giveup_current_region() {
tonyp@1458 3323 assert(_curr_region != NULL, "invariant");
tonyp@2973 3324 if (_cm->verbose_low()) {
ysr@777 3325 gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
ysr@777 3326 _task_id, _curr_region);
tonyp@2973 3327 }
ysr@777 3328 clear_region_fields();
ysr@777 3329 }
ysr@777 3330
ysr@777 3331 void CMTask::clear_region_fields() {
ysr@777 3332 // Values for these three fields that indicate that we're not
ysr@777 3333 // holding on to a region.
ysr@777 3334 _curr_region = NULL;
ysr@777 3335 _finger = NULL;
ysr@777 3336 _region_limit = NULL;
ysr@777 3337 }
ysr@777 3338
tonyp@2968 3339 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
tonyp@2968 3340 if (cm_oop_closure == NULL) {
tonyp@2968 3341 assert(_cm_oop_closure != NULL, "invariant");
tonyp@2968 3342 } else {
tonyp@2968 3343 assert(_cm_oop_closure == NULL, "invariant");
tonyp@2968 3344 }
tonyp@2968 3345 _cm_oop_closure = cm_oop_closure;
tonyp@2968 3346 }
tonyp@2968 3347
ysr@777 3348 void CMTask::reset(CMBitMap* nextMarkBitMap) {
tonyp@1458 3349 guarantee(nextMarkBitMap != NULL, "invariant");
ysr@777 3350
tonyp@2973 3351 if (_cm->verbose_low()) {
ysr@777 3352 gclog_or_tty->print_cr("[%d] resetting", _task_id);
tonyp@2973 3353 }
ysr@777 3354
ysr@777 3355 _nextMarkBitMap = nextMarkBitMap;
ysr@777 3356 clear_region_fields();
ysr@777 3357
ysr@777 3358 _calls = 0;
ysr@777 3359 _elapsed_time_ms = 0.0;
ysr@777 3360 _termination_time_ms = 0.0;
ysr@777 3361 _termination_start_time_ms = 0.0;
ysr@777 3362
ysr@777 3363 #if _MARKING_STATS_
ysr@777 3364 _local_pushes = 0;
ysr@777 3365 _local_pops = 0;
ysr@777 3366 _local_max_size = 0;
ysr@777 3367 _objs_scanned = 0;
ysr@777 3368 _global_pushes = 0;
ysr@777 3369 _global_pops = 0;
ysr@777 3370 _global_max_size = 0;
ysr@777 3371 _global_transfers_to = 0;
ysr@777 3372 _global_transfers_from = 0;
ysr@777 3373 _regions_claimed = 0;
ysr@777 3374 _objs_found_on_bitmap = 0;
ysr@777 3375 _satb_buffers_processed = 0;
ysr@777 3376 _steal_attempts = 0;
ysr@777 3377 _steals = 0;
ysr@777 3378 _aborted = 0;
ysr@777 3379 _aborted_overflow = 0;
ysr@777 3380 _aborted_cm_aborted = 0;
ysr@777 3381 _aborted_yield = 0;
ysr@777 3382 _aborted_timed_out = 0;
ysr@777 3383 _aborted_satb = 0;
ysr@777 3384 _aborted_termination = 0;
ysr@777 3385 #endif // _MARKING_STATS_
ysr@777 3386 }
ysr@777 3387
ysr@777 3388 bool CMTask::should_exit_termination() {
ysr@777 3389 regular_clock_call();
ysr@777 3390 // This is called when we are in the termination protocol. We should
ysr@777 3391 // quit if, for some reason, this task wants to abort or the global
ysr@777 3392 // stack is not empty (this means that we can get work from it).
ysr@777 3393 return !_cm->mark_stack_empty() || has_aborted();
ysr@777 3394 }
ysr@777 3395
ysr@777 3396 void CMTask::reached_limit() {
tonyp@1458 3397 assert(_words_scanned >= _words_scanned_limit ||
tonyp@1458 3398 _refs_reached >= _refs_reached_limit ,
tonyp@1458 3399 "shouldn't have been called otherwise");
ysr@777 3400 regular_clock_call();
ysr@777 3401 }
ysr@777 3402
ysr@777 3403 void CMTask::regular_clock_call() {
tonyp@2973 3404 if (has_aborted()) return;
ysr@777 3405
ysr@777 3406 // First, we need to recalculate the words scanned and refs reached
ysr@777 3407 // limits for the next clock call.
ysr@777 3408 recalculate_limits();
ysr@777 3409
ysr@777 3410 // During the regular clock call we do the following
ysr@777 3411
ysr@777 3412 // (1) If an overflow has been flagged, then we abort.
ysr@777 3413 if (_cm->has_overflown()) {
ysr@777 3414 set_has_aborted();
ysr@777 3415 return;
ysr@777 3416 }
ysr@777 3417
ysr@777 3418 // If we are not concurrent (i.e. we're doing remark) we don't need
ysr@777 3419 // to check anything else. The other steps are only needed during
ysr@777 3420 // the concurrent marking phase.
tonyp@2973 3421 if (!concurrent()) return;
ysr@777 3422
ysr@777 3423 // (2) If marking has been aborted for Full GC, then we also abort.
ysr@777 3424 if (_cm->has_aborted()) {
ysr@777 3425 set_has_aborted();
ysr@777 3426 statsOnly( ++_aborted_cm_aborted );
ysr@777 3427 return;
ysr@777 3428 }
ysr@777 3429
ysr@777 3430 double curr_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3431
ysr@777 3432 // (3) If marking stats are enabled, then we update the step history.
ysr@777 3433 #if _MARKING_STATS_
tonyp@2973 3434 if (_words_scanned >= _words_scanned_limit) {
ysr@777 3435 ++_clock_due_to_scanning;
tonyp@2973 3436 }
tonyp@2973 3437 if (_refs_reached >= _refs_reached_limit) {
ysr@777 3438 ++_clock_due_to_marking;
tonyp@2973 3439 }
ysr@777 3440
ysr@777 3441 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
ysr@777 3442 _interval_start_time_ms = curr_time_ms;
ysr@777 3443 _all_clock_intervals_ms.add(last_interval_ms);
ysr@777 3444
ysr@777 3445 if (_cm->verbose_medium()) {
tonyp@2973 3446 gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
tonyp@2973 3447 "scanned = %d%s, refs reached = %d%s",
tonyp@2973 3448 _task_id, last_interval_ms,
tonyp@2973 3449 _words_scanned,
tonyp@2973 3450 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
tonyp@2973 3451 _refs_reached,
tonyp@2973 3452 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
ysr@777 3453 }
ysr@777 3454 #endif // _MARKING_STATS_
ysr@777 3455
ysr@777 3456 // (4) We check whether we should yield. If we have to, then we abort.
ysr@777 3457 if (_cm->should_yield()) {
ysr@777 3458 // We should yield. To do this we abort the task. The caller is
ysr@777 3459 // responsible for yielding.
ysr@777 3460 set_has_aborted();
ysr@777 3461 statsOnly( ++_aborted_yield );
ysr@777 3462 return;
ysr@777 3463 }
ysr@777 3464
ysr@777 3465 // (5) We check whether we've reached our time quota. If we have,
ysr@777 3466 // then we abort.
ysr@777 3467 double elapsed_time_ms = curr_time_ms - _start_time_ms;
ysr@777 3468 if (elapsed_time_ms > _time_target_ms) {
ysr@777 3469 set_has_aborted();
johnc@2494 3470 _has_timed_out = true;
ysr@777 3471 statsOnly( ++_aborted_timed_out );
ysr@777 3472 return;
ysr@777 3473 }
ysr@777 3474
ysr@777 3475 // (6) Finally, we check whether there are enough completed STAB
ysr@777 3476 // buffers available for processing. If there are, we abort.
ysr@777 3477 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3478 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
tonyp@2973 3479 if (_cm->verbose_low()) {
ysr@777 3480 gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
ysr@777 3481 _task_id);
tonyp@2973 3482 }
ysr@777 3483 // we do need to process SATB buffers, we'll abort and restart
ysr@777 3484 // the marking task to do so
ysr@777 3485 set_has_aborted();
ysr@777 3486 statsOnly( ++_aborted_satb );
ysr@777 3487 return;
ysr@777 3488 }
ysr@777 3489 }
ysr@777 3490
ysr@777 3491 void CMTask::recalculate_limits() {
ysr@777 3492 _real_words_scanned_limit = _words_scanned + words_scanned_period;
ysr@777 3493 _words_scanned_limit = _real_words_scanned_limit;
ysr@777 3494
ysr@777 3495 _real_refs_reached_limit = _refs_reached + refs_reached_period;
ysr@777 3496 _refs_reached_limit = _real_refs_reached_limit;
ysr@777 3497 }
ysr@777 3498
ysr@777 3499 void CMTask::decrease_limits() {
ysr@777 3500 // This is called when we believe that we're going to do an infrequent
ysr@777 3501 // operation which will increase the per byte scanned cost (i.e. move
ysr@777 3502 // entries to/from the global stack). It basically tries to decrease the
ysr@777 3503 // scanning limit so that the clock is called earlier.
ysr@777 3504
tonyp@2973 3505 if (_cm->verbose_medium()) {
ysr@777 3506 gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
tonyp@2973 3507 }
ysr@777 3508
ysr@777 3509 _words_scanned_limit = _real_words_scanned_limit -
ysr@777 3510 3 * words_scanned_period / 4;
ysr@777 3511 _refs_reached_limit = _real_refs_reached_limit -
ysr@777 3512 3 * refs_reached_period / 4;
ysr@777 3513 }
ysr@777 3514
ysr@777 3515 void CMTask::move_entries_to_global_stack() {
ysr@777 3516 // local array where we'll store the entries that will be popped
ysr@777 3517 // from the local queue
ysr@777 3518 oop buffer[global_stack_transfer_size];
ysr@777 3519
ysr@777 3520 int n = 0;
ysr@777 3521 oop obj;
ysr@777 3522 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
ysr@777 3523 buffer[n] = obj;
ysr@777 3524 ++n;
ysr@777 3525 }
ysr@777 3526
ysr@777 3527 if (n > 0) {
ysr@777 3528 // we popped at least one entry from the local queue
ysr@777 3529
ysr@777 3530 statsOnly( ++_global_transfers_to; _local_pops += n );
ysr@777 3531
ysr@777 3532 if (!_cm->mark_stack_push(buffer, n)) {
tonyp@2973 3533 if (_cm->verbose_low()) {
tonyp@2973 3534 gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
tonyp@2973 3535 _task_id);
tonyp@2973 3536 }
ysr@777 3537 set_has_aborted();
ysr@777 3538 } else {
ysr@777 3539 // the transfer was successful
ysr@777 3540
tonyp@2973 3541 if (_cm->verbose_medium()) {
ysr@777 3542 gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
ysr@777 3543 _task_id, n);
tonyp@2973 3544 }
ysr@777 3545 statsOnly( int tmp_size = _cm->mark_stack_size();
tonyp@2973 3546 if (tmp_size > _global_max_size) {
ysr@777 3547 _global_max_size = tmp_size;
tonyp@2973 3548 }
ysr@777 3549 _global_pushes += n );
ysr@777 3550 }
ysr@777 3551 }
ysr@777 3552
ysr@777 3553 // this operation was quite expensive, so decrease the limits
ysr@777 3554 decrease_limits();
ysr@777 3555 }
ysr@777 3556
ysr@777 3557 void CMTask::get_entries_from_global_stack() {
ysr@777 3558 // local array where we'll store the entries that will be popped
ysr@777 3559 // from the global stack.
ysr@777 3560 oop buffer[global_stack_transfer_size];
ysr@777 3561 int n;
ysr@777 3562 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tonyp@1458 3563 assert(n <= global_stack_transfer_size,
tonyp@1458 3564 "we should not pop more than the given limit");
ysr@777 3565 if (n > 0) {
ysr@777 3566 // yes, we did actually pop at least one entry
ysr@777 3567
ysr@777 3568 statsOnly( ++_global_transfers_from; _global_pops += n );
tonyp@2973 3569 if (_cm->verbose_medium()) {
ysr@777 3570 gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
ysr@777 3571 _task_id, n);
tonyp@2973 3572 }
ysr@777 3573 for (int i = 0; i < n; ++i) {
ysr@777 3574 bool success = _task_queue->push(buffer[i]);
ysr@777 3575 // We only call this when the local queue is empty or under a
ysr@777 3576 // given target limit. So, we do not expect this push to fail.
tonyp@1458 3577 assert(success, "invariant");
ysr@777 3578 }
ysr@777 3579
ysr@777 3580 statsOnly( int tmp_size = _task_queue->size();
tonyp@2973 3581 if (tmp_size > _local_max_size) {
ysr@777 3582 _local_max_size = tmp_size;
tonyp@2973 3583 }
ysr@777 3584 _local_pushes += n );
ysr@777 3585 }
ysr@777 3586
ysr@777 3587 // this operation was quite expensive, so decrease the limits
ysr@777 3588 decrease_limits();
ysr@777 3589 }
ysr@777 3590
ysr@777 3591 void CMTask::drain_local_queue(bool partially) {
tonyp@2973 3592 if (has_aborted()) return;
ysr@777 3593
ysr@777 3594 // Decide what the target size is, depending whether we're going to
ysr@777 3595 // drain it partially (so that other tasks can steal if they run out
ysr@777 3596 // of things to do) or totally (at the very end).
ysr@777 3597 size_t target_size;
tonyp@2973 3598 if (partially) {
ysr@777 3599 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
tonyp@2973 3600 } else {
ysr@777 3601 target_size = 0;
tonyp@2973 3602 }
ysr@777 3603
ysr@777 3604 if (_task_queue->size() > target_size) {
tonyp@2973 3605 if (_cm->verbose_high()) {
ysr@777 3606 gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
ysr@777 3607 _task_id, target_size);
tonyp@2973 3608 }
ysr@777 3609
ysr@777 3610 oop obj;
ysr@777 3611 bool ret = _task_queue->pop_local(obj);
ysr@777 3612 while (ret) {
ysr@777 3613 statsOnly( ++_local_pops );
ysr@777 3614
tonyp@2973 3615 if (_cm->verbose_high()) {
ysr@777 3616 gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
ysr@777 3617 (void*) obj);
tonyp@2973 3618 }
ysr@777 3619
tonyp@1458 3620 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
tonyp@2643 3621 assert(!_g1h->is_on_master_free_list(
tonyp@2472 3622 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
ysr@777 3623
ysr@777 3624 scan_object(obj);
ysr@777 3625
tonyp@2973 3626 if (_task_queue->size() <= target_size || has_aborted()) {
ysr@777 3627 ret = false;
tonyp@2973 3628 } else {
ysr@777 3629 ret = _task_queue->pop_local(obj);
tonyp@2973 3630 }
ysr@777 3631 }
ysr@777 3632
tonyp@2973 3633 if (_cm->verbose_high()) {
ysr@777 3634 gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
ysr@777 3635 _task_id, _task_queue->size());
tonyp@2973 3636 }
ysr@777 3637 }
ysr@777 3638 }
ysr@777 3639
ysr@777 3640 void CMTask::drain_global_stack(bool partially) {
tonyp@2973 3641 if (has_aborted()) return;
ysr@777 3642
ysr@777 3643 // We have a policy to drain the local queue before we attempt to
ysr@777 3644 // drain the global stack.
tonyp@1458 3645 assert(partially || _task_queue->size() == 0, "invariant");
ysr@777 3646
ysr@777 3647 // Decide what the target size is, depending whether we're going to
ysr@777 3648 // drain it partially (so that other tasks can steal if they run out
ysr@777 3649 // of things to do) or totally (at the very end). Notice that,
ysr@777 3650 // because we move entries from the global stack in chunks or
ysr@777 3651 // because another task might be doing the same, we might in fact
ysr@777 3652 // drop below the target. But, this is not a problem.
ysr@777 3653 size_t target_size;
tonyp@2973 3654 if (partially) {
ysr@777 3655 target_size = _cm->partial_mark_stack_size_target();
tonyp@2973 3656 } else {
ysr@777 3657 target_size = 0;
tonyp@2973 3658 }
ysr@777 3659
ysr@777 3660 if (_cm->mark_stack_size() > target_size) {
tonyp@2973 3661 if (_cm->verbose_low()) {
ysr@777 3662 gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
ysr@777 3663 _task_id, target_size);
tonyp@2973 3664 }
ysr@777 3665
ysr@777 3666 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
ysr@777 3667 get_entries_from_global_stack();
ysr@777 3668 drain_local_queue(partially);
ysr@777 3669 }
ysr@777 3670
tonyp@2973 3671 if (_cm->verbose_low()) {
ysr@777 3672 gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
ysr@777 3673 _task_id, _cm->mark_stack_size());
tonyp@2973 3674 }
ysr@777 3675 }
ysr@777 3676 }
ysr@777 3677
ysr@777 3678 // SATB Queue has several assumptions on whether to call the par or
ysr@777 3679 // non-par versions of the methods. this is why some of the code is
ysr@777 3680 // replicated. We should really get rid of the single-threaded version
ysr@777 3681 // of the code to simplify things.
ysr@777 3682 void CMTask::drain_satb_buffers() {
tonyp@2973 3683 if (has_aborted()) return;
ysr@777 3684
ysr@777 3685 // We set this so that the regular clock knows that we're in the
ysr@777 3686 // middle of draining buffers and doesn't set the abort flag when it
ysr@777 3687 // notices that SATB buffers are available for draining. It'd be
ysr@777 3688 // very counter productive if it did that. :-)
ysr@777 3689 _draining_satb_buffers = true;
ysr@777 3690
ysr@777 3691 CMObjectClosure oc(this);
ysr@777 3692 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@2973 3693 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3694 satb_mq_set.set_par_closure(_task_id, &oc);
tonyp@2973 3695 } else {
ysr@777 3696 satb_mq_set.set_closure(&oc);
tonyp@2973 3697 }
ysr@777 3698
ysr@777 3699 // This keeps claiming and applying the closure to completed buffers
ysr@777 3700 // until we run out of buffers or we need to abort.
jmasa@2188 3701 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3702 while (!has_aborted() &&
ysr@777 3703 satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
tonyp@2973 3704 if (_cm->verbose_medium()) {
ysr@777 3705 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3706 }
ysr@777 3707 statsOnly( ++_satb_buffers_processed );
ysr@777 3708 regular_clock_call();
ysr@777 3709 }
ysr@777 3710 } else {
ysr@777 3711 while (!has_aborted() &&
ysr@777 3712 satb_mq_set.apply_closure_to_completed_buffer()) {
tonyp@2973 3713 if (_cm->verbose_medium()) {
ysr@777 3714 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3715 }
ysr@777 3716 statsOnly( ++_satb_buffers_processed );
ysr@777 3717 regular_clock_call();
ysr@777 3718 }
ysr@777 3719 }
ysr@777 3720
ysr@777 3721 if (!concurrent() && !has_aborted()) {
ysr@777 3722 // We should only do this during remark.
tonyp@2973 3723 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3724 satb_mq_set.par_iterate_closure_all_threads(_task_id);
tonyp@2973 3725 } else {
ysr@777 3726 satb_mq_set.iterate_closure_all_threads();
tonyp@2973 3727 }
ysr@777 3728 }
ysr@777 3729
ysr@777 3730 _draining_satb_buffers = false;
ysr@777 3731
tonyp@1458 3732 assert(has_aborted() ||
tonyp@1458 3733 concurrent() ||
tonyp@1458 3734 satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 3735
tonyp@2973 3736 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3737 satb_mq_set.set_par_closure(_task_id, NULL);
tonyp@2973 3738 } else {
ysr@777 3739 satb_mq_set.set_closure(NULL);
tonyp@2973 3740 }
ysr@777 3741
ysr@777 3742 // again, this was a potentially expensive operation, decrease the
ysr@777 3743 // limits to get the regular clock call early
ysr@777 3744 decrease_limits();
ysr@777 3745 }
ysr@777 3746
ysr@777 3747 void CMTask::print_stats() {
ysr@777 3748 gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
ysr@777 3749 _task_id, _calls);
ysr@777 3750 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
ysr@777 3751 _elapsed_time_ms, _termination_time_ms);
ysr@777 3752 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3753 _step_times_ms.num(), _step_times_ms.avg(),
ysr@777 3754 _step_times_ms.sd());
ysr@777 3755 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3756 _step_times_ms.maximum(), _step_times_ms.sum());
ysr@777 3757
ysr@777 3758 #if _MARKING_STATS_
ysr@777 3759 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3760 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
ysr@777 3761 _all_clock_intervals_ms.sd());
ysr@777 3762 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3763 _all_clock_intervals_ms.maximum(),
ysr@777 3764 _all_clock_intervals_ms.sum());
ysr@777 3765 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
ysr@777 3766 _clock_due_to_scanning, _clock_due_to_marking);
ysr@777 3767 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
ysr@777 3768 _objs_scanned, _objs_found_on_bitmap);
ysr@777 3769 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
ysr@777 3770 _local_pushes, _local_pops, _local_max_size);
ysr@777 3771 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
ysr@777 3772 _global_pushes, _global_pops, _global_max_size);
ysr@777 3773 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
ysr@777 3774 _global_transfers_to,_global_transfers_from);
tonyp@3691 3775 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
ysr@777 3776 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
ysr@777 3777 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
ysr@777 3778 _steal_attempts, _steals);
ysr@777 3779 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
ysr@777 3780 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
ysr@777 3781 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
ysr@777 3782 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
ysr@777 3783 _aborted_timed_out, _aborted_satb, _aborted_termination);
ysr@777 3784 #endif // _MARKING_STATS_
ysr@777 3785 }
ysr@777 3786
ysr@777 3787 /*****************************************************************************
ysr@777 3788
ysr@777 3789 The do_marking_step(time_target_ms) method is the building block
ysr@777 3790 of the parallel marking framework. It can be called in parallel
ysr@777 3791 with other invocations of do_marking_step() on different tasks
ysr@777 3792 (but only one per task, obviously) and concurrently with the
ysr@777 3793 mutator threads, or during remark, hence it eliminates the need
ysr@777 3794 for two versions of the code. When called during remark, it will
ysr@777 3795 pick up from where the task left off during the concurrent marking
ysr@777 3796 phase. Interestingly, tasks are also claimable during evacuation
ysr@777 3797 pauses too, since do_marking_step() ensures that it aborts before
ysr@777 3798 it needs to yield.
ysr@777 3799
ysr@777 3800 The data structures that is uses to do marking work are the
ysr@777 3801 following:
ysr@777 3802
ysr@777 3803 (1) Marking Bitmap. If there are gray objects that appear only
ysr@777 3804 on the bitmap (this happens either when dealing with an overflow
ysr@777 3805 or when the initial marking phase has simply marked the roots
ysr@777 3806 and didn't push them on the stack), then tasks claim heap
ysr@777 3807 regions whose bitmap they then scan to find gray objects. A
ysr@777 3808 global finger indicates where the end of the last claimed region
ysr@777 3809 is. A local finger indicates how far into the region a task has
ysr@777 3810 scanned. The two fingers are used to determine how to gray an
ysr@777 3811 object (i.e. whether simply marking it is OK, as it will be
ysr@777 3812 visited by a task in the future, or whether it needs to be also
ysr@777 3813 pushed on a stack).
ysr@777 3814
ysr@777 3815 (2) Local Queue. The local queue of the task which is accessed
ysr@777 3816 reasonably efficiently by the task. Other tasks can steal from
ysr@777 3817 it when they run out of work. Throughout the marking phase, a
ysr@777 3818 task attempts to keep its local queue short but not totally
ysr@777 3819 empty, so that entries are available for stealing by other
ysr@777 3820 tasks. Only when there is no more work, a task will totally
ysr@777 3821 drain its local queue.
ysr@777 3822
ysr@777 3823 (3) Global Mark Stack. This handles local queue overflow. During
ysr@777 3824 marking only sets of entries are moved between it and the local
ysr@777 3825 queues, as access to it requires a mutex and more fine-grain
ysr@777 3826 interaction with it which might cause contention. If it
ysr@777 3827 overflows, then the marking phase should restart and iterate
ysr@777 3828 over the bitmap to identify gray objects. Throughout the marking
ysr@777 3829 phase, tasks attempt to keep the global mark stack at a small
ysr@777 3830 length but not totally empty, so that entries are available for
ysr@777 3831 popping by other tasks. Only when there is no more work, tasks
ysr@777 3832 will totally drain the global mark stack.
ysr@777 3833
tonyp@3691 3834 (4) SATB Buffer Queue. This is where completed SATB buffers are
ysr@777 3835 made available. Buffers are regularly removed from this queue
ysr@777 3836 and scanned for roots, so that the queue doesn't get too
ysr@777 3837 long. During remark, all completed buffers are processed, as
ysr@777 3838 well as the filled in parts of any uncompleted buffers.
ysr@777 3839
ysr@777 3840 The do_marking_step() method tries to abort when the time target
ysr@777 3841 has been reached. There are a few other cases when the
ysr@777 3842 do_marking_step() method also aborts:
ysr@777 3843
ysr@777 3844 (1) When the marking phase has been aborted (after a Full GC).
ysr@777 3845
tonyp@3691 3846 (2) When a global overflow (on the global stack) has been
tonyp@3691 3847 triggered. Before the task aborts, it will actually sync up with
tonyp@3691 3848 the other tasks to ensure that all the marking data structures
tonyp@3691 3849 (local queues, stacks, fingers etc.) are re-initialised so that
tonyp@3691 3850 when do_marking_step() completes, the marking phase can
tonyp@3691 3851 immediately restart.
ysr@777 3852
ysr@777 3853 (3) When enough completed SATB buffers are available. The
ysr@777 3854 do_marking_step() method only tries to drain SATB buffers right
ysr@777 3855 at the beginning. So, if enough buffers are available, the
ysr@777 3856 marking step aborts and the SATB buffers are processed at
ysr@777 3857 the beginning of the next invocation.
ysr@777 3858
ysr@777 3859 (4) To yield. when we have to yield then we abort and yield
ysr@777 3860 right at the end of do_marking_step(). This saves us from a lot
ysr@777 3861 of hassle as, by yielding we might allow a Full GC. If this
ysr@777 3862 happens then objects will be compacted underneath our feet, the
ysr@777 3863 heap might shrink, etc. We save checking for this by just
ysr@777 3864 aborting and doing the yield right at the end.
ysr@777 3865
ysr@777 3866 From the above it follows that the do_marking_step() method should
ysr@777 3867 be called in a loop (or, otherwise, regularly) until it completes.
ysr@777 3868
ysr@777 3869 If a marking step completes without its has_aborted() flag being
ysr@777 3870 true, it means it has completed the current marking phase (and
ysr@777 3871 also all other marking tasks have done so and have all synced up).
ysr@777 3872
ysr@777 3873 A method called regular_clock_call() is invoked "regularly" (in
ysr@777 3874 sub ms intervals) throughout marking. It is this clock method that
ysr@777 3875 checks all the abort conditions which were mentioned above and
ysr@777 3876 decides when the task should abort. A work-based scheme is used to
ysr@777 3877 trigger this clock method: when the number of object words the
ysr@777 3878 marking phase has scanned or the number of references the marking
ysr@777 3879 phase has visited reach a given limit. Additional invocations to
ysr@777 3880 the method clock have been planted in a few other strategic places
ysr@777 3881 too. The initial reason for the clock method was to avoid calling
ysr@777 3882 vtime too regularly, as it is quite expensive. So, once it was in
ysr@777 3883 place, it was natural to piggy-back all the other conditions on it
ysr@777 3884 too and not constantly check them throughout the code.
ysr@777 3885
ysr@777 3886 *****************************************************************************/
ysr@777 3887
johnc@2494 3888 void CMTask::do_marking_step(double time_target_ms,
johnc@2494 3889 bool do_stealing,
johnc@2494 3890 bool do_termination) {
tonyp@1458 3891 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
tonyp@1458 3892 assert(concurrent() == _cm->concurrent(), "they should be the same");
tonyp@1458 3893
ysr@777 3894 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
tonyp@1458 3895 assert(_task_queues != NULL, "invariant");
tonyp@1458 3896 assert(_task_queue != NULL, "invariant");
tonyp@1458 3897 assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
tonyp@1458 3898
tonyp@1458 3899 assert(!_claimed,
tonyp@1458 3900 "only one thread should claim this task at any one time");
ysr@777 3901
ysr@777 3902 // OK, this doesn't safeguard again all possible scenarios, as it is
ysr@777 3903 // possible for two threads to set the _claimed flag at the same
ysr@777 3904 // time. But it is only for debugging purposes anyway and it will
ysr@777 3905 // catch most problems.
ysr@777 3906 _claimed = true;
ysr@777 3907
ysr@777 3908 _start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3909 statsOnly( _interval_start_time_ms = _start_time_ms );
ysr@777 3910
ysr@777 3911 double diff_prediction_ms =
ysr@777 3912 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
ysr@777 3913 _time_target_ms = time_target_ms - diff_prediction_ms;
ysr@777 3914
ysr@777 3915 // set up the variables that are used in the work-based scheme to
ysr@777 3916 // call the regular clock method
ysr@777 3917 _words_scanned = 0;
ysr@777 3918 _refs_reached = 0;
ysr@777 3919 recalculate_limits();
ysr@777 3920
ysr@777 3921 // clear all flags
ysr@777 3922 clear_has_aborted();
johnc@2494 3923 _has_timed_out = false;
ysr@777 3924 _draining_satb_buffers = false;
ysr@777 3925
ysr@777 3926 ++_calls;
ysr@777 3927
tonyp@2973 3928 if (_cm->verbose_low()) {
ysr@777 3929 gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
ysr@777 3930 "target = %1.2lfms >>>>>>>>>>",
ysr@777 3931 _task_id, _calls, _time_target_ms);
tonyp@2973 3932 }
ysr@777 3933
ysr@777 3934 // Set up the bitmap and oop closures. Anything that uses them is
ysr@777 3935 // eventually called from this method, so it is OK to allocate these
ysr@777 3936 // statically.
ysr@777 3937 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
tonyp@2968 3938 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
tonyp@2968 3939 set_cm_oop_closure(&cm_oop_closure);
ysr@777 3940
ysr@777 3941 if (_cm->has_overflown()) {
tonyp@3691 3942 // This can happen if the mark stack overflows during a GC pause
tonyp@3691 3943 // and this task, after a yield point, restarts. We have to abort
tonyp@3691 3944 // as we need to get into the overflow protocol which happens
tonyp@3691 3945 // right at the end of this task.
ysr@777 3946 set_has_aborted();
ysr@777 3947 }
ysr@777 3948
ysr@777 3949 // First drain any available SATB buffers. After this, we will not
ysr@777 3950 // look at SATB buffers before the next invocation of this method.
ysr@777 3951 // If enough completed SATB buffers are queued up, the regular clock
ysr@777 3952 // will abort this task so that it restarts.
ysr@777 3953 drain_satb_buffers();
ysr@777 3954 // ...then partially drain the local queue and the global stack
ysr@777 3955 drain_local_queue(true);
ysr@777 3956 drain_global_stack(true);
ysr@777 3957
ysr@777 3958 do {
ysr@777 3959 if (!has_aborted() && _curr_region != NULL) {
ysr@777 3960 // This means that we're already holding on to a region.
tonyp@1458 3961 assert(_finger != NULL, "if region is not NULL, then the finger "
tonyp@1458 3962 "should not be NULL either");
ysr@777 3963
ysr@777 3964 // We might have restarted this task after an evacuation pause
ysr@777 3965 // which might have evacuated the region we're holding on to
ysr@777 3966 // underneath our feet. Let's read its limit again to make sure
ysr@777 3967 // that we do not iterate over a region of the heap that
ysr@777 3968 // contains garbage (update_region_limit() will also move
ysr@777 3969 // _finger to the start of the region if it is found empty).
ysr@777 3970 update_region_limit();
ysr@777 3971 // We will start from _finger not from the start of the region,
ysr@777 3972 // as we might be restarting this task after aborting half-way
ysr@777 3973 // through scanning this region. In this case, _finger points to
ysr@777 3974 // the address where we last found a marked object. If this is a
ysr@777 3975 // fresh region, _finger points to start().
ysr@777 3976 MemRegion mr = MemRegion(_finger, _region_limit);
ysr@777 3977
tonyp@2973 3978 if (_cm->verbose_low()) {
ysr@777 3979 gclog_or_tty->print_cr("[%d] we're scanning part "
ysr@777 3980 "["PTR_FORMAT", "PTR_FORMAT") "
ysr@777 3981 "of region "PTR_FORMAT,
ysr@777 3982 _task_id, _finger, _region_limit, _curr_region);
tonyp@2973 3983 }
ysr@777 3984
ysr@777 3985 // Let's iterate over the bitmap of the part of the
ysr@777 3986 // region that is left.
tonyp@3691 3987 if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
ysr@777 3988 // We successfully completed iterating over the region. Now,
ysr@777 3989 // let's give up the region.
ysr@777 3990 giveup_current_region();
ysr@777 3991 regular_clock_call();
ysr@777 3992 } else {
tonyp@1458 3993 assert(has_aborted(), "currently the only way to do so");
ysr@777 3994 // The only way to abort the bitmap iteration is to return
ysr@777 3995 // false from the do_bit() method. However, inside the
ysr@777 3996 // do_bit() method we move the _finger to point to the
ysr@777 3997 // object currently being looked at. So, if we bail out, we
ysr@777 3998 // have definitely set _finger to something non-null.
tonyp@1458 3999 assert(_finger != NULL, "invariant");
ysr@777 4000
ysr@777 4001 // Region iteration was actually aborted. So now _finger
ysr@777 4002 // points to the address of the object we last scanned. If we
ysr@777 4003 // leave it there, when we restart this task, we will rescan
ysr@777 4004 // the object. It is easy to avoid this. We move the finger by
ysr@777 4005 // enough to point to the next possible object header (the
ysr@777 4006 // bitmap knows by how much we need to move it as it knows its
ysr@777 4007 // granularity).
apetrusenko@1749 4008 assert(_finger < _region_limit, "invariant");
apetrusenko@1749 4009 HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
apetrusenko@1749 4010 // Check if bitmap iteration was aborted while scanning the last object
apetrusenko@1749 4011 if (new_finger >= _region_limit) {
tonyp@3691 4012 giveup_current_region();
apetrusenko@1749 4013 } else {
tonyp@3691 4014 move_finger_to(new_finger);
apetrusenko@1749 4015 }
ysr@777 4016 }
ysr@777 4017 }
ysr@777 4018 // At this point we have either completed iterating over the
ysr@777 4019 // region we were holding on to, or we have aborted.
ysr@777 4020
ysr@777 4021 // We then partially drain the local queue and the global stack.
ysr@777 4022 // (Do we really need this?)
ysr@777 4023 drain_local_queue(true);
ysr@777 4024 drain_global_stack(true);
ysr@777 4025
ysr@777 4026 // Read the note on the claim_region() method on why it might
ysr@777 4027 // return NULL with potentially more regions available for
ysr@777 4028 // claiming and why we have to check out_of_regions() to determine
ysr@777 4029 // whether we're done or not.
ysr@777 4030 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
ysr@777 4031 // We are going to try to claim a new region. We should have
ysr@777 4032 // given up on the previous one.
tonyp@1458 4033 // Separated the asserts so that we know which one fires.
tonyp@1458 4034 assert(_curr_region == NULL, "invariant");
tonyp@1458 4035 assert(_finger == NULL, "invariant");
tonyp@1458 4036 assert(_region_limit == NULL, "invariant");
tonyp@2973 4037 if (_cm->verbose_low()) {
ysr@777 4038 gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
tonyp@2973 4039 }
ysr@777 4040 HeapRegion* claimed_region = _cm->claim_region(_task_id);
ysr@777 4041 if (claimed_region != NULL) {
ysr@777 4042 // Yes, we managed to claim one
ysr@777 4043 statsOnly( ++_regions_claimed );
ysr@777 4044
tonyp@2973 4045 if (_cm->verbose_low()) {
ysr@777 4046 gclog_or_tty->print_cr("[%d] we successfully claimed "
ysr@777 4047 "region "PTR_FORMAT,
ysr@777 4048 _task_id, claimed_region);
tonyp@2973 4049 }
ysr@777 4050
ysr@777 4051 setup_for_region(claimed_region);
tonyp@1458 4052 assert(_curr_region == claimed_region, "invariant");
ysr@777 4053 }
ysr@777 4054 // It is important to call the regular clock here. It might take
ysr@777 4055 // a while to claim a region if, for example, we hit a large
ysr@777 4056 // block of empty regions. So we need to call the regular clock
ysr@777 4057 // method once round the loop to make sure it's called
ysr@777 4058 // frequently enough.
ysr@777 4059 regular_clock_call();
ysr@777 4060 }
ysr@777 4061
ysr@777 4062 if (!has_aborted() && _curr_region == NULL) {
tonyp@1458 4063 assert(_cm->out_of_regions(),
tonyp@1458 4064 "at this point we should be out of regions");
ysr@777 4065 }
ysr@777 4066 } while ( _curr_region != NULL && !has_aborted());
ysr@777 4067
ysr@777 4068 if (!has_aborted()) {
ysr@777 4069 // We cannot check whether the global stack is empty, since other
tonyp@3691 4070 // tasks might be pushing objects to it concurrently.
tonyp@1458 4071 assert(_cm->out_of_regions(),
tonyp@1458 4072 "at this point we should be out of regions");
ysr@777 4073
tonyp@2973 4074 if (_cm->verbose_low()) {
ysr@777 4075 gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
tonyp@2973 4076 }
ysr@777 4077
ysr@777 4078 // Try to reduce the number of available SATB buffers so that
ysr@777 4079 // remark has less work to do.
ysr@777 4080 drain_satb_buffers();
ysr@777 4081 }
ysr@777 4082
ysr@777 4083 // Since we've done everything else, we can now totally drain the
ysr@777 4084 // local queue and global stack.
ysr@777 4085 drain_local_queue(false);
ysr@777 4086 drain_global_stack(false);
ysr@777 4087
ysr@777 4088 // Attempt at work stealing from other task's queues.
johnc@2494 4089 if (do_stealing && !has_aborted()) {
ysr@777 4090 // We have not aborted. This means that we have finished all that
ysr@777 4091 // we could. Let's try to do some stealing...
ysr@777 4092
ysr@777 4093 // We cannot check whether the global stack is empty, since other
tonyp@3691 4094 // tasks might be pushing objects to it concurrently.
tonyp@1458 4095 assert(_cm->out_of_regions() && _task_queue->size() == 0,
tonyp@1458 4096 "only way to reach here");
ysr@777 4097
tonyp@2973 4098 if (_cm->verbose_low()) {
ysr@777 4099 gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
tonyp@2973 4100 }
ysr@777 4101
ysr@777 4102 while (!has_aborted()) {
ysr@777 4103 oop obj;
ysr@777 4104 statsOnly( ++_steal_attempts );
ysr@777 4105
ysr@777 4106 if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
tonyp@2973 4107 if (_cm->verbose_medium()) {
ysr@777 4108 gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
ysr@777 4109 _task_id, (void*) obj);
tonyp@2973 4110 }
ysr@777 4111
ysr@777 4112 statsOnly( ++_steals );
ysr@777 4113
tonyp@1458 4114 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
tonyp@1458 4115 "any stolen object should be marked");
ysr@777 4116 scan_object(obj);
ysr@777 4117
ysr@777 4118 // And since we're towards the end, let's totally drain the
ysr@777 4119 // local queue and global stack.
ysr@777 4120 drain_local_queue(false);
ysr@777 4121 drain_global_stack(false);
ysr@777 4122 } else {
ysr@777 4123 break;
ysr@777 4124 }
ysr@777 4125 }
ysr@777 4126 }
ysr@777 4127
tonyp@2848 4128 // If we are about to wrap up and go into termination, check if we
tonyp@2848 4129 // should raise the overflow flag.
tonyp@2848 4130 if (do_termination && !has_aborted()) {
tonyp@2848 4131 if (_cm->force_overflow()->should_force()) {
tonyp@2848 4132 _cm->set_has_overflown();
tonyp@2848 4133 regular_clock_call();
tonyp@2848 4134 }
tonyp@2848 4135 }
tonyp@2848 4136
ysr@777 4137 // We still haven't aborted. Now, let's try to get into the
ysr@777 4138 // termination protocol.
johnc@2494 4139 if (do_termination && !has_aborted()) {
ysr@777 4140 // We cannot check whether the global stack is empty, since other
tonyp@3691 4141 // tasks might be concurrently pushing objects on it.
tonyp@1458 4142 // Separated the asserts so that we know which one fires.
tonyp@1458 4143 assert(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4144 assert(_task_queue->size() == 0, "only way to reach here");
ysr@777 4145
tonyp@2973 4146 if (_cm->verbose_low()) {
ysr@777 4147 gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
tonyp@2973 4148 }
ysr@777 4149
ysr@777 4150 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4151 // The CMTask class also extends the TerminatorTerminator class,
ysr@777 4152 // hence its should_exit_termination() method will also decide
ysr@777 4153 // whether to exit the termination protocol or not.
ysr@777 4154 bool finished = _cm->terminator()->offer_termination(this);
ysr@777 4155 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4156 _termination_time_ms +=
ysr@777 4157 termination_end_time_ms - _termination_start_time_ms;
ysr@777 4158
ysr@777 4159 if (finished) {
ysr@777 4160 // We're all done.
ysr@777 4161
ysr@777 4162 if (_task_id == 0) {
ysr@777 4163 // let's allow task 0 to do this
ysr@777 4164 if (concurrent()) {
tonyp@1458 4165 assert(_cm->concurrent_marking_in_progress(), "invariant");
ysr@777 4166 // we need to set this to false before the next
ysr@777 4167 // safepoint. This way we ensure that the marking phase
ysr@777 4168 // doesn't observe any more heap expansions.
ysr@777 4169 _cm->clear_concurrent_marking_in_progress();
ysr@777 4170 }
ysr@777 4171 }
ysr@777 4172
ysr@777 4173 // We can now guarantee that the global stack is empty, since
tonyp@1458 4174 // all other tasks have finished. We separated the guarantees so
tonyp@1458 4175 // that, if a condition is false, we can immediately find out
tonyp@1458 4176 // which one.
tonyp@1458 4177 guarantee(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4178 guarantee(_cm->mark_stack_empty(), "only way to reach here");
tonyp@1458 4179 guarantee(_task_queue->size() == 0, "only way to reach here");
tonyp@1458 4180 guarantee(!_cm->has_overflown(), "only way to reach here");
tonyp@1458 4181 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
ysr@777 4182
tonyp@2973 4183 if (_cm->verbose_low()) {
ysr@777 4184 gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
tonyp@2973 4185 }
ysr@777 4186 } else {
ysr@777 4187 // Apparently there's more work to do. Let's abort this task. It
ysr@777 4188 // will restart it and we can hopefully find more things to do.
ysr@777 4189
tonyp@2973 4190 if (_cm->verbose_low()) {
tonyp@2973 4191 gclog_or_tty->print_cr("[%d] apparently there is more work to do",
tonyp@2973 4192 _task_id);
tonyp@2973 4193 }
ysr@777 4194
ysr@777 4195 set_has_aborted();
ysr@777 4196 statsOnly( ++_aborted_termination );
ysr@777 4197 }
ysr@777 4198 }
ysr@777 4199
ysr@777 4200 // Mainly for debugging purposes to make sure that a pointer to the
ysr@777 4201 // closure which was statically allocated in this frame doesn't
ysr@777 4202 // escape it by accident.
tonyp@2968 4203 set_cm_oop_closure(NULL);
ysr@777 4204 double end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4205 double elapsed_time_ms = end_time_ms - _start_time_ms;
ysr@777 4206 // Update the step history.
ysr@777 4207 _step_times_ms.add(elapsed_time_ms);
ysr@777 4208
ysr@777 4209 if (has_aborted()) {
ysr@777 4210 // The task was aborted for some reason.
ysr@777 4211
ysr@777 4212 statsOnly( ++_aborted );
ysr@777 4213
johnc@2494 4214 if (_has_timed_out) {
ysr@777 4215 double diff_ms = elapsed_time_ms - _time_target_ms;
ysr@777 4216 // Keep statistics of how well we did with respect to hitting
ysr@777 4217 // our target only if we actually timed out (if we aborted for
ysr@777 4218 // other reasons, then the results might get skewed).
ysr@777 4219 _marking_step_diffs_ms.add(diff_ms);
ysr@777 4220 }
ysr@777 4221
ysr@777 4222 if (_cm->has_overflown()) {
ysr@777 4223 // This is the interesting one. We aborted because a global
ysr@777 4224 // overflow was raised. This means we have to restart the
ysr@777 4225 // marking phase and start iterating over regions. However, in
ysr@777 4226 // order to do this we have to make sure that all tasks stop
ysr@777 4227 // what they are doing and re-initialise in a safe manner. We
ysr@777 4228 // will achieve this with the use of two barrier sync points.
ysr@777 4229
tonyp@2973 4230 if (_cm->verbose_low()) {
ysr@777 4231 gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
tonyp@2973 4232 }
ysr@777 4233
ysr@777 4234 _cm->enter_first_sync_barrier(_task_id);
ysr@777 4235 // When we exit this sync barrier we know that all tasks have
ysr@777 4236 // stopped doing marking work. So, it's now safe to
ysr@777 4237 // re-initialise our data structures. At the end of this method,
ysr@777 4238 // task 0 will clear the global data structures.
ysr@777 4239
ysr@777 4240 statsOnly( ++_aborted_overflow );
ysr@777 4241
ysr@777 4242 // We clear the local state of this task...
ysr@777 4243 clear_region_fields();
ysr@777 4244
ysr@777 4245 // ...and enter the second barrier.
ysr@777 4246 _cm->enter_second_sync_barrier(_task_id);
ysr@777 4247 // At this point everything has bee re-initialised and we're
ysr@777 4248 // ready to restart.
ysr@777 4249 }
ysr@777 4250
ysr@777 4251 if (_cm->verbose_low()) {
ysr@777 4252 gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
ysr@777 4253 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4254 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4255 if (_cm->has_aborted()) {
ysr@777 4256 gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
ysr@777 4257 _task_id);
tonyp@2973 4258 }
ysr@777 4259 }
ysr@777 4260 } else {
tonyp@2973 4261 if (_cm->verbose_low()) {
ysr@777 4262 gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
ysr@777 4263 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4264 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4265 }
ysr@777 4266 }
ysr@777 4267
ysr@777 4268 _claimed = false;
ysr@777 4269 }
ysr@777 4270
ysr@777 4271 CMTask::CMTask(int task_id,
ysr@777 4272 ConcurrentMark* cm,
johnc@3463 4273 size_t* marked_bytes,
johnc@3463 4274 BitMap* card_bm,
ysr@777 4275 CMTaskQueue* task_queue,
ysr@777 4276 CMTaskQueueSet* task_queues)
ysr@777 4277 : _g1h(G1CollectedHeap::heap()),
ysr@777 4278 _task_id(task_id), _cm(cm),
ysr@777 4279 _claimed(false),
ysr@777 4280 _nextMarkBitMap(NULL), _hash_seed(17),
ysr@777 4281 _task_queue(task_queue),
ysr@777 4282 _task_queues(task_queues),
tonyp@2968 4283 _cm_oop_closure(NULL),
johnc@3463 4284 _marked_bytes_array(marked_bytes),
johnc@3463 4285 _card_bm(card_bm) {
tonyp@1458 4286 guarantee(task_queue != NULL, "invariant");
tonyp@1458 4287 guarantee(task_queues != NULL, "invariant");
ysr@777 4288
ysr@777 4289 statsOnly( _clock_due_to_scanning = 0;
ysr@777 4290 _clock_due_to_marking = 0 );
ysr@777 4291
ysr@777 4292 _marking_step_diffs_ms.add(0.5);
ysr@777 4293 }
tonyp@2717 4294
tonyp@2717 4295 // These are formatting macros that are used below to ensure
tonyp@2717 4296 // consistent formatting. The *_H_* versions are used to format the
tonyp@2717 4297 // header for a particular value and they should be kept consistent
tonyp@2717 4298 // with the corresponding macro. Also note that most of the macros add
tonyp@2717 4299 // the necessary white space (as a prefix) which makes them a bit
tonyp@2717 4300 // easier to compose.
tonyp@2717 4301
tonyp@2717 4302 // All the output lines are prefixed with this string to be able to
tonyp@2717 4303 // identify them easily in a large log file.
tonyp@2717 4304 #define G1PPRL_LINE_PREFIX "###"
tonyp@2717 4305
tonyp@2717 4306 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
tonyp@2717 4307 #ifdef _LP64
tonyp@2717 4308 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
tonyp@2717 4309 #else // _LP64
tonyp@2717 4310 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
tonyp@2717 4311 #endif // _LP64
tonyp@2717 4312
tonyp@2717 4313 // For per-region info
tonyp@2717 4314 #define G1PPRL_TYPE_FORMAT " %-4s"
tonyp@2717 4315 #define G1PPRL_TYPE_H_FORMAT " %4s"
tonyp@2717 4316 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
tonyp@2717 4317 #define G1PPRL_BYTE_H_FORMAT " %9s"
tonyp@2717 4318 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
tonyp@2717 4319 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
tonyp@2717 4320
tonyp@2717 4321 // For summary info
tonyp@2717 4322 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4323 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
tonyp@2717 4324 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
tonyp@2717 4325 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
tonyp@2717 4326
tonyp@2717 4327 G1PrintRegionLivenessInfoClosure::
tonyp@2717 4328 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
tonyp@2717 4329 : _out(out),
tonyp@2717 4330 _total_used_bytes(0), _total_capacity_bytes(0),
tonyp@2717 4331 _total_prev_live_bytes(0), _total_next_live_bytes(0),
tonyp@2717 4332 _hum_used_bytes(0), _hum_capacity_bytes(0),
tonyp@2717 4333 _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
tonyp@2717 4334 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2717 4335 MemRegion g1_committed = g1h->g1_committed();
tonyp@2717 4336 MemRegion g1_reserved = g1h->g1_reserved();
tonyp@2717 4337 double now = os::elapsedTime();
tonyp@2717 4338
tonyp@2717 4339 // Print the header of the output.
tonyp@2717 4340 _out->cr();
tonyp@2717 4341 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
tonyp@2717 4342 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
tonyp@2717 4343 G1PPRL_SUM_ADDR_FORMAT("committed")
tonyp@2717 4344 G1PPRL_SUM_ADDR_FORMAT("reserved")
tonyp@2717 4345 G1PPRL_SUM_BYTE_FORMAT("region-size"),
tonyp@2717 4346 g1_committed.start(), g1_committed.end(),
tonyp@2717 4347 g1_reserved.start(), g1_reserved.end(),
johnc@3182 4348 HeapRegion::GrainBytes);
tonyp@2717 4349 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4350 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4351 G1PPRL_TYPE_H_FORMAT
tonyp@2717 4352 G1PPRL_ADDR_BASE_H_FORMAT
tonyp@2717 4353 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4354 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4355 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4356 G1PPRL_DOUBLE_H_FORMAT,
tonyp@2717 4357 "type", "address-range",
tonyp@2717 4358 "used", "prev-live", "next-live", "gc-eff");
johnc@3173 4359 _out->print_cr(G1PPRL_LINE_PREFIX
johnc@3173 4360 G1PPRL_TYPE_H_FORMAT
johnc@3173 4361 G1PPRL_ADDR_BASE_H_FORMAT
johnc@3173 4362 G1PPRL_BYTE_H_FORMAT
johnc@3173 4363 G1PPRL_BYTE_H_FORMAT
johnc@3173 4364 G1PPRL_BYTE_H_FORMAT
johnc@3173 4365 G1PPRL_DOUBLE_H_FORMAT,
johnc@3173 4366 "", "",
johnc@3173 4367 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
tonyp@2717 4368 }
tonyp@2717 4369
tonyp@2717 4370 // It takes as a parameter a reference to one of the _hum_* fields, it
tonyp@2717 4371 // deduces the corresponding value for a region in a humongous region
tonyp@2717 4372 // series (either the region size, or what's left if the _hum_* field
tonyp@2717 4373 // is < the region size), and updates the _hum_* field accordingly.
tonyp@2717 4374 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
tonyp@2717 4375 size_t bytes = 0;
tonyp@2717 4376 // The > 0 check is to deal with the prev and next live bytes which
tonyp@2717 4377 // could be 0.
tonyp@2717 4378 if (*hum_bytes > 0) {
johnc@3182 4379 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
tonyp@2717 4380 *hum_bytes -= bytes;
tonyp@2717 4381 }
tonyp@2717 4382 return bytes;
tonyp@2717 4383 }
tonyp@2717 4384
tonyp@2717 4385 // It deduces the values for a region in a humongous region series
tonyp@2717 4386 // from the _hum_* fields and updates those accordingly. It assumes
tonyp@2717 4387 // that that _hum_* fields have already been set up from the "starts
tonyp@2717 4388 // humongous" region and we visit the regions in address order.
tonyp@2717 4389 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
tonyp@2717 4390 size_t* capacity_bytes,
tonyp@2717 4391 size_t* prev_live_bytes,
tonyp@2717 4392 size_t* next_live_bytes) {
tonyp@2717 4393 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
tonyp@2717 4394 *used_bytes = get_hum_bytes(&_hum_used_bytes);
tonyp@2717 4395 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
tonyp@2717 4396 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
tonyp@2717 4397 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
tonyp@2717 4398 }
tonyp@2717 4399
tonyp@2717 4400 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
tonyp@2717 4401 const char* type = "";
tonyp@2717 4402 HeapWord* bottom = r->bottom();
tonyp@2717 4403 HeapWord* end = r->end();
tonyp@2717 4404 size_t capacity_bytes = r->capacity();
tonyp@2717 4405 size_t used_bytes = r->used();
tonyp@2717 4406 size_t prev_live_bytes = r->live_bytes();
tonyp@2717 4407 size_t next_live_bytes = r->next_live_bytes();
tonyp@2717 4408 double gc_eff = r->gc_efficiency();
tonyp@2717 4409 if (r->used() == 0) {
tonyp@2717 4410 type = "FREE";
tonyp@2717 4411 } else if (r->is_survivor()) {
tonyp@2717 4412 type = "SURV";
tonyp@2717 4413 } else if (r->is_young()) {
tonyp@2717 4414 type = "EDEN";
tonyp@2717 4415 } else if (r->startsHumongous()) {
tonyp@2717 4416 type = "HUMS";
tonyp@2717 4417
tonyp@2717 4418 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
tonyp@2717 4419 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
tonyp@2717 4420 "they should have been zeroed after the last time we used them");
tonyp@2717 4421 // Set up the _hum_* fields.
tonyp@2717 4422 _hum_capacity_bytes = capacity_bytes;
tonyp@2717 4423 _hum_used_bytes = used_bytes;
tonyp@2717 4424 _hum_prev_live_bytes = prev_live_bytes;
tonyp@2717 4425 _hum_next_live_bytes = next_live_bytes;
tonyp@2717 4426 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4427 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4428 end = bottom + HeapRegion::GrainWords;
tonyp@2717 4429 } else if (r->continuesHumongous()) {
tonyp@2717 4430 type = "HUMC";
tonyp@2717 4431 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4432 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4433 assert(end == bottom + HeapRegion::GrainWords, "invariant");
tonyp@2717 4434 } else {
tonyp@2717 4435 type = "OLD";
tonyp@2717 4436 }
tonyp@2717 4437
tonyp@2717 4438 _total_used_bytes += used_bytes;
tonyp@2717 4439 _total_capacity_bytes += capacity_bytes;
tonyp@2717 4440 _total_prev_live_bytes += prev_live_bytes;
tonyp@2717 4441 _total_next_live_bytes += next_live_bytes;
tonyp@2717 4442
tonyp@2717 4443 // Print a line for this particular region.
tonyp@2717 4444 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4445 G1PPRL_TYPE_FORMAT
tonyp@2717 4446 G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4447 G1PPRL_BYTE_FORMAT
tonyp@2717 4448 G1PPRL_BYTE_FORMAT
tonyp@2717 4449 G1PPRL_BYTE_FORMAT
tonyp@2717 4450 G1PPRL_DOUBLE_FORMAT,
tonyp@2717 4451 type, bottom, end,
tonyp@2717 4452 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
tonyp@2717 4453
tonyp@2717 4454 return false;
tonyp@2717 4455 }
tonyp@2717 4456
tonyp@2717 4457 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
tonyp@2717 4458 // Print the footer of the output.
tonyp@2717 4459 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4460 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4461 " SUMMARY"
tonyp@2717 4462 G1PPRL_SUM_MB_FORMAT("capacity")
tonyp@2717 4463 G1PPRL_SUM_MB_PERC_FORMAT("used")
tonyp@2717 4464 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
tonyp@2717 4465 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
tonyp@2717 4466 bytes_to_mb(_total_capacity_bytes),
tonyp@2717 4467 bytes_to_mb(_total_used_bytes),
tonyp@2717 4468 perc(_total_used_bytes, _total_capacity_bytes),
tonyp@2717 4469 bytes_to_mb(_total_prev_live_bytes),
tonyp@2717 4470 perc(_total_prev_live_bytes, _total_capacity_bytes),
tonyp@2717 4471 bytes_to_mb(_total_next_live_bytes),
tonyp@2717 4472 perc(_total_next_live_bytes, _total_capacity_bytes));
tonyp@2717 4473 _out->cr();
tonyp@2717 4474 }

mercurial