src/share/vm/opto/regmask.hpp

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2314
f95d63e2154a
child 2508
b92c45f2bc75
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_REGMASK_HPP
stefank@2314 26 #define SHARE_VM_OPTO_REGMASK_HPP
stefank@2314 27
stefank@2314 28 #include "code/vmreg.hpp"
stefank@2314 29 #include "libadt/port.hpp"
stefank@2314 30 #include "opto/optoreg.hpp"
stefank@2314 31 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 32 # include "adfiles/adGlobals_x86_32.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 35 # include "adfiles/adGlobals_x86_64.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 38 # include "adfiles/adGlobals_sparc.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 41 # include "adfiles/adGlobals_zero.hpp"
stefank@2314 42 #endif
stefank@2314 43
duke@435 44 // Some fun naming (textual) substitutions:
duke@435 45 //
duke@435 46 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
duke@435 47 // RegMask::Special ==> RegMask::Empty
duke@435 48 // RegMask::_flags ==> RegMask::is_AllStack()
duke@435 49 // RegMask::operator<<=() ==> RegMask::Insert()
duke@435 50 // RegMask::operator>>=() ==> RegMask::Remove()
duke@435 51 // RegMask::Union() ==> RegMask::OR
duke@435 52 // RegMask::Inter() ==> RegMask::AND
duke@435 53 //
duke@435 54 // OptoRegister::RegName ==> OptoReg::Name
duke@435 55 //
duke@435 56 // OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version
duke@435 57 //
duke@435 58 // numregs in chaitin ==> proper degree in chaitin
duke@435 59
duke@435 60 //-------------Non-zero bit search methods used by RegMask---------------------
duke@435 61 // Find lowest 1, or return 32 if empty
duke@435 62 int find_lowest_bit( uint32 mask );
duke@435 63 // Find highest 1, or return 32 if empty
duke@435 64 int find_hihghest_bit( uint32 mask );
duke@435 65
duke@435 66 //------------------------------RegMask----------------------------------------
duke@435 67 // The ADL file describes how to print the machine-specific registers, as well
duke@435 68 // as any notion of register classes. We provide a register mask, which is
duke@435 69 // just a collection of Register numbers.
duke@435 70
duke@435 71 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
duke@435 72 // RM_SIZE is the size of a register mask in words.
duke@435 73 // FORALL_BODY replicates a BODY macro once per word in the register mask.
duke@435 74 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
duke@435 75 // However, it means the ADLC can redefine the unroll macro and all loops
duke@435 76 // over register masks will be unrolled by the correct amount.
duke@435 77
duke@435 78 class RegMask VALUE_OBJ_CLASS_SPEC {
duke@435 79 union {
duke@435 80 double _dummy_force_double_alignment[RM_SIZE>>1];
duke@435 81 // Array of Register Mask bits. This array is large enough to cover
duke@435 82 // all the machine registers and all parameters that need to be passed
duke@435 83 // on the stack (stack registers) up to some interesting limit. Methods
duke@435 84 // that need more parameters will NOT be compiled. On Intel, the limit
duke@435 85 // is something like 90+ parameters.
duke@435 86 int _A[RM_SIZE];
duke@435 87 };
duke@435 88
duke@435 89 enum {
duke@435 90 _WordBits = BitsPerInt,
duke@435 91 _LogWordBits = LogBitsPerInt,
duke@435 92 _RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
duke@435 93 };
duke@435 94
duke@435 95 public:
duke@435 96 enum { CHUNK_SIZE = RM_SIZE*_WordBits };
duke@435 97
duke@435 98 // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
duke@435 99 // Also, consider the maximum alignment size for a normally allocated
duke@435 100 // value. Since we allocate register pairs but not register quads (at
duke@435 101 // present), this alignment is SlotsPerLong (== 2). A normally
duke@435 102 // aligned allocated register is either a single register, or a pair
duke@435 103 // of adjacent registers, the lower-numbered being even.
duke@435 104 // See also is_aligned_Pairs() below, and the padding added before
duke@435 105 // Matcher::_new_SP to keep allocated pairs aligned properly.
duke@435 106 // If we ever go to quad-word allocations, SlotsPerQuad will become
duke@435 107 // the controlling alignment constraint. Note that this alignment
duke@435 108 // requirement is internal to the allocator, and independent of any
duke@435 109 // particular platform.
duke@435 110 enum { SlotsPerLong = 2 };
duke@435 111
duke@435 112 // A constructor only used by the ADLC output. All mask fields are filled
duke@435 113 // in directly. Calls to this look something like RM(1,2,3,4);
duke@435 114 RegMask(
duke@435 115 # define BODY(I) int a##I,
duke@435 116 FORALL_BODY
duke@435 117 # undef BODY
duke@435 118 int dummy = 0 ) {
duke@435 119 # define BODY(I) _A[I] = a##I;
duke@435 120 FORALL_BODY
duke@435 121 # undef BODY
duke@435 122 }
duke@435 123
duke@435 124 // Handy copying constructor
duke@435 125 RegMask( RegMask *rm ) {
duke@435 126 # define BODY(I) _A[I] = rm->_A[I];
duke@435 127 FORALL_BODY
duke@435 128 # undef BODY
duke@435 129 }
duke@435 130
duke@435 131 // Construct an empty mask
duke@435 132 RegMask( ) { Clear(); }
duke@435 133
duke@435 134 // Construct a mask with a single bit
duke@435 135 RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
duke@435 136
duke@435 137 // Check for register being in mask
duke@435 138 int Member( OptoReg::Name reg ) const {
duke@435 139 assert( reg < CHUNK_SIZE, "" );
duke@435 140 return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
duke@435 141 }
duke@435 142
duke@435 143 // The last bit in the register mask indicates that the mask should repeat
duke@435 144 // indefinitely with ONE bits. Returns TRUE if mask is infinite or
duke@435 145 // unbounded in size. Returns FALSE if mask is finite size.
duke@435 146 int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
duke@435 147
duke@435 148 // Work around an -xO3 optimization problme in WS6U1. The old way:
duke@435 149 // void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
duke@435 150 // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
duke@435 151 // follows an Insert() loop, like the one found in init_spill_mask(). Using
duke@435 152 // Insert() instead works because the index into _A in computed instead of
duke@435 153 // constant. See bug 4665841.
duke@435 154 void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
duke@435 155
duke@435 156 // Test for being a not-empty mask.
duke@435 157 int is_NotEmpty( ) const {
duke@435 158 int tmp = 0;
duke@435 159 # define BODY(I) tmp |= _A[I];
duke@435 160 FORALL_BODY
duke@435 161 # undef BODY
duke@435 162 return tmp;
duke@435 163 }
duke@435 164
duke@435 165 // Find lowest-numbered register from mask, or BAD if mask is empty.
duke@435 166 OptoReg::Name find_first_elem() const {
duke@435 167 int base, bits;
duke@435 168 # define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
duke@435 169 FORALL_BODY
duke@435 170 # undef BODY
duke@435 171 { base = OptoReg::Bad; bits = 1<<0; }
duke@435 172 return OptoReg::Name(base + find_lowest_bit(bits));
duke@435 173 }
duke@435 174 // Get highest-numbered register from mask, or BAD if mask is empty.
duke@435 175 OptoReg::Name find_last_elem() const {
duke@435 176 int base, bits;
duke@435 177 # define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
duke@435 178 FORALL_BODY
duke@435 179 # undef BODY
duke@435 180 { base = OptoReg::Bad; bits = 1<<0; }
duke@435 181 return OptoReg::Name(base + find_hihghest_bit(bits));
duke@435 182 }
duke@435 183
duke@435 184 // Find the lowest-numbered register pair in the mask. Return the
duke@435 185 // HIGHEST register number in the pair, or BAD if no pairs.
duke@435 186 // Assert that the mask contains only bit pairs.
duke@435 187 OptoReg::Name find_first_pair() const;
duke@435 188
duke@435 189 // Clear out partial bits; leave only aligned adjacent bit pairs.
duke@435 190 void ClearToPairs();
duke@435 191 // Smear out partial bits; leave only aligned adjacent bit pairs.
duke@435 192 void SmearToPairs();
duke@435 193 // Verify that the mask contains only aligned adjacent bit pairs
duke@435 194 void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
duke@435 195 // Test that the mask contains only aligned adjacent bit pairs
duke@435 196 bool is_aligned_Pairs() const;
duke@435 197
duke@435 198 // mask is a pair of misaligned registers
duke@435 199 bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
duke@435 200 // Test for single register
duke@435 201 int is_bound1() const;
duke@435 202 // Test for a single adjacent pair
duke@435 203 int is_bound2() const;
duke@435 204
duke@435 205 // Fast overlap test. Non-zero if any registers in common.
duke@435 206 int overlap( const RegMask &rm ) const {
duke@435 207 return
duke@435 208 # define BODY(I) (_A[I] & rm._A[I]) |
duke@435 209 FORALL_BODY
duke@435 210 # undef BODY
duke@435 211 0 ;
duke@435 212 }
duke@435 213
duke@435 214 // Special test for register pressure based splitting
duke@435 215 // UP means register only, Register plus stack, or stack only is DOWN
duke@435 216 bool is_UP() const;
duke@435 217
duke@435 218 // Clear a register mask
duke@435 219 void Clear( ) {
duke@435 220 # define BODY(I) _A[I] = 0;
duke@435 221 FORALL_BODY
duke@435 222 # undef BODY
duke@435 223 }
duke@435 224
duke@435 225 // Fill a register mask with 1's
duke@435 226 void Set_All( ) {
duke@435 227 # define BODY(I) _A[I] = -1;
duke@435 228 FORALL_BODY
duke@435 229 # undef BODY
duke@435 230 }
duke@435 231
duke@435 232 // Insert register into mask
duke@435 233 void Insert( OptoReg::Name reg ) {
duke@435 234 assert( reg < CHUNK_SIZE, "" );
duke@435 235 _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
duke@435 236 }
duke@435 237
duke@435 238 // Remove register from mask
duke@435 239 void Remove( OptoReg::Name reg ) {
duke@435 240 assert( reg < CHUNK_SIZE, "" );
duke@435 241 _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
duke@435 242 }
duke@435 243
duke@435 244 // OR 'rm' into 'this'
duke@435 245 void OR( const RegMask &rm ) {
duke@435 246 # define BODY(I) this->_A[I] |= rm._A[I];
duke@435 247 FORALL_BODY
duke@435 248 # undef BODY
duke@435 249 }
duke@435 250
duke@435 251 // AND 'rm' into 'this'
duke@435 252 void AND( const RegMask &rm ) {
duke@435 253 # define BODY(I) this->_A[I] &= rm._A[I];
duke@435 254 FORALL_BODY
duke@435 255 # undef BODY
duke@435 256 }
duke@435 257
duke@435 258 // Subtract 'rm' from 'this'
duke@435 259 void SUBTRACT( const RegMask &rm ) {
duke@435 260 # define BODY(I) _A[I] &= ~rm._A[I];
duke@435 261 FORALL_BODY
duke@435 262 # undef BODY
duke@435 263 }
duke@435 264
duke@435 265 // Compute size of register mask: number of bits
duke@435 266 uint Size() const;
duke@435 267
duke@435 268 #ifndef PRODUCT
duke@435 269 void print() const { dump(); }
duke@435 270 void dump() const; // Print a mask
duke@435 271 #endif
duke@435 272
duke@435 273 static const RegMask Empty; // Common empty mask
duke@435 274
duke@435 275 static bool can_represent(OptoReg::Name reg) {
duke@435 276 // NOTE: -1 in computation reflects the usage of the last
duke@435 277 // bit of the regmask as an infinite stack flag.
duke@435 278 return (int)reg < (int)(CHUNK_SIZE-1);
duke@435 279 }
duke@435 280 };
duke@435 281
duke@435 282 // Do not use this constant directly in client code!
duke@435 283 #undef RM_SIZE
stefank@2314 284
stefank@2314 285 #endif // SHARE_VM_OPTO_REGMASK_HPP

mercurial