src/share/vm/opto/matcher.cpp

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2314
f95d63e2154a
child 2322
828eafbd85cc
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
stefank@2314 38 #include "runtime/atomic.hpp"
stefank@2314 39 #include "runtime/hpi.hpp"
stefank@2314 40 #include "runtime/os.hpp"
stefank@2314 41 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 42 # include "adfiles/ad_x86_32.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 45 # include "adfiles/ad_x86_64.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 48 # include "adfiles/ad_sparc.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 51 # include "adfiles/ad_zero.hpp"
stefank@2314 52 #endif
duke@435 53
duke@435 54 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 55
duke@435 56
duke@435 57
duke@435 58 const int Matcher::base2reg[Type::lastype] = {
coleenp@548 59 Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
duke@435 60 Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
duke@435 61 Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
duke@435 62 0, 0/*abio*/,
duke@435 63 Op_RegP /* Return address */, 0, /* the memories */
duke@435 64 Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
duke@435 65 0 /*bottom*/
duke@435 66 };
duke@435 67
duke@435 68 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 69 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 70 RegMask Matcher::STACK_ONLY_mask;
duke@435 71 RegMask Matcher::c_frame_ptr_mask;
duke@435 72 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 73 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 74
duke@435 75 //---------------------------Matcher-------------------------------------------
duke@435 76 Matcher::Matcher( Node_List &proj_list ) :
duke@435 77 PhaseTransform( Phase::Ins_Select ),
duke@435 78 #ifdef ASSERT
duke@435 79 _old2new_map(C->comp_arena()),
never@657 80 _new2old_map(C->comp_arena()),
duke@435 81 #endif
kvn@603 82 _shared_nodes(C->comp_arena()),
duke@435 83 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 84 _swallowed(swallowed),
duke@435 85 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 86 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
duke@435 87 _must_clone(must_clone), _proj_list(proj_list),
duke@435 88 _register_save_policy(register_save_policy),
duke@435 89 _c_reg_save_policy(c_reg_save_policy),
duke@435 90 _register_save_type(register_save_type),
duke@435 91 _ruleName(ruleName),
duke@435 92 _allocation_started(false),
duke@435 93 _states_arena(Chunk::medium_size),
duke@435 94 _visited(&_states_arena),
duke@435 95 _shared(&_states_arena),
duke@435 96 _dontcare(&_states_arena) {
duke@435 97 C->set_matcher(this);
duke@435 98
twisti@1572 99 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 100 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 101 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 102 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 103 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 104 idealreg2spillmask [Op_RegP] = NULL;
duke@435 105
twisti@1572 106 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 107 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 108 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 109 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 110 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 111 idealreg2debugmask [Op_RegP] = NULL;
twisti@1572 112
twisti@1572 113 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 114 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 115 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 116 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 117 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 118 idealreg2mhdebugmask[Op_RegP] = NULL;
twisti@1572 119
kvn@651 120 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 121 }
duke@435 122
duke@435 123 //------------------------------warp_incoming_stk_arg------------------------
duke@435 124 // This warps a VMReg into an OptoReg::Name
duke@435 125 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 126 OptoReg::Name warped;
duke@435 127 if( reg->is_stack() ) { // Stack slot argument?
duke@435 128 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 129 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 130 if( warped >= _in_arg_limit )
duke@435 131 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
duke@435 132 if (!RegMask::can_represent(warped)) {
duke@435 133 // the compiler cannot represent this method's calling sequence
duke@435 134 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 135 return OptoReg::Bad;
duke@435 136 }
duke@435 137 return warped;
duke@435 138 }
duke@435 139 return OptoReg::as_OptoReg(reg);
duke@435 140 }
duke@435 141
duke@435 142 //---------------------------compute_old_SP------------------------------------
duke@435 143 OptoReg::Name Compile::compute_old_SP() {
duke@435 144 int fixed = fixed_slots();
duke@435 145 int preserve = in_preserve_stack_slots();
duke@435 146 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150
duke@435 151 #ifdef ASSERT
duke@435 152 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 153 // Make sure that the new graph only references new nodes
duke@435 154 ResourceMark rm;
duke@435 155 Unique_Node_List worklist;
duke@435 156 VectorSet visited(Thread::current()->resource_area());
duke@435 157 worklist.push(xroot);
duke@435 158 while (worklist.size() > 0) {
duke@435 159 Node* n = worklist.pop();
duke@435 160 visited <<= n->_idx;
duke@435 161 assert(C->node_arena()->contains(n), "dead node");
duke@435 162 for (uint j = 0; j < n->req(); j++) {
duke@435 163 Node* in = n->in(j);
duke@435 164 if (in != NULL) {
duke@435 165 assert(C->node_arena()->contains(in), "dead node");
duke@435 166 if (!visited.test(in->_idx)) {
duke@435 167 worklist.push(in);
duke@435 168 }
duke@435 169 }
duke@435 170 }
duke@435 171 }
duke@435 172 }
duke@435 173 #endif
duke@435 174
duke@435 175
duke@435 176 //---------------------------match---------------------------------------------
duke@435 177 void Matcher::match( ) {
kvn@1258 178 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 179 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 180 MaxLabelRootDepth = 100;
kvn@1258 181 }
duke@435 182 // One-time initialization of some register masks.
duke@435 183 init_spill_mask( C->root()->in(1) );
duke@435 184 _return_addr_mask = return_addr();
duke@435 185 #ifdef _LP64
duke@435 186 // Pointers take 2 slots in 64-bit land
duke@435 187 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 188 #endif
duke@435 189
duke@435 190 // Map a Java-signature return type into return register-value
duke@435 191 // machine registers for 0, 1 and 2 returned values.
duke@435 192 const TypeTuple *range = C->tf()->range();
duke@435 193 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 194 // Get ideal-register return type
duke@435 195 int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
duke@435 196 // Get machine return register
duke@435 197 uint sop = C->start()->Opcode();
duke@435 198 OptoRegPair regs = return_value(ireg, false);
duke@435 199
duke@435 200 // And mask for same
duke@435 201 _return_value_mask = RegMask(regs.first());
duke@435 202 if( OptoReg::is_valid(regs.second()) )
duke@435 203 _return_value_mask.Insert(regs.second());
duke@435 204 }
duke@435 205
duke@435 206 // ---------------
duke@435 207 // Frame Layout
duke@435 208
duke@435 209 // Need the method signature to determine the incoming argument types,
duke@435 210 // because the types determine which registers the incoming arguments are
duke@435 211 // in, and this affects the matched code.
duke@435 212 const TypeTuple *domain = C->tf()->domain();
duke@435 213 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 214 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 215 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 216 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 217 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 218 uint i;
duke@435 219 for( i = 0; i<argcnt; i++ ) {
duke@435 220 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 221 }
duke@435 222
duke@435 223 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 224 // that will convert this to an array of register numbers.
duke@435 225 const StartNode *start = C->start();
duke@435 226 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 227 #ifdef ASSERT
duke@435 228 // Sanity check users' calling convention. Real handy while trying to
duke@435 229 // get the initial port correct.
duke@435 230 { for (uint i = 0; i<argcnt; i++) {
duke@435 231 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 232 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 233 _parm_regs[i].set_bad();
duke@435 234 continue;
duke@435 235 }
duke@435 236 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 237 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 238 if (parm_reg->is_reg()) {
duke@435 239 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 240 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 241 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 242 opto_parm_reg == inline_cache_reg(),
duke@435 243 "parameters in register must be preserved by runtime stubs");
duke@435 244 }
duke@435 245 for (uint j = 0; j < i; j++) {
duke@435 246 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 247 "calling conv. must produce distinct regs");
duke@435 248 }
duke@435 249 }
duke@435 250 }
duke@435 251 #endif
duke@435 252
duke@435 253 // Do some initial frame layout.
duke@435 254
duke@435 255 // Compute the old incoming SP (may be called FP) as
duke@435 256 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 257 _old_SP = C->compute_old_SP();
duke@435 258 assert( is_even(_old_SP), "must be even" );
duke@435 259
duke@435 260 // Compute highest incoming stack argument as
duke@435 261 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 262 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 263 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 264 for( i = 0; i < argcnt; i++ ) {
duke@435 265 // Permit args to have no register
duke@435 266 _calling_convention_mask[i].Clear();
duke@435 267 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 268 continue;
duke@435 269 }
duke@435 270 // calling_convention returns stack arguments as a count of
duke@435 271 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 272 // the allocators point of view, taking into account all the
duke@435 273 // preserve area, locks & pad2.
duke@435 274
duke@435 275 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 276 if( OptoReg::is_valid(reg1))
duke@435 277 _calling_convention_mask[i].Insert(reg1);
duke@435 278
duke@435 279 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 280 if( OptoReg::is_valid(reg2))
duke@435 281 _calling_convention_mask[i].Insert(reg2);
duke@435 282
duke@435 283 // Saved biased stack-slot register number
duke@435 284 _parm_regs[i].set_pair(reg2, reg1);
duke@435 285 }
duke@435 286
duke@435 287 // Finally, make sure the incoming arguments take up an even number of
duke@435 288 // words, in case the arguments or locals need to contain doubleword stack
duke@435 289 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 290 // particular, in the spill area) which look aligned will in fact be
duke@435 291 // aligned relative to the stack pointer in the target machine. Double
duke@435 292 // stack slots will always be allocated aligned.
duke@435 293 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 294
duke@435 295 // Compute highest outgoing stack argument as
duke@435 296 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 297 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 298 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 299
duke@435 300 if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
duke@435 301 // the compiler cannot represent this method's calling sequence
duke@435 302 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 303 }
duke@435 304
duke@435 305 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 306
duke@435 307 // ---------------
duke@435 308 // Collect roots of matcher trees. Every node for which
duke@435 309 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 310 // can be a valid interior of some tree.
duke@435 311 find_shared( C->root() );
duke@435 312 find_shared( C->top() );
duke@435 313
never@802 314 C->print_method("Before Matching");
duke@435 315
kvn@1164 316 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 317 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 318 // The corresponding mach node is only used in rare cases for derived
kvn@1164 319 // pointers.
kvn@1164 320 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 321
duke@435 322 // Swap out to old-space; emptying new-space
duke@435 323 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 324
duke@435 325 // Save debug and profile information for nodes in old space:
duke@435 326 _old_node_note_array = C->node_note_array();
duke@435 327 if (_old_node_note_array != NULL) {
duke@435 328 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 329 (C->comp_arena(), _old_node_note_array->length(),
duke@435 330 0, NULL));
duke@435 331 }
duke@435 332
duke@435 333 // Pre-size the new_node table to avoid the need for range checks.
duke@435 334 grow_new_node_array(C->unique());
duke@435 335
duke@435 336 // Reset node counter so MachNodes start with _idx at 0
duke@435 337 int nodes = C->unique(); // save value
duke@435 338 C->set_unique(0);
duke@435 339
duke@435 340 // Recursively match trees from old space into new space.
duke@435 341 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 342 _visited.Clear(); // Clear visit bits for xform call
duke@435 343 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 344 if (!C->failing()) {
duke@435 345 Node* xroot = xform( C->root(), 1 );
duke@435 346 if (xroot == NULL) {
duke@435 347 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 348 C->record_method_not_compilable("instruction match failed");
duke@435 349 } else {
duke@435 350 // During matching shared constants were attached to C->root()
duke@435 351 // because xroot wasn't available yet, so transfer the uses to
duke@435 352 // the xroot.
duke@435 353 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 354 Node* n = C->root()->fast_out(j);
duke@435 355 if (C->node_arena()->contains(n)) {
duke@435 356 assert(n->in(0) == C->root(), "should be control user");
duke@435 357 n->set_req(0, xroot);
duke@435 358 --j;
duke@435 359 --jmax;
duke@435 360 }
duke@435 361 }
duke@435 362
kvn@1164 363 // Generate new mach node for ConP #NULL
kvn@1164 364 assert(new_ideal_null != NULL, "sanity");
kvn@1164 365 _mach_null = match_tree(new_ideal_null);
kvn@1164 366 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 367 // The control will be set when this node is used first time
kvn@1164 368 // in find_base_for_derived().
kvn@1164 369 assert(_mach_null != NULL, "");
kvn@1164 370
duke@435 371 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 372
duke@435 373 #ifdef ASSERT
duke@435 374 verify_new_nodes_only(xroot);
duke@435 375 #endif
duke@435 376 }
duke@435 377 }
duke@435 378 if (C->top() == NULL || C->root() == NULL) {
duke@435 379 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 380 }
duke@435 381 if (C->failing()) {
duke@435 382 // delete old;
duke@435 383 old->destruct_contents();
duke@435 384 return;
duke@435 385 }
duke@435 386 assert( C->top(), "" );
duke@435 387 assert( C->root(), "" );
duke@435 388 validate_null_checks();
duke@435 389
duke@435 390 // Now smoke old-space
duke@435 391 NOT_DEBUG( old->destruct_contents() );
duke@435 392
duke@435 393 // ------------------------
duke@435 394 // Set up save-on-entry registers
duke@435 395 Fixup_Save_On_Entry( );
duke@435 396 }
duke@435 397
duke@435 398
duke@435 399 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 400 // The stated purpose of this routine is to take care of save-on-entry
duke@435 401 // registers. However, the overall goal of the Match phase is to convert into
duke@435 402 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 403 // So what this procedure really does is put a valid RegMask on each input
duke@435 404 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 405 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 406 // course gives them a mask).
duke@435 407
duke@435 408 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 409 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 410 // Do all the pre-defined register masks
duke@435 411 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 412 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 413 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 414 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 415 rms[TypeFunc::FramePtr ] = fp;
duke@435 416 return rms;
duke@435 417 }
duke@435 418
duke@435 419 //---------------------------init_first_stack_mask-----------------------------
duke@435 420 // Create the initial stack mask used by values spilling to the stack.
duke@435 421 // Disallow any debug info in outgoing argument areas by setting the
duke@435 422 // initial mask accordingly.
duke@435 423 void Matcher::init_first_stack_mask() {
duke@435 424
duke@435 425 // Allocate storage for spill masks as masks for the appropriate load type.
twisti@1572 426 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
twisti@1572 427
twisti@1572 428 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 429 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 430 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 431 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 432 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 433 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 434
twisti@1572 435 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 436 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 437 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 438 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 439 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 440 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 441
twisti@1572 442 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 443 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 444 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 445 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 446 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 447 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 448
duke@435 449 OptoReg::Name i;
duke@435 450
duke@435 451 // At first, start with the empty mask
duke@435 452 C->FIRST_STACK_mask().Clear();
duke@435 453
duke@435 454 // Add in the incoming argument area
duke@435 455 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 456 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 457 C->FIRST_STACK_mask().Insert(i);
duke@435 458
duke@435 459 // Add in all bits past the outgoing argument area
duke@435 460 guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
duke@435 461 "must be able to represent all call arguments in reg mask");
duke@435 462 init = _out_arg_limit;
duke@435 463 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 464 C->FIRST_STACK_mask().Insert(i);
duke@435 465
duke@435 466 // Finally, set the "infinite stack" bit.
duke@435 467 C->FIRST_STACK_mask().set_AllStack();
duke@435 468
duke@435 469 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
coleenp@548 470 #ifdef _LP64
coleenp@548 471 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 472 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
coleenp@548 473 #endif
duke@435 474 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 475 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 476 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
duke@435 477 idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
duke@435 478 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 479 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 480 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
duke@435 481 idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
duke@435 482 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
duke@435 483 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
duke@435 484
never@2085 485 if (UseFPUForSpilling) {
never@2085 486 // This mask logic assumes that the spill operations are
never@2085 487 // symmetric and that the registers involved are the same size.
never@2085 488 // On sparc for instance we may have to use 64 bit moves will
never@2085 489 // kill 2 registers when used with F0-F31.
never@2085 490 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 491 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 492 #ifdef _LP64
never@2085 493 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 494 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 495 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 496 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 497 #else
never@2085 498 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
never@2085 499 #endif
never@2085 500 }
never@2085 501
duke@435 502 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 503 // Caller-save registers are assumed to be trashable by the various
duke@435 504 // inline-cache fixup routines.
twisti@1572 505 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 506 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 507 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 508 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 509 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 510 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 511
twisti@1572 512 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 513 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 514 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 515 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 516 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 517 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 518
duke@435 519 // Prevent stub compilations from attempting to reference
duke@435 520 // callee-saved registers from debug info
duke@435 521 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 522
duke@435 523 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 524 // registers the caller has to save do not work
duke@435 525 if( _register_save_policy[i] == 'C' ||
duke@435 526 _register_save_policy[i] == 'A' ||
duke@435 527 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 528 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 529 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 530 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 531 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 532 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 533 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 534
twisti@1572 535 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 536 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 537 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 538 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 539 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 540 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 541 }
duke@435 542 }
twisti@1572 543
twisti@1572 544 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 545 // invokes to from the debug mask.
twisti@1572 546 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 547 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 548 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 549 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 550 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 551 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 552 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 553 }
duke@435 554
duke@435 555 //---------------------------is_save_on_entry----------------------------------
duke@435 556 bool Matcher::is_save_on_entry( int reg ) {
duke@435 557 return
duke@435 558 _register_save_policy[reg] == 'E' ||
duke@435 559 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 560 // Also save argument registers in the trampolining stubs
duke@435 561 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 562 }
duke@435 563
duke@435 564 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 565 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 566 init_first_stack_mask();
duke@435 567
duke@435 568 Node *root = C->root(); // Short name for root
duke@435 569 // Count number of save-on-entry registers.
duke@435 570 uint soe_cnt = number_of_saved_registers();
duke@435 571 uint i;
duke@435 572
duke@435 573 // Find the procedure Start Node
duke@435 574 StartNode *start = C->start();
duke@435 575 assert( start, "Expect a start node" );
duke@435 576
duke@435 577 // Save argument registers in the trampolining stubs
duke@435 578 if( C->save_argument_registers() )
duke@435 579 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 580 if( is_spillable_arg(i) )
duke@435 581 soe_cnt++;
duke@435 582
duke@435 583 // Input RegMask array shared by all Returns.
duke@435 584 // The type for doubles and longs has a count of 2, but
duke@435 585 // there is only 1 returned value
duke@435 586 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 587 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 588 // Returns have 0 or 1 returned values depending on call signature.
duke@435 589 // Return register is specified by return_value in the AD file.
duke@435 590 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 591 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 592
duke@435 593 // Input RegMask array shared by all Rethrows.
duke@435 594 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 595 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 596 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 597 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 598 #ifdef _LP64
duke@435 599 // Need two slots for ptrs in 64-bit land
duke@435 600 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 601 #endif
duke@435 602
duke@435 603 // Input RegMask array shared by all TailCalls
duke@435 604 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 605 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 606
duke@435 607 // Input RegMask array shared by all TailJumps
duke@435 608 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 609 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 610
duke@435 611 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 612 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 613 // TailCall to extract these masks and put the correct masks into
duke@435 614 // the tail_call_rms array.
duke@435 615 for( i=1; i < root->req(); i++ ) {
duke@435 616 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 617 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 618 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 619 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 620 break;
duke@435 621 }
duke@435 622 }
duke@435 623
duke@435 624 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 625 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 626 // TailJump to extract these masks and put the correct masks into
duke@435 627 // the tail_jump_rms array.
duke@435 628 for( i=1; i < root->req(); i++ ) {
duke@435 629 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 630 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 631 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 632 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 633 break;
duke@435 634 }
duke@435 635 }
duke@435 636
duke@435 637 // Input RegMask array shared by all Halts
duke@435 638 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 639 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 640
duke@435 641 // Capture the return input masks into each exit flavor
duke@435 642 for( i=1; i < root->req(); i++ ) {
duke@435 643 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 644 switch( exit->ideal_Opcode() ) {
duke@435 645 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 646 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 647 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 648 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 649 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 650 default : ShouldNotReachHere();
duke@435 651 }
duke@435 652 }
duke@435 653
duke@435 654 // Next unused projection number from Start.
duke@435 655 int proj_cnt = C->tf()->domain()->cnt();
duke@435 656
duke@435 657 // Do all the save-on-entry registers. Make projections from Start for
duke@435 658 // them, and give them a use at the exit points. To the allocator, they
duke@435 659 // look like incoming register arguments.
duke@435 660 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 661 if( is_save_on_entry(i) ) {
duke@435 662
duke@435 663 // Add the save-on-entry to the mask array
duke@435 664 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 665 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 666 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 667 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 668 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 669 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 670 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 671
duke@435 672 Node *mproj;
duke@435 673
duke@435 674 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 675 // into a single RegD.
duke@435 676 if( (i&1) == 0 &&
duke@435 677 _register_save_type[i ] == Op_RegF &&
duke@435 678 _register_save_type[i+1] == Op_RegF &&
duke@435 679 is_save_on_entry(i+1) ) {
duke@435 680 // Add other bit for double
duke@435 681 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 682 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 683 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 684 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 685 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 686 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 687 proj_cnt += 2; // Skip 2 for doubles
duke@435 688 }
duke@435 689 else if( (i&1) == 1 && // Else check for high half of double
duke@435 690 _register_save_type[i-1] == Op_RegF &&
duke@435 691 _register_save_type[i ] == Op_RegF &&
duke@435 692 is_save_on_entry(i-1) ) {
duke@435 693 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 694 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 695 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 696 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 697 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 698 mproj = C->top();
duke@435 699 }
duke@435 700 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 701 // into a single RegL.
duke@435 702 else if( (i&1) == 0 &&
duke@435 703 _register_save_type[i ] == Op_RegI &&
duke@435 704 _register_save_type[i+1] == Op_RegI &&
duke@435 705 is_save_on_entry(i+1) ) {
duke@435 706 // Add other bit for long
duke@435 707 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 708 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 709 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 710 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 711 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 712 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 713 proj_cnt += 2; // Skip 2 for longs
duke@435 714 }
duke@435 715 else if( (i&1) == 1 && // Else check for high half of long
duke@435 716 _register_save_type[i-1] == Op_RegI &&
duke@435 717 _register_save_type[i ] == Op_RegI &&
duke@435 718 is_save_on_entry(i-1) ) {
duke@435 719 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 720 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 721 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 722 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 723 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 724 mproj = C->top();
duke@435 725 } else {
duke@435 726 // Make a projection for it off the Start
duke@435 727 mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 728 }
duke@435 729
duke@435 730 ret_edge_cnt ++;
duke@435 731 reth_edge_cnt ++;
duke@435 732 tail_call_edge_cnt ++;
duke@435 733 tail_jump_edge_cnt ++;
duke@435 734 halt_edge_cnt ++;
duke@435 735
duke@435 736 // Add a use of the SOE register to all exit paths
duke@435 737 for( uint j=1; j < root->req(); j++ )
duke@435 738 root->in(j)->add_req(mproj);
duke@435 739 } // End of if a save-on-entry register
duke@435 740 } // End of for all machine registers
duke@435 741 }
duke@435 742
duke@435 743 //------------------------------init_spill_mask--------------------------------
duke@435 744 void Matcher::init_spill_mask( Node *ret ) {
duke@435 745 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 746
duke@435 747 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 748 c_frame_ptr_mask = c_frame_pointer();
duke@435 749 #ifdef _LP64
duke@435 750 // pointers are twice as big
duke@435 751 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 752 #endif
duke@435 753
duke@435 754 // Start at OptoReg::stack0()
duke@435 755 STACK_ONLY_mask.Clear();
duke@435 756 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 757 // STACK_ONLY_mask is all stack bits
duke@435 758 OptoReg::Name i;
duke@435 759 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 760 STACK_ONLY_mask.Insert(i);
duke@435 761 // Also set the "infinite stack" bit.
duke@435 762 STACK_ONLY_mask.set_AllStack();
duke@435 763
duke@435 764 // Copy the register names over into the shared world
duke@435 765 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 766 // SharedInfo::regName[i] = regName[i];
duke@435 767 // Handy RegMasks per machine register
duke@435 768 mreg2regmask[i].Insert(i);
duke@435 769 }
duke@435 770
duke@435 771 // Grab the Frame Pointer
duke@435 772 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 773 Node *mem = ret->in(TypeFunc::Memory);
duke@435 774 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 775 // Share frame pointer while making spill ops
duke@435 776 set_shared(fp);
duke@435 777
duke@435 778 // Compute generic short-offset Loads
coleenp@548 779 #ifdef _LP64
coleenp@548 780 MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
coleenp@548 781 #endif
duke@435 782 MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
duke@435 783 MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
duke@435 784 MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
duke@435 785 MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
duke@435 786 MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 787 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 788 spillD != NULL && spillP != NULL, "");
duke@435 789
duke@435 790 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 791 #ifdef _LP64
coleenp@548 792 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 793 #endif
duke@435 794 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 795 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 796 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 797 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 798 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
duke@435 799 }
duke@435 800
duke@435 801 #ifdef ASSERT
duke@435 802 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 803 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 804 const TypePtr* nat = n->adr_type();
duke@435 805 const TypePtr* mat = m->adr_type();
duke@435 806 int nidx = C->get_alias_index(nat);
duke@435 807 int midx = C->get_alias_index(mat);
duke@435 808 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 809 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 810 for (uint i = 1; i < n->req(); i++) {
duke@435 811 Node* n1 = n->in(i);
duke@435 812 const TypePtr* n1at = n1->adr_type();
duke@435 813 if (n1at != NULL) {
duke@435 814 nat = n1at;
duke@435 815 nidx = C->get_alias_index(n1at);
duke@435 816 }
duke@435 817 }
duke@435 818 }
duke@435 819 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 820 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 821 switch (n->Opcode()) {
duke@435 822 case Op_PrefetchRead:
duke@435 823 case Op_PrefetchWrite:
duke@435 824 nidx = Compile::AliasIdxRaw;
duke@435 825 nat = TypeRawPtr::BOTTOM;
duke@435 826 break;
duke@435 827 }
duke@435 828 }
duke@435 829 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 830 switch (n->Opcode()) {
duke@435 831 case Op_ClearArray:
duke@435 832 midx = Compile::AliasIdxRaw;
duke@435 833 mat = TypeRawPtr::BOTTOM;
duke@435 834 break;
duke@435 835 }
duke@435 836 }
duke@435 837 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 838 switch (n->Opcode()) {
duke@435 839 case Op_Return:
duke@435 840 case Op_Rethrow:
duke@435 841 case Op_Halt:
duke@435 842 case Op_TailCall:
duke@435 843 case Op_TailJump:
duke@435 844 nidx = Compile::AliasIdxBot;
duke@435 845 nat = TypePtr::BOTTOM;
duke@435 846 break;
duke@435 847 }
duke@435 848 }
duke@435 849 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 850 switch (n->Opcode()) {
duke@435 851 case Op_StrComp:
cfang@1116 852 case Op_StrEquals:
cfang@1116 853 case Op_StrIndexOf:
rasbold@604 854 case Op_AryEq:
duke@435 855 case Op_MemBarVolatile:
duke@435 856 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
duke@435 857 nidx = Compile::AliasIdxTop;
duke@435 858 nat = NULL;
duke@435 859 break;
duke@435 860 }
duke@435 861 }
duke@435 862 if (nidx != midx) {
duke@435 863 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 864 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 865 n->dump();
duke@435 866 m->dump();
duke@435 867 }
duke@435 868 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 869 "must not lose alias info when matching");
duke@435 870 }
duke@435 871 }
duke@435 872 #endif
duke@435 873
duke@435 874
duke@435 875 //------------------------------MStack-----------------------------------------
duke@435 876 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 877 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 878 Visit, // visit node
duke@435 879 Post_Visit, // post-visit node
duke@435 880 Alt_Post_Visit // alternative post-visit path
duke@435 881 };
duke@435 882
duke@435 883 class MStack: public Node_Stack {
duke@435 884 public:
duke@435 885 MStack(int size) : Node_Stack(size) { }
duke@435 886
duke@435 887 void push(Node *n, Node_State ns) {
duke@435 888 Node_Stack::push(n, (uint)ns);
duke@435 889 }
duke@435 890 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 891 ++_inode_top;
duke@435 892 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 893 _inode_top->node = parent;
duke@435 894 _inode_top->indx = (uint)indx;
duke@435 895 ++_inode_top;
duke@435 896 _inode_top->node = n;
duke@435 897 _inode_top->indx = (uint)ns;
duke@435 898 }
duke@435 899 Node *parent() {
duke@435 900 pop();
duke@435 901 return node();
duke@435 902 }
duke@435 903 Node_State state() const {
duke@435 904 return (Node_State)index();
duke@435 905 }
duke@435 906 void set_state(Node_State ns) {
duke@435 907 set_index((uint)ns);
duke@435 908 }
duke@435 909 };
duke@435 910
duke@435 911
duke@435 912 //------------------------------xform------------------------------------------
duke@435 913 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 914 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 915 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 916 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 917 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 918 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 919 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 920
duke@435 921 while (mstack.is_nonempty()) {
duke@435 922 n = mstack.node(); // Leave node on stack
duke@435 923 Node_State nstate = mstack.state();
duke@435 924 if (nstate == Visit) {
duke@435 925 mstack.set_state(Post_Visit);
duke@435 926 Node *oldn = n;
duke@435 927 // Old-space or new-space check
duke@435 928 if (!C->node_arena()->contains(n)) {
duke@435 929 // Old space!
duke@435 930 Node* m;
duke@435 931 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 932 m = new_node(n);
duke@435 933 } else {
duke@435 934 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 935 // Calls match special. They match alone with no children.
duke@435 936 // Their children, the incoming arguments, match normally.
duke@435 937 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 938 if (C->failing()) return NULL;
duke@435 939 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 940 } else { // Nothing the matcher cares about
duke@435 941 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 942 // Convert to machine-dependent projection
duke@435 943 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 944 #ifdef ASSERT
never@657 945 _new2old_map.map(m->_idx, n);
never@657 946 #endif
duke@435 947 if (m->in(0) != NULL) // m might be top
kvn@803 948 collect_null_checks(m, n);
duke@435 949 } else { // Else just a regular 'ol guy
duke@435 950 m = n->clone(); // So just clone into new-space
never@657 951 #ifdef ASSERT
never@657 952 _new2old_map.map(m->_idx, n);
never@657 953 #endif
duke@435 954 // Def-Use edges will be added incrementally as Uses
duke@435 955 // of this node are matched.
duke@435 956 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 957 }
duke@435 958 }
duke@435 959
duke@435 960 set_new_node(n, m); // Map old to new
duke@435 961 if (_old_node_note_array != NULL) {
duke@435 962 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 963 n->_idx);
duke@435 964 C->set_node_notes_at(m->_idx, nn);
duke@435 965 }
duke@435 966 debug_only(match_alias_type(C, n, m));
duke@435 967 }
duke@435 968 n = m; // n is now a new-space node
duke@435 969 mstack.set_node(n);
duke@435 970 }
duke@435 971
duke@435 972 // New space!
duke@435 973 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 974
duke@435 975 int i;
duke@435 976 // Put precedence edges on stack first (match them last).
duke@435 977 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 978 Node *m = oldn->in(i);
duke@435 979 if (m == NULL) break;
duke@435 980 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 981 mstack.push(m, Visit, n, -1);
duke@435 982 }
duke@435 983
duke@435 984 // For constant debug info, I'd rather have unmatched constants.
duke@435 985 int cnt = n->req();
duke@435 986 JVMState* jvms = n->jvms();
duke@435 987 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 988
duke@435 989 // Now do only debug info. Clone constants rather than matching.
duke@435 990 // Constants are represented directly in the debug info without
duke@435 991 // the need for executable machine instructions.
duke@435 992 // Monitor boxes are also represented directly.
duke@435 993 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 994 Node *m = n->in(i); // Get input
duke@435 995 int op = m->Opcode();
duke@435 996 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
kvn@598 997 if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
duke@435 998 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 999 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1000 ) {
duke@435 1001 m = m->clone();
never@657 1002 #ifdef ASSERT
never@657 1003 _new2old_map.map(m->_idx, n);
never@657 1004 #endif
twisti@1040 1005 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1006 mstack.push(m->in(0), Visit, m, 0);
duke@435 1007 } else {
duke@435 1008 mstack.push(m, Visit, n, i);
duke@435 1009 }
duke@435 1010 }
duke@435 1011
duke@435 1012 // And now walk his children, and convert his inputs to new-space.
duke@435 1013 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1014 Node *m = n->in(i); // Get input
duke@435 1015 if(m != NULL)
duke@435 1016 mstack.push(m, Visit, n, i);
duke@435 1017 }
duke@435 1018
duke@435 1019 }
duke@435 1020 else if (nstate == Post_Visit) {
duke@435 1021 // Set xformed input
duke@435 1022 Node *p = mstack.parent();
duke@435 1023 if (p != NULL) { // root doesn't have parent
duke@435 1024 int i = (int)mstack.index();
duke@435 1025 if (i >= 0)
duke@435 1026 p->set_req(i, n); // required input
duke@435 1027 else if (i == -1)
duke@435 1028 p->add_prec(n); // precedence input
duke@435 1029 else
duke@435 1030 ShouldNotReachHere();
duke@435 1031 }
duke@435 1032 mstack.pop(); // remove processed node from stack
duke@435 1033 }
duke@435 1034 else {
duke@435 1035 ShouldNotReachHere();
duke@435 1036 }
duke@435 1037 } // while (mstack.is_nonempty())
duke@435 1038 return n; // Return new-space Node
duke@435 1039 }
duke@435 1040
duke@435 1041 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1042 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1043 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1044 if (reg->is_stack()) {
duke@435 1045 OptoReg::Name warped = reg->reg2stack();
duke@435 1046 // Adjust the stack slot offset to be the register number used
duke@435 1047 // by the allocator.
duke@435 1048 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1049 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1050 // Largest used slot per call-site indicates the amount of stack
duke@435 1051 // that is killed by the call.
duke@435 1052 if( warped >= out_arg_limit_per_call )
duke@435 1053 out_arg_limit_per_call = OptoReg::add(warped,1);
duke@435 1054 if (!RegMask::can_represent(warped)) {
duke@435 1055 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1056 return OptoReg::Bad;
duke@435 1057 }
duke@435 1058 return warped;
duke@435 1059 }
duke@435 1060 return OptoReg::as_OptoReg(reg);
duke@435 1061 }
duke@435 1062
duke@435 1063
duke@435 1064 //------------------------------match_sfpt-------------------------------------
duke@435 1065 // Helper function to match call instructions. Calls match special.
duke@435 1066 // They match alone with no children. Their children, the incoming
duke@435 1067 // arguments, match normally.
duke@435 1068 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1069 MachSafePointNode *msfpt = NULL;
duke@435 1070 MachCallNode *mcall = NULL;
duke@435 1071 uint cnt;
duke@435 1072 // Split out case for SafePoint vs Call
duke@435 1073 CallNode *call;
duke@435 1074 const TypeTuple *domain;
duke@435 1075 ciMethod* method = NULL;
twisti@1572 1076 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1077 if( sfpt->is_Call() ) {
duke@435 1078 call = sfpt->as_Call();
duke@435 1079 domain = call->tf()->domain();
duke@435 1080 cnt = domain->cnt();
duke@435 1081
duke@435 1082 // Match just the call, nothing else
duke@435 1083 MachNode *m = match_tree(call);
duke@435 1084 if (C->failing()) return NULL;
duke@435 1085 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1086
duke@435 1087 // Copy data from the Ideal SafePoint to the machine version
duke@435 1088 mcall = m->as_MachCall();
duke@435 1089
duke@435 1090 mcall->set_tf( call->tf());
duke@435 1091 mcall->set_entry_point(call->entry_point());
duke@435 1092 mcall->set_cnt( call->cnt());
duke@435 1093
duke@435 1094 if( mcall->is_MachCallJava() ) {
duke@435 1095 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1096 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1097 method = call_java->method();
duke@435 1098 mcall_java->_method = method;
duke@435 1099 mcall_java->_bci = call_java->_bci;
duke@435 1100 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1101 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1102 mcall_java->_method_handle_invoke = is_method_handle_invoke;
duke@435 1103 if( mcall_java->is_MachCallStaticJava() )
duke@435 1104 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1105 call_java->as_CallStaticJava()->_name;
duke@435 1106 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1107 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1108 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1109 }
duke@435 1110 else if( mcall->is_MachCallRuntime() ) {
duke@435 1111 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1112 }
duke@435 1113 msfpt = mcall;
duke@435 1114 }
duke@435 1115 // This is a non-call safepoint
duke@435 1116 else {
duke@435 1117 call = NULL;
duke@435 1118 domain = NULL;
duke@435 1119 MachNode *mn = match_tree(sfpt);
duke@435 1120 if (C->failing()) return NULL;
duke@435 1121 msfpt = mn->as_MachSafePoint();
duke@435 1122 cnt = TypeFunc::Parms;
duke@435 1123 }
duke@435 1124
duke@435 1125 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1126 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1127
duke@435 1128 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1129 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1130 // Empty them all.
duke@435 1131 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1132
duke@435 1133 // Do all the pre-defined non-Empty register masks
duke@435 1134 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1135 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1136
duke@435 1137 // Place first outgoing argument can possibly be put.
duke@435 1138 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1139 assert( is_even(begin_out_arg_area), "" );
duke@435 1140 // Compute max outgoing register number per call site.
duke@435 1141 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1142 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1143 // These are usually backing store for register arguments for varargs.
duke@435 1144 if( call != NULL && call->is_CallRuntime() )
duke@435 1145 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1146
duke@435 1147
duke@435 1148 // Do the normal argument list (parameters) register masks
duke@435 1149 int argcnt = cnt - TypeFunc::Parms;
duke@435 1150 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1151 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1152 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1153 int i;
duke@435 1154 for( i = 0; i < argcnt; i++ ) {
duke@435 1155 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1156 }
duke@435 1157 // V-call to pick proper calling convention
duke@435 1158 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1159
duke@435 1160 #ifdef ASSERT
duke@435 1161 // Sanity check users' calling convention. Really handy during
duke@435 1162 // the initial porting effort. Fairly expensive otherwise.
duke@435 1163 { for (int i = 0; i<argcnt; i++) {
duke@435 1164 if( !parm_regs[i].first()->is_valid() &&
duke@435 1165 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1166 VMReg reg1 = parm_regs[i].first();
duke@435 1167 VMReg reg2 = parm_regs[i].second();
duke@435 1168 for (int j = 0; j < i; j++) {
duke@435 1169 if( !parm_regs[j].first()->is_valid() &&
duke@435 1170 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1171 VMReg reg3 = parm_regs[j].first();
duke@435 1172 VMReg reg4 = parm_regs[j].second();
duke@435 1173 if( !reg1->is_valid() ) {
duke@435 1174 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1175 } else if( !reg3->is_valid() ) {
duke@435 1176 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1177 } else {
duke@435 1178 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1179 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1180 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1181 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1182 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1183 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1184 }
duke@435 1185 }
duke@435 1186 }
duke@435 1187 }
duke@435 1188 #endif
duke@435 1189
duke@435 1190 // Visit each argument. Compute its outgoing register mask.
duke@435 1191 // Return results now can have 2 bits returned.
duke@435 1192 // Compute max over all outgoing arguments both per call-site
duke@435 1193 // and over the entire method.
duke@435 1194 for( i = 0; i < argcnt; i++ ) {
duke@435 1195 // Address of incoming argument mask to fill in
duke@435 1196 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1197 if( !parm_regs[i].first()->is_valid() &&
duke@435 1198 !parm_regs[i].second()->is_valid() ) {
duke@435 1199 continue; // Avoid Halves
duke@435 1200 }
duke@435 1201 // Grab first register, adjust stack slots and insert in mask.
duke@435 1202 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1203 if (OptoReg::is_valid(reg1))
duke@435 1204 rm->Insert( reg1 );
duke@435 1205 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1206 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1207 if (OptoReg::is_valid(reg2))
duke@435 1208 rm->Insert( reg2 );
duke@435 1209 } // End of for all arguments
duke@435 1210
duke@435 1211 // Compute number of stack slots needed to restore stack in case of
duke@435 1212 // Pascal-style argument popping.
duke@435 1213 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1214 }
duke@435 1215
twisti@1572 1216 if (is_method_handle_invoke) {
twisti@1572 1217 // Kill some extra stack space in case method handles want to do
twisti@1572 1218 // a little in-place argument insertion.
twisti@1572 1219 int regs_per_word = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
twisti@1572 1220 out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
twisti@1572 1221 // Do not update mcall->_argsize because (a) the extra space is not
twisti@1572 1222 // pushed as arguments and (b) _argsize is dead (not used anywhere).
twisti@1572 1223 }
twisti@1572 1224
duke@435 1225 // Compute the max stack slot killed by any call. These will not be
duke@435 1226 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1227 // after all call sites have been visited.
duke@435 1228 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1229 _out_arg_limit = out_arg_limit_per_call;
duke@435 1230
duke@435 1231 if (mcall) {
duke@435 1232 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1233 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1234 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1235 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1236 // this killed area.
duke@435 1237 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 1238 MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
duke@435 1239 if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1240 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1241 } else {
duke@435 1242 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1243 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1244 }
duke@435 1245 if( proj->_rout.is_NotEmpty() )
duke@435 1246 _proj_list.push(proj);
duke@435 1247 }
duke@435 1248 // Transfer the safepoint information from the call to the mcall
duke@435 1249 // Move the JVMState list
duke@435 1250 msfpt->set_jvms(sfpt->jvms());
duke@435 1251 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1252 jvms->set_map(sfpt);
duke@435 1253 }
duke@435 1254
duke@435 1255 // Debug inputs begin just after the last incoming parameter
duke@435 1256 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1257 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1258
duke@435 1259 // Move the OopMap
duke@435 1260 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1261
duke@435 1262 // Registers killed by the call are set in the local scheduling pass
duke@435 1263 // of Global Code Motion.
duke@435 1264 return msfpt;
duke@435 1265 }
duke@435 1266
duke@435 1267 //---------------------------match_tree----------------------------------------
duke@435 1268 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1269 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1270 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1271 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1272 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1273 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1274 assert( !n->is_block_start(), "cannot match" );
duke@435 1275 // Set the mark for all locally allocated State objects.
duke@435 1276 // When this call returns, the _states_arena arena will be reset
duke@435 1277 // freeing all State objects.
duke@435 1278 ResourceMark rm( &_states_arena );
duke@435 1279
duke@435 1280 LabelRootDepth = 0;
duke@435 1281
duke@435 1282 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1283 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1284 #ifdef ASSERT
kvn@651 1285 Node* save_mem_node = _mem_node;
kvn@651 1286 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1287 #endif
duke@435 1288 // State object for root node of match tree
duke@435 1289 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1290 State *s = new (&_states_arena) State;
duke@435 1291 s->_kids[0] = NULL;
duke@435 1292 s->_kids[1] = NULL;
duke@435 1293 s->_leaf = (Node*)n;
duke@435 1294 // Label the input tree, allocating labels from top-level arena
duke@435 1295 Label_Root( n, s, n->in(0), mem );
duke@435 1296 if (C->failing()) return NULL;
duke@435 1297
duke@435 1298 // The minimum cost match for the whole tree is found at the root State
duke@435 1299 uint mincost = max_juint;
duke@435 1300 uint cost = max_juint;
duke@435 1301 uint i;
duke@435 1302 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1303 if( s->valid(i) && // valid entry and
duke@435 1304 s->_cost[i] < cost && // low cost and
duke@435 1305 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1306 cost = s->_cost[mincost=i];
duke@435 1307 }
duke@435 1308 if (mincost == max_juint) {
duke@435 1309 #ifndef PRODUCT
duke@435 1310 tty->print("No matching rule for:");
duke@435 1311 s->dump();
duke@435 1312 #endif
duke@435 1313 Matcher::soft_match_failure();
duke@435 1314 return NULL;
duke@435 1315 }
duke@435 1316 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1317 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1318 #ifdef ASSERT
duke@435 1319 _old2new_map.map(n->_idx, m);
never@657 1320 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1321 #endif
duke@435 1322
duke@435 1323 // Add any Matcher-ignored edges
duke@435 1324 uint cnt = n->req();
duke@435 1325 uint start = 1;
duke@435 1326 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1327 if( n->is_AddP() ) {
duke@435 1328 assert( mem == (Node*)1, "" );
duke@435 1329 start = AddPNode::Base+1;
duke@435 1330 }
duke@435 1331 for( i = start; i < cnt; i++ ) {
duke@435 1332 if( !n->match_edge(i) ) {
duke@435 1333 if( i < m->req() )
duke@435 1334 m->ins_req( i, n->in(i) );
duke@435 1335 else
duke@435 1336 m->add_req( n->in(i) );
duke@435 1337 }
duke@435 1338 }
duke@435 1339
kvn@651 1340 debug_only( _mem_node = save_mem_node; )
duke@435 1341 return m;
duke@435 1342 }
duke@435 1343
duke@435 1344
duke@435 1345 //------------------------------match_into_reg---------------------------------
duke@435 1346 // Choose to either match this Node in a register or part of the current
duke@435 1347 // match tree. Return true for requiring a register and false for matching
duke@435 1348 // as part of the current match tree.
duke@435 1349 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1350
duke@435 1351 const Type *t = m->bottom_type();
duke@435 1352
duke@435 1353 if( t->singleton() ) {
duke@435 1354 // Never force constants into registers. Allow them to match as
duke@435 1355 // constants or registers. Copies of the same value will share
kvn@603 1356 // the same register. See find_shared_node.
duke@435 1357 return false;
duke@435 1358 } else { // Not a constant
duke@435 1359 // Stop recursion if they have different Controls.
duke@435 1360 // Slot 0 of constants is not really a Control.
duke@435 1361 if( control && m->in(0) && control != m->in(0) ) {
duke@435 1362
duke@435 1363 // Actually, we can live with the most conservative control we
duke@435 1364 // find, if it post-dominates the others. This allows us to
duke@435 1365 // pick up load/op/store trees where the load can float a little
duke@435 1366 // above the store.
duke@435 1367 Node *x = control;
duke@435 1368 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1369 uint j;
duke@435 1370 for( j=0; j<max_scan; j++ ) {
duke@435 1371 if( x->is_Region() ) // Bail out at merge points
duke@435 1372 return true;
duke@435 1373 x = x->in(0);
duke@435 1374 if( x == m->in(0) ) // Does 'control' post-dominate
duke@435 1375 break; // m->in(0)? If so, we can use it
duke@435 1376 }
duke@435 1377 if( j == max_scan ) // No post-domination before scan end?
duke@435 1378 return true; // Then break the match tree up
duke@435 1379 }
kvn@1930 1380 if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
coleenp@548 1381 // These are commonly used in address expressions and can
kvn@603 1382 // efficiently fold into them on X64 in some cases.
kvn@603 1383 return false;
coleenp@548 1384 }
duke@435 1385 }
duke@435 1386
twisti@1040 1387 // Not forceable cloning. If shared, put it into a register.
duke@435 1388 return shared;
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 //------------------------------Instruction Selection--------------------------
duke@435 1393 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1394 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1395 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1396 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1397 // selected for this entire State tree.
duke@435 1398
duke@435 1399 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1400 // Store and the Load must have identical Memories (as well as identical
duke@435 1401 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1402 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1403 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1404 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1405 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1406 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1407 LabelRootDepth++;
duke@435 1408 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1409 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1410 return NULL;
duke@435 1411 }
duke@435 1412 uint care = 0; // Edges matcher cares about
duke@435 1413 uint cnt = n->req();
duke@435 1414 uint i = 0;
duke@435 1415
duke@435 1416 // Examine children for memory state
duke@435 1417 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1418 // is not modified along the path to another input.
duke@435 1419 // It is unsafe even if the other inputs are separate roots.
duke@435 1420 Node *input_mem = NULL;
duke@435 1421 for( i = 1; i < cnt; i++ ) {
duke@435 1422 if( !n->match_edge(i) ) continue;
duke@435 1423 Node *m = n->in(i); // Get ith input
duke@435 1424 assert( m, "expect non-null children" );
duke@435 1425 if( m->is_Load() ) {
duke@435 1426 if( input_mem == NULL ) {
duke@435 1427 input_mem = m->in(MemNode::Memory);
duke@435 1428 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1429 input_mem = NodeSentinel;
duke@435 1430 }
duke@435 1431 }
duke@435 1432 }
duke@435 1433
duke@435 1434 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1435 if( !n->match_edge(i) ) continue;
duke@435 1436 Node *m = n->in(i); // Get ith input
duke@435 1437 // Allocate states out of a private arena
duke@435 1438 State *s = new (&_states_arena) State;
duke@435 1439 svec->_kids[care++] = s;
duke@435 1440 assert( care <= 2, "binary only for now" );
duke@435 1441
duke@435 1442 // Recursively label the State tree.
duke@435 1443 s->_kids[0] = NULL;
duke@435 1444 s->_kids[1] = NULL;
duke@435 1445 s->_leaf = m;
duke@435 1446
duke@435 1447 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1448 // the current tree. If it finds any, that value is matched as a
duke@435 1449 // register operand. If not, then the normal matching is used.
duke@435 1450 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1451 //
duke@435 1452 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1453 // StoreNode and the load & store have different memories.
duke@435 1454 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1455 // Can NOT include the match of a subtree when its memory state
duke@435 1456 // is used by any of the other subtrees
duke@435 1457 (input_mem == NodeSentinel) ) {
duke@435 1458 #ifndef PRODUCT
duke@435 1459 // Print when we exclude matching due to different memory states at input-loads
duke@435 1460 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1461 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1462 tty->print_cr("invalid input_mem");
duke@435 1463 }
duke@435 1464 #endif
duke@435 1465 // Switch to a register-only opcode; this value must be in a register
duke@435 1466 // and cannot be subsumed as part of a larger instruction.
duke@435 1467 s->DFA( m->ideal_reg(), m );
duke@435 1468
duke@435 1469 } else {
duke@435 1470 // If match tree has no control and we do, adopt it for entire tree
duke@435 1471 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1472 control = m->in(0); // Pick up control
duke@435 1473 // Else match as a normal part of the match tree.
duke@435 1474 control = Label_Root(m,s,control,mem);
duke@435 1475 if (C->failing()) return NULL;
duke@435 1476 }
duke@435 1477 }
duke@435 1478
duke@435 1479
duke@435 1480 // Call DFA to match this node, and return
duke@435 1481 svec->DFA( n->Opcode(), n );
duke@435 1482
duke@435 1483 #ifdef ASSERT
duke@435 1484 uint x;
duke@435 1485 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1486 if( svec->valid(x) )
duke@435 1487 break;
duke@435 1488
duke@435 1489 if (x >= _LAST_MACH_OPER) {
duke@435 1490 n->dump();
duke@435 1491 svec->dump();
duke@435 1492 assert( false, "bad AD file" );
duke@435 1493 }
duke@435 1494 #endif
duke@435 1495 return control;
duke@435 1496 }
duke@435 1497
duke@435 1498
duke@435 1499 // Con nodes reduced using the same rule can share their MachNode
duke@435 1500 // which reduces the number of copies of a constant in the final
duke@435 1501 // program. The register allocator is free to split uses later to
duke@435 1502 // split live ranges.
kvn@603 1503 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
kvn@603 1504 if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
duke@435 1505
duke@435 1506 // See if this Con has already been reduced using this rule.
kvn@603 1507 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1508 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1509 if (last != NULL && rule == last->rule()) {
kvn@603 1510 // Don't expect control change for DecodeN
kvn@603 1511 if (leaf->is_DecodeN())
kvn@603 1512 return last;
duke@435 1513 // Get the new space root.
duke@435 1514 Node* xroot = new_node(C->root());
duke@435 1515 if (xroot == NULL) {
duke@435 1516 // This shouldn't happen give the order of matching.
duke@435 1517 return NULL;
duke@435 1518 }
duke@435 1519
duke@435 1520 // Shared constants need to have their control be root so they
duke@435 1521 // can be scheduled properly.
duke@435 1522 Node* control = last->in(0);
duke@435 1523 if (control != xroot) {
duke@435 1524 if (control == NULL || control == C->root()) {
duke@435 1525 last->set_req(0, xroot);
duke@435 1526 } else {
duke@435 1527 assert(false, "unexpected control");
duke@435 1528 return NULL;
duke@435 1529 }
duke@435 1530 }
duke@435 1531 return last;
duke@435 1532 }
duke@435 1533 return NULL;
duke@435 1534 }
duke@435 1535
duke@435 1536
duke@435 1537 //------------------------------ReduceInst-------------------------------------
duke@435 1538 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1539 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1540 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1541 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1542 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1543
duke@435 1544 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1545 // the recursion here. After building the MachNode, we need to recurse
duke@435 1546 // the tree checking for these cases:
duke@435 1547 // (1) Child is an instruction -
duke@435 1548 // Build the instruction (recursively), add it as an edge.
duke@435 1549 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1550 // (2) Child is an interior part of an instruction -
duke@435 1551 // Skip over it (do nothing)
duke@435 1552 // (3) Child is the start of a operand -
duke@435 1553 // Build the operand, place it inside the instruction
duke@435 1554 // Call ReduceOper.
duke@435 1555 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1556 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1557
kvn@603 1558 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1559 if (shared_node != NULL) {
kvn@603 1560 return shared_node;
duke@435 1561 }
duke@435 1562
duke@435 1563 // Build the object to represent this state & prepare for recursive calls
duke@435 1564 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1565 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1566 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1567 Node *leaf = s->_leaf;
duke@435 1568 // Check for instruction or instruction chain rule
duke@435 1569 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1570 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1571 "duplicating node that's already been matched");
duke@435 1572 // Instruction
duke@435 1573 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1574 // Reduce interior of complex instruction
duke@435 1575 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1576 } else {
duke@435 1577 // Instruction chain rules are data-dependent on their inputs
duke@435 1578 mach->add_req(0); // Set initial control to none
duke@435 1579 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1580 }
duke@435 1581
duke@435 1582 // If a Memory was used, insert a Memory edge
kvn@651 1583 if( mem != (Node*)1 ) {
duke@435 1584 mach->ins_req(MemNode::Memory,mem);
kvn@651 1585 #ifdef ASSERT
kvn@651 1586 // Verify adr type after matching memory operation
kvn@651 1587 const MachOper* oper = mach->memory_operand();
kvn@1286 1588 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1589 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1590 Node* m = NULL;
kvn@651 1591 if (leaf->is_Mem()) {
kvn@651 1592 m = leaf;
kvn@651 1593 } else {
kvn@651 1594 m = _mem_node;
kvn@651 1595 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1596 }
kvn@803 1597 const Type* mach_at = mach->adr_type();
kvn@803 1598 // DecodeN node consumed by an address may have different type
kvn@803 1599 // then its input. Don't compare types for such case.
kvn@1077 1600 if (m->adr_type() != mach_at &&
kvn@1077 1601 (m->in(MemNode::Address)->is_DecodeN() ||
kvn@1077 1602 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1603 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
kvn@1077 1604 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1605 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
kvn@1077 1606 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
kvn@803 1607 mach_at = m->adr_type();
kvn@803 1608 }
kvn@803 1609 if (m->adr_type() != mach_at) {
kvn@651 1610 m->dump();
kvn@651 1611 tty->print_cr("mach:");
kvn@651 1612 mach->dump(1);
kvn@651 1613 }
kvn@803 1614 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1615 }
kvn@651 1616 #endif
kvn@651 1617 }
duke@435 1618
duke@435 1619 // If the _leaf is an AddP, insert the base edge
kvn@603 1620 if( leaf->is_AddP() )
duke@435 1621 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
duke@435 1622
duke@435 1623 uint num_proj = _proj_list.size();
duke@435 1624
duke@435 1625 // Perform any 1-to-many expansions required
never@1638 1626 MachNode *ex = mach->Expand(s,_proj_list, mem);
duke@435 1627 if( ex != mach ) {
duke@435 1628 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1629 if( ex->in(1)->is_Con() )
duke@435 1630 ex->in(1)->set_req(0, C->root());
duke@435 1631 // Remove old node from the graph
duke@435 1632 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1633 mach->set_req(i,NULL);
duke@435 1634 }
never@657 1635 #ifdef ASSERT
never@657 1636 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1637 #endif
duke@435 1638 }
duke@435 1639
duke@435 1640 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1641 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1642 // and any further nodes generated by expand rules will be left hanging
duke@435 1643 // in space, and will not get emitted as output code. Catch this.
duke@435 1644 // Also, catch any new register allocation constraints ("projections")
duke@435 1645 // generated belatedly during spill code generation.
duke@435 1646 if (_allocation_started) {
duke@435 1647 guarantee(ex == mach, "no expand rules during spill generation");
duke@435 1648 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
duke@435 1649 }
duke@435 1650
kvn@603 1651 if (leaf->is_Con() || leaf->is_DecodeN()) {
duke@435 1652 // Record the con for sharing
kvn@603 1653 _shared_nodes.map(leaf->_idx, ex);
duke@435 1654 }
duke@435 1655
duke@435 1656 return ex;
duke@435 1657 }
duke@435 1658
duke@435 1659 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1660 // 'op' is what I am expecting to receive
duke@435 1661 int op = _leftOp[rule];
duke@435 1662 // Operand type to catch childs result
duke@435 1663 // This is what my child will give me.
duke@435 1664 int opnd_class_instance = s->_rule[op];
duke@435 1665 // Choose between operand class or not.
twisti@1040 1666 // This is what I will receive.
duke@435 1667 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1668 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1669 int newrule = s->_rule[catch_op];
duke@435 1670
duke@435 1671 if( newrule < NUM_OPERANDS ) {
duke@435 1672 // Chain from operand or operand class, may be output of shared node
duke@435 1673 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1674 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1675 // Insert operand into array of operands for this instruction
duke@435 1676 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1677
duke@435 1678 ReduceOper( s, newrule, mem, mach );
duke@435 1679 } else {
duke@435 1680 // Chain from the result of an instruction
duke@435 1681 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1682 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1683 Node *mem1 = (Node*)1;
kvn@651 1684 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1685 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1686 debug_only(_mem_node = save_mem_node;)
duke@435 1687 }
duke@435 1688 return;
duke@435 1689 }
duke@435 1690
duke@435 1691
duke@435 1692 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1693 if( s->_leaf->is_Load() ) {
duke@435 1694 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1695 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1696 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1697 mem = mem2;
duke@435 1698 }
duke@435 1699 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1700 if( mach->in(0) == NULL )
duke@435 1701 mach->set_req(0, s->_leaf->in(0));
duke@435 1702 }
duke@435 1703
duke@435 1704 // Now recursively walk the state tree & add operand list.
duke@435 1705 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1706 State *newstate = s->_kids[i];
duke@435 1707 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1708 // 'op' is what I am expecting to receive
duke@435 1709 int op;
duke@435 1710 if( i == 0 ) {
duke@435 1711 op = _leftOp[rule];
duke@435 1712 } else {
duke@435 1713 op = _rightOp[rule];
duke@435 1714 }
duke@435 1715 // Operand type to catch childs result
duke@435 1716 // This is what my child will give me.
duke@435 1717 int opnd_class_instance = newstate->_rule[op];
duke@435 1718 // Choose between operand class or not.
duke@435 1719 // This is what I will receive.
duke@435 1720 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1721 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1722 int newrule = newstate->_rule[catch_op];
duke@435 1723
duke@435 1724 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1725 // Operand/operandClass
duke@435 1726 // Insert operand into array of operands for this instruction
duke@435 1727 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1728 ReduceOper( newstate, newrule, mem, mach );
duke@435 1729
duke@435 1730 } else { // Child is internal operand or new instruction
duke@435 1731 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1732 // internal operand --> call ReduceInst_Interior
duke@435 1733 // Interior of complex instruction. Do nothing but recurse.
duke@435 1734 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1735 } else {
duke@435 1736 // instruction --> call build operand( ) to catch result
duke@435 1737 // --> ReduceInst( newrule )
duke@435 1738 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1739 Node *mem1 = (Node*)1;
kvn@651 1740 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1741 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1742 debug_only(_mem_node = save_mem_node;)
duke@435 1743 }
duke@435 1744 }
duke@435 1745 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1746 }
duke@435 1747 return num_opnds;
duke@435 1748 }
duke@435 1749
duke@435 1750 // This routine walks the interior of possible complex operands.
duke@435 1751 // At each point we check our children in the match tree:
duke@435 1752 // (1) No children -
duke@435 1753 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1754 // (2) Child is an internal operand -
duke@435 1755 // Skip over it ( do nothing )
duke@435 1756 // (3) Child is an instruction -
duke@435 1757 // Call ReduceInst recursively and
duke@435 1758 // and instruction as an input to the MachNode
duke@435 1759 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1760 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1761 State *kid = s->_kids[0];
duke@435 1762 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1763
duke@435 1764 // Leaf? And not subsumed?
duke@435 1765 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1766 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1767 return; // Bail out
duke@435 1768 }
duke@435 1769
duke@435 1770 if( s->_leaf->is_Load() ) {
duke@435 1771 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1772 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1773 debug_only(_mem_node = s->_leaf;)
duke@435 1774 }
duke@435 1775 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1776 if( !mach->in(0) )
duke@435 1777 mach->set_req(0,s->_leaf->in(0));
duke@435 1778 else {
duke@435 1779 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1780 }
duke@435 1781 }
duke@435 1782
duke@435 1783 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1784 int newrule;
duke@435 1785 if( i == 0 )
duke@435 1786 newrule = kid->_rule[_leftOp[rule]];
duke@435 1787 else
duke@435 1788 newrule = kid->_rule[_rightOp[rule]];
duke@435 1789
duke@435 1790 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1791 // Internal operand; recurse but do nothing else
duke@435 1792 ReduceOper( kid, newrule, mem, mach );
duke@435 1793
duke@435 1794 } else { // Child is a new instruction
duke@435 1795 // Reduce the instruction, and add a direct pointer from this
duke@435 1796 // machine instruction to the newly reduced one.
duke@435 1797 Node *mem1 = (Node*)1;
kvn@651 1798 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1799 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1800 debug_only(_mem_node = save_mem_node;)
duke@435 1801 }
duke@435 1802 }
duke@435 1803 }
duke@435 1804
duke@435 1805
duke@435 1806 // -------------------------------------------------------------------------
duke@435 1807 // Java-Java calling convention
duke@435 1808 // (what you use when Java calls Java)
duke@435 1809
duke@435 1810 //------------------------------find_receiver----------------------------------
duke@435 1811 // For a given signature, return the OptoReg for parameter 0.
duke@435 1812 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1813 VMRegPair regs;
duke@435 1814 BasicType sig_bt = T_OBJECT;
duke@435 1815 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1816 // Return argument 0 register. In the LP64 build pointers
duke@435 1817 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1818 return OptoReg::as_OptoReg(regs.first());
duke@435 1819 }
duke@435 1820
duke@435 1821 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1822 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1823 // defined in ad_<arch>.cpp
duke@435 1824
duke@435 1825
duke@435 1826 //------------------------------find_shared------------------------------------
duke@435 1827 // Set bits if Node is shared or otherwise a root
duke@435 1828 void Matcher::find_shared( Node *n ) {
duke@435 1829 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1830 MStack mstack(C->unique() * 2);
kvn@1021 1831 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 1832 VectorSet address_visited(Thread::current()->resource_area());
duke@435 1833 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1834 while (mstack.is_nonempty()) {
duke@435 1835 n = mstack.node(); // Leave node on stack
duke@435 1836 Node_State nstate = mstack.state();
kvn@1021 1837 uint nop = n->Opcode();
duke@435 1838 if (nstate == Pre_Visit) {
kvn@1021 1839 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 1840 // Flag as visited and shared now.
kvn@1021 1841 set_visited(n);
kvn@1021 1842 }
duke@435 1843 if (is_visited(n)) { // Visited already?
duke@435 1844 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1845 // This causes it to match into a register for the sharing.
duke@435 1846 set_shared(n); // Flag as shared and
duke@435 1847 mstack.pop(); // remove node from stack
duke@435 1848 continue;
duke@435 1849 }
duke@435 1850 nstate = Visit; // Not already visited; so visit now
duke@435 1851 }
duke@435 1852 if (nstate == Visit) {
duke@435 1853 mstack.set_state(Post_Visit);
duke@435 1854 set_visited(n); // Flag as visited now
duke@435 1855 bool mem_op = false;
duke@435 1856
kvn@1021 1857 switch( nop ) { // Handle some opcodes special
duke@435 1858 case Op_Phi: // Treat Phis as shared roots
duke@435 1859 case Op_Parm:
duke@435 1860 case Op_Proj: // All handled specially during matching
kvn@498 1861 case Op_SafePointScalarObject:
duke@435 1862 set_shared(n);
duke@435 1863 set_dontcare(n);
duke@435 1864 break;
duke@435 1865 case Op_If:
duke@435 1866 case Op_CountedLoopEnd:
duke@435 1867 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1868 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1869 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1870 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1871 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1872 // as a constant here.
duke@435 1873 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1874 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1875 continue; // while (mstack.is_nonempty())
duke@435 1876 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1877 case Op_ConvI2F: // Load but not a following Store
duke@435 1878 if( n->in(1)->is_Load() && // Prior load
duke@435 1879 n->outcnt() == 1 && // Not already shared
duke@435 1880 n->unique_out()->is_Store() ) // Following store
duke@435 1881 set_shared(n); // Force it to be a root
duke@435 1882 break;
duke@435 1883 case Op_ReverseBytesI:
duke@435 1884 case Op_ReverseBytesL:
duke@435 1885 if( n->in(1)->is_Load() && // Prior load
duke@435 1886 n->outcnt() == 1 ) // Not already shared
duke@435 1887 set_shared(n); // Force it to be a root
duke@435 1888 break;
duke@435 1889 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1890 case Op_IfFalse:
duke@435 1891 case Op_IfTrue:
duke@435 1892 case Op_MachProj:
duke@435 1893 case Op_MergeMem:
duke@435 1894 case Op_Catch:
duke@435 1895 case Op_CatchProj:
duke@435 1896 case Op_CProj:
duke@435 1897 case Op_JumpProj:
duke@435 1898 case Op_JProj:
duke@435 1899 case Op_NeverBranch:
duke@435 1900 set_dontcare(n);
duke@435 1901 break;
duke@435 1902 case Op_Jump:
duke@435 1903 mstack.push(n->in(1), Visit); // Switch Value
duke@435 1904 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1905 continue; // while (mstack.is_nonempty())
duke@435 1906 case Op_StrComp:
cfang@1116 1907 case Op_StrEquals:
cfang@1116 1908 case Op_StrIndexOf:
rasbold@604 1909 case Op_AryEq:
duke@435 1910 set_shared(n); // Force result into register (it will be anyways)
duke@435 1911 break;
duke@435 1912 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1913 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1914 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1915 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1916 tn->set_type(TypePtr::NULL_PTR);
duke@435 1917 }
duke@435 1918 break;
duke@435 1919 }
kvn@598 1920 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 1921 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 1922 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 1923 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 1924 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 1925 }
kvn@598 1926 break;
kvn@598 1927 }
duke@435 1928 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 1929 ShouldNotReachHere();
duke@435 1930 break;
duke@435 1931 case Op_ClearArray:
duke@435 1932 case Op_SafePoint:
duke@435 1933 mem_op = true;
duke@435 1934 break;
kvn@1496 1935 default:
kvn@1496 1936 if( n->is_Store() ) {
kvn@1496 1937 // Do match stores, despite no ideal reg
kvn@1496 1938 mem_op = true;
kvn@1496 1939 break;
kvn@1496 1940 }
kvn@1496 1941 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 1942 mem_op = true;
kvn@1496 1943 // Loads must be root of match tree due to prior load conflict
kvn@1496 1944 if( C->subsume_loads() == false )
kvn@1496 1945 set_shared(n);
duke@435 1946 }
duke@435 1947 // Fall into default case
duke@435 1948 if( !n->ideal_reg() )
duke@435 1949 set_dontcare(n); // Unmatchable Nodes
duke@435 1950 } // end_switch
duke@435 1951
duke@435 1952 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 1953 Node *m = n->in(i); // Get ith input
duke@435 1954 if (m == NULL) continue; // Ignore NULLs
duke@435 1955 uint mop = m->Opcode();
duke@435 1956
duke@435 1957 // Must clone all producers of flags, or we will not match correctly.
duke@435 1958 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 1959 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 1960 // are also there, so we may match a float-branch to int-flags and
duke@435 1961 // expect the allocator to haul the flags from the int-side to the
duke@435 1962 // fp-side. No can do.
duke@435 1963 if( _must_clone[mop] ) {
duke@435 1964 mstack.push(m, Visit);
duke@435 1965 continue; // for(int i = ...)
duke@435 1966 }
duke@435 1967
kvn@1496 1968 if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
kvn@1496 1969 // Bases used in addresses must be shared but since
kvn@1496 1970 // they are shared through a DecodeN they may appear
kvn@1496 1971 // to have a single use so force sharing here.
kvn@1496 1972 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 1973 }
kvn@1496 1974
kvn@1496 1975 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 1976 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 1977 // Some inputs for address expression are not put on stack
kvn@1021 1978 // to avoid marking them as shared and forcing them into register
kvn@1021 1979 // if they are used only in address expressions.
kvn@1021 1980 // But they should be marked as shared if there are other uses
kvn@1021 1981 // besides address expressions.
kvn@1021 1982
duke@435 1983 Node *off = m->in(AddPNode::Offset);
kvn@1021 1984 if( off->is_Con() &&
kvn@1021 1985 // When there are other uses besides address expressions
kvn@1021 1986 // put it on stack and mark as shared.
kvn@1021 1987 !is_visited(m) ) {
kvn@1021 1988 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 1989 Node *adr = m->in(AddPNode::Address);
duke@435 1990
duke@435 1991 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 1992 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 1993 // AtomicAdd is not an addressing expression.
duke@435 1994 // Cheap to find it by looking for screwy base.
kvn@1021 1995 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 1996 // Are there other uses besides address expressions?
kvn@1021 1997 !is_visited(adr) ) {
kvn@1021 1998 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 1999 Node *shift = adr->in(AddPNode::Offset);
duke@435 2000 // Check for shift by small constant as well
duke@435 2001 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2002 shift->in(2)->get_int() <= 3 &&
kvn@1021 2003 // Are there other uses besides address expressions?
kvn@1021 2004 !is_visited(shift) ) {
kvn@1021 2005 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2006 mstack.push(shift->in(2), Visit);
kvn@1021 2007 Node *conv = shift->in(1);
duke@435 2008 #ifdef _LP64
duke@435 2009 // Allow Matcher to match the rule which bypass
duke@435 2010 // ConvI2L operation for an array index on LP64
duke@435 2011 // if the index value is positive.
kvn@1021 2012 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2013 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2014 // Are there other uses besides address expressions?
kvn@1021 2015 !is_visited(conv) ) {
kvn@1021 2016 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2017 mstack.push(conv->in(1), Pre_Visit);
duke@435 2018 } else
duke@435 2019 #endif
kvn@1021 2020 mstack.push(conv, Pre_Visit);
duke@435 2021 } else {
duke@435 2022 mstack.push(shift, Pre_Visit);
duke@435 2023 }
duke@435 2024 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2025 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2026 } else { // Sparc, Alpha, PPC and friends
duke@435 2027 mstack.push(adr, Pre_Visit);
duke@435 2028 }
duke@435 2029
duke@435 2030 // Clone X+offset as it also folds into most addressing expressions
duke@435 2031 mstack.push(off, Visit);
duke@435 2032 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2033 continue; // for(int i = ...)
duke@435 2034 } // if( off->is_Con() )
duke@435 2035 } // if( mem_op &&
duke@435 2036 mstack.push(m, Pre_Visit);
duke@435 2037 } // for(int i = ...)
duke@435 2038 }
duke@435 2039 else if (nstate == Alt_Post_Visit) {
duke@435 2040 mstack.pop(); // Remove node from stack
duke@435 2041 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2042 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2043 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2044 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2045 // BoolNode::match_edge always returns a zero.
duke@435 2046
duke@435 2047 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2048 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2049 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2050 }
duke@435 2051 else if (nstate == Post_Visit) {
duke@435 2052 mstack.pop(); // Remove node from stack
duke@435 2053
duke@435 2054 // Now hack a few special opcodes
duke@435 2055 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2056 case Op_StorePConditional:
kvn@855 2057 case Op_StoreIConditional:
duke@435 2058 case Op_StoreLConditional:
duke@435 2059 case Op_CompareAndSwapI:
duke@435 2060 case Op_CompareAndSwapL:
coleenp@548 2061 case Op_CompareAndSwapP:
coleenp@548 2062 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2063 Node *newval = n->in(MemNode::ValueIn );
duke@435 2064 Node *oldval = n->in(LoadStoreNode::ExpectedIn);
duke@435 2065 Node *pair = new (C, 3) BinaryNode( oldval, newval );
duke@435 2066 n->set_req(MemNode::ValueIn,pair);
duke@435 2067 n->del_req(LoadStoreNode::ExpectedIn);
duke@435 2068 break;
duke@435 2069 }
duke@435 2070 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2071 case Op_CMoveF:
duke@435 2072 case Op_CMoveI:
duke@435 2073 case Op_CMoveL:
kvn@599 2074 case Op_CMoveN:
duke@435 2075 case Op_CMoveP: {
duke@435 2076 // Restructure into a binary tree for Matching. It's possible that
duke@435 2077 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2078 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2079 // 10/2/2000 CNC.
duke@435 2080 Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2081 n->set_req(1,pair1);
duke@435 2082 Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
duke@435 2083 n->set_req(2,pair2);
duke@435 2084 n->del_req(3);
duke@435 2085 break;
duke@435 2086 }
kvn@1421 2087 case Op_StrEquals: {
kvn@1421 2088 Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
kvn@1421 2089 n->set_req(2,pair1);
kvn@1421 2090 n->set_req(3,n->in(4));
kvn@1421 2091 n->del_req(4);
kvn@1421 2092 break;
kvn@1421 2093 }
kvn@1421 2094 case Op_StrComp:
kvn@1421 2095 case Op_StrIndexOf: {
kvn@1421 2096 Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
kvn@1421 2097 n->set_req(2,pair1);
kvn@1421 2098 Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
kvn@1421 2099 n->set_req(3,pair2);
kvn@1421 2100 n->del_req(5);
kvn@1421 2101 n->del_req(4);
kvn@1421 2102 break;
kvn@1421 2103 }
duke@435 2104 default:
duke@435 2105 break;
duke@435 2106 }
duke@435 2107 }
duke@435 2108 else {
duke@435 2109 ShouldNotReachHere();
duke@435 2110 }
duke@435 2111 } // end of while (mstack.is_nonempty())
duke@435 2112 }
duke@435 2113
duke@435 2114 #ifdef ASSERT
duke@435 2115 // machine-independent root to machine-dependent root
duke@435 2116 void Matcher::dump_old2new_map() {
duke@435 2117 _old2new_map.dump();
duke@435 2118 }
duke@435 2119 #endif
duke@435 2120
duke@435 2121 //---------------------------collect_null_checks-------------------------------
duke@435 2122 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2123 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2124 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2125 // value being tested.
kvn@803 2126 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2127 Node *iff = proj->in(0);
duke@435 2128 if( iff->Opcode() == Op_If ) {
duke@435 2129 // During matching If's have Bool & Cmp side-by-side
duke@435 2130 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2131 Node *cmp = iff->in(2);
coleenp@548 2132 int opc = cmp->Opcode();
coleenp@548 2133 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2134
coleenp@548 2135 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2136 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2137 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2138
kvn@803 2139 bool push_it = false;
coleenp@548 2140 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2141 extern int all_null_checks_found;
coleenp@548 2142 all_null_checks_found++;
coleenp@548 2143 if( b->_test._test == BoolTest::ne ) {
kvn@803 2144 push_it = true;
coleenp@548 2145 }
coleenp@548 2146 } else {
coleenp@548 2147 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2148 if( b->_test._test == BoolTest::eq ) {
kvn@803 2149 push_it = true;
duke@435 2150 }
duke@435 2151 }
kvn@803 2152 if( push_it ) {
kvn@803 2153 _null_check_tests.push(proj);
kvn@803 2154 Node* val = cmp->in(1);
kvn@803 2155 #ifdef _LP64
kvn@1930 2156 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2157 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2158 //
kvn@803 2159 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2160 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2161 // in addressing mode we have to keep a DecodeN node and
kvn@803 2162 // use it to do implicit NULL check in address.
kvn@803 2163 //
kvn@803 2164 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2165 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2166 //
kvn@803 2167 uint cnt = orig_proj->outcnt();
kvn@803 2168 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2169 Node* d = orig_proj->raw_out(i);
kvn@803 2170 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2171 val = d;
kvn@803 2172 val->set_req(0, NULL); // Unpin now.
kvn@1930 2173 // Mark this as special case to distinguish from
kvn@1930 2174 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2175 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2176 break;
kvn@803 2177 }
kvn@803 2178 }
kvn@803 2179 }
kvn@803 2180 #endif
kvn@803 2181 _null_check_tests.push(val);
kvn@803 2182 }
duke@435 2183 }
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 //---------------------------validate_null_checks------------------------------
duke@435 2188 // Its possible that the value being NULL checked is not the root of a match
duke@435 2189 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2190 void Matcher::validate_null_checks( ) {
duke@435 2191 uint cnt = _null_check_tests.size();
duke@435 2192 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2193 Node *test = _null_check_tests[i];
duke@435 2194 Node *val = _null_check_tests[i+1];
kvn@1930 2195 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2196 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2197 if (has_new_node(val)) {
kvn@1930 2198 Node* new_val = new_node(val);
kvn@1930 2199 if (is_decoden) {
kvn@1930 2200 assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
kvn@1930 2201 // Note: new_val may have a control edge if
kvn@1930 2202 // the original ideal node DecodeN was matched before
kvn@1930 2203 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2204 // Unpin the mach node and mark it.
kvn@1930 2205 new_val->set_req(0, NULL);
kvn@1930 2206 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2207 }
duke@435 2208 // Is a match-tree root, so replace with the matched value
kvn@1930 2209 _null_check_tests.map(i+1, new_val);
duke@435 2210 } else {
duke@435 2211 // Yank from candidate list
duke@435 2212 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2213 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2214 _null_check_tests.pop();
duke@435 2215 _null_check_tests.pop();
duke@435 2216 i-=2;
duke@435 2217 }
duke@435 2218 }
duke@435 2219 }
duke@435 2220
duke@435 2221
duke@435 2222 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
duke@435 2223 // acting as an Acquire and thus we don't need an Acquire here. We
duke@435 2224 // retain the Node to act as a compiler ordering barrier.
duke@435 2225 bool Matcher::prior_fast_lock( const Node *acq ) {
duke@435 2226 Node *r = acq->in(0);
duke@435 2227 if( !r->is_Region() || r->req() <= 1 ) return false;
duke@435 2228 Node *proj = r->in(1);
duke@435 2229 if( !proj->is_Proj() ) return false;
duke@435 2230 Node *call = proj->in(0);
duke@435 2231 if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
duke@435 2232 return false;
duke@435 2233
duke@435 2234 return true;
duke@435 2235 }
duke@435 2236
duke@435 2237 // Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
duke@435 2238 // acting as a Release and thus we don't need a Release here. We
duke@435 2239 // retain the Node to act as a compiler ordering barrier.
duke@435 2240 bool Matcher::post_fast_unlock( const Node *rel ) {
duke@435 2241 Compile *C = Compile::current();
duke@435 2242 assert( rel->Opcode() == Op_MemBarRelease, "" );
duke@435 2243 const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
duke@435 2244 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2245 Node *ctrl = NULL;
duke@435 2246 while( true ) {
duke@435 2247 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2248 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2249 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2250 if( proj->_con == TypeFunc::Control &&
duke@435 2251 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2252 break;
duke@435 2253 i++;
duke@435 2254 }
duke@435 2255 Node *iff = NULL;
duke@435 2256 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2257 Node *x = ctrl->fast_out(j);
duke@435 2258 if( x->is_If() && x->req() > 1 &&
duke@435 2259 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2260 iff = x;
duke@435 2261 break;
duke@435 2262 }
duke@435 2263 }
duke@435 2264 if( !iff ) return false;
duke@435 2265 Node *bol = iff->in(1);
duke@435 2266 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2267 if (!bol->is_Bool()) return false;
duke@435 2268 assert( bol->req() > 1, "" );
duke@435 2269 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2270 }
duke@435 2271
duke@435 2272 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2273 // atomic instruction acting as a store_load barrier without any
duke@435 2274 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2275 // We retain the Node to act as a compiler ordering barrier.
duke@435 2276 bool Matcher::post_store_load_barrier(const Node *vmb) {
duke@435 2277 Compile *C = Compile::current();
duke@435 2278 assert( vmb->is_MemBar(), "" );
duke@435 2279 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
duke@435 2280 const MemBarNode *mem = (const MemBarNode*)vmb;
duke@435 2281
duke@435 2282 // Get the Proj node, ctrl, that can be used to iterate forward
duke@435 2283 Node *ctrl = NULL;
duke@435 2284 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2285 while( true ) {
duke@435 2286 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2287 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2288 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2289 if( proj->_con == TypeFunc::Control &&
duke@435 2290 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2291 break;
duke@435 2292 i++;
duke@435 2293 }
duke@435 2294
duke@435 2295 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2296 Node *x = ctrl->fast_out(j);
duke@435 2297 int xop = x->Opcode();
duke@435 2298
duke@435 2299 // We don't need current barrier if we see another or a lock
duke@435 2300 // before seeing volatile load.
duke@435 2301 //
duke@435 2302 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2303 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2304 // that a monitor exit operation contains a serializing instruction.
duke@435 2305
duke@435 2306 if (xop == Op_MemBarVolatile ||
duke@435 2307 xop == Op_FastLock ||
duke@435 2308 xop == Op_CompareAndSwapL ||
duke@435 2309 xop == Op_CompareAndSwapP ||
coleenp@548 2310 xop == Op_CompareAndSwapN ||
duke@435 2311 xop == Op_CompareAndSwapI)
duke@435 2312 return true;
duke@435 2313
duke@435 2314 if (x->is_MemBar()) {
duke@435 2315 // We must retain this membar if there is an upcoming volatile
duke@435 2316 // load, which will be preceded by acquire membar.
duke@435 2317 if (xop == Op_MemBarAcquire)
duke@435 2318 return false;
duke@435 2319 // For other kinds of barriers, check by pretending we
duke@435 2320 // are them, and seeing if we can be removed.
duke@435 2321 else
duke@435 2322 return post_store_load_barrier((const MemBarNode*)x);
duke@435 2323 }
duke@435 2324
duke@435 2325 // Delicate code to detect case of an upcoming fastlock block
duke@435 2326 if( x->is_If() && x->req() > 1 &&
duke@435 2327 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2328 Node *iff = x;
duke@435 2329 Node *bol = iff->in(1);
duke@435 2330 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2331 if (!bol->is_Bool()) return false;
duke@435 2332 assert( bol->req() > 1, "" );
duke@435 2333 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2334 }
duke@435 2335 // probably not necessary to check for these
duke@435 2336 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
duke@435 2337 return false;
duke@435 2338 }
duke@435 2339 return false;
duke@435 2340 }
duke@435 2341
duke@435 2342 //=============================================================================
duke@435 2343 //---------------------------State---------------------------------------------
duke@435 2344 State::State(void) {
duke@435 2345 #ifdef ASSERT
duke@435 2346 _id = 0;
duke@435 2347 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2348 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2349 //memset(_cost, -1, sizeof(_cost));
duke@435 2350 //memset(_rule, -1, sizeof(_rule));
duke@435 2351 #endif
duke@435 2352 memset(_valid, 0, sizeof(_valid));
duke@435 2353 }
duke@435 2354
duke@435 2355 #ifdef ASSERT
duke@435 2356 State::~State() {
duke@435 2357 _id = 99;
duke@435 2358 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2359 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2360 memset(_cost, -3, sizeof(_cost));
duke@435 2361 memset(_rule, -3, sizeof(_rule));
duke@435 2362 }
duke@435 2363 #endif
duke@435 2364
duke@435 2365 #ifndef PRODUCT
duke@435 2366 //---------------------------dump----------------------------------------------
duke@435 2367 void State::dump() {
duke@435 2368 tty->print("\n");
duke@435 2369 dump(0);
duke@435 2370 }
duke@435 2371
duke@435 2372 void State::dump(int depth) {
duke@435 2373 for( int j = 0; j < depth; j++ )
duke@435 2374 tty->print(" ");
duke@435 2375 tty->print("--N: ");
duke@435 2376 _leaf->dump();
duke@435 2377 uint i;
duke@435 2378 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2379 // Check for valid entry
duke@435 2380 if( valid(i) ) {
duke@435 2381 for( int j = 0; j < depth; j++ )
duke@435 2382 tty->print(" ");
duke@435 2383 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2384 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2385 tty->print_cr("%s %d %s",
duke@435 2386 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2387 }
duke@435 2388 tty->print_cr("");
duke@435 2389
duke@435 2390 for( i=0; i<2; i++ )
duke@435 2391 if( _kids[i] )
duke@435 2392 _kids[i]->dump(depth+1);
duke@435 2393 }
duke@435 2394 #endif

mercurial