src/share/vm/opto/matcher.cpp

Thu, 20 Mar 2008 15:11:44 -0700

author
kvn
date
Thu, 20 Mar 2008 15:11:44 -0700
changeset 509
2a9af0b9cb1c
parent 498
eac007780a58
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6674600: (Escape Analysis) Optimize memory graph for instance's fields
Summary: EA gives opportunite to do more aggressive memory optimizations.
Reviewed-by: never, jrose

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_matcher.cpp.incl"
duke@435 27
duke@435 28 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 29
duke@435 30
duke@435 31
duke@435 32 const int Matcher::base2reg[Type::lastype] = {
duke@435 33 Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0,
duke@435 34 Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
duke@435 35 Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
duke@435 36 0, 0/*abio*/,
duke@435 37 Op_RegP /* Return address */, 0, /* the memories */
duke@435 38 Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
duke@435 39 0 /*bottom*/
duke@435 40 };
duke@435 41
duke@435 42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 44 RegMask Matcher::STACK_ONLY_mask;
duke@435 45 RegMask Matcher::c_frame_ptr_mask;
duke@435 46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 47 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 48
duke@435 49 //---------------------------Matcher-------------------------------------------
duke@435 50 Matcher::Matcher( Node_List &proj_list ) :
duke@435 51 PhaseTransform( Phase::Ins_Select ),
duke@435 52 #ifdef ASSERT
duke@435 53 _old2new_map(C->comp_arena()),
duke@435 54 #endif
duke@435 55 _shared_constants(C->comp_arena()),
duke@435 56 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 57 _swallowed(swallowed),
duke@435 58 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 59 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
duke@435 60 _must_clone(must_clone), _proj_list(proj_list),
duke@435 61 _register_save_policy(register_save_policy),
duke@435 62 _c_reg_save_policy(c_reg_save_policy),
duke@435 63 _register_save_type(register_save_type),
duke@435 64 _ruleName(ruleName),
duke@435 65 _allocation_started(false),
duke@435 66 _states_arena(Chunk::medium_size),
duke@435 67 _visited(&_states_arena),
duke@435 68 _shared(&_states_arena),
duke@435 69 _dontcare(&_states_arena) {
duke@435 70 C->set_matcher(this);
duke@435 71
duke@435 72 idealreg2spillmask[Op_RegI] = NULL;
duke@435 73 idealreg2spillmask[Op_RegL] = NULL;
duke@435 74 idealreg2spillmask[Op_RegF] = NULL;
duke@435 75 idealreg2spillmask[Op_RegD] = NULL;
duke@435 76 idealreg2spillmask[Op_RegP] = NULL;
duke@435 77
duke@435 78 idealreg2debugmask[Op_RegI] = NULL;
duke@435 79 idealreg2debugmask[Op_RegL] = NULL;
duke@435 80 idealreg2debugmask[Op_RegF] = NULL;
duke@435 81 idealreg2debugmask[Op_RegD] = NULL;
duke@435 82 idealreg2debugmask[Op_RegP] = NULL;
duke@435 83 }
duke@435 84
duke@435 85 //------------------------------warp_incoming_stk_arg------------------------
duke@435 86 // This warps a VMReg into an OptoReg::Name
duke@435 87 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 88 OptoReg::Name warped;
duke@435 89 if( reg->is_stack() ) { // Stack slot argument?
duke@435 90 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 91 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 92 if( warped >= _in_arg_limit )
duke@435 93 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
duke@435 94 if (!RegMask::can_represent(warped)) {
duke@435 95 // the compiler cannot represent this method's calling sequence
duke@435 96 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 97 return OptoReg::Bad;
duke@435 98 }
duke@435 99 return warped;
duke@435 100 }
duke@435 101 return OptoReg::as_OptoReg(reg);
duke@435 102 }
duke@435 103
duke@435 104 //---------------------------compute_old_SP------------------------------------
duke@435 105 OptoReg::Name Compile::compute_old_SP() {
duke@435 106 int fixed = fixed_slots();
duke@435 107 int preserve = in_preserve_stack_slots();
duke@435 108 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112
duke@435 113 #ifdef ASSERT
duke@435 114 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 115 // Make sure that the new graph only references new nodes
duke@435 116 ResourceMark rm;
duke@435 117 Unique_Node_List worklist;
duke@435 118 VectorSet visited(Thread::current()->resource_area());
duke@435 119 worklist.push(xroot);
duke@435 120 while (worklist.size() > 0) {
duke@435 121 Node* n = worklist.pop();
duke@435 122 visited <<= n->_idx;
duke@435 123 assert(C->node_arena()->contains(n), "dead node");
duke@435 124 for (uint j = 0; j < n->req(); j++) {
duke@435 125 Node* in = n->in(j);
duke@435 126 if (in != NULL) {
duke@435 127 assert(C->node_arena()->contains(in), "dead node");
duke@435 128 if (!visited.test(in->_idx)) {
duke@435 129 worklist.push(in);
duke@435 130 }
duke@435 131 }
duke@435 132 }
duke@435 133 }
duke@435 134 }
duke@435 135 #endif
duke@435 136
duke@435 137
duke@435 138 //---------------------------match---------------------------------------------
duke@435 139 void Matcher::match( ) {
duke@435 140 // One-time initialization of some register masks.
duke@435 141 init_spill_mask( C->root()->in(1) );
duke@435 142 _return_addr_mask = return_addr();
duke@435 143 #ifdef _LP64
duke@435 144 // Pointers take 2 slots in 64-bit land
duke@435 145 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 146 #endif
duke@435 147
duke@435 148 // Map a Java-signature return type into return register-value
duke@435 149 // machine registers for 0, 1 and 2 returned values.
duke@435 150 const TypeTuple *range = C->tf()->range();
duke@435 151 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 152 // Get ideal-register return type
duke@435 153 int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
duke@435 154 // Get machine return register
duke@435 155 uint sop = C->start()->Opcode();
duke@435 156 OptoRegPair regs = return_value(ireg, false);
duke@435 157
duke@435 158 // And mask for same
duke@435 159 _return_value_mask = RegMask(regs.first());
duke@435 160 if( OptoReg::is_valid(regs.second()) )
duke@435 161 _return_value_mask.Insert(regs.second());
duke@435 162 }
duke@435 163
duke@435 164 // ---------------
duke@435 165 // Frame Layout
duke@435 166
duke@435 167 // Need the method signature to determine the incoming argument types,
duke@435 168 // because the types determine which registers the incoming arguments are
duke@435 169 // in, and this affects the matched code.
duke@435 170 const TypeTuple *domain = C->tf()->domain();
duke@435 171 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 172 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 173 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 174 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 175 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 176 uint i;
duke@435 177 for( i = 0; i<argcnt; i++ ) {
duke@435 178 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 179 }
duke@435 180
duke@435 181 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 182 // that will convert this to an array of register numbers.
duke@435 183 const StartNode *start = C->start();
duke@435 184 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 185 #ifdef ASSERT
duke@435 186 // Sanity check users' calling convention. Real handy while trying to
duke@435 187 // get the initial port correct.
duke@435 188 { for (uint i = 0; i<argcnt; i++) {
duke@435 189 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 190 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 191 _parm_regs[i].set_bad();
duke@435 192 continue;
duke@435 193 }
duke@435 194 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 195 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 196 if (parm_reg->is_reg()) {
duke@435 197 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 198 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 199 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 200 opto_parm_reg == inline_cache_reg(),
duke@435 201 "parameters in register must be preserved by runtime stubs");
duke@435 202 }
duke@435 203 for (uint j = 0; j < i; j++) {
duke@435 204 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 205 "calling conv. must produce distinct regs");
duke@435 206 }
duke@435 207 }
duke@435 208 }
duke@435 209 #endif
duke@435 210
duke@435 211 // Do some initial frame layout.
duke@435 212
duke@435 213 // Compute the old incoming SP (may be called FP) as
duke@435 214 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 215 _old_SP = C->compute_old_SP();
duke@435 216 assert( is_even(_old_SP), "must be even" );
duke@435 217
duke@435 218 // Compute highest incoming stack argument as
duke@435 219 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 220 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 221 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 222 for( i = 0; i < argcnt; i++ ) {
duke@435 223 // Permit args to have no register
duke@435 224 _calling_convention_mask[i].Clear();
duke@435 225 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 226 continue;
duke@435 227 }
duke@435 228 // calling_convention returns stack arguments as a count of
duke@435 229 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 230 // the allocators point of view, taking into account all the
duke@435 231 // preserve area, locks & pad2.
duke@435 232
duke@435 233 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 234 if( OptoReg::is_valid(reg1))
duke@435 235 _calling_convention_mask[i].Insert(reg1);
duke@435 236
duke@435 237 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 238 if( OptoReg::is_valid(reg2))
duke@435 239 _calling_convention_mask[i].Insert(reg2);
duke@435 240
duke@435 241 // Saved biased stack-slot register number
duke@435 242 _parm_regs[i].set_pair(reg2, reg1);
duke@435 243 }
duke@435 244
duke@435 245 // Finally, make sure the incoming arguments take up an even number of
duke@435 246 // words, in case the arguments or locals need to contain doubleword stack
duke@435 247 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 248 // particular, in the spill area) which look aligned will in fact be
duke@435 249 // aligned relative to the stack pointer in the target machine. Double
duke@435 250 // stack slots will always be allocated aligned.
duke@435 251 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 252
duke@435 253 // Compute highest outgoing stack argument as
duke@435 254 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 255 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 256 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 257
duke@435 258 if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
duke@435 259 // the compiler cannot represent this method's calling sequence
duke@435 260 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 261 }
duke@435 262
duke@435 263 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 264
duke@435 265 // ---------------
duke@435 266 // Collect roots of matcher trees. Every node for which
duke@435 267 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 268 // can be a valid interior of some tree.
duke@435 269 find_shared( C->root() );
duke@435 270 find_shared( C->top() );
duke@435 271
duke@435 272 C->print_method("Before Matching", 2);
duke@435 273
duke@435 274 // Swap out to old-space; emptying new-space
duke@435 275 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 276
duke@435 277 // Save debug and profile information for nodes in old space:
duke@435 278 _old_node_note_array = C->node_note_array();
duke@435 279 if (_old_node_note_array != NULL) {
duke@435 280 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 281 (C->comp_arena(), _old_node_note_array->length(),
duke@435 282 0, NULL));
duke@435 283 }
duke@435 284
duke@435 285 // Pre-size the new_node table to avoid the need for range checks.
duke@435 286 grow_new_node_array(C->unique());
duke@435 287
duke@435 288 // Reset node counter so MachNodes start with _idx at 0
duke@435 289 int nodes = C->unique(); // save value
duke@435 290 C->set_unique(0);
duke@435 291
duke@435 292 // Recursively match trees from old space into new space.
duke@435 293 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 294 _visited.Clear(); // Clear visit bits for xform call
duke@435 295 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 296 if (!C->failing()) {
duke@435 297 Node* xroot = xform( C->root(), 1 );
duke@435 298 if (xroot == NULL) {
duke@435 299 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 300 C->record_method_not_compilable("instruction match failed");
duke@435 301 } else {
duke@435 302 // During matching shared constants were attached to C->root()
duke@435 303 // because xroot wasn't available yet, so transfer the uses to
duke@435 304 // the xroot.
duke@435 305 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 306 Node* n = C->root()->fast_out(j);
duke@435 307 if (C->node_arena()->contains(n)) {
duke@435 308 assert(n->in(0) == C->root(), "should be control user");
duke@435 309 n->set_req(0, xroot);
duke@435 310 --j;
duke@435 311 --jmax;
duke@435 312 }
duke@435 313 }
duke@435 314
duke@435 315 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
duke@435 316 #ifdef ASSERT
duke@435 317 verify_new_nodes_only(xroot);
duke@435 318 #endif
duke@435 319 }
duke@435 320 }
duke@435 321 if (C->top() == NULL || C->root() == NULL) {
duke@435 322 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 323 }
duke@435 324 if (C->failing()) {
duke@435 325 // delete old;
duke@435 326 old->destruct_contents();
duke@435 327 return;
duke@435 328 }
duke@435 329 assert( C->top(), "" );
duke@435 330 assert( C->root(), "" );
duke@435 331 validate_null_checks();
duke@435 332
duke@435 333 // Now smoke old-space
duke@435 334 NOT_DEBUG( old->destruct_contents() );
duke@435 335
duke@435 336 // ------------------------
duke@435 337 // Set up save-on-entry registers
duke@435 338 Fixup_Save_On_Entry( );
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 343 // The stated purpose of this routine is to take care of save-on-entry
duke@435 344 // registers. However, the overall goal of the Match phase is to convert into
duke@435 345 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 346 // So what this procedure really does is put a valid RegMask on each input
duke@435 347 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 348 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 349 // course gives them a mask).
duke@435 350
duke@435 351 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 352 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 353 // Do all the pre-defined register masks
duke@435 354 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 355 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 356 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 357 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 358 rms[TypeFunc::FramePtr ] = fp;
duke@435 359 return rms;
duke@435 360 }
duke@435 361
duke@435 362 //---------------------------init_first_stack_mask-----------------------------
duke@435 363 // Create the initial stack mask used by values spilling to the stack.
duke@435 364 // Disallow any debug info in outgoing argument areas by setting the
duke@435 365 // initial mask accordingly.
duke@435 366 void Matcher::init_first_stack_mask() {
duke@435 367
duke@435 368 // Allocate storage for spill masks as masks for the appropriate load type.
duke@435 369 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*10);
duke@435 370 idealreg2spillmask[Op_RegI] = &rms[0];
duke@435 371 idealreg2spillmask[Op_RegL] = &rms[1];
duke@435 372 idealreg2spillmask[Op_RegF] = &rms[2];
duke@435 373 idealreg2spillmask[Op_RegD] = &rms[3];
duke@435 374 idealreg2spillmask[Op_RegP] = &rms[4];
duke@435 375 idealreg2debugmask[Op_RegI] = &rms[5];
duke@435 376 idealreg2debugmask[Op_RegL] = &rms[6];
duke@435 377 idealreg2debugmask[Op_RegF] = &rms[7];
duke@435 378 idealreg2debugmask[Op_RegD] = &rms[8];
duke@435 379 idealreg2debugmask[Op_RegP] = &rms[9];
duke@435 380
duke@435 381 OptoReg::Name i;
duke@435 382
duke@435 383 // At first, start with the empty mask
duke@435 384 C->FIRST_STACK_mask().Clear();
duke@435 385
duke@435 386 // Add in the incoming argument area
duke@435 387 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 388 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 389 C->FIRST_STACK_mask().Insert(i);
duke@435 390
duke@435 391 // Add in all bits past the outgoing argument area
duke@435 392 guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
duke@435 393 "must be able to represent all call arguments in reg mask");
duke@435 394 init = _out_arg_limit;
duke@435 395 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 396 C->FIRST_STACK_mask().Insert(i);
duke@435 397
duke@435 398 // Finally, set the "infinite stack" bit.
duke@435 399 C->FIRST_STACK_mask().set_AllStack();
duke@435 400
duke@435 401 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
duke@435 402 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 403 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 404 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
duke@435 405 idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
duke@435 406 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 407 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 408 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
duke@435 409 idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
duke@435 410 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
duke@435 411 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
duke@435 412
duke@435 413 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 414 // Caller-save registers are assumed to be trashable by the various
duke@435 415 // inline-cache fixup routines.
duke@435 416 *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
duke@435 417 *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
duke@435 418 *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
duke@435 419 *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
duke@435 420 *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 421
duke@435 422 // Prevent stub compilations from attempting to reference
duke@435 423 // callee-saved registers from debug info
duke@435 424 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 425
duke@435 426 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 427 // registers the caller has to save do not work
duke@435 428 if( _register_save_policy[i] == 'C' ||
duke@435 429 _register_save_policy[i] == 'A' ||
duke@435 430 (_register_save_policy[i] == 'E' && exclude_soe) ) {
duke@435 431 idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
duke@435 432 idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
duke@435 433 idealreg2debugmask[Op_RegF]->Remove(i); // masks
duke@435 434 idealreg2debugmask[Op_RegD]->Remove(i);
duke@435 435 idealreg2debugmask[Op_RegP]->Remove(i);
duke@435 436 }
duke@435 437 }
duke@435 438 }
duke@435 439
duke@435 440 //---------------------------is_save_on_entry----------------------------------
duke@435 441 bool Matcher::is_save_on_entry( int reg ) {
duke@435 442 return
duke@435 443 _register_save_policy[reg] == 'E' ||
duke@435 444 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 445 // Also save argument registers in the trampolining stubs
duke@435 446 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 447 }
duke@435 448
duke@435 449 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 450 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 451 init_first_stack_mask();
duke@435 452
duke@435 453 Node *root = C->root(); // Short name for root
duke@435 454 // Count number of save-on-entry registers.
duke@435 455 uint soe_cnt = number_of_saved_registers();
duke@435 456 uint i;
duke@435 457
duke@435 458 // Find the procedure Start Node
duke@435 459 StartNode *start = C->start();
duke@435 460 assert( start, "Expect a start node" );
duke@435 461
duke@435 462 // Save argument registers in the trampolining stubs
duke@435 463 if( C->save_argument_registers() )
duke@435 464 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 465 if( is_spillable_arg(i) )
duke@435 466 soe_cnt++;
duke@435 467
duke@435 468 // Input RegMask array shared by all Returns.
duke@435 469 // The type for doubles and longs has a count of 2, but
duke@435 470 // there is only 1 returned value
duke@435 471 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 472 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 473 // Returns have 0 or 1 returned values depending on call signature.
duke@435 474 // Return register is specified by return_value in the AD file.
duke@435 475 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 476 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 477
duke@435 478 // Input RegMask array shared by all Rethrows.
duke@435 479 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 480 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 481 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 482 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 483 #ifdef _LP64
duke@435 484 // Need two slots for ptrs in 64-bit land
duke@435 485 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 486 #endif
duke@435 487
duke@435 488 // Input RegMask array shared by all TailCalls
duke@435 489 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 490 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 491
duke@435 492 // Input RegMask array shared by all TailJumps
duke@435 493 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 494 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 495
duke@435 496 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 497 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 498 // TailCall to extract these masks and put the correct masks into
duke@435 499 // the tail_call_rms array.
duke@435 500 for( i=1; i < root->req(); i++ ) {
duke@435 501 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 502 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 503 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 504 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 505 break;
duke@435 506 }
duke@435 507 }
duke@435 508
duke@435 509 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 510 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 511 // TailJump to extract these masks and put the correct masks into
duke@435 512 // the tail_jump_rms array.
duke@435 513 for( i=1; i < root->req(); i++ ) {
duke@435 514 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 515 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 516 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 517 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 518 break;
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 // Input RegMask array shared by all Halts
duke@435 523 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 524 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 525
duke@435 526 // Capture the return input masks into each exit flavor
duke@435 527 for( i=1; i < root->req(); i++ ) {
duke@435 528 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 529 switch( exit->ideal_Opcode() ) {
duke@435 530 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 531 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 532 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 533 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 534 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 535 default : ShouldNotReachHere();
duke@435 536 }
duke@435 537 }
duke@435 538
duke@435 539 // Next unused projection number from Start.
duke@435 540 int proj_cnt = C->tf()->domain()->cnt();
duke@435 541
duke@435 542 // Do all the save-on-entry registers. Make projections from Start for
duke@435 543 // them, and give them a use at the exit points. To the allocator, they
duke@435 544 // look like incoming register arguments.
duke@435 545 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 546 if( is_save_on_entry(i) ) {
duke@435 547
duke@435 548 // Add the save-on-entry to the mask array
duke@435 549 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 550 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 551 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 552 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 553 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 554 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 555 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 556
duke@435 557 Node *mproj;
duke@435 558
duke@435 559 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 560 // into a single RegD.
duke@435 561 if( (i&1) == 0 &&
duke@435 562 _register_save_type[i ] == Op_RegF &&
duke@435 563 _register_save_type[i+1] == Op_RegF &&
duke@435 564 is_save_on_entry(i+1) ) {
duke@435 565 // Add other bit for double
duke@435 566 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 567 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 568 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 569 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 570 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 571 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 572 proj_cnt += 2; // Skip 2 for doubles
duke@435 573 }
duke@435 574 else if( (i&1) == 1 && // Else check for high half of double
duke@435 575 _register_save_type[i-1] == Op_RegF &&
duke@435 576 _register_save_type[i ] == Op_RegF &&
duke@435 577 is_save_on_entry(i-1) ) {
duke@435 578 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 579 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 580 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 581 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 582 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 583 mproj = C->top();
duke@435 584 }
duke@435 585 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 586 // into a single RegL.
duke@435 587 else if( (i&1) == 0 &&
duke@435 588 _register_save_type[i ] == Op_RegI &&
duke@435 589 _register_save_type[i+1] == Op_RegI &&
duke@435 590 is_save_on_entry(i+1) ) {
duke@435 591 // Add other bit for long
duke@435 592 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 593 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 594 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 595 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 596 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 597 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 598 proj_cnt += 2; // Skip 2 for longs
duke@435 599 }
duke@435 600 else if( (i&1) == 1 && // Else check for high half of long
duke@435 601 _register_save_type[i-1] == Op_RegI &&
duke@435 602 _register_save_type[i ] == Op_RegI &&
duke@435 603 is_save_on_entry(i-1) ) {
duke@435 604 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 605 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 606 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 607 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 608 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 609 mproj = C->top();
duke@435 610 } else {
duke@435 611 // Make a projection for it off the Start
duke@435 612 mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 613 }
duke@435 614
duke@435 615 ret_edge_cnt ++;
duke@435 616 reth_edge_cnt ++;
duke@435 617 tail_call_edge_cnt ++;
duke@435 618 tail_jump_edge_cnt ++;
duke@435 619 halt_edge_cnt ++;
duke@435 620
duke@435 621 // Add a use of the SOE register to all exit paths
duke@435 622 for( uint j=1; j < root->req(); j++ )
duke@435 623 root->in(j)->add_req(mproj);
duke@435 624 } // End of if a save-on-entry register
duke@435 625 } // End of for all machine registers
duke@435 626 }
duke@435 627
duke@435 628 //------------------------------init_spill_mask--------------------------------
duke@435 629 void Matcher::init_spill_mask( Node *ret ) {
duke@435 630 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 631
duke@435 632 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 633 c_frame_ptr_mask = c_frame_pointer();
duke@435 634 #ifdef _LP64
duke@435 635 // pointers are twice as big
duke@435 636 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 637 #endif
duke@435 638
duke@435 639 // Start at OptoReg::stack0()
duke@435 640 STACK_ONLY_mask.Clear();
duke@435 641 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 642 // STACK_ONLY_mask is all stack bits
duke@435 643 OptoReg::Name i;
duke@435 644 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 645 STACK_ONLY_mask.Insert(i);
duke@435 646 // Also set the "infinite stack" bit.
duke@435 647 STACK_ONLY_mask.set_AllStack();
duke@435 648
duke@435 649 // Copy the register names over into the shared world
duke@435 650 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 651 // SharedInfo::regName[i] = regName[i];
duke@435 652 // Handy RegMasks per machine register
duke@435 653 mreg2regmask[i].Insert(i);
duke@435 654 }
duke@435 655
duke@435 656 // Grab the Frame Pointer
duke@435 657 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 658 Node *mem = ret->in(TypeFunc::Memory);
duke@435 659 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 660 // Share frame pointer while making spill ops
duke@435 661 set_shared(fp);
duke@435 662
duke@435 663 // Compute generic short-offset Loads
duke@435 664 MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
duke@435 665 MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
duke@435 666 MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
duke@435 667 MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
duke@435 668 MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 669 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 670 spillD != NULL && spillP != NULL, "");
duke@435 671
duke@435 672 // Get the ADLC notion of the right regmask, for each basic type.
duke@435 673 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 674 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 675 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 676 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 677 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
duke@435 678 }
duke@435 679
duke@435 680 #ifdef ASSERT
duke@435 681 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 682 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 683 const TypePtr* nat = n->adr_type();
duke@435 684 const TypePtr* mat = m->adr_type();
duke@435 685 int nidx = C->get_alias_index(nat);
duke@435 686 int midx = C->get_alias_index(mat);
duke@435 687 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 688 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 689 for (uint i = 1; i < n->req(); i++) {
duke@435 690 Node* n1 = n->in(i);
duke@435 691 const TypePtr* n1at = n1->adr_type();
duke@435 692 if (n1at != NULL) {
duke@435 693 nat = n1at;
duke@435 694 nidx = C->get_alias_index(n1at);
duke@435 695 }
duke@435 696 }
duke@435 697 }
duke@435 698 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 699 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 700 switch (n->Opcode()) {
duke@435 701 case Op_PrefetchRead:
duke@435 702 case Op_PrefetchWrite:
duke@435 703 nidx = Compile::AliasIdxRaw;
duke@435 704 nat = TypeRawPtr::BOTTOM;
duke@435 705 break;
duke@435 706 }
duke@435 707 }
duke@435 708 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 709 switch (n->Opcode()) {
duke@435 710 case Op_ClearArray:
duke@435 711 midx = Compile::AliasIdxRaw;
duke@435 712 mat = TypeRawPtr::BOTTOM;
duke@435 713 break;
duke@435 714 }
duke@435 715 }
duke@435 716 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 717 switch (n->Opcode()) {
duke@435 718 case Op_Return:
duke@435 719 case Op_Rethrow:
duke@435 720 case Op_Halt:
duke@435 721 case Op_TailCall:
duke@435 722 case Op_TailJump:
duke@435 723 nidx = Compile::AliasIdxBot;
duke@435 724 nat = TypePtr::BOTTOM;
duke@435 725 break;
duke@435 726 }
duke@435 727 }
duke@435 728 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 729 switch (n->Opcode()) {
duke@435 730 case Op_StrComp:
duke@435 731 case Op_MemBarVolatile:
duke@435 732 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
duke@435 733 nidx = Compile::AliasIdxTop;
duke@435 734 nat = NULL;
duke@435 735 break;
duke@435 736 }
duke@435 737 }
duke@435 738 if (nidx != midx) {
duke@435 739 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 740 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 741 n->dump();
duke@435 742 m->dump();
duke@435 743 }
duke@435 744 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 745 "must not lose alias info when matching");
duke@435 746 }
duke@435 747 }
duke@435 748 #endif
duke@435 749
duke@435 750
duke@435 751 //------------------------------MStack-----------------------------------------
duke@435 752 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 753 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 754 Visit, // visit node
duke@435 755 Post_Visit, // post-visit node
duke@435 756 Alt_Post_Visit // alternative post-visit path
duke@435 757 };
duke@435 758
duke@435 759 class MStack: public Node_Stack {
duke@435 760 public:
duke@435 761 MStack(int size) : Node_Stack(size) { }
duke@435 762
duke@435 763 void push(Node *n, Node_State ns) {
duke@435 764 Node_Stack::push(n, (uint)ns);
duke@435 765 }
duke@435 766 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 767 ++_inode_top;
duke@435 768 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 769 _inode_top->node = parent;
duke@435 770 _inode_top->indx = (uint)indx;
duke@435 771 ++_inode_top;
duke@435 772 _inode_top->node = n;
duke@435 773 _inode_top->indx = (uint)ns;
duke@435 774 }
duke@435 775 Node *parent() {
duke@435 776 pop();
duke@435 777 return node();
duke@435 778 }
duke@435 779 Node_State state() const {
duke@435 780 return (Node_State)index();
duke@435 781 }
duke@435 782 void set_state(Node_State ns) {
duke@435 783 set_index((uint)ns);
duke@435 784 }
duke@435 785 };
duke@435 786
duke@435 787
duke@435 788 //------------------------------xform------------------------------------------
duke@435 789 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 790 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 791 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 792 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 793 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 794 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 795 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 796
duke@435 797 while (mstack.is_nonempty()) {
duke@435 798 n = mstack.node(); // Leave node on stack
duke@435 799 Node_State nstate = mstack.state();
duke@435 800 if (nstate == Visit) {
duke@435 801 mstack.set_state(Post_Visit);
duke@435 802 Node *oldn = n;
duke@435 803 // Old-space or new-space check
duke@435 804 if (!C->node_arena()->contains(n)) {
duke@435 805 // Old space!
duke@435 806 Node* m;
duke@435 807 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 808 m = new_node(n);
duke@435 809 } else {
duke@435 810 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 811 // Calls match special. They match alone with no children.
duke@435 812 // Their children, the incoming arguments, match normally.
duke@435 813 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 814 if (C->failing()) return NULL;
duke@435 815 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 816 } else { // Nothing the matcher cares about
duke@435 817 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 818 // Convert to machine-dependent projection
duke@435 819 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
duke@435 820 if (m->in(0) != NULL) // m might be top
duke@435 821 collect_null_checks(m);
duke@435 822 } else { // Else just a regular 'ol guy
duke@435 823 m = n->clone(); // So just clone into new-space
duke@435 824 // Def-Use edges will be added incrementally as Uses
duke@435 825 // of this node are matched.
duke@435 826 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 827 }
duke@435 828 }
duke@435 829
duke@435 830 set_new_node(n, m); // Map old to new
duke@435 831 if (_old_node_note_array != NULL) {
duke@435 832 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 833 n->_idx);
duke@435 834 C->set_node_notes_at(m->_idx, nn);
duke@435 835 }
duke@435 836 debug_only(match_alias_type(C, n, m));
duke@435 837 }
duke@435 838 n = m; // n is now a new-space node
duke@435 839 mstack.set_node(n);
duke@435 840 }
duke@435 841
duke@435 842 // New space!
duke@435 843 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 844
duke@435 845 int i;
duke@435 846 // Put precedence edges on stack first (match them last).
duke@435 847 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 848 Node *m = oldn->in(i);
duke@435 849 if (m == NULL) break;
duke@435 850 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 851 mstack.push(m, Visit, n, -1);
duke@435 852 }
duke@435 853
duke@435 854 // For constant debug info, I'd rather have unmatched constants.
duke@435 855 int cnt = n->req();
duke@435 856 JVMState* jvms = n->jvms();
duke@435 857 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 858
duke@435 859 // Now do only debug info. Clone constants rather than matching.
duke@435 860 // Constants are represented directly in the debug info without
duke@435 861 // the need for executable machine instructions.
duke@435 862 // Monitor boxes are also represented directly.
duke@435 863 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 864 Node *m = n->in(i); // Get input
duke@435 865 int op = m->Opcode();
duke@435 866 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
duke@435 867 if( op == Op_ConI || op == Op_ConP ||
duke@435 868 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 869 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 870 ) {
duke@435 871 m = m->clone();
duke@435 872 mstack.push(m, Post_Visit, n, i); // Don't neet to visit
duke@435 873 mstack.push(m->in(0), Visit, m, 0);
duke@435 874 } else {
duke@435 875 mstack.push(m, Visit, n, i);
duke@435 876 }
duke@435 877 }
duke@435 878
duke@435 879 // And now walk his children, and convert his inputs to new-space.
duke@435 880 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 881 Node *m = n->in(i); // Get input
duke@435 882 if(m != NULL)
duke@435 883 mstack.push(m, Visit, n, i);
duke@435 884 }
duke@435 885
duke@435 886 }
duke@435 887 else if (nstate == Post_Visit) {
duke@435 888 // Set xformed input
duke@435 889 Node *p = mstack.parent();
duke@435 890 if (p != NULL) { // root doesn't have parent
duke@435 891 int i = (int)mstack.index();
duke@435 892 if (i >= 0)
duke@435 893 p->set_req(i, n); // required input
duke@435 894 else if (i == -1)
duke@435 895 p->add_prec(n); // precedence input
duke@435 896 else
duke@435 897 ShouldNotReachHere();
duke@435 898 }
duke@435 899 mstack.pop(); // remove processed node from stack
duke@435 900 }
duke@435 901 else {
duke@435 902 ShouldNotReachHere();
duke@435 903 }
duke@435 904 } // while (mstack.is_nonempty())
duke@435 905 return n; // Return new-space Node
duke@435 906 }
duke@435 907
duke@435 908 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 909 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 910 // Convert outgoing argument location to a pre-biased stack offset
duke@435 911 if (reg->is_stack()) {
duke@435 912 OptoReg::Name warped = reg->reg2stack();
duke@435 913 // Adjust the stack slot offset to be the register number used
duke@435 914 // by the allocator.
duke@435 915 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 916 // Keep track of the largest numbered stack slot used for an arg.
duke@435 917 // Largest used slot per call-site indicates the amount of stack
duke@435 918 // that is killed by the call.
duke@435 919 if( warped >= out_arg_limit_per_call )
duke@435 920 out_arg_limit_per_call = OptoReg::add(warped,1);
duke@435 921 if (!RegMask::can_represent(warped)) {
duke@435 922 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 923 return OptoReg::Bad;
duke@435 924 }
duke@435 925 return warped;
duke@435 926 }
duke@435 927 return OptoReg::as_OptoReg(reg);
duke@435 928 }
duke@435 929
duke@435 930
duke@435 931 //------------------------------match_sfpt-------------------------------------
duke@435 932 // Helper function to match call instructions. Calls match special.
duke@435 933 // They match alone with no children. Their children, the incoming
duke@435 934 // arguments, match normally.
duke@435 935 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 936 MachSafePointNode *msfpt = NULL;
duke@435 937 MachCallNode *mcall = NULL;
duke@435 938 uint cnt;
duke@435 939 // Split out case for SafePoint vs Call
duke@435 940 CallNode *call;
duke@435 941 const TypeTuple *domain;
duke@435 942 ciMethod* method = NULL;
duke@435 943 if( sfpt->is_Call() ) {
duke@435 944 call = sfpt->as_Call();
duke@435 945 domain = call->tf()->domain();
duke@435 946 cnt = domain->cnt();
duke@435 947
duke@435 948 // Match just the call, nothing else
duke@435 949 MachNode *m = match_tree(call);
duke@435 950 if (C->failing()) return NULL;
duke@435 951 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 952
duke@435 953 // Copy data from the Ideal SafePoint to the machine version
duke@435 954 mcall = m->as_MachCall();
duke@435 955
duke@435 956 mcall->set_tf( call->tf());
duke@435 957 mcall->set_entry_point(call->entry_point());
duke@435 958 mcall->set_cnt( call->cnt());
duke@435 959
duke@435 960 if( mcall->is_MachCallJava() ) {
duke@435 961 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 962 const CallJavaNode *call_java = call->as_CallJava();
duke@435 963 method = call_java->method();
duke@435 964 mcall_java->_method = method;
duke@435 965 mcall_java->_bci = call_java->_bci;
duke@435 966 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
duke@435 967 if( mcall_java->is_MachCallStaticJava() )
duke@435 968 mcall_java->as_MachCallStaticJava()->_name =
duke@435 969 call_java->as_CallStaticJava()->_name;
duke@435 970 if( mcall_java->is_MachCallDynamicJava() )
duke@435 971 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 972 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 973 }
duke@435 974 else if( mcall->is_MachCallRuntime() ) {
duke@435 975 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 976 }
duke@435 977 msfpt = mcall;
duke@435 978 }
duke@435 979 // This is a non-call safepoint
duke@435 980 else {
duke@435 981 call = NULL;
duke@435 982 domain = NULL;
duke@435 983 MachNode *mn = match_tree(sfpt);
duke@435 984 if (C->failing()) return NULL;
duke@435 985 msfpt = mn->as_MachSafePoint();
duke@435 986 cnt = TypeFunc::Parms;
duke@435 987 }
duke@435 988
duke@435 989 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 990 msfpt->set_adr_type(sfpt->adr_type());
duke@435 991
duke@435 992 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 993 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 994 // Empty them all.
duke@435 995 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 996
duke@435 997 // Do all the pre-defined non-Empty register masks
duke@435 998 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 999 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1000
duke@435 1001 // Place first outgoing argument can possibly be put.
duke@435 1002 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1003 assert( is_even(begin_out_arg_area), "" );
duke@435 1004 // Compute max outgoing register number per call site.
duke@435 1005 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1006 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1007 // These are usually backing store for register arguments for varargs.
duke@435 1008 if( call != NULL && call->is_CallRuntime() )
duke@435 1009 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1010
duke@435 1011
duke@435 1012 // Do the normal argument list (parameters) register masks
duke@435 1013 int argcnt = cnt - TypeFunc::Parms;
duke@435 1014 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1015 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1016 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1017 int i;
duke@435 1018 for( i = 0; i < argcnt; i++ ) {
duke@435 1019 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1020 }
duke@435 1021 // V-call to pick proper calling convention
duke@435 1022 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1023
duke@435 1024 #ifdef ASSERT
duke@435 1025 // Sanity check users' calling convention. Really handy during
duke@435 1026 // the initial porting effort. Fairly expensive otherwise.
duke@435 1027 { for (int i = 0; i<argcnt; i++) {
duke@435 1028 if( !parm_regs[i].first()->is_valid() &&
duke@435 1029 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1030 VMReg reg1 = parm_regs[i].first();
duke@435 1031 VMReg reg2 = parm_regs[i].second();
duke@435 1032 for (int j = 0; j < i; j++) {
duke@435 1033 if( !parm_regs[j].first()->is_valid() &&
duke@435 1034 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1035 VMReg reg3 = parm_regs[j].first();
duke@435 1036 VMReg reg4 = parm_regs[j].second();
duke@435 1037 if( !reg1->is_valid() ) {
duke@435 1038 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1039 } else if( !reg3->is_valid() ) {
duke@435 1040 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1041 } else {
duke@435 1042 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1043 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1044 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1045 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1046 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1047 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1048 }
duke@435 1049 }
duke@435 1050 }
duke@435 1051 }
duke@435 1052 #endif
duke@435 1053
duke@435 1054 // Visit each argument. Compute its outgoing register mask.
duke@435 1055 // Return results now can have 2 bits returned.
duke@435 1056 // Compute max over all outgoing arguments both per call-site
duke@435 1057 // and over the entire method.
duke@435 1058 for( i = 0; i < argcnt; i++ ) {
duke@435 1059 // Address of incoming argument mask to fill in
duke@435 1060 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1061 if( !parm_regs[i].first()->is_valid() &&
duke@435 1062 !parm_regs[i].second()->is_valid() ) {
duke@435 1063 continue; // Avoid Halves
duke@435 1064 }
duke@435 1065 // Grab first register, adjust stack slots and insert in mask.
duke@435 1066 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1067 if (OptoReg::is_valid(reg1))
duke@435 1068 rm->Insert( reg1 );
duke@435 1069 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1070 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1071 if (OptoReg::is_valid(reg2))
duke@435 1072 rm->Insert( reg2 );
duke@435 1073 } // End of for all arguments
duke@435 1074
duke@435 1075 // Compute number of stack slots needed to restore stack in case of
duke@435 1076 // Pascal-style argument popping.
duke@435 1077 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1078 }
duke@435 1079
duke@435 1080 // Compute the max stack slot killed by any call. These will not be
duke@435 1081 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1082 // after all call sites have been visited.
duke@435 1083 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1084 _out_arg_limit = out_arg_limit_per_call;
duke@435 1085
duke@435 1086 if (mcall) {
duke@435 1087 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1088 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1089 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1090 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1091 // this killed area.
duke@435 1092 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 1093 MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
duke@435 1094 if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1095 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1096 } else {
duke@435 1097 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1098 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1099 }
duke@435 1100 if( proj->_rout.is_NotEmpty() )
duke@435 1101 _proj_list.push(proj);
duke@435 1102 }
duke@435 1103 // Transfer the safepoint information from the call to the mcall
duke@435 1104 // Move the JVMState list
duke@435 1105 msfpt->set_jvms(sfpt->jvms());
duke@435 1106 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1107 jvms->set_map(sfpt);
duke@435 1108 }
duke@435 1109
duke@435 1110 // Debug inputs begin just after the last incoming parameter
duke@435 1111 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1112 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1113
duke@435 1114 // Move the OopMap
duke@435 1115 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1116
duke@435 1117 // Registers killed by the call are set in the local scheduling pass
duke@435 1118 // of Global Code Motion.
duke@435 1119 return msfpt;
duke@435 1120 }
duke@435 1121
duke@435 1122 //---------------------------match_tree----------------------------------------
duke@435 1123 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1124 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1125 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1126 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1127 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1128 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1129 assert( !n->is_block_start(), "cannot match" );
duke@435 1130 // Set the mark for all locally allocated State objects.
duke@435 1131 // When this call returns, the _states_arena arena will be reset
duke@435 1132 // freeing all State objects.
duke@435 1133 ResourceMark rm( &_states_arena );
duke@435 1134
duke@435 1135 LabelRootDepth = 0;
duke@435 1136
duke@435 1137 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1138 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
duke@435 1139
duke@435 1140 // State object for root node of match tree
duke@435 1141 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1142 State *s = new (&_states_arena) State;
duke@435 1143 s->_kids[0] = NULL;
duke@435 1144 s->_kids[1] = NULL;
duke@435 1145 s->_leaf = (Node*)n;
duke@435 1146 // Label the input tree, allocating labels from top-level arena
duke@435 1147 Label_Root( n, s, n->in(0), mem );
duke@435 1148 if (C->failing()) return NULL;
duke@435 1149
duke@435 1150 // The minimum cost match for the whole tree is found at the root State
duke@435 1151 uint mincost = max_juint;
duke@435 1152 uint cost = max_juint;
duke@435 1153 uint i;
duke@435 1154 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1155 if( s->valid(i) && // valid entry and
duke@435 1156 s->_cost[i] < cost && // low cost and
duke@435 1157 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1158 cost = s->_cost[mincost=i];
duke@435 1159 }
duke@435 1160 if (mincost == max_juint) {
duke@435 1161 #ifndef PRODUCT
duke@435 1162 tty->print("No matching rule for:");
duke@435 1163 s->dump();
duke@435 1164 #endif
duke@435 1165 Matcher::soft_match_failure();
duke@435 1166 return NULL;
duke@435 1167 }
duke@435 1168 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1169 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1170 #ifdef ASSERT
duke@435 1171 _old2new_map.map(n->_idx, m);
duke@435 1172 #endif
duke@435 1173
duke@435 1174 // Add any Matcher-ignored edges
duke@435 1175 uint cnt = n->req();
duke@435 1176 uint start = 1;
duke@435 1177 if( mem != (Node*)1 ) start = MemNode::Memory+1;
duke@435 1178 if( n->Opcode() == Op_AddP ) {
duke@435 1179 assert( mem == (Node*)1, "" );
duke@435 1180 start = AddPNode::Base+1;
duke@435 1181 }
duke@435 1182 for( i = start; i < cnt; i++ ) {
duke@435 1183 if( !n->match_edge(i) ) {
duke@435 1184 if( i < m->req() )
duke@435 1185 m->ins_req( i, n->in(i) );
duke@435 1186 else
duke@435 1187 m->add_req( n->in(i) );
duke@435 1188 }
duke@435 1189 }
duke@435 1190
duke@435 1191 return m;
duke@435 1192 }
duke@435 1193
duke@435 1194
duke@435 1195 //------------------------------match_into_reg---------------------------------
duke@435 1196 // Choose to either match this Node in a register or part of the current
duke@435 1197 // match tree. Return true for requiring a register and false for matching
duke@435 1198 // as part of the current match tree.
duke@435 1199 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1200
duke@435 1201 const Type *t = m->bottom_type();
duke@435 1202
duke@435 1203 if( t->singleton() ) {
duke@435 1204 // Never force constants into registers. Allow them to match as
duke@435 1205 // constants or registers. Copies of the same value will share
duke@435 1206 // the same register. See find_shared_constant.
duke@435 1207 return false;
duke@435 1208 } else { // Not a constant
duke@435 1209 // Stop recursion if they have different Controls.
duke@435 1210 // Slot 0 of constants is not really a Control.
duke@435 1211 if( control && m->in(0) && control != m->in(0) ) {
duke@435 1212
duke@435 1213 // Actually, we can live with the most conservative control we
duke@435 1214 // find, if it post-dominates the others. This allows us to
duke@435 1215 // pick up load/op/store trees where the load can float a little
duke@435 1216 // above the store.
duke@435 1217 Node *x = control;
duke@435 1218 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1219 uint j;
duke@435 1220 for( j=0; j<max_scan; j++ ) {
duke@435 1221 if( x->is_Region() ) // Bail out at merge points
duke@435 1222 return true;
duke@435 1223 x = x->in(0);
duke@435 1224 if( x == m->in(0) ) // Does 'control' post-dominate
duke@435 1225 break; // m->in(0)? If so, we can use it
duke@435 1226 }
duke@435 1227 if( j == max_scan ) // No post-domination before scan end?
duke@435 1228 return true; // Then break the match tree up
duke@435 1229 }
duke@435 1230 }
duke@435 1231
duke@435 1232 // Not forceably cloning. If shared, put it into a register.
duke@435 1233 return shared;
duke@435 1234 }
duke@435 1235
duke@435 1236
duke@435 1237 //------------------------------Instruction Selection--------------------------
duke@435 1238 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1239 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1240 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1241 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1242 // selected for this entire State tree.
duke@435 1243
duke@435 1244 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1245 // Store and the Load must have identical Memories (as well as identical
duke@435 1246 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1247 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1248 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1249 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1250 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1251 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1252 LabelRootDepth++;
duke@435 1253 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1254 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1255 return NULL;
duke@435 1256 }
duke@435 1257 uint care = 0; // Edges matcher cares about
duke@435 1258 uint cnt = n->req();
duke@435 1259 uint i = 0;
duke@435 1260
duke@435 1261 // Examine children for memory state
duke@435 1262 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1263 // is not modified along the path to another input.
duke@435 1264 // It is unsafe even if the other inputs are separate roots.
duke@435 1265 Node *input_mem = NULL;
duke@435 1266 for( i = 1; i < cnt; i++ ) {
duke@435 1267 if( !n->match_edge(i) ) continue;
duke@435 1268 Node *m = n->in(i); // Get ith input
duke@435 1269 assert( m, "expect non-null children" );
duke@435 1270 if( m->is_Load() ) {
duke@435 1271 if( input_mem == NULL ) {
duke@435 1272 input_mem = m->in(MemNode::Memory);
duke@435 1273 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1274 input_mem = NodeSentinel;
duke@435 1275 }
duke@435 1276 }
duke@435 1277 }
duke@435 1278
duke@435 1279 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1280 if( !n->match_edge(i) ) continue;
duke@435 1281 Node *m = n->in(i); // Get ith input
duke@435 1282 // Allocate states out of a private arena
duke@435 1283 State *s = new (&_states_arena) State;
duke@435 1284 svec->_kids[care++] = s;
duke@435 1285 assert( care <= 2, "binary only for now" );
duke@435 1286
duke@435 1287 // Recursively label the State tree.
duke@435 1288 s->_kids[0] = NULL;
duke@435 1289 s->_kids[1] = NULL;
duke@435 1290 s->_leaf = m;
duke@435 1291
duke@435 1292 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1293 // the current tree. If it finds any, that value is matched as a
duke@435 1294 // register operand. If not, then the normal matching is used.
duke@435 1295 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1296 //
duke@435 1297 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1298 // StoreNode and the load & store have different memories.
duke@435 1299 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1300 // Can NOT include the match of a subtree when its memory state
duke@435 1301 // is used by any of the other subtrees
duke@435 1302 (input_mem == NodeSentinel) ) {
duke@435 1303 #ifndef PRODUCT
duke@435 1304 // Print when we exclude matching due to different memory states at input-loads
duke@435 1305 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1306 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1307 tty->print_cr("invalid input_mem");
duke@435 1308 }
duke@435 1309 #endif
duke@435 1310 // Switch to a register-only opcode; this value must be in a register
duke@435 1311 // and cannot be subsumed as part of a larger instruction.
duke@435 1312 s->DFA( m->ideal_reg(), m );
duke@435 1313
duke@435 1314 } else {
duke@435 1315 // If match tree has no control and we do, adopt it for entire tree
duke@435 1316 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1317 control = m->in(0); // Pick up control
duke@435 1318 // Else match as a normal part of the match tree.
duke@435 1319 control = Label_Root(m,s,control,mem);
duke@435 1320 if (C->failing()) return NULL;
duke@435 1321 }
duke@435 1322 }
duke@435 1323
duke@435 1324
duke@435 1325 // Call DFA to match this node, and return
duke@435 1326 svec->DFA( n->Opcode(), n );
duke@435 1327
duke@435 1328 #ifdef ASSERT
duke@435 1329 uint x;
duke@435 1330 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1331 if( svec->valid(x) )
duke@435 1332 break;
duke@435 1333
duke@435 1334 if (x >= _LAST_MACH_OPER) {
duke@435 1335 n->dump();
duke@435 1336 svec->dump();
duke@435 1337 assert( false, "bad AD file" );
duke@435 1338 }
duke@435 1339 #endif
duke@435 1340 return control;
duke@435 1341 }
duke@435 1342
duke@435 1343
duke@435 1344 // Con nodes reduced using the same rule can share their MachNode
duke@435 1345 // which reduces the number of copies of a constant in the final
duke@435 1346 // program. The register allocator is free to split uses later to
duke@435 1347 // split live ranges.
duke@435 1348 MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
duke@435 1349 if (!leaf->is_Con()) return NULL;
duke@435 1350
duke@435 1351 // See if this Con has already been reduced using this rule.
duke@435 1352 if (_shared_constants.Size() <= leaf->_idx) return NULL;
duke@435 1353 MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
duke@435 1354 if (last != NULL && rule == last->rule()) {
duke@435 1355 // Get the new space root.
duke@435 1356 Node* xroot = new_node(C->root());
duke@435 1357 if (xroot == NULL) {
duke@435 1358 // This shouldn't happen give the order of matching.
duke@435 1359 return NULL;
duke@435 1360 }
duke@435 1361
duke@435 1362 // Shared constants need to have their control be root so they
duke@435 1363 // can be scheduled properly.
duke@435 1364 Node* control = last->in(0);
duke@435 1365 if (control != xroot) {
duke@435 1366 if (control == NULL || control == C->root()) {
duke@435 1367 last->set_req(0, xroot);
duke@435 1368 } else {
duke@435 1369 assert(false, "unexpected control");
duke@435 1370 return NULL;
duke@435 1371 }
duke@435 1372 }
duke@435 1373 return last;
duke@435 1374 }
duke@435 1375 return NULL;
duke@435 1376 }
duke@435 1377
duke@435 1378
duke@435 1379 //------------------------------ReduceInst-------------------------------------
duke@435 1380 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1381 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1382 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1383 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1384 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1385
duke@435 1386 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1387 // the recursion here. After building the MachNode, we need to recurse
duke@435 1388 // the tree checking for these cases:
duke@435 1389 // (1) Child is an instruction -
duke@435 1390 // Build the instruction (recursively), add it as an edge.
duke@435 1391 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1392 // (2) Child is an interior part of an instruction -
duke@435 1393 // Skip over it (do nothing)
duke@435 1394 // (3) Child is the start of a operand -
duke@435 1395 // Build the operand, place it inside the instruction
duke@435 1396 // Call ReduceOper.
duke@435 1397 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1398 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1399
duke@435 1400 MachNode* shared_con = find_shared_constant(s->_leaf, rule);
duke@435 1401 if (shared_con != NULL) {
duke@435 1402 return shared_con;
duke@435 1403 }
duke@435 1404
duke@435 1405 // Build the object to represent this state & prepare for recursive calls
duke@435 1406 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1407 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1408 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1409 Node *leaf = s->_leaf;
duke@435 1410 // Check for instruction or instruction chain rule
duke@435 1411 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
duke@435 1412 // Instruction
duke@435 1413 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1414 // Reduce interior of complex instruction
duke@435 1415 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1416 } else {
duke@435 1417 // Instruction chain rules are data-dependent on their inputs
duke@435 1418 mach->add_req(0); // Set initial control to none
duke@435 1419 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1420 }
duke@435 1421
duke@435 1422 // If a Memory was used, insert a Memory edge
duke@435 1423 if( mem != (Node*)1 )
duke@435 1424 mach->ins_req(MemNode::Memory,mem);
duke@435 1425
duke@435 1426 // If the _leaf is an AddP, insert the base edge
duke@435 1427 if( leaf->Opcode() == Op_AddP )
duke@435 1428 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
duke@435 1429
duke@435 1430 uint num_proj = _proj_list.size();
duke@435 1431
duke@435 1432 // Perform any 1-to-many expansions required
duke@435 1433 MachNode *ex = mach->Expand(s,_proj_list);
duke@435 1434 if( ex != mach ) {
duke@435 1435 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1436 if( ex->in(1)->is_Con() )
duke@435 1437 ex->in(1)->set_req(0, C->root());
duke@435 1438 // Remove old node from the graph
duke@435 1439 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1440 mach->set_req(i,NULL);
duke@435 1441 }
duke@435 1442 }
duke@435 1443
duke@435 1444 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1445 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1446 // and any further nodes generated by expand rules will be left hanging
duke@435 1447 // in space, and will not get emitted as output code. Catch this.
duke@435 1448 // Also, catch any new register allocation constraints ("projections")
duke@435 1449 // generated belatedly during spill code generation.
duke@435 1450 if (_allocation_started) {
duke@435 1451 guarantee(ex == mach, "no expand rules during spill generation");
duke@435 1452 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
duke@435 1453 }
duke@435 1454
duke@435 1455 if (leaf->is_Con()) {
duke@435 1456 // Record the con for sharing
duke@435 1457 _shared_constants.map(leaf->_idx, ex);
duke@435 1458 }
duke@435 1459
duke@435 1460 return ex;
duke@435 1461 }
duke@435 1462
duke@435 1463 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1464 // 'op' is what I am expecting to receive
duke@435 1465 int op = _leftOp[rule];
duke@435 1466 // Operand type to catch childs result
duke@435 1467 // This is what my child will give me.
duke@435 1468 int opnd_class_instance = s->_rule[op];
duke@435 1469 // Choose between operand class or not.
duke@435 1470 // This is what I will recieve.
duke@435 1471 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1472 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1473 int newrule = s->_rule[catch_op];
duke@435 1474
duke@435 1475 if( newrule < NUM_OPERANDS ) {
duke@435 1476 // Chain from operand or operand class, may be output of shared node
duke@435 1477 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1478 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1479 // Insert operand into array of operands for this instruction
duke@435 1480 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1481
duke@435 1482 ReduceOper( s, newrule, mem, mach );
duke@435 1483 } else {
duke@435 1484 // Chain from the result of an instruction
duke@435 1485 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1486 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1487 Node *mem1 = (Node*)1;
duke@435 1488 mach->add_req( ReduceInst(s, newrule, mem1) );
duke@435 1489 }
duke@435 1490 return;
duke@435 1491 }
duke@435 1492
duke@435 1493
duke@435 1494 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1495 if( s->_leaf->is_Load() ) {
duke@435 1496 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1497 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
duke@435 1498 mem = mem2;
duke@435 1499 }
duke@435 1500 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1501 if( mach->in(0) == NULL )
duke@435 1502 mach->set_req(0, s->_leaf->in(0));
duke@435 1503 }
duke@435 1504
duke@435 1505 // Now recursively walk the state tree & add operand list.
duke@435 1506 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1507 State *newstate = s->_kids[i];
duke@435 1508 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1509 // 'op' is what I am expecting to receive
duke@435 1510 int op;
duke@435 1511 if( i == 0 ) {
duke@435 1512 op = _leftOp[rule];
duke@435 1513 } else {
duke@435 1514 op = _rightOp[rule];
duke@435 1515 }
duke@435 1516 // Operand type to catch childs result
duke@435 1517 // This is what my child will give me.
duke@435 1518 int opnd_class_instance = newstate->_rule[op];
duke@435 1519 // Choose between operand class or not.
duke@435 1520 // This is what I will receive.
duke@435 1521 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1522 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1523 int newrule = newstate->_rule[catch_op];
duke@435 1524
duke@435 1525 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1526 // Operand/operandClass
duke@435 1527 // Insert operand into array of operands for this instruction
duke@435 1528 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1529 ReduceOper( newstate, newrule, mem, mach );
duke@435 1530
duke@435 1531 } else { // Child is internal operand or new instruction
duke@435 1532 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1533 // internal operand --> call ReduceInst_Interior
duke@435 1534 // Interior of complex instruction. Do nothing but recurse.
duke@435 1535 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1536 } else {
duke@435 1537 // instruction --> call build operand( ) to catch result
duke@435 1538 // --> ReduceInst( newrule )
duke@435 1539 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1540 Node *mem1 = (Node*)1;
duke@435 1541 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
duke@435 1542 }
duke@435 1543 }
duke@435 1544 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1545 }
duke@435 1546 return num_opnds;
duke@435 1547 }
duke@435 1548
duke@435 1549 // This routine walks the interior of possible complex operands.
duke@435 1550 // At each point we check our children in the match tree:
duke@435 1551 // (1) No children -
duke@435 1552 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1553 // (2) Child is an internal operand -
duke@435 1554 // Skip over it ( do nothing )
duke@435 1555 // (3) Child is an instruction -
duke@435 1556 // Call ReduceInst recursively and
duke@435 1557 // and instruction as an input to the MachNode
duke@435 1558 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1559 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1560 State *kid = s->_kids[0];
duke@435 1561 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1562
duke@435 1563 // Leaf? And not subsumed?
duke@435 1564 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1565 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1566 return; // Bail out
duke@435 1567 }
duke@435 1568
duke@435 1569 if( s->_leaf->is_Load() ) {
duke@435 1570 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1571 mem = s->_leaf->in(MemNode::Memory);
duke@435 1572 }
duke@435 1573 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1574 if( !mach->in(0) )
duke@435 1575 mach->set_req(0,s->_leaf->in(0));
duke@435 1576 else {
duke@435 1577 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1578 }
duke@435 1579 }
duke@435 1580
duke@435 1581 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1582 int newrule;
duke@435 1583 if( i == 0 )
duke@435 1584 newrule = kid->_rule[_leftOp[rule]];
duke@435 1585 else
duke@435 1586 newrule = kid->_rule[_rightOp[rule]];
duke@435 1587
duke@435 1588 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1589 // Internal operand; recurse but do nothing else
duke@435 1590 ReduceOper( kid, newrule, mem, mach );
duke@435 1591
duke@435 1592 } else { // Child is a new instruction
duke@435 1593 // Reduce the instruction, and add a direct pointer from this
duke@435 1594 // machine instruction to the newly reduced one.
duke@435 1595 Node *mem1 = (Node*)1;
duke@435 1596 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
duke@435 1597 }
duke@435 1598 }
duke@435 1599 }
duke@435 1600
duke@435 1601
duke@435 1602 // -------------------------------------------------------------------------
duke@435 1603 // Java-Java calling convention
duke@435 1604 // (what you use when Java calls Java)
duke@435 1605
duke@435 1606 //------------------------------find_receiver----------------------------------
duke@435 1607 // For a given signature, return the OptoReg for parameter 0.
duke@435 1608 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1609 VMRegPair regs;
duke@435 1610 BasicType sig_bt = T_OBJECT;
duke@435 1611 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1612 // Return argument 0 register. In the LP64 build pointers
duke@435 1613 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1614 return OptoReg::as_OptoReg(regs.first());
duke@435 1615 }
duke@435 1616
duke@435 1617 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1618 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1619 // defined in ad_<arch>.cpp
duke@435 1620
duke@435 1621
duke@435 1622 //------------------------------find_shared------------------------------------
duke@435 1623 // Set bits if Node is shared or otherwise a root
duke@435 1624 void Matcher::find_shared( Node *n ) {
duke@435 1625 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1626 MStack mstack(C->unique() * 2);
duke@435 1627 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1628 while (mstack.is_nonempty()) {
duke@435 1629 n = mstack.node(); // Leave node on stack
duke@435 1630 Node_State nstate = mstack.state();
duke@435 1631 if (nstate == Pre_Visit) {
duke@435 1632 if (is_visited(n)) { // Visited already?
duke@435 1633 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1634 // This causes it to match into a register for the sharing.
duke@435 1635 set_shared(n); // Flag as shared and
duke@435 1636 mstack.pop(); // remove node from stack
duke@435 1637 continue;
duke@435 1638 }
duke@435 1639 nstate = Visit; // Not already visited; so visit now
duke@435 1640 }
duke@435 1641 if (nstate == Visit) {
duke@435 1642 mstack.set_state(Post_Visit);
duke@435 1643 set_visited(n); // Flag as visited now
duke@435 1644 bool mem_op = false;
duke@435 1645
duke@435 1646 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 1647 case Op_Phi: // Treat Phis as shared roots
duke@435 1648 case Op_Parm:
duke@435 1649 case Op_Proj: // All handled specially during matching
kvn@498 1650 case Op_SafePointScalarObject:
duke@435 1651 set_shared(n);
duke@435 1652 set_dontcare(n);
duke@435 1653 break;
duke@435 1654 case Op_If:
duke@435 1655 case Op_CountedLoopEnd:
duke@435 1656 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1657 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1658 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1659 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1660 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1661 // as a constant here.
duke@435 1662 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1663 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1664 continue; // while (mstack.is_nonempty())
duke@435 1665 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1666 case Op_ConvI2F: // Load but not a following Store
duke@435 1667 if( n->in(1)->is_Load() && // Prior load
duke@435 1668 n->outcnt() == 1 && // Not already shared
duke@435 1669 n->unique_out()->is_Store() ) // Following store
duke@435 1670 set_shared(n); // Force it to be a root
duke@435 1671 break;
duke@435 1672 case Op_ReverseBytesI:
duke@435 1673 case Op_ReverseBytesL:
duke@435 1674 if( n->in(1)->is_Load() && // Prior load
duke@435 1675 n->outcnt() == 1 ) // Not already shared
duke@435 1676 set_shared(n); // Force it to be a root
duke@435 1677 break;
duke@435 1678 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1679 case Op_IfFalse:
duke@435 1680 case Op_IfTrue:
duke@435 1681 case Op_MachProj:
duke@435 1682 case Op_MergeMem:
duke@435 1683 case Op_Catch:
duke@435 1684 case Op_CatchProj:
duke@435 1685 case Op_CProj:
duke@435 1686 case Op_JumpProj:
duke@435 1687 case Op_JProj:
duke@435 1688 case Op_NeverBranch:
duke@435 1689 set_dontcare(n);
duke@435 1690 break;
duke@435 1691 case Op_Jump:
duke@435 1692 mstack.push(n->in(1), Visit); // Switch Value
duke@435 1693 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1694 continue; // while (mstack.is_nonempty())
duke@435 1695 case Op_StrComp:
duke@435 1696 set_shared(n); // Force result into register (it will be anyways)
duke@435 1697 break;
duke@435 1698 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1699 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1700 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1701 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1702 tn->set_type(TypePtr::NULL_PTR);
duke@435 1703 }
duke@435 1704 break;
duke@435 1705 }
duke@435 1706 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 1707 ShouldNotReachHere();
duke@435 1708 break;
duke@435 1709 case Op_StoreB: // Do match these, despite no ideal reg
duke@435 1710 case Op_StoreC:
duke@435 1711 case Op_StoreCM:
duke@435 1712 case Op_StoreD:
duke@435 1713 case Op_StoreF:
duke@435 1714 case Op_StoreI:
duke@435 1715 case Op_StoreL:
duke@435 1716 case Op_StoreP:
duke@435 1717 case Op_Store16B:
duke@435 1718 case Op_Store8B:
duke@435 1719 case Op_Store4B:
duke@435 1720 case Op_Store8C:
duke@435 1721 case Op_Store4C:
duke@435 1722 case Op_Store2C:
duke@435 1723 case Op_Store4I:
duke@435 1724 case Op_Store2I:
duke@435 1725 case Op_Store2L:
duke@435 1726 case Op_Store4F:
duke@435 1727 case Op_Store2F:
duke@435 1728 case Op_Store2D:
duke@435 1729 case Op_ClearArray:
duke@435 1730 case Op_SafePoint:
duke@435 1731 mem_op = true;
duke@435 1732 break;
duke@435 1733 case Op_LoadB:
duke@435 1734 case Op_LoadC:
duke@435 1735 case Op_LoadD:
duke@435 1736 case Op_LoadF:
duke@435 1737 case Op_LoadI:
duke@435 1738 case Op_LoadKlass:
duke@435 1739 case Op_LoadL:
duke@435 1740 case Op_LoadS:
duke@435 1741 case Op_LoadP:
duke@435 1742 case Op_LoadRange:
duke@435 1743 case Op_LoadD_unaligned:
duke@435 1744 case Op_LoadL_unaligned:
duke@435 1745 case Op_Load16B:
duke@435 1746 case Op_Load8B:
duke@435 1747 case Op_Load4B:
duke@435 1748 case Op_Load4C:
duke@435 1749 case Op_Load2C:
duke@435 1750 case Op_Load8C:
duke@435 1751 case Op_Load8S:
duke@435 1752 case Op_Load4S:
duke@435 1753 case Op_Load2S:
duke@435 1754 case Op_Load4I:
duke@435 1755 case Op_Load2I:
duke@435 1756 case Op_Load2L:
duke@435 1757 case Op_Load4F:
duke@435 1758 case Op_Load2F:
duke@435 1759 case Op_Load2D:
duke@435 1760 mem_op = true;
duke@435 1761 // Must be root of match tree due to prior load conflict
duke@435 1762 if( C->subsume_loads() == false ) {
duke@435 1763 set_shared(n);
duke@435 1764 }
duke@435 1765 // Fall into default case
duke@435 1766 default:
duke@435 1767 if( !n->ideal_reg() )
duke@435 1768 set_dontcare(n); // Unmatchable Nodes
duke@435 1769 } // end_switch
duke@435 1770
duke@435 1771 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 1772 Node *m = n->in(i); // Get ith input
duke@435 1773 if (m == NULL) continue; // Ignore NULLs
duke@435 1774 uint mop = m->Opcode();
duke@435 1775
duke@435 1776 // Must clone all producers of flags, or we will not match correctly.
duke@435 1777 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 1778 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 1779 // are also there, so we may match a float-branch to int-flags and
duke@435 1780 // expect the allocator to haul the flags from the int-side to the
duke@435 1781 // fp-side. No can do.
duke@435 1782 if( _must_clone[mop] ) {
duke@435 1783 mstack.push(m, Visit);
duke@435 1784 continue; // for(int i = ...)
duke@435 1785 }
duke@435 1786
duke@435 1787 // Clone addressing expressions as they are "free" in most instructions
duke@435 1788 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
duke@435 1789 Node *off = m->in(AddPNode::Offset);
duke@435 1790 if( off->is_Con() ) {
duke@435 1791 set_visited(m); // Flag as visited now
duke@435 1792 Node *adr = m->in(AddPNode::Address);
duke@435 1793
duke@435 1794 // Intel, ARM and friends can handle 2 adds in addressing mode
duke@435 1795 if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
duke@435 1796 // AtomicAdd is not an addressing expression.
duke@435 1797 // Cheap to find it by looking for screwy base.
duke@435 1798 !adr->in(AddPNode::Base)->is_top() ) {
duke@435 1799 set_visited(adr); // Flag as visited now
duke@435 1800 Node *shift = adr->in(AddPNode::Offset);
duke@435 1801 // Check for shift by small constant as well
duke@435 1802 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
duke@435 1803 shift->in(2)->get_int() <= 3 ) {
duke@435 1804 set_visited(shift); // Flag as visited now
duke@435 1805 mstack.push(shift->in(2), Visit);
duke@435 1806 #ifdef _LP64
duke@435 1807 // Allow Matcher to match the rule which bypass
duke@435 1808 // ConvI2L operation for an array index on LP64
duke@435 1809 // if the index value is positive.
duke@435 1810 if( shift->in(1)->Opcode() == Op_ConvI2L &&
duke@435 1811 shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
duke@435 1812 set_visited(shift->in(1)); // Flag as visited now
duke@435 1813 mstack.push(shift->in(1)->in(1), Pre_Visit);
duke@435 1814 } else
duke@435 1815 #endif
duke@435 1816 mstack.push(shift->in(1), Pre_Visit);
duke@435 1817 } else {
duke@435 1818 mstack.push(shift, Pre_Visit);
duke@435 1819 }
duke@435 1820 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 1821 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 1822 } else { // Sparc, Alpha, PPC and friends
duke@435 1823 mstack.push(adr, Pre_Visit);
duke@435 1824 }
duke@435 1825
duke@435 1826 // Clone X+offset as it also folds into most addressing expressions
duke@435 1827 mstack.push(off, Visit);
duke@435 1828 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 1829 continue; // for(int i = ...)
duke@435 1830 } // if( off->is_Con() )
duke@435 1831 } // if( mem_op &&
duke@435 1832 mstack.push(m, Pre_Visit);
duke@435 1833 } // for(int i = ...)
duke@435 1834 }
duke@435 1835 else if (nstate == Alt_Post_Visit) {
duke@435 1836 mstack.pop(); // Remove node from stack
duke@435 1837 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 1838 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 1839 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 1840 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 1841 // BoolNode::match_edge always returns a zero.
duke@435 1842
duke@435 1843 // We reorder the Op_If in a pre-order manner, so we can visit without
duke@435 1844 // accidently sharing the Cmp (the Bool and the If make 2 users).
duke@435 1845 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 1846 }
duke@435 1847 else if (nstate == Post_Visit) {
duke@435 1848 mstack.pop(); // Remove node from stack
duke@435 1849
duke@435 1850 // Now hack a few special opcodes
duke@435 1851 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 1852 case Op_StorePConditional:
duke@435 1853 case Op_StoreLConditional:
duke@435 1854 case Op_CompareAndSwapI:
duke@435 1855 case Op_CompareAndSwapL:
duke@435 1856 case Op_CompareAndSwapP: { // Convert trinary to binary-tree
duke@435 1857 Node *newval = n->in(MemNode::ValueIn );
duke@435 1858 Node *oldval = n->in(LoadStoreNode::ExpectedIn);
duke@435 1859 Node *pair = new (C, 3) BinaryNode( oldval, newval );
duke@435 1860 n->set_req(MemNode::ValueIn,pair);
duke@435 1861 n->del_req(LoadStoreNode::ExpectedIn);
duke@435 1862 break;
duke@435 1863 }
duke@435 1864 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 1865 case Op_CMoveF:
duke@435 1866 case Op_CMoveI:
duke@435 1867 case Op_CMoveL:
duke@435 1868 case Op_CMoveP: {
duke@435 1869 // Restructure into a binary tree for Matching. It's possible that
duke@435 1870 // we could move this code up next to the graph reshaping for IfNodes
duke@435 1871 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 1872 // 10/2/2000 CNC.
duke@435 1873 Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 1874 n->set_req(1,pair1);
duke@435 1875 Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
duke@435 1876 n->set_req(2,pair2);
duke@435 1877 n->del_req(3);
duke@435 1878 break;
duke@435 1879 }
duke@435 1880 default:
duke@435 1881 break;
duke@435 1882 }
duke@435 1883 }
duke@435 1884 else {
duke@435 1885 ShouldNotReachHere();
duke@435 1886 }
duke@435 1887 } // end of while (mstack.is_nonempty())
duke@435 1888 }
duke@435 1889
duke@435 1890 #ifdef ASSERT
duke@435 1891 // machine-independent root to machine-dependent root
duke@435 1892 void Matcher::dump_old2new_map() {
duke@435 1893 _old2new_map.dump();
duke@435 1894 }
duke@435 1895 #endif
duke@435 1896
duke@435 1897 //---------------------------collect_null_checks-------------------------------
duke@435 1898 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 1899 // it. Used by later implicit-null-check handling. Actually collects
duke@435 1900 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 1901 // value being tested.
duke@435 1902 void Matcher::collect_null_checks( Node *proj ) {
duke@435 1903 Node *iff = proj->in(0);
duke@435 1904 if( iff->Opcode() == Op_If ) {
duke@435 1905 // During matching If's have Bool & Cmp side-by-side
duke@435 1906 BoolNode *b = iff->in(1)->as_Bool();
duke@435 1907 Node *cmp = iff->in(2);
duke@435 1908 if( cmp->Opcode() == Op_CmpP ) {
duke@435 1909 if( cmp->in(2)->bottom_type() == TypePtr::NULL_PTR ) {
duke@435 1910
duke@435 1911 if( proj->Opcode() == Op_IfTrue ) {
duke@435 1912 extern int all_null_checks_found;
duke@435 1913 all_null_checks_found++;
duke@435 1914 if( b->_test._test == BoolTest::ne ) {
duke@435 1915 _null_check_tests.push(proj);
duke@435 1916 _null_check_tests.push(cmp->in(1));
duke@435 1917 }
duke@435 1918 } else {
duke@435 1919 assert( proj->Opcode() == Op_IfFalse, "" );
duke@435 1920 if( b->_test._test == BoolTest::eq ) {
duke@435 1921 _null_check_tests.push(proj);
duke@435 1922 _null_check_tests.push(cmp->in(1));
duke@435 1923 }
duke@435 1924 }
duke@435 1925 }
duke@435 1926 }
duke@435 1927 }
duke@435 1928 }
duke@435 1929
duke@435 1930 //---------------------------validate_null_checks------------------------------
duke@435 1931 // Its possible that the value being NULL checked is not the root of a match
duke@435 1932 // tree. If so, I cannot use the value in an implicit null check.
duke@435 1933 void Matcher::validate_null_checks( ) {
duke@435 1934 uint cnt = _null_check_tests.size();
duke@435 1935 for( uint i=0; i < cnt; i+=2 ) {
duke@435 1936 Node *test = _null_check_tests[i];
duke@435 1937 Node *val = _null_check_tests[i+1];
duke@435 1938 if (has_new_node(val)) {
duke@435 1939 // Is a match-tree root, so replace with the matched value
duke@435 1940 _null_check_tests.map(i+1, new_node(val));
duke@435 1941 } else {
duke@435 1942 // Yank from candidate list
duke@435 1943 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 1944 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 1945 _null_check_tests.pop();
duke@435 1946 _null_check_tests.pop();
duke@435 1947 i-=2;
duke@435 1948 }
duke@435 1949 }
duke@435 1950 }
duke@435 1951
duke@435 1952
duke@435 1953 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
duke@435 1954 // acting as an Acquire and thus we don't need an Acquire here. We
duke@435 1955 // retain the Node to act as a compiler ordering barrier.
duke@435 1956 bool Matcher::prior_fast_lock( const Node *acq ) {
duke@435 1957 Node *r = acq->in(0);
duke@435 1958 if( !r->is_Region() || r->req() <= 1 ) return false;
duke@435 1959 Node *proj = r->in(1);
duke@435 1960 if( !proj->is_Proj() ) return false;
duke@435 1961 Node *call = proj->in(0);
duke@435 1962 if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
duke@435 1963 return false;
duke@435 1964
duke@435 1965 return true;
duke@435 1966 }
duke@435 1967
duke@435 1968 // Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
duke@435 1969 // acting as a Release and thus we don't need a Release here. We
duke@435 1970 // retain the Node to act as a compiler ordering barrier.
duke@435 1971 bool Matcher::post_fast_unlock( const Node *rel ) {
duke@435 1972 Compile *C = Compile::current();
duke@435 1973 assert( rel->Opcode() == Op_MemBarRelease, "" );
duke@435 1974 const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
duke@435 1975 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 1976 Node *ctrl = NULL;
duke@435 1977 while( true ) {
duke@435 1978 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 1979 assert( ctrl->is_Proj(), "only projections here" );
duke@435 1980 ProjNode *proj = (ProjNode*)ctrl;
duke@435 1981 if( proj->_con == TypeFunc::Control &&
duke@435 1982 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 1983 break;
duke@435 1984 i++;
duke@435 1985 }
duke@435 1986 Node *iff = NULL;
duke@435 1987 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 1988 Node *x = ctrl->fast_out(j);
duke@435 1989 if( x->is_If() && x->req() > 1 &&
duke@435 1990 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 1991 iff = x;
duke@435 1992 break;
duke@435 1993 }
duke@435 1994 }
duke@435 1995 if( !iff ) return false;
duke@435 1996 Node *bol = iff->in(1);
duke@435 1997 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 1998 if (!bol->is_Bool()) return false;
duke@435 1999 assert( bol->req() > 1, "" );
duke@435 2000 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2001 }
duke@435 2002
duke@435 2003 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2004 // atomic instruction acting as a store_load barrier without any
duke@435 2005 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2006 // We retain the Node to act as a compiler ordering barrier.
duke@435 2007 bool Matcher::post_store_load_barrier(const Node *vmb) {
duke@435 2008 Compile *C = Compile::current();
duke@435 2009 assert( vmb->is_MemBar(), "" );
duke@435 2010 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
duke@435 2011 const MemBarNode *mem = (const MemBarNode*)vmb;
duke@435 2012
duke@435 2013 // Get the Proj node, ctrl, that can be used to iterate forward
duke@435 2014 Node *ctrl = NULL;
duke@435 2015 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2016 while( true ) {
duke@435 2017 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2018 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2019 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2020 if( proj->_con == TypeFunc::Control &&
duke@435 2021 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2022 break;
duke@435 2023 i++;
duke@435 2024 }
duke@435 2025
duke@435 2026 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2027 Node *x = ctrl->fast_out(j);
duke@435 2028 int xop = x->Opcode();
duke@435 2029
duke@435 2030 // We don't need current barrier if we see another or a lock
duke@435 2031 // before seeing volatile load.
duke@435 2032 //
duke@435 2033 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2034 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2035 // that a monitor exit operation contains a serializing instruction.
duke@435 2036
duke@435 2037 if (xop == Op_MemBarVolatile ||
duke@435 2038 xop == Op_FastLock ||
duke@435 2039 xop == Op_CompareAndSwapL ||
duke@435 2040 xop == Op_CompareAndSwapP ||
duke@435 2041 xop == Op_CompareAndSwapI)
duke@435 2042 return true;
duke@435 2043
duke@435 2044 if (x->is_MemBar()) {
duke@435 2045 // We must retain this membar if there is an upcoming volatile
duke@435 2046 // load, which will be preceded by acquire membar.
duke@435 2047 if (xop == Op_MemBarAcquire)
duke@435 2048 return false;
duke@435 2049 // For other kinds of barriers, check by pretending we
duke@435 2050 // are them, and seeing if we can be removed.
duke@435 2051 else
duke@435 2052 return post_store_load_barrier((const MemBarNode*)x);
duke@435 2053 }
duke@435 2054
duke@435 2055 // Delicate code to detect case of an upcoming fastlock block
duke@435 2056 if( x->is_If() && x->req() > 1 &&
duke@435 2057 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2058 Node *iff = x;
duke@435 2059 Node *bol = iff->in(1);
duke@435 2060 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2061 if (!bol->is_Bool()) return false;
duke@435 2062 assert( bol->req() > 1, "" );
duke@435 2063 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2064 }
duke@435 2065 // probably not necessary to check for these
duke@435 2066 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
duke@435 2067 return false;
duke@435 2068 }
duke@435 2069 return false;
duke@435 2070 }
duke@435 2071
duke@435 2072 //=============================================================================
duke@435 2073 //---------------------------State---------------------------------------------
duke@435 2074 State::State(void) {
duke@435 2075 #ifdef ASSERT
duke@435 2076 _id = 0;
duke@435 2077 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2078 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2079 //memset(_cost, -1, sizeof(_cost));
duke@435 2080 //memset(_rule, -1, sizeof(_rule));
duke@435 2081 #endif
duke@435 2082 memset(_valid, 0, sizeof(_valid));
duke@435 2083 }
duke@435 2084
duke@435 2085 #ifdef ASSERT
duke@435 2086 State::~State() {
duke@435 2087 _id = 99;
duke@435 2088 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2089 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2090 memset(_cost, -3, sizeof(_cost));
duke@435 2091 memset(_rule, -3, sizeof(_rule));
duke@435 2092 }
duke@435 2093 #endif
duke@435 2094
duke@435 2095 #ifndef PRODUCT
duke@435 2096 //---------------------------dump----------------------------------------------
duke@435 2097 void State::dump() {
duke@435 2098 tty->print("\n");
duke@435 2099 dump(0);
duke@435 2100 }
duke@435 2101
duke@435 2102 void State::dump(int depth) {
duke@435 2103 for( int j = 0; j < depth; j++ )
duke@435 2104 tty->print(" ");
duke@435 2105 tty->print("--N: ");
duke@435 2106 _leaf->dump();
duke@435 2107 uint i;
duke@435 2108 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2109 // Check for valid entry
duke@435 2110 if( valid(i) ) {
duke@435 2111 for( int j = 0; j < depth; j++ )
duke@435 2112 tty->print(" ");
duke@435 2113 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2114 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2115 tty->print_cr("%s %d %s",
duke@435 2116 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2117 }
duke@435 2118 tty->print_cr("");
duke@435 2119
duke@435 2120 for( i=0; i<2; i++ )
duke@435 2121 if( _kids[i] )
duke@435 2122 _kids[i]->dump(depth+1);
duke@435 2123 }
duke@435 2124 #endif

mercurial