src/share/vm/memory/cardTableModRefBS.cpp

Fri, 17 May 2013 06:01:10 +0200

author
jwilhelm
date
Fri, 17 May 2013 06:01:10 +0200
changeset 5125
2958af1d8c5a
parent 5103
f9be75d21404
child 5255
a837fa3d3f86
permissions
-rw-r--r--

Merge

duke@435 1 /*
minqi@5103 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "memory/space.inline.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
zgu@3900 36 #include "services/memTracker.hpp"
jprovino@4542 37 #include "utilities/macros.hpp"
stefank@2314 38 #ifdef COMPILER1
stefank@2314 39 #include "c1/c1_LIR.hpp"
stefank@2314 40 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 41 #endif
stefank@2314 42
duke@435 43 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 44 // enumerate ref fields that have been modified (since the last
duke@435 45 // enumeration.)
duke@435 46
duke@435 47 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 48 {
duke@435 49 // Add one for a guard card, used to detect errors.
duke@435 50 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 51 return words / card_size_in_words + 1;
duke@435 52 }
duke@435 53
duke@435 54 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 55 {
duke@435 56 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 57 "unitialized, check declaration order");
duke@435 58 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 59 const size_t granularity = os::vm_allocation_granularity();
duke@435 60 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 61 }
duke@435 62
duke@435 63 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 64 int max_covered_regions):
duke@435 65 ModRefBarrierSet(max_covered_regions),
duke@435 66 _whole_heap(whole_heap),
duke@435 67 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 68 _last_valid_index(_guard_index - 1),
jcoomes@456 69 _page_size(os::vm_page_size()),
duke@435 70 _byte_map_size(compute_byte_map_size())
duke@435 71 {
duke@435 72 _kind = BarrierSet::CardTableModRef;
duke@435 73
duke@435 74 HeapWord* low_bound = _whole_heap.start();
duke@435 75 HeapWord* high_bound = _whole_heap.end();
duke@435 76 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 77 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 78
duke@435 79 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 80
dcubed@4967 81 _covered = new MemRegion[max_covered_regions];
dcubed@4967 82 _committed = new MemRegion[max_covered_regions];
minqi@5103 83 if (_covered == NULL || _committed == NULL) {
duke@435 84 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 85 }
minqi@5103 86
dcubed@4967 87 _cur_covered_regions = 0;
duke@435 88 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 89 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 90 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
zgu@3900 91
zgu@3900 92 MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
zgu@3900 93
duke@435 94 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 95 _page_size, heap_rs.base(), heap_rs.size());
duke@435 96 if (!heap_rs.is_reserved()) {
duke@435 97 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 98 "card marking array");
duke@435 99 }
duke@435 100
duke@435 101 // The assember store_check code will do an unsigned shift of the oop,
duke@435 102 // then add it to byte_map_base, i.e.
duke@435 103 //
duke@435 104 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 105 _byte_map = (jbyte*) heap_rs.base();
duke@435 106 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 107 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 108 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 109
duke@435 110 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 111 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 112 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
duke@435 113 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
duke@435 114 // Do better than this for Merlin
ccheung@4993 115 vm_exit_out_of_memory(_page_size, OOM_MMAP_ERROR, "card table last card");
duke@435 116 }
zgu@3900 117
duke@435 118 *guard_card = last_card;
duke@435 119
duke@435 120 _lowest_non_clean =
zgu@3900 121 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions, mtGC);
duke@435 122 _lowest_non_clean_chunk_size =
zgu@3900 123 NEW_C_HEAP_ARRAY(size_t, max_covered_regions, mtGC);
duke@435 124 _lowest_non_clean_base_chunk_index =
zgu@3900 125 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions, mtGC);
duke@435 126 _last_LNC_resizing_collection =
zgu@3900 127 NEW_C_HEAP_ARRAY(int, max_covered_regions, mtGC);
duke@435 128 if (_lowest_non_clean == NULL
duke@435 129 || _lowest_non_clean_chunk_size == NULL
duke@435 130 || _lowest_non_clean_base_chunk_index == NULL
duke@435 131 || _last_LNC_resizing_collection == NULL)
duke@435 132 vm_exit_during_initialization("couldn't allocate an LNC array.");
minqi@5103 133 for (int i = 0; i < max_covered_regions; i++) {
duke@435 134 _lowest_non_clean[i] = NULL;
duke@435 135 _lowest_non_clean_chunk_size[i] = 0;
duke@435 136 _last_LNC_resizing_collection[i] = -1;
duke@435 137 }
duke@435 138
duke@435 139 if (TraceCardTableModRefBS) {
duke@435 140 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 141 gclog_or_tty->print_cr(" "
duke@435 142 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 143 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
duke@435 144 &_byte_map[0],
duke@435 145 &_byte_map[_last_valid_index]);
duke@435 146 gclog_or_tty->print_cr(" "
duke@435 147 " byte_map_base: " INTPTR_FORMAT,
duke@435 148 byte_map_base);
duke@435 149 }
duke@435 150 }
duke@435 151
minqi@5103 152 CardTableModRefBS::~CardTableModRefBS() {
minqi@5103 153 if (_covered) {
minqi@5103 154 delete[] _covered;
minqi@5103 155 _covered = NULL;
minqi@5103 156 }
minqi@5103 157 if (_committed) {
minqi@5103 158 delete[] _committed;
minqi@5103 159 _committed = NULL;
minqi@5103 160 }
minqi@5103 161 if (_lowest_non_clean) {
minqi@5103 162 FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
minqi@5103 163 _lowest_non_clean = NULL;
minqi@5103 164 }
minqi@5103 165 if (_lowest_non_clean_chunk_size) {
minqi@5103 166 FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
minqi@5103 167 _lowest_non_clean_chunk_size = NULL;
minqi@5103 168 }
minqi@5103 169 if (_lowest_non_clean_base_chunk_index) {
minqi@5103 170 FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
minqi@5103 171 _lowest_non_clean_base_chunk_index = NULL;
minqi@5103 172 }
minqi@5103 173 if (_last_LNC_resizing_collection) {
minqi@5103 174 FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
minqi@5103 175 _last_LNC_resizing_collection = NULL;
minqi@5103 176 }
minqi@5103 177 }
minqi@5103 178
duke@435 179 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 180 int i;
duke@435 181 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 182 if (_covered[i].start() == base) return i;
duke@435 183 if (_covered[i].start() > base) break;
duke@435 184 }
duke@435 185 // If we didn't find it, create a new one.
duke@435 186 assert(_cur_covered_regions < _max_covered_regions,
duke@435 187 "too many covered regions");
duke@435 188 // Move the ones above up, to maintain sorted order.
duke@435 189 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 190 _covered[j] = _covered[j-1];
duke@435 191 _committed[j] = _committed[j-1];
duke@435 192 }
duke@435 193 int res = i;
duke@435 194 _cur_covered_regions++;
duke@435 195 _covered[res].set_start(base);
duke@435 196 _covered[res].set_word_size(0);
duke@435 197 jbyte* ct_start = byte_for(base);
duke@435 198 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 199 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 200 _committed[res].set_word_size(0);
duke@435 201 return res;
duke@435 202 }
duke@435 203
duke@435 204 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 205 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 206 if (_covered[i].contains(addr)) {
duke@435 207 return i;
duke@435 208 }
duke@435 209 }
duke@435 210 assert(0, "address outside of heap?");
duke@435 211 return -1;
duke@435 212 }
duke@435 213
duke@435 214 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 215 HeapWord* max_end = NULL;
duke@435 216 for (int j = 0; j < ind; j++) {
duke@435 217 HeapWord* this_end = _committed[j].end();
duke@435 218 if (this_end > max_end) max_end = this_end;
duke@435 219 }
duke@435 220 return max_end;
duke@435 221 }
duke@435 222
duke@435 223 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 224 MemRegion mr) const {
duke@435 225 MemRegion result = mr;
duke@435 226 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 227 if (r != self) {
duke@435 228 result = result.minus(_committed[r]);
duke@435 229 }
duke@435 230 }
duke@435 231 // Never include the guard page.
duke@435 232 result = result.minus(_guard_region);
duke@435 233 return result;
duke@435 234 }
duke@435 235
duke@435 236 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 237 // We don't change the start of a region, only the end.
duke@435 238 assert(_whole_heap.contains(new_region),
duke@435 239 "attempt to cover area not in reserved area");
duke@435 240 debug_only(verify_guard();)
jmasa@643 241 // collided is true if the expansion would push into another committed region
jmasa@643 242 debug_only(bool collided = false;)
jmasa@441 243 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 244 MemRegion const old_region = _covered[ind];
duke@435 245 assert(old_region.start() == new_region.start(), "just checking");
duke@435 246 if (new_region.word_size() != old_region.word_size()) {
duke@435 247 // Commit new or uncommit old pages, if necessary.
duke@435 248 MemRegion cur_committed = _committed[ind];
duke@435 249 // Extend the end of this _commited region
duke@435 250 // to cover the end of any lower _committed regions.
duke@435 251 // This forms overlapping regions, but never interior regions.
jmasa@441 252 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 253 if (max_prev_end > cur_committed.end()) {
duke@435 254 cur_committed.set_end(max_prev_end);
duke@435 255 }
duke@435 256 // Align the end up to a page size (starts are already aligned).
jmasa@441 257 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 258 HeapWord* new_end_aligned =
jmasa@441 259 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 260 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 261 "align up, but less");
jmasa@1016 262 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 263 // the new_end_aligned does not intrude onto the committed
jmasa@1016 264 // space of another region.
jmasa@643 265 int ri = 0;
jmasa@643 266 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 267 if (ri != ind) {
jmasa@643 268 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 269 // The prior check included in the assert
jmasa@1016 270 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 271 // is redundant with the "contains" test.
jmasa@1016 272 // Any region containing the new end
jmasa@1016 273 // should start at or beyond the region found (ind)
jmasa@1016 274 // for the new end (committed regions are not expected to
jmasa@1016 275 // be proper subsets of other committed regions).
jmasa@1016 276 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 277 "New end of committed region is inconsistent");
jmasa@643 278 new_end_aligned = _committed[ri].start();
jmasa@1016 279 // new_end_aligned can be equal to the start of its
jmasa@1016 280 // committed region (i.e., of "ind") if a second
jmasa@1016 281 // region following "ind" also start at the same location
jmasa@1016 282 // as "ind".
jmasa@1016 283 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 284 "New end of committed region is before start");
jmasa@643 285 debug_only(collided = true;)
jmasa@643 286 // Should only collide with 1 region
jmasa@643 287 break;
jmasa@643 288 }
jmasa@643 289 }
jmasa@643 290 }
jmasa@643 291 #ifdef ASSERT
jmasa@643 292 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 293 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 294 "New end of committed region is in a second committed region");
jmasa@643 295 }
jmasa@643 296 #endif
duke@435 297 // The guard page is always committed and should not be committed over.
jmasa@1322 298 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 299 // that the would-be end of the new committed region would have
jmasa@1322 300 // penetrated the guard page.
jmasa@1322 301 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 302
jmasa@1322 303 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 304 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 305 new_end_for_commit = _guard_region.start();
jmasa@1322 306 DEBUG_ONLY(guarded = true;)
jmasa@1322 307 }
jmasa@643 308
duke@435 309 if (new_end_for_commit > cur_committed.end()) {
duke@435 310 // Must commit new pages.
jmasa@441 311 MemRegion const new_committed =
duke@435 312 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 313
duke@435 314 assert(!new_committed.is_empty(), "Region should not be empty here");
duke@435 315 if (!os::commit_memory((char*)new_committed.start(),
duke@435 316 new_committed.byte_size(), _page_size)) {
duke@435 317 // Do better than this for Merlin
ccheung@4993 318 vm_exit_out_of_memory(new_committed.byte_size(), OOM_MMAP_ERROR,
duke@435 319 "card table expansion");
duke@435 320 }
duke@435 321 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 322 // the cur_committed region may include the guard region.
duke@435 323 } else if (new_end_aligned < cur_committed.end()) {
duke@435 324 // Must uncommit pages.
jmasa@441 325 MemRegion const uncommit_region =
duke@435 326 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 327 cur_committed.end()));
duke@435 328 if (!uncommit_region.is_empty()) {
jmasa@1967 329 // It is not safe to uncommit cards if the boundary between
jmasa@1967 330 // the generations is moving. A shrink can uncommit cards
jmasa@1967 331 // owned by generation A but being used by generation B.
jmasa@1967 332 if (!UseAdaptiveGCBoundary) {
jmasa@1967 333 if (!os::uncommit_memory((char*)uncommit_region.start(),
jmasa@1967 334 uncommit_region.byte_size())) {
jmasa@1967 335 assert(false, "Card table contraction failed");
jmasa@1967 336 // The call failed so don't change the end of the
jmasa@1967 337 // committed region. This is better than taking the
jmasa@1967 338 // VM down.
jmasa@1967 339 new_end_aligned = _committed[ind].end();
jmasa@1967 340 }
jmasa@1967 341 } else {
jmasa@643 342 new_end_aligned = _committed[ind].end();
duke@435 343 }
duke@435 344 }
duke@435 345 }
duke@435 346 // In any case, we can reset the end of the current committed entry.
duke@435 347 _committed[ind].set_end(new_end_aligned);
duke@435 348
jmasa@1967 349 #ifdef ASSERT
jmasa@1967 350 // Check that the last card in the new region is committed according
jmasa@1967 351 // to the tables.
jmasa@1967 352 bool covered = false;
jmasa@1967 353 for (int cr = 0; cr < _cur_covered_regions; cr++) {
jmasa@1967 354 if (_committed[cr].contains(new_end - 1)) {
jmasa@1967 355 covered = true;
jmasa@1967 356 break;
jmasa@1967 357 }
jmasa@1967 358 }
jmasa@1967 359 assert(covered, "Card for end of new region not committed");
jmasa@1967 360 #endif
jmasa@1967 361
duke@435 362 // The default of 0 is not necessarily clean cards.
duke@435 363 jbyte* entry;
duke@435 364 if (old_region.last() < _whole_heap.start()) {
duke@435 365 entry = byte_for(_whole_heap.start());
duke@435 366 } else {
duke@435 367 entry = byte_after(old_region.last());
duke@435 368 }
swamyv@924 369 assert(index_for(new_region.last()) < _guard_index,
duke@435 370 "The guard card will be overwritten");
jmasa@643 371 // This line commented out cleans the newly expanded region and
jmasa@643 372 // not the aligned up expanded region.
jmasa@643 373 // jbyte* const end = byte_after(new_region.last());
jmasa@643 374 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 375 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 376 "Expect to be beyond new region unless impacting another region");
duke@435 377 // do nothing if we resized downward.
jmasa@643 378 #ifdef ASSERT
jmasa@643 379 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 380 if (ri != ind) {
jmasa@643 381 // The end of the new committed region should not
jmasa@643 382 // be in any existing region unless it matches
jmasa@643 383 // the start of the next region.
jmasa@643 384 assert(!_committed[ri].contains(end) ||
jmasa@643 385 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 386 "Overlapping committed regions");
jmasa@643 387 }
jmasa@643 388 }
jmasa@643 389 #endif
duke@435 390 if (entry < end) {
duke@435 391 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 392 }
duke@435 393 }
duke@435 394 // In any case, the covered size changes.
duke@435 395 _covered[ind].set_word_size(new_region.word_size());
duke@435 396 if (TraceCardTableModRefBS) {
duke@435 397 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 398 gclog_or_tty->print_cr(" "
duke@435 399 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 400 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 401 ind, _covered[ind].start(),
duke@435 402 ind, _covered[ind].last());
duke@435 403 gclog_or_tty->print_cr(" "
duke@435 404 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 405 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 406 ind, _committed[ind].start(),
duke@435 407 ind, _committed[ind].last());
duke@435 408 gclog_or_tty->print_cr(" "
duke@435 409 " byte_for(start): " INTPTR_FORMAT
duke@435 410 " byte_for(last): " INTPTR_FORMAT,
duke@435 411 byte_for(_covered[ind].start()),
duke@435 412 byte_for(_covered[ind].last()));
duke@435 413 gclog_or_tty->print_cr(" "
duke@435 414 " addr_for(start): " INTPTR_FORMAT
duke@435 415 " addr_for(last): " INTPTR_FORMAT,
duke@435 416 addr_for((jbyte*) _committed[ind].start()),
duke@435 417 addr_for((jbyte*) _committed[ind].last()));
duke@435 418 }
jmasa@1967 419 // Touch the last card of the covered region to show that it
jmasa@1967 420 // is committed (or SEGV).
jmasa@1967 421 debug_only(*byte_for(_covered[ind].last());)
duke@435 422 debug_only(verify_guard();)
duke@435 423 }
duke@435 424
duke@435 425 // Note that these versions are precise! The scanning code has to handle the
duke@435 426 // fact that the write barrier may be either precise or imprecise.
duke@435 427
coleenp@548 428 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
duke@435 429 inline_write_ref_field(field, newVal);
duke@435 430 }
duke@435 431
iveresov@1051 432 /*
iveresov@1051 433 Claimed and deferred bits are used together in G1 during the evacuation
iveresov@1051 434 pause. These bits can have the following state transitions:
iveresov@1051 435 1. The claimed bit can be put over any other card state. Except that
iveresov@1051 436 the "dirty -> dirty and claimed" transition is checked for in
iveresov@1051 437 G1 code and is not used.
iveresov@1051 438 2. Deferred bit can be set only if the previous state of the card
iveresov@1051 439 was either clean or claimed. mark_card_deferred() is wait-free.
iveresov@1051 440 We do not care if the operation is be successful because if
iveresov@1051 441 it does not it will only result in duplicate entry in the update
iveresov@1051 442 buffer because of the "cache-miss". So it's not worth spinning.
iveresov@1051 443 */
iveresov@1051 444
duke@435 445
ysr@777 446 bool CardTableModRefBS::claim_card(size_t card_index) {
ysr@777 447 jbyte val = _byte_map[card_index];
iveresov@1051 448 assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
iveresov@1051 449 while (val == clean_card_val() ||
iveresov@1051 450 (val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
iveresov@1051 451 jbyte new_val = val;
iveresov@1051 452 if (val == clean_card_val()) {
iveresov@1051 453 new_val = (jbyte)claimed_card_val();
iveresov@1051 454 } else {
iveresov@1051 455 new_val = val | (jbyte)claimed_card_val();
iveresov@1051 456 }
iveresov@1051 457 jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 458 if (res == val) {
ysr@777 459 return true;
iveresov@1051 460 }
iveresov@1051 461 val = res;
ysr@777 462 }
ysr@777 463 return false;
ysr@777 464 }
ysr@777 465
iveresov@1051 466 bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
iveresov@1051 467 jbyte val = _byte_map[card_index];
iveresov@1051 468 // It's already processed
iveresov@1051 469 if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
iveresov@1051 470 return false;
iveresov@1051 471 }
iveresov@1051 472 // Cached bit can be installed either on a clean card or on a claimed card.
iveresov@1051 473 jbyte new_val = val;
iveresov@1051 474 if (val == clean_card_val()) {
iveresov@1051 475 new_val = (jbyte)deferred_card_val();
iveresov@1051 476 } else {
iveresov@1051 477 if (val & claimed_card_val()) {
iveresov@1051 478 new_val = val | (jbyte)deferred_card_val();
iveresov@1051 479 }
iveresov@1051 480 }
iveresov@1051 481 if (new_val != val) {
iveresov@1051 482 Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 483 }
iveresov@1051 484 return true;
iveresov@1051 485 }
iveresov@1051 486
ysr@2819 487 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
ysr@2819 488 MemRegion mr,
ysr@2889 489 OopsInGenClosure* cl,
ysr@2889 490 CardTableRS* ct) {
duke@435 491 if (!mr.is_empty()) {
jmasa@3294 492 // Caller (process_strong_roots()) claims that all GC threads
jmasa@3294 493 // execute this call. With UseDynamicNumberOfGCThreads now all
jmasa@3294 494 // active GC threads execute this call. The number of active GC
jmasa@3294 495 // threads needs to be passed to par_non_clean_card_iterate_work()
jmasa@3294 496 // to get proper partitioning and termination.
jmasa@3294 497 //
jmasa@3294 498 // This is an example of where n_par_threads() is used instead
jmasa@3294 499 // of workers()->active_workers(). n_par_threads can be set to 0 to
jmasa@3294 500 // turn off parallelism. For example when this code is called as
jmasa@3294 501 // part of verification and SharedHeap::process_strong_roots() is being
jmasa@3294 502 // used, then n_par_threads() may have been set to 0. active_workers
jmasa@3294 503 // is not overloaded with the meaning that it is a switch to disable
jmasa@3294 504 // parallelism and so keeps the meaning of the number of
jmasa@3294 505 // active gc workers. If parallelism has not been shut off by
jmasa@3294 506 // setting n_par_threads to 0, then n_par_threads should be
jmasa@3294 507 // equal to active_workers. When a different mechanism for shutting
jmasa@3294 508 // off parallelism is used, then active_workers can be used in
jmasa@3294 509 // place of n_par_threads.
jmasa@3294 510 // This is an example of a path where n_par_threads is
jmasa@3294 511 // set to 0 to turn off parallism.
jmasa@3294 512 // [7] CardTableModRefBS::non_clean_card_iterate()
jmasa@3294 513 // [8] CardTableRS::younger_refs_in_space_iterate()
jmasa@3294 514 // [9] Generation::younger_refs_in_space_iterate()
jmasa@3294 515 // [10] OneContigSpaceCardGeneration::younger_refs_iterate()
jmasa@3294 516 // [11] CompactingPermGenGen::younger_refs_iterate()
jmasa@3294 517 // [12] CardTableRS::younger_refs_iterate()
jmasa@3294 518 // [13] SharedHeap::process_strong_roots()
jmasa@3294 519 // [14] G1CollectedHeap::verify()
jmasa@3294 520 // [15] Universe::verify()
jmasa@3294 521 // [16] G1CollectedHeap::do_collection_pause_at_safepoint()
jmasa@3294 522 //
jmasa@3294 523 int n_threads = SharedHeap::heap()->n_par_threads();
jmasa@3294 524 bool is_par = n_threads > 0;
jmasa@3294 525 if (is_par) {
jprovino@4542 526 #if INCLUDE_ALL_GCS
jmasa@3294 527 assert(SharedHeap::heap()->n_par_threads() ==
jmasa@3294 528 SharedHeap::heap()->workers()->active_workers(), "Mismatch");
ysr@2889 529 non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
jprovino@4542 530 #else // INCLUDE_ALL_GCS
duke@435 531 fatal("Parallel gc not supported here.");
jprovino@4542 532 #endif // INCLUDE_ALL_GCS
duke@435 533 } else {
ysr@2819 534 // We do not call the non_clean_card_iterate_serial() version below because
ysr@2819 535 // we want to clear the cards (which non_clean_card_iterate_serial() does not
ysr@2889 536 // do for us): clear_cl here does the work of finding contiguous dirty ranges
ysr@2889 537 // of cards to process and clear.
ysr@2889 538
ysr@2889 539 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
ysr@2889 540 cl->gen_boundary());
ysr@2889 541 ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
ysr@2889 542
ysr@2889 543 clear_cl.do_MemRegion(mr);
duke@435 544 }
duke@435 545 }
duke@435 546 }
duke@435 547
ysr@2819 548 // The iterator itself is not MT-aware, but
ysr@2819 549 // MT-aware callers and closures can use this to
ysr@2819 550 // accomplish dirty card iteration in parallel. The
ysr@2819 551 // iterator itself does not clear the dirty cards, or
ysr@2819 552 // change their values in any manner.
ysr@2819 553 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
ysr@2819 554 MemRegionClosure* cl) {
jmasa@3294 555 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 556 assert(!is_par ||
jmasa@3294 557 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 558 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 559 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 560 MemRegion mri = mr.intersection(_covered[i]);
duke@435 561 if (mri.word_size() > 0) {
duke@435 562 jbyte* cur_entry = byte_for(mri.last());
duke@435 563 jbyte* limit = byte_for(mri.start());
duke@435 564 while (cur_entry >= limit) {
duke@435 565 jbyte* next_entry = cur_entry - 1;
duke@435 566 if (*cur_entry != clean_card) {
duke@435 567 size_t non_clean_cards = 1;
duke@435 568 // Should the next card be included in this range of dirty cards.
duke@435 569 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 570 non_clean_cards++;
duke@435 571 cur_entry = next_entry;
duke@435 572 next_entry--;
duke@435 573 }
duke@435 574 // The memory region may not be on a card boundary. So that
duke@435 575 // objects beyond the end of the region are not processed, make
duke@435 576 // cur_cards precise with regard to the end of the memory region.
duke@435 577 MemRegion cur_cards(addr_for(cur_entry),
duke@435 578 non_clean_cards * card_size_in_words);
duke@435 579 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 580 cl->do_MemRegion(dirty_region);
duke@435 581 }
duke@435 582 cur_entry = next_entry;
duke@435 583 }
duke@435 584 }
duke@435 585 }
duke@435 586 }
duke@435 587
duke@435 588 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 589 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 590 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 591 jbyte* cur = byte_for(mr.start());
duke@435 592 jbyte* last = byte_after(mr.last());
duke@435 593 while (cur < last) {
duke@435 594 *cur = dirty_card;
duke@435 595 cur++;
duke@435 596 }
duke@435 597 }
duke@435 598
ysr@777 599 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 600 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 601 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 602 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 603 MemRegion mri = mr.intersection(_covered[i]);
duke@435 604 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 605 }
duke@435 606 }
duke@435 607
duke@435 608 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 609 // Be conservative: only clean cards entirely contained within the
duke@435 610 // region.
duke@435 611 jbyte* cur;
duke@435 612 if (mr.start() == _whole_heap.start()) {
duke@435 613 cur = byte_for(mr.start());
duke@435 614 } else {
duke@435 615 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 616 cur = byte_after(mr.start() - 1);
duke@435 617 }
duke@435 618 jbyte* last = byte_after(mr.last());
duke@435 619 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 620 }
duke@435 621
duke@435 622 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 623 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 624 MemRegion mri = mr.intersection(_covered[i]);
duke@435 625 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 626 }
duke@435 627 }
duke@435 628
ysr@777 629 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 630 jbyte* first = byte_for(mr.start());
ysr@777 631 jbyte* last = byte_after(mr.last());
ysr@777 632 memset(first, dirty_card, last-first);
ysr@777 633 }
ysr@777 634
ysr@2788 635 // Unlike several other card table methods, dirty_card_iterate()
ysr@2788 636 // iterates over dirty cards ranges in increasing address order.
duke@435 637 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 638 MemRegionClosure* cl) {
duke@435 639 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 640 MemRegion mri = mr.intersection(_covered[i]);
duke@435 641 if (!mri.is_empty()) {
duke@435 642 jbyte *cur_entry, *next_entry, *limit;
duke@435 643 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 644 cur_entry <= limit;
duke@435 645 cur_entry = next_entry) {
duke@435 646 next_entry = cur_entry + 1;
duke@435 647 if (*cur_entry == dirty_card) {
duke@435 648 size_t dirty_cards;
duke@435 649 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 650 for (dirty_cards = 1;
duke@435 651 next_entry <= limit && *next_entry == dirty_card;
duke@435 652 dirty_cards++, next_entry++);
duke@435 653 MemRegion cur_cards(addr_for(cur_entry),
duke@435 654 dirty_cards*card_size_in_words);
duke@435 655 cl->do_MemRegion(cur_cards);
duke@435 656 }
duke@435 657 }
duke@435 658 }
duke@435 659 }
duke@435 660 }
duke@435 661
ysr@777 662 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 663 bool reset,
ysr@777 664 int reset_val) {
duke@435 665 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 666 MemRegion mri = mr.intersection(_covered[i]);
duke@435 667 if (!mri.is_empty()) {
duke@435 668 jbyte* cur_entry, *next_entry, *limit;
duke@435 669 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 670 cur_entry <= limit;
duke@435 671 cur_entry = next_entry) {
duke@435 672 next_entry = cur_entry + 1;
duke@435 673 if (*cur_entry == dirty_card) {
duke@435 674 size_t dirty_cards;
duke@435 675 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 676 for (dirty_cards = 1;
duke@435 677 next_entry <= limit && *next_entry == dirty_card;
duke@435 678 dirty_cards++, next_entry++);
duke@435 679 MemRegion cur_cards(addr_for(cur_entry),
duke@435 680 dirty_cards*card_size_in_words);
ysr@777 681 if (reset) {
ysr@777 682 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 683 cur_entry[i] = reset_val;
ysr@777 684 }
duke@435 685 }
duke@435 686 return cur_cards;
duke@435 687 }
duke@435 688 }
duke@435 689 }
duke@435 690 }
duke@435 691 return MemRegion(mr.end(), mr.end());
duke@435 692 }
duke@435 693
duke@435 694 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 695 return card_size * os::vm_page_size();
duke@435 696 }
duke@435 697
duke@435 698 void CardTableModRefBS::verify_guard() {
duke@435 699 // For product build verification
duke@435 700 guarantee(_byte_map[_guard_index] == last_card,
duke@435 701 "card table guard has been modified");
duke@435 702 }
duke@435 703
duke@435 704 void CardTableModRefBS::verify() {
duke@435 705 verify_guard();
duke@435 706 }
duke@435 707
duke@435 708 #ifndef PRODUCT
tonyp@2849 709 void CardTableModRefBS::verify_region(MemRegion mr,
tonyp@2849 710 jbyte val, bool val_equals) {
tonyp@2849 711 jbyte* start = byte_for(mr.start());
tonyp@2849 712 jbyte* end = byte_for(mr.last());
tonyp@2849 713 bool failures = false;
tonyp@2849 714 for (jbyte* curr = start; curr <= end; ++curr) {
tonyp@2849 715 jbyte curr_val = *curr;
tonyp@2849 716 bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
tonyp@2849 717 if (failed) {
tonyp@2849 718 if (!failures) {
tonyp@2849 719 tty->cr();
mikael@4668 720 tty->print_cr("== CT verification failed: ["PTR_FORMAT","PTR_FORMAT"]", start, end);
tonyp@2849 721 tty->print_cr("== %sexpecting value: %d",
tonyp@2849 722 (val_equals) ? "" : "not ", val);
tonyp@2849 723 failures = true;
tonyp@2849 724 }
tonyp@2849 725 tty->print_cr("== card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
tonyp@2849 726 "val: %d", curr, addr_for(curr),
tonyp@2849 727 (HeapWord*) (((size_t) addr_for(curr)) + card_size),
tonyp@2849 728 (int) curr_val);
tonyp@2849 729 }
duke@435 730 }
tonyp@2849 731 guarantee(!failures, "there should not have been any failures");
duke@435 732 }
apetrusenko@1375 733
tonyp@2849 734 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
tonyp@2849 735 verify_region(mr, dirty_card, false /* val_equals */);
tonyp@2849 736 }
apetrusenko@1375 737
apetrusenko@1375 738 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
tonyp@2849 739 verify_region(mr, dirty_card, true /* val_equals */);
apetrusenko@1375 740 }
duke@435 741 #endif
duke@435 742
never@3687 743 void CardTableModRefBS::print_on(outputStream* st) const {
never@3687 744 st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
never@3687 745 _byte_map, _byte_map + _byte_map_size, byte_map_base);
never@3687 746 }
never@3687 747
duke@435 748 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 749 return
duke@435 750 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 751 _rs->is_prev_nonclean_card_val(cv);
duke@435 752 };
duke@435 753
duke@435 754 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 755 return
duke@435 756 cv != clean_card &&
duke@435 757 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 758 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 759 };

mercurial