src/share/vm/gc_implementation/g1/concurrentMark.cpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3900
d2a62e0f25eb
child 3924
3a431b605145
permissions
-rw-r--r--

Merge

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
tonyp@2968 27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
stefank@2314 28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
tonyp@3114 31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
brutisso@3710 32 #include "gc_implementation/g1/g1Log.hpp"
tonyp@2968 33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
stefank@2314 34 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@3416 35 #include "gc_implementation/g1/heapRegion.inline.hpp"
stefank@2314 36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
stefank@2314 37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
kamg@2445 38 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 39 #include "memory/genOopClosures.inline.hpp"
stefank@2314 40 #include "memory/referencePolicy.hpp"
stefank@2314 41 #include "memory/resourceArea.hpp"
stefank@2314 42 #include "oops/oop.inline.hpp"
stefank@2314 43 #include "runtime/handles.inline.hpp"
stefank@2314 44 #include "runtime/java.hpp"
zgu@3900 45 #include "services/memTracker.hpp"
ysr@777 46
brutisso@3455 47 // Concurrent marking bit map wrapper
ysr@777 48
johnc@3292 49 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
ysr@777 50 _bm((uintptr_t*)NULL,0),
ysr@777 51 _shifter(shifter) {
ysr@777 52 _bmStartWord = (HeapWord*)(rs.base());
ysr@777 53 _bmWordSize = rs.size()/HeapWordSize; // rs.size() is in bytes
ysr@777 54 ReservedSpace brs(ReservedSpace::allocation_align_size_up(
ysr@777 55 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
ysr@777 56
zgu@3900 57 MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
zgu@3900 58
brutisso@3455 59 guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
ysr@777 60 // For now we'll just commit all of the bit map up fromt.
ysr@777 61 // Later on we'll try to be more parsimonious with swap.
ysr@777 62 guarantee(_virtual_space.initialize(brs, brs.size()),
brutisso@3455 63 "couldn't reseve backing store for concurrent marking bit map");
ysr@777 64 assert(_virtual_space.committed_size() == brs.size(),
brutisso@3455 65 "didn't reserve backing store for all of concurrent marking bit map?");
ysr@777 66 _bm.set_map((uintptr_t*)_virtual_space.low());
ysr@777 67 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
ysr@777 68 _bmWordSize, "inconsistency in bit map sizing");
ysr@777 69 _bm.set_size(_bmWordSize >> _shifter);
ysr@777 70 }
ysr@777 71
ysr@777 72 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
ysr@777 73 HeapWord* limit) const {
ysr@777 74 // First we must round addr *up* to a possible object boundary.
ysr@777 75 addr = (HeapWord*)align_size_up((intptr_t)addr,
ysr@777 76 HeapWordSize << _shifter);
ysr@777 77 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 78 if (limit == NULL) {
tonyp@2973 79 limit = _bmStartWord + _bmWordSize;
tonyp@2973 80 }
ysr@777 81 size_t limitOffset = heapWordToOffset(limit);
ysr@777 82 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
ysr@777 83 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 84 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 85 assert(nextAddr == limit || isMarked(nextAddr),
ysr@777 86 "get_next_one postcondition");
ysr@777 87 return nextAddr;
ysr@777 88 }
ysr@777 89
ysr@777 90 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 91 HeapWord* limit) const {
ysr@777 92 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 93 if (limit == NULL) {
tonyp@2973 94 limit = _bmStartWord + _bmWordSize;
tonyp@2973 95 }
ysr@777 96 size_t limitOffset = heapWordToOffset(limit);
ysr@777 97 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
ysr@777 98 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 99 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 100 assert(nextAddr == limit || !isMarked(nextAddr),
ysr@777 101 "get_next_one postcondition");
ysr@777 102 return nextAddr;
ysr@777 103 }
ysr@777 104
ysr@777 105 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
ysr@777 106 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
ysr@777 107 return (int) (diff >> _shifter);
ysr@777 108 }
ysr@777 109
ysr@777 110 #ifndef PRODUCT
ysr@777 111 bool CMBitMapRO::covers(ReservedSpace rs) const {
ysr@777 112 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
kvn@1080 113 assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
ysr@777 114 "size inconsistency");
ysr@777 115 return _bmStartWord == (HeapWord*)(rs.base()) &&
ysr@777 116 _bmWordSize == rs.size()>>LogHeapWordSize;
ysr@777 117 }
ysr@777 118 #endif
ysr@777 119
ysr@777 120 void CMBitMap::clearAll() {
ysr@777 121 _bm.clear();
ysr@777 122 return;
ysr@777 123 }
ysr@777 124
ysr@777 125 void CMBitMap::markRange(MemRegion mr) {
ysr@777 126 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 127 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 128 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
ysr@777 129 ((HeapWord *) mr.end())),
ysr@777 130 "markRange memory region end is not card aligned");
ysr@777 131 // convert address range into offset range
ysr@777 132 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 133 heapWordToOffset(mr.end()), true);
ysr@777 134 }
ysr@777 135
ysr@777 136 void CMBitMap::clearRange(MemRegion mr) {
ysr@777 137 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 138 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 139 // convert address range into offset range
ysr@777 140 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 141 heapWordToOffset(mr.end()), false);
ysr@777 142 }
ysr@777 143
ysr@777 144 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
ysr@777 145 HeapWord* end_addr) {
ysr@777 146 HeapWord* start = getNextMarkedWordAddress(addr);
ysr@777 147 start = MIN2(start, end_addr);
ysr@777 148 HeapWord* end = getNextUnmarkedWordAddress(start);
ysr@777 149 end = MIN2(end, end_addr);
ysr@777 150 assert(start <= end, "Consistency check");
ysr@777 151 MemRegion mr(start, end);
ysr@777 152 if (!mr.is_empty()) {
ysr@777 153 clearRange(mr);
ysr@777 154 }
ysr@777 155 return mr;
ysr@777 156 }
ysr@777 157
ysr@777 158 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
ysr@777 159 _base(NULL), _cm(cm)
ysr@777 160 #ifdef ASSERT
ysr@777 161 , _drain_in_progress(false)
ysr@777 162 , _drain_in_progress_yields(false)
ysr@777 163 #endif
ysr@777 164 {}
ysr@777 165
ysr@777 166 void CMMarkStack::allocate(size_t size) {
zgu@3900 167 _base = NEW_C_HEAP_ARRAY(oop, size, mtGC);
tonyp@2973 168 if (_base == NULL) {
tonyp@3416 169 vm_exit_during_initialization("Failed to allocate CM region mark stack");
tonyp@2973 170 }
ysr@777 171 _index = 0;
ysr@777 172 _capacity = (jint) size;
tonyp@3416 173 _saved_index = -1;
ysr@777 174 NOT_PRODUCT(_max_depth = 0);
ysr@777 175 }
ysr@777 176
ysr@777 177 CMMarkStack::~CMMarkStack() {
tonyp@2973 178 if (_base != NULL) {
zgu@3900 179 FREE_C_HEAP_ARRAY(oop, _base, mtGC);
tonyp@2973 180 }
ysr@777 181 }
ysr@777 182
ysr@777 183 void CMMarkStack::par_push(oop ptr) {
ysr@777 184 while (true) {
ysr@777 185 if (isFull()) {
ysr@777 186 _overflow = true;
ysr@777 187 return;
ysr@777 188 }
ysr@777 189 // Otherwise...
ysr@777 190 jint index = _index;
ysr@777 191 jint next_index = index+1;
ysr@777 192 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 193 if (res == index) {
ysr@777 194 _base[index] = ptr;
ysr@777 195 // Note that we don't maintain this atomically. We could, but it
ysr@777 196 // doesn't seem necessary.
ysr@777 197 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 198 return;
ysr@777 199 }
ysr@777 200 // Otherwise, we need to try again.
ysr@777 201 }
ysr@777 202 }
ysr@777 203
ysr@777 204 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
ysr@777 205 while (true) {
ysr@777 206 if (isFull()) {
ysr@777 207 _overflow = true;
ysr@777 208 return;
ysr@777 209 }
ysr@777 210 // Otherwise...
ysr@777 211 jint index = _index;
ysr@777 212 jint next_index = index + n;
ysr@777 213 if (next_index > _capacity) {
ysr@777 214 _overflow = true;
ysr@777 215 return;
ysr@777 216 }
ysr@777 217 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 218 if (res == index) {
ysr@777 219 for (int i = 0; i < n; i++) {
ysr@777 220 int ind = index + i;
ysr@777 221 assert(ind < _capacity, "By overflow test above.");
ysr@777 222 _base[ind] = ptr_arr[i];
ysr@777 223 }
ysr@777 224 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 225 return;
ysr@777 226 }
ysr@777 227 // Otherwise, we need to try again.
ysr@777 228 }
ysr@777 229 }
ysr@777 230
ysr@777 231
ysr@777 232 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
ysr@777 233 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 234 jint start = _index;
ysr@777 235 jint next_index = start + n;
ysr@777 236 if (next_index > _capacity) {
ysr@777 237 _overflow = true;
ysr@777 238 return;
ysr@777 239 }
ysr@777 240 // Otherwise.
ysr@777 241 _index = next_index;
ysr@777 242 for (int i = 0; i < n; i++) {
ysr@777 243 int ind = start + i;
tonyp@1458 244 assert(ind < _capacity, "By overflow test above.");
ysr@777 245 _base[ind] = ptr_arr[i];
ysr@777 246 }
ysr@777 247 }
ysr@777 248
ysr@777 249
ysr@777 250 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
ysr@777 251 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 252 jint index = _index;
ysr@777 253 if (index == 0) {
ysr@777 254 *n = 0;
ysr@777 255 return false;
ysr@777 256 } else {
ysr@777 257 int k = MIN2(max, index);
ysr@777 258 jint new_ind = index - k;
ysr@777 259 for (int j = 0; j < k; j++) {
ysr@777 260 ptr_arr[j] = _base[new_ind + j];
ysr@777 261 }
ysr@777 262 _index = new_ind;
ysr@777 263 *n = k;
ysr@777 264 return true;
ysr@777 265 }
ysr@777 266 }
ysr@777 267
ysr@777 268 template<class OopClosureClass>
ysr@777 269 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
ysr@777 270 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
ysr@777 271 || SafepointSynchronize::is_at_safepoint(),
ysr@777 272 "Drain recursion must be yield-safe.");
ysr@777 273 bool res = true;
ysr@777 274 debug_only(_drain_in_progress = true);
ysr@777 275 debug_only(_drain_in_progress_yields = yield_after);
ysr@777 276 while (!isEmpty()) {
ysr@777 277 oop newOop = pop();
ysr@777 278 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
ysr@777 279 assert(newOop->is_oop(), "Expected an oop");
ysr@777 280 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
ysr@777 281 "only grey objects on this stack");
ysr@777 282 newOop->oop_iterate(cl);
ysr@777 283 if (yield_after && _cm->do_yield_check()) {
tonyp@2973 284 res = false;
tonyp@2973 285 break;
ysr@777 286 }
ysr@777 287 }
ysr@777 288 debug_only(_drain_in_progress = false);
ysr@777 289 return res;
ysr@777 290 }
ysr@777 291
tonyp@3416 292 void CMMarkStack::note_start_of_gc() {
tonyp@3416 293 assert(_saved_index == -1,
tonyp@3416 294 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
tonyp@3416 295 _saved_index = _index;
tonyp@3416 296 }
tonyp@3416 297
tonyp@3416 298 void CMMarkStack::note_end_of_gc() {
tonyp@3416 299 // This is intentionally a guarantee, instead of an assert. If we
tonyp@3416 300 // accidentally add something to the mark stack during GC, it
tonyp@3416 301 // will be a correctness issue so it's better if we crash. we'll
tonyp@3416 302 // only check this once per GC anyway, so it won't be a performance
tonyp@3416 303 // issue in any way.
tonyp@3416 304 guarantee(_saved_index == _index,
tonyp@3416 305 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 306 _saved_index = -1;
tonyp@3416 307 }
tonyp@3416 308
ysr@777 309 void CMMarkStack::oops_do(OopClosure* f) {
tonyp@3416 310 assert(_saved_index == _index,
tonyp@3416 311 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 312 for (int i = 0; i < _index; i += 1) {
ysr@777 313 f->do_oop(&_base[i]);
ysr@777 314 }
ysr@777 315 }
ysr@777 316
ysr@777 317 bool ConcurrentMark::not_yet_marked(oop obj) const {
ysr@777 318 return (_g1h->is_obj_ill(obj)
ysr@777 319 || (_g1h->is_in_permanent(obj)
ysr@777 320 && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
ysr@777 321 }
ysr@777 322
tonyp@3464 323 CMRootRegions::CMRootRegions() :
tonyp@3464 324 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
tonyp@3464 325 _should_abort(false), _next_survivor(NULL) { }
tonyp@3464 326
tonyp@3464 327 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
tonyp@3464 328 _young_list = g1h->young_list();
tonyp@3464 329 _cm = cm;
tonyp@3464 330 }
tonyp@3464 331
tonyp@3464 332 void CMRootRegions::prepare_for_scan() {
tonyp@3464 333 assert(!scan_in_progress(), "pre-condition");
tonyp@3464 334
tonyp@3464 335 // Currently, only survivors can be root regions.
tonyp@3464 336 assert(_next_survivor == NULL, "pre-condition");
tonyp@3464 337 _next_survivor = _young_list->first_survivor_region();
tonyp@3464 338 _scan_in_progress = (_next_survivor != NULL);
tonyp@3464 339 _should_abort = false;
tonyp@3464 340 }
tonyp@3464 341
tonyp@3464 342 HeapRegion* CMRootRegions::claim_next() {
tonyp@3464 343 if (_should_abort) {
tonyp@3464 344 // If someone has set the should_abort flag, we return NULL to
tonyp@3464 345 // force the caller to bail out of their loop.
tonyp@3464 346 return NULL;
tonyp@3464 347 }
tonyp@3464 348
tonyp@3464 349 // Currently, only survivors can be root regions.
tonyp@3464 350 HeapRegion* res = _next_survivor;
tonyp@3464 351 if (res != NULL) {
tonyp@3464 352 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 353 // Read it again in case it changed while we were waiting for the lock.
tonyp@3464 354 res = _next_survivor;
tonyp@3464 355 if (res != NULL) {
tonyp@3464 356 if (res == _young_list->last_survivor_region()) {
tonyp@3464 357 // We just claimed the last survivor so store NULL to indicate
tonyp@3464 358 // that we're done.
tonyp@3464 359 _next_survivor = NULL;
tonyp@3464 360 } else {
tonyp@3464 361 _next_survivor = res->get_next_young_region();
tonyp@3464 362 }
tonyp@3464 363 } else {
tonyp@3464 364 // Someone else claimed the last survivor while we were trying
tonyp@3464 365 // to take the lock so nothing else to do.
tonyp@3464 366 }
tonyp@3464 367 }
tonyp@3464 368 assert(res == NULL || res->is_survivor(), "post-condition");
tonyp@3464 369
tonyp@3464 370 return res;
tonyp@3464 371 }
tonyp@3464 372
tonyp@3464 373 void CMRootRegions::scan_finished() {
tonyp@3464 374 assert(scan_in_progress(), "pre-condition");
tonyp@3464 375
tonyp@3464 376 // Currently, only survivors can be root regions.
tonyp@3464 377 if (!_should_abort) {
tonyp@3464 378 assert(_next_survivor == NULL, "we should have claimed all survivors");
tonyp@3464 379 }
tonyp@3464 380 _next_survivor = NULL;
tonyp@3464 381
tonyp@3464 382 {
tonyp@3464 383 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 384 _scan_in_progress = false;
tonyp@3464 385 RootRegionScan_lock->notify_all();
tonyp@3464 386 }
tonyp@3464 387 }
tonyp@3464 388
tonyp@3464 389 bool CMRootRegions::wait_until_scan_finished() {
tonyp@3464 390 if (!scan_in_progress()) return false;
tonyp@3464 391
tonyp@3464 392 {
tonyp@3464 393 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 394 while (scan_in_progress()) {
tonyp@3464 395 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
tonyp@3464 396 }
tonyp@3464 397 }
tonyp@3464 398 return true;
tonyp@3464 399 }
tonyp@3464 400
ysr@777 401 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 402 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 403 #endif // _MSC_VER
ysr@777 404
jmasa@3357 405 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
jmasa@3357 406 return MAX2((n_par_threads + 2) / 4, 1U);
jmasa@3294 407 }
jmasa@3294 408
tonyp@3713 409 ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
ysr@777 410 _markBitMap1(rs, MinObjAlignment - 1),
ysr@777 411 _markBitMap2(rs, MinObjAlignment - 1),
ysr@777 412
ysr@777 413 _parallel_marking_threads(0),
jmasa@3294 414 _max_parallel_marking_threads(0),
ysr@777 415 _sleep_factor(0.0),
ysr@777 416 _marking_task_overhead(1.0),
ysr@777 417 _cleanup_sleep_factor(0.0),
ysr@777 418 _cleanup_task_overhead(1.0),
tonyp@2472 419 _cleanup_list("Cleanup List"),
tonyp@3713 420 _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
ysr@777 421 _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
ysr@777 422 CardTableModRefBS::card_shift,
ysr@777 423 false /* in_resource_area*/),
johnc@3463 424
ysr@777 425 _prevMarkBitMap(&_markBitMap1),
ysr@777 426 _nextMarkBitMap(&_markBitMap2),
ysr@777 427
ysr@777 428 _markStack(this),
ysr@777 429 // _finger set in set_non_marking_state
ysr@777 430
jmasa@3357 431 _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
ysr@777 432 // _active_tasks set in set_non_marking_state
ysr@777 433 // _tasks set inside the constructor
ysr@777 434 _task_queues(new CMTaskQueueSet((int) _max_task_num)),
ysr@777 435 _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
ysr@777 436
ysr@777 437 _has_overflown(false),
ysr@777 438 _concurrent(false),
tonyp@1054 439 _has_aborted(false),
tonyp@1054 440 _restart_for_overflow(false),
tonyp@1054 441 _concurrent_marking_in_progress(false),
ysr@777 442
ysr@777 443 // _verbose_level set below
ysr@777 444
ysr@777 445 _init_times(),
ysr@777 446 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
ysr@777 447 _cleanup_times(),
ysr@777 448 _total_counting_time(0.0),
ysr@777 449 _total_rs_scrub_time(0.0),
johnc@3463 450
johnc@3463 451 _parallel_workers(NULL),
johnc@3463 452
johnc@3463 453 _count_card_bitmaps(NULL),
johnc@3463 454 _count_marked_bytes(NULL) {
tonyp@2973 455 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
tonyp@2973 456 if (verbose_level < no_verbose) {
ysr@777 457 verbose_level = no_verbose;
tonyp@2973 458 }
tonyp@2973 459 if (verbose_level > high_verbose) {
ysr@777 460 verbose_level = high_verbose;
tonyp@2973 461 }
ysr@777 462 _verbose_level = verbose_level;
ysr@777 463
tonyp@2973 464 if (verbose_low()) {
ysr@777 465 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
ysr@777 466 "heap end = "PTR_FORMAT, _heap_start, _heap_end);
tonyp@2973 467 }
ysr@777 468
jmasa@1719 469 _markStack.allocate(MarkStackSize);
ysr@777 470
ysr@777 471 // Create & start a ConcurrentMark thread.
ysr@1280 472 _cmThread = new ConcurrentMarkThread(this);
ysr@1280 473 assert(cmThread() != NULL, "CM Thread should have been created");
ysr@1280 474 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
ysr@1280 475
ysr@777 476 _g1h = G1CollectedHeap::heap();
ysr@777 477 assert(CGC_lock != NULL, "Where's the CGC_lock?");
ysr@777 478 assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
ysr@777 479 assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
ysr@777 480
ysr@777 481 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@1717 482 satb_qs.set_buffer_size(G1SATBBufferSize);
ysr@777 483
tonyp@3464 484 _root_regions.init(_g1h, this);
tonyp@3464 485
zgu@3900 486 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num, mtGC);
zgu@3900 487 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num, mtGC);
zgu@3900 488
zgu@3900 489 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_task_num, mtGC);
zgu@3900 490 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num, mtGC);
johnc@3463 491
johnc@3463 492 BitMap::idx_t card_bm_size = _card_bm.size();
johnc@3463 493
ysr@777 494 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
ysr@777 495 _active_tasks = _max_task_num;
ysr@777 496 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 497 CMTaskQueue* task_queue = new CMTaskQueue();
ysr@777 498 task_queue->initialize();
ysr@777 499 _task_queues->register_queue(i, task_queue);
ysr@777 500
johnc@3463 501 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
zgu@3900 502 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions, mtGC);
johnc@3463 503
johnc@3463 504 _tasks[i] = new CMTask(i, this,
johnc@3463 505 _count_marked_bytes[i],
johnc@3463 506 &_count_card_bitmaps[i],
johnc@3463 507 task_queue, _task_queues);
johnc@3463 508
ysr@777 509 _accum_task_vtime[i] = 0.0;
ysr@777 510 }
ysr@777 511
johnc@3463 512 // Calculate the card number for the bottom of the heap. Used
johnc@3463 513 // in biasing indexes into the accounting card bitmaps.
johnc@3463 514 _heap_bottom_card_num =
johnc@3463 515 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
johnc@3463 516 CardTableModRefBS::card_shift);
johnc@3463 517
johnc@3463 518 // Clear all the liveness counting data
johnc@3463 519 clear_all_count_data();
johnc@3463 520
jmasa@1719 521 if (ConcGCThreads > ParallelGCThreads) {
jmasa@1719 522 vm_exit_during_initialization("Can't have more ConcGCThreads "
ysr@777 523 "than ParallelGCThreads.");
ysr@777 524 }
ysr@777 525 if (ParallelGCThreads == 0) {
ysr@777 526 // if we are not running with any parallel GC threads we will not
ysr@777 527 // spawn any marking threads either
jmasa@3294 528 _parallel_marking_threads = 0;
jmasa@3294 529 _max_parallel_marking_threads = 0;
jmasa@3294 530 _sleep_factor = 0.0;
jmasa@3294 531 _marking_task_overhead = 1.0;
ysr@777 532 } else {
jmasa@1719 533 if (ConcGCThreads > 0) {
jmasa@1719 534 // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
ysr@777 535 // if both are set
ysr@777 536
jmasa@3357 537 _parallel_marking_threads = (uint) ConcGCThreads;
jmasa@3294 538 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 539 _sleep_factor = 0.0;
ysr@777 540 _marking_task_overhead = 1.0;
johnc@1186 541 } else if (G1MarkingOverheadPercent > 0) {
ysr@777 542 // we will calculate the number of parallel marking threads
ysr@777 543 // based on a target overhead with respect to the soft real-time
ysr@777 544 // goal
ysr@777 545
johnc@1186 546 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
ysr@777 547 double overall_cm_overhead =
johnc@1186 548 (double) MaxGCPauseMillis * marking_overhead /
johnc@1186 549 (double) GCPauseIntervalMillis;
ysr@777 550 double cpu_ratio = 1.0 / (double) os::processor_count();
ysr@777 551 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
ysr@777 552 double marking_task_overhead =
ysr@777 553 overall_cm_overhead / marking_thread_num *
ysr@777 554 (double) os::processor_count();
ysr@777 555 double sleep_factor =
ysr@777 556 (1.0 - marking_task_overhead) / marking_task_overhead;
ysr@777 557
jmasa@3357 558 _parallel_marking_threads = (uint) marking_thread_num;
jmasa@3294 559 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 560 _sleep_factor = sleep_factor;
ysr@777 561 _marking_task_overhead = marking_task_overhead;
ysr@777 562 } else {
jmasa@3357 563 _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
jmasa@3294 564 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 565 _sleep_factor = 0.0;
ysr@777 566 _marking_task_overhead = 1.0;
ysr@777 567 }
ysr@777 568
tonyp@2973 569 if (parallel_marking_threads() > 1) {
ysr@777 570 _cleanup_task_overhead = 1.0;
tonyp@2973 571 } else {
ysr@777 572 _cleanup_task_overhead = marking_task_overhead();
tonyp@2973 573 }
ysr@777 574 _cleanup_sleep_factor =
ysr@777 575 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
ysr@777 576
ysr@777 577 #if 0
ysr@777 578 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
ysr@777 579 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
ysr@777 580 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
ysr@777 581 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
ysr@777 582 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
ysr@777 583 #endif
ysr@777 584
tonyp@1458 585 guarantee(parallel_marking_threads() > 0, "peace of mind");
jmasa@2188 586 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
jmasa@3357 587 _max_parallel_marking_threads, false, true);
jmasa@2188 588 if (_parallel_workers == NULL) {
ysr@777 589 vm_exit_during_initialization("Failed necessary allocation.");
jmasa@2188 590 } else {
jmasa@2188 591 _parallel_workers->initialize_workers();
jmasa@2188 592 }
ysr@777 593 }
ysr@777 594
ysr@777 595 // so that the call below can read a sensible value
ysr@777 596 _heap_start = (HeapWord*) rs.base();
ysr@777 597 set_non_marking_state();
ysr@777 598 }
ysr@777 599
ysr@777 600 void ConcurrentMark::update_g1_committed(bool force) {
ysr@777 601 // If concurrent marking is not in progress, then we do not need to
tonyp@3691 602 // update _heap_end.
tonyp@2973 603 if (!concurrent_marking_in_progress() && !force) return;
ysr@777 604
ysr@777 605 MemRegion committed = _g1h->g1_committed();
tonyp@1458 606 assert(committed.start() == _heap_start, "start shouldn't change");
ysr@777 607 HeapWord* new_end = committed.end();
ysr@777 608 if (new_end > _heap_end) {
ysr@777 609 // The heap has been expanded.
ysr@777 610
ysr@777 611 _heap_end = new_end;
ysr@777 612 }
ysr@777 613 // Notice that the heap can also shrink. However, this only happens
ysr@777 614 // during a Full GC (at least currently) and the entire marking
ysr@777 615 // phase will bail out and the task will not be restarted. So, let's
ysr@777 616 // do nothing.
ysr@777 617 }
ysr@777 618
ysr@777 619 void ConcurrentMark::reset() {
ysr@777 620 // Starting values for these two. This should be called in a STW
ysr@777 621 // phase. CM will be notified of any future g1_committed expansions
ysr@777 622 // will be at the end of evacuation pauses, when tasks are
ysr@777 623 // inactive.
ysr@777 624 MemRegion committed = _g1h->g1_committed();
ysr@777 625 _heap_start = committed.start();
ysr@777 626 _heap_end = committed.end();
ysr@777 627
tonyp@1458 628 // Separated the asserts so that we know which one fires.
tonyp@1458 629 assert(_heap_start != NULL, "heap bounds should look ok");
tonyp@1458 630 assert(_heap_end != NULL, "heap bounds should look ok");
tonyp@1458 631 assert(_heap_start < _heap_end, "heap bounds should look ok");
ysr@777 632
ysr@777 633 // reset all the marking data structures and any necessary flags
ysr@777 634 clear_marking_state();
ysr@777 635
tonyp@2973 636 if (verbose_low()) {
ysr@777 637 gclog_or_tty->print_cr("[global] resetting");
tonyp@2973 638 }
ysr@777 639
ysr@777 640 // We do reset all of them, since different phases will use
ysr@777 641 // different number of active threads. So, it's easiest to have all
ysr@777 642 // of them ready.
johnc@2190 643 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 644 _tasks[i]->reset(_nextMarkBitMap);
johnc@2190 645 }
ysr@777 646
ysr@777 647 // we need this to make sure that the flag is on during the evac
ysr@777 648 // pause with initial mark piggy-backed
ysr@777 649 set_concurrent_marking_in_progress();
ysr@777 650 }
ysr@777 651
jmasa@3357 652 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
tonyp@1458 653 assert(active_tasks <= _max_task_num, "we should not have more");
ysr@777 654
ysr@777 655 _active_tasks = active_tasks;
ysr@777 656 // Need to update the three data structures below according to the
ysr@777 657 // number of active threads for this phase.
ysr@777 658 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
ysr@777 659 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 660 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 661
ysr@777 662 _concurrent = concurrent;
ysr@777 663 // We propagate this to all tasks, not just the active ones.
ysr@777 664 for (int i = 0; i < (int) _max_task_num; ++i)
ysr@777 665 _tasks[i]->set_concurrent(concurrent);
ysr@777 666
ysr@777 667 if (concurrent) {
ysr@777 668 set_concurrent_marking_in_progress();
ysr@777 669 } else {
ysr@777 670 // We currently assume that the concurrent flag has been set to
ysr@777 671 // false before we start remark. At this point we should also be
ysr@777 672 // in a STW phase.
tonyp@1458 673 assert(!concurrent_marking_in_progress(), "invariant");
tonyp@1458 674 assert(_finger == _heap_end, "only way to get here");
ysr@777 675 update_g1_committed(true);
ysr@777 676 }
ysr@777 677 }
ysr@777 678
ysr@777 679 void ConcurrentMark::set_non_marking_state() {
ysr@777 680 // We set the global marking state to some default values when we're
ysr@777 681 // not doing marking.
ysr@777 682 clear_marking_state();
ysr@777 683 _active_tasks = 0;
ysr@777 684 clear_concurrent_marking_in_progress();
ysr@777 685 }
ysr@777 686
ysr@777 687 ConcurrentMark::~ConcurrentMark() {
stefank@3364 688 // The ConcurrentMark instance is never freed.
stefank@3364 689 ShouldNotReachHere();
ysr@777 690 }
ysr@777 691
ysr@777 692 void ConcurrentMark::clearNextBitmap() {
tonyp@1794 693 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@1794 694 G1CollectorPolicy* g1p = g1h->g1_policy();
tonyp@1794 695
tonyp@1794 696 // Make sure that the concurrent mark thread looks to still be in
tonyp@1794 697 // the current cycle.
tonyp@1794 698 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 699
tonyp@1794 700 // We are finishing up the current cycle by clearing the next
tonyp@1794 701 // marking bitmap and getting it ready for the next cycle. During
tonyp@1794 702 // this time no other cycle can start. So, let's make sure that this
tonyp@1794 703 // is the case.
tonyp@1794 704 guarantee(!g1h->mark_in_progress(), "invariant");
tonyp@1794 705
tonyp@1794 706 // clear the mark bitmap (no grey objects to start with).
tonyp@1794 707 // We need to do this in chunks and offer to yield in between
tonyp@1794 708 // each chunk.
tonyp@1794 709 HeapWord* start = _nextMarkBitMap->startWord();
tonyp@1794 710 HeapWord* end = _nextMarkBitMap->endWord();
tonyp@1794 711 HeapWord* cur = start;
tonyp@1794 712 size_t chunkSize = M;
tonyp@1794 713 while (cur < end) {
tonyp@1794 714 HeapWord* next = cur + chunkSize;
tonyp@2973 715 if (next > end) {
tonyp@1794 716 next = end;
tonyp@2973 717 }
tonyp@1794 718 MemRegion mr(cur,next);
tonyp@1794 719 _nextMarkBitMap->clearRange(mr);
tonyp@1794 720 cur = next;
tonyp@1794 721 do_yield_check();
tonyp@1794 722
tonyp@1794 723 // Repeat the asserts from above. We'll do them as asserts here to
tonyp@1794 724 // minimize their overhead on the product. However, we'll have
tonyp@1794 725 // them as guarantees at the beginning / end of the bitmap
tonyp@1794 726 // clearing to get some checking in the product.
tonyp@1794 727 assert(cmThread()->during_cycle(), "invariant");
tonyp@1794 728 assert(!g1h->mark_in_progress(), "invariant");
tonyp@1794 729 }
tonyp@1794 730
johnc@3463 731 // Clear the liveness counting data
johnc@3463 732 clear_all_count_data();
johnc@3463 733
tonyp@1794 734 // Repeat the asserts from above.
tonyp@1794 735 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 736 guarantee(!g1h->mark_in_progress(), "invariant");
ysr@777 737 }
ysr@777 738
ysr@777 739 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
ysr@777 740 public:
ysr@777 741 bool doHeapRegion(HeapRegion* r) {
ysr@777 742 if (!r->continuesHumongous()) {
tonyp@3416 743 r->note_start_of_marking();
ysr@777 744 }
ysr@777 745 return false;
ysr@777 746 }
ysr@777 747 };
ysr@777 748
ysr@777 749 void ConcurrentMark::checkpointRootsInitialPre() {
ysr@777 750 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 751 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 752
ysr@777 753 _has_aborted = false;
ysr@777 754
jcoomes@1902 755 #ifndef PRODUCT
tonyp@1479 756 if (G1PrintReachableAtInitialMark) {
tonyp@1823 757 print_reachable("at-cycle-start",
johnc@2969 758 VerifyOption_G1UsePrevMarking, true /* all */);
tonyp@1479 759 }
jcoomes@1902 760 #endif
ysr@777 761
ysr@777 762 // Initialise marking structures. This has to be done in a STW phase.
ysr@777 763 reset();
tonyp@3416 764
tonyp@3416 765 // For each region note start of marking.
tonyp@3416 766 NoteStartOfMarkHRClosure startcl;
tonyp@3416 767 g1h->heap_region_iterate(&startcl);
ysr@777 768 }
ysr@777 769
ysr@777 770
ysr@777 771 void ConcurrentMark::checkpointRootsInitialPost() {
ysr@777 772 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 773
tonyp@2848 774 // If we force an overflow during remark, the remark operation will
tonyp@2848 775 // actually abort and we'll restart concurrent marking. If we always
tonyp@2848 776 // force an oveflow during remark we'll never actually complete the
tonyp@2848 777 // marking phase. So, we initilize this here, at the start of the
tonyp@2848 778 // cycle, so that at the remaining overflow number will decrease at
tonyp@2848 779 // every remark and we'll eventually not need to cause one.
tonyp@2848 780 force_overflow_stw()->init();
tonyp@2848 781
johnc@3175 782 // Start Concurrent Marking weak-reference discovery.
johnc@3175 783 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3175 784 // enable ("weak") refs discovery
johnc@3175 785 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 786 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
ysr@777 787
ysr@777 788 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1752 789 // This is the start of the marking cycle, we're expected all
tonyp@1752 790 // threads to have SATB queues with active set to false.
tonyp@1752 791 satb_mq_set.set_active_all_threads(true, /* new active value */
tonyp@1752 792 false /* expected_active */);
ysr@777 793
tonyp@3464 794 _root_regions.prepare_for_scan();
tonyp@3464 795
ysr@777 796 // update_g1_committed() will be called at the end of an evac pause
ysr@777 797 // when marking is on. So, it's also called at the end of the
ysr@777 798 // initial-mark pause to update the heap end, if the heap expands
ysr@777 799 // during it. No need to call it here.
ysr@777 800 }
ysr@777 801
ysr@777 802 /*
tonyp@2848 803 * Notice that in the next two methods, we actually leave the STS
tonyp@2848 804 * during the barrier sync and join it immediately afterwards. If we
tonyp@2848 805 * do not do this, the following deadlock can occur: one thread could
tonyp@2848 806 * be in the barrier sync code, waiting for the other thread to also
tonyp@2848 807 * sync up, whereas another one could be trying to yield, while also
tonyp@2848 808 * waiting for the other threads to sync up too.
tonyp@2848 809 *
tonyp@2848 810 * Note, however, that this code is also used during remark and in
tonyp@2848 811 * this case we should not attempt to leave / enter the STS, otherwise
tonyp@2848 812 * we'll either hit an asseert (debug / fastdebug) or deadlock
tonyp@2848 813 * (product). So we should only leave / enter the STS if we are
tonyp@2848 814 * operating concurrently.
tonyp@2848 815 *
tonyp@2848 816 * Because the thread that does the sync barrier has left the STS, it
tonyp@2848 817 * is possible to be suspended for a Full GC or an evacuation pause
tonyp@2848 818 * could occur. This is actually safe, since the entering the sync
tonyp@2848 819 * barrier is one of the last things do_marking_step() does, and it
tonyp@2848 820 * doesn't manipulate any data structures afterwards.
tonyp@2848 821 */
ysr@777 822
ysr@777 823 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
tonyp@2973 824 if (verbose_low()) {
ysr@777 825 gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
tonyp@2973 826 }
ysr@777 827
tonyp@2848 828 if (concurrent()) {
tonyp@2848 829 ConcurrentGCThread::stsLeave();
tonyp@2848 830 }
ysr@777 831 _first_overflow_barrier_sync.enter();
tonyp@2848 832 if (concurrent()) {
tonyp@2848 833 ConcurrentGCThread::stsJoin();
tonyp@2848 834 }
ysr@777 835 // at this point everyone should have synced up and not be doing any
ysr@777 836 // more work
ysr@777 837
tonyp@2973 838 if (verbose_low()) {
ysr@777 839 gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
tonyp@2973 840 }
ysr@777 841
ysr@777 842 // let task 0 do this
ysr@777 843 if (task_num == 0) {
ysr@777 844 // task 0 is responsible for clearing the global data structures
tonyp@2848 845 // We should be here because of an overflow. During STW we should
tonyp@2848 846 // not clear the overflow flag since we rely on it being true when
tonyp@2848 847 // we exit this method to abort the pause and restart concurent
tonyp@2848 848 // marking.
tonyp@2848 849 clear_marking_state(concurrent() /* clear_overflow */);
tonyp@2848 850 force_overflow()->update();
ysr@777 851
brutisso@3710 852 if (G1Log::fine()) {
ysr@777 853 gclog_or_tty->date_stamp(PrintGCDateStamps);
ysr@777 854 gclog_or_tty->stamp(PrintGCTimeStamps);
ysr@777 855 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
ysr@777 856 }
ysr@777 857 }
ysr@777 858
ysr@777 859 // after this, each task should reset its own data structures then
ysr@777 860 // then go into the second barrier
ysr@777 861 }
ysr@777 862
ysr@777 863 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
tonyp@2973 864 if (verbose_low()) {
ysr@777 865 gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
tonyp@2973 866 }
ysr@777 867
tonyp@2848 868 if (concurrent()) {
tonyp@2848 869 ConcurrentGCThread::stsLeave();
tonyp@2848 870 }
ysr@777 871 _second_overflow_barrier_sync.enter();
tonyp@2848 872 if (concurrent()) {
tonyp@2848 873 ConcurrentGCThread::stsJoin();
tonyp@2848 874 }
ysr@777 875 // at this point everything should be re-initialised and ready to go
ysr@777 876
tonyp@2973 877 if (verbose_low()) {
ysr@777 878 gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
tonyp@2973 879 }
ysr@777 880 }
ysr@777 881
tonyp@2848 882 #ifndef PRODUCT
tonyp@2848 883 void ForceOverflowSettings::init() {
tonyp@2848 884 _num_remaining = G1ConcMarkForceOverflow;
tonyp@2848 885 _force = false;
tonyp@2848 886 update();
tonyp@2848 887 }
tonyp@2848 888
tonyp@2848 889 void ForceOverflowSettings::update() {
tonyp@2848 890 if (_num_remaining > 0) {
tonyp@2848 891 _num_remaining -= 1;
tonyp@2848 892 _force = true;
tonyp@2848 893 } else {
tonyp@2848 894 _force = false;
tonyp@2848 895 }
tonyp@2848 896 }
tonyp@2848 897
tonyp@2848 898 bool ForceOverflowSettings::should_force() {
tonyp@2848 899 if (_force) {
tonyp@2848 900 _force = false;
tonyp@2848 901 return true;
tonyp@2848 902 } else {
tonyp@2848 903 return false;
tonyp@2848 904 }
tonyp@2848 905 }
tonyp@2848 906 #endif // !PRODUCT
tonyp@2848 907
ysr@777 908 class CMConcurrentMarkingTask: public AbstractGangTask {
ysr@777 909 private:
ysr@777 910 ConcurrentMark* _cm;
ysr@777 911 ConcurrentMarkThread* _cmt;
ysr@777 912
ysr@777 913 public:
jmasa@3357 914 void work(uint worker_id) {
tonyp@1458 915 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@1458 916 "this should only be done by a conc GC thread");
johnc@2316 917 ResourceMark rm;
ysr@777 918
ysr@777 919 double start_vtime = os::elapsedVTime();
ysr@777 920
ysr@777 921 ConcurrentGCThread::stsJoin();
ysr@777 922
jmasa@3357 923 assert(worker_id < _cm->active_tasks(), "invariant");
jmasa@3357 924 CMTask* the_task = _cm->task(worker_id);
ysr@777 925 the_task->record_start_time();
ysr@777 926 if (!_cm->has_aborted()) {
ysr@777 927 do {
ysr@777 928 double start_vtime_sec = os::elapsedVTime();
ysr@777 929 double start_time_sec = os::elapsedTime();
johnc@2494 930 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 931
johnc@2494 932 the_task->do_marking_step(mark_step_duration_ms,
johnc@2494 933 true /* do_stealing */,
johnc@2494 934 true /* do_termination */);
johnc@2494 935
ysr@777 936 double end_time_sec = os::elapsedTime();
ysr@777 937 double end_vtime_sec = os::elapsedVTime();
ysr@777 938 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
ysr@777 939 double elapsed_time_sec = end_time_sec - start_time_sec;
ysr@777 940 _cm->clear_has_overflown();
ysr@777 941
jmasa@3357 942 bool ret = _cm->do_yield_check(worker_id);
ysr@777 943
ysr@777 944 jlong sleep_time_ms;
ysr@777 945 if (!_cm->has_aborted() && the_task->has_aborted()) {
ysr@777 946 sleep_time_ms =
ysr@777 947 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
ysr@777 948 ConcurrentGCThread::stsLeave();
ysr@777 949 os::sleep(Thread::current(), sleep_time_ms, false);
ysr@777 950 ConcurrentGCThread::stsJoin();
ysr@777 951 }
ysr@777 952 double end_time2_sec = os::elapsedTime();
ysr@777 953 double elapsed_time2_sec = end_time2_sec - start_time_sec;
ysr@777 954
ysr@777 955 #if 0
ysr@777 956 gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
ysr@777 957 "overhead %1.4lf",
ysr@777 958 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
ysr@777 959 the_task->conc_overhead(os::elapsedTime()) * 8.0);
ysr@777 960 gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
ysr@777 961 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
ysr@777 962 #endif
ysr@777 963 } while (!_cm->has_aborted() && the_task->has_aborted());
ysr@777 964 }
ysr@777 965 the_task->record_end_time();
tonyp@1458 966 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ysr@777 967
ysr@777 968 ConcurrentGCThread::stsLeave();
ysr@777 969
ysr@777 970 double end_vtime = os::elapsedVTime();
jmasa@3357 971 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
ysr@777 972 }
ysr@777 973
ysr@777 974 CMConcurrentMarkingTask(ConcurrentMark* cm,
ysr@777 975 ConcurrentMarkThread* cmt) :
ysr@777 976 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
ysr@777 977
ysr@777 978 ~CMConcurrentMarkingTask() { }
ysr@777 979 };
ysr@777 980
jmasa@3294 981 // Calculates the number of active workers for a concurrent
jmasa@3294 982 // phase.
jmasa@3357 983 uint ConcurrentMark::calc_parallel_marking_threads() {
johnc@3338 984 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 985 uint n_conc_workers = 0;
jmasa@3294 986 if (!UseDynamicNumberOfGCThreads ||
jmasa@3294 987 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
jmasa@3294 988 !ForceDynamicNumberOfGCThreads)) {
jmasa@3294 989 n_conc_workers = max_parallel_marking_threads();
jmasa@3294 990 } else {
jmasa@3294 991 n_conc_workers =
jmasa@3294 992 AdaptiveSizePolicy::calc_default_active_workers(
jmasa@3294 993 max_parallel_marking_threads(),
jmasa@3294 994 1, /* Minimum workers */
jmasa@3294 995 parallel_marking_threads(),
jmasa@3294 996 Threads::number_of_non_daemon_threads());
jmasa@3294 997 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
jmasa@3294 998 // that scaling has already gone into "_max_parallel_marking_threads".
jmasa@3294 999 }
johnc@3338 1000 assert(n_conc_workers > 0, "Always need at least 1");
johnc@3338 1001 return n_conc_workers;
jmasa@3294 1002 }
johnc@3338 1003 // If we are not running with any parallel GC threads we will not
johnc@3338 1004 // have spawned any marking threads either. Hence the number of
johnc@3338 1005 // concurrent workers should be 0.
johnc@3338 1006 return 0;
jmasa@3294 1007 }
jmasa@3294 1008
tonyp@3464 1009 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
tonyp@3464 1010 // Currently, only survivors can be root regions.
tonyp@3464 1011 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
tonyp@3464 1012 G1RootRegionScanClosure cl(_g1h, this, worker_id);
tonyp@3464 1013
tonyp@3464 1014 const uintx interval = PrefetchScanIntervalInBytes;
tonyp@3464 1015 HeapWord* curr = hr->bottom();
tonyp@3464 1016 const HeapWord* end = hr->top();
tonyp@3464 1017 while (curr < end) {
tonyp@3464 1018 Prefetch::read(curr, interval);
tonyp@3464 1019 oop obj = oop(curr);
tonyp@3464 1020 int size = obj->oop_iterate(&cl);
tonyp@3464 1021 assert(size == obj->size(), "sanity");
tonyp@3464 1022 curr += size;
tonyp@3464 1023 }
tonyp@3464 1024 }
tonyp@3464 1025
tonyp@3464 1026 class CMRootRegionScanTask : public AbstractGangTask {
tonyp@3464 1027 private:
tonyp@3464 1028 ConcurrentMark* _cm;
tonyp@3464 1029
tonyp@3464 1030 public:
tonyp@3464 1031 CMRootRegionScanTask(ConcurrentMark* cm) :
tonyp@3464 1032 AbstractGangTask("Root Region Scan"), _cm(cm) { }
tonyp@3464 1033
tonyp@3464 1034 void work(uint worker_id) {
tonyp@3464 1035 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@3464 1036 "this should only be done by a conc GC thread");
tonyp@3464 1037
tonyp@3464 1038 CMRootRegions* root_regions = _cm->root_regions();
tonyp@3464 1039 HeapRegion* hr = root_regions->claim_next();
tonyp@3464 1040 while (hr != NULL) {
tonyp@3464 1041 _cm->scanRootRegion(hr, worker_id);
tonyp@3464 1042 hr = root_regions->claim_next();
tonyp@3464 1043 }
tonyp@3464 1044 }
tonyp@3464 1045 };
tonyp@3464 1046
tonyp@3464 1047 void ConcurrentMark::scanRootRegions() {
tonyp@3464 1048 // scan_in_progress() will have been set to true only if there was
tonyp@3464 1049 // at least one root region to scan. So, if it's false, we
tonyp@3464 1050 // should not attempt to do any further work.
tonyp@3464 1051 if (root_regions()->scan_in_progress()) {
tonyp@3464 1052 _parallel_marking_threads = calc_parallel_marking_threads();
tonyp@3464 1053 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
tonyp@3464 1054 "Maximum number of marking threads exceeded");
tonyp@3464 1055 uint active_workers = MAX2(1U, parallel_marking_threads());
tonyp@3464 1056
tonyp@3464 1057 CMRootRegionScanTask task(this);
tonyp@3464 1058 if (parallel_marking_threads() > 0) {
tonyp@3464 1059 _parallel_workers->set_active_workers((int) active_workers);
tonyp@3464 1060 _parallel_workers->run_task(&task);
tonyp@3464 1061 } else {
tonyp@3464 1062 task.work(0);
tonyp@3464 1063 }
tonyp@3464 1064
tonyp@3464 1065 // It's possible that has_aborted() is true here without actually
tonyp@3464 1066 // aborting the survivor scan earlier. This is OK as it's
tonyp@3464 1067 // mainly used for sanity checking.
tonyp@3464 1068 root_regions()->scan_finished();
tonyp@3464 1069 }
tonyp@3464 1070 }
tonyp@3464 1071
ysr@777 1072 void ConcurrentMark::markFromRoots() {
ysr@777 1073 // we might be tempted to assert that:
ysr@777 1074 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
ysr@777 1075 // "inconsistent argument?");
ysr@777 1076 // However that wouldn't be right, because it's possible that
ysr@777 1077 // a safepoint is indeed in progress as a younger generation
ysr@777 1078 // stop-the-world GC happens even as we mark in this generation.
ysr@777 1079
ysr@777 1080 _restart_for_overflow = false;
tonyp@2848 1081 force_overflow_conc()->init();
jmasa@3294 1082
jmasa@3294 1083 // _g1h has _n_par_threads
jmasa@3294 1084 _parallel_marking_threads = calc_parallel_marking_threads();
jmasa@3294 1085 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
jmasa@3294 1086 "Maximum number of marking threads exceeded");
johnc@3338 1087
jmasa@3357 1088 uint active_workers = MAX2(1U, parallel_marking_threads());
johnc@3338 1089
johnc@3338 1090 // Parallel task terminator is set in "set_phase()"
johnc@3338 1091 set_phase(active_workers, true /* concurrent */);
ysr@777 1092
ysr@777 1093 CMConcurrentMarkingTask markingTask(this, cmThread());
tonyp@2973 1094 if (parallel_marking_threads() > 0) {
johnc@3338 1095 _parallel_workers->set_active_workers((int)active_workers);
johnc@3338 1096 // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
johnc@3338 1097 // and the decisions on that MT processing is made elsewhere.
johnc@3338 1098 assert(_parallel_workers->active_workers() > 0, "Should have been set");
ysr@777 1099 _parallel_workers->run_task(&markingTask);
tonyp@2973 1100 } else {
ysr@777 1101 markingTask.work(0);
tonyp@2973 1102 }
ysr@777 1103 print_stats();
ysr@777 1104 }
ysr@777 1105
ysr@777 1106 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
ysr@777 1107 // world is stopped at this checkpoint
ysr@777 1108 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1109 "world should be stopped");
johnc@3175 1110
ysr@777 1111 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1112
ysr@777 1113 // If a full collection has happened, we shouldn't do this.
ysr@777 1114 if (has_aborted()) {
ysr@777 1115 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1116 return;
ysr@777 1117 }
ysr@777 1118
kamg@2445 1119 SvcGCMarker sgcm(SvcGCMarker::OTHER);
kamg@2445 1120
ysr@1280 1121 if (VerifyDuringGC) {
ysr@1280 1122 HandleMark hm; // handle scope
ysr@1280 1123 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1124 Universe::heap()->prepare_for_verify();
brutisso@3711 1125 Universe::verify(/* silent */ false,
johnc@2969 1126 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1127 }
ysr@1280 1128
ysr@777 1129 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 1130 g1p->record_concurrent_mark_remark_start();
ysr@777 1131
ysr@777 1132 double start = os::elapsedTime();
ysr@777 1133
ysr@777 1134 checkpointRootsFinalWork();
ysr@777 1135
ysr@777 1136 double mark_work_end = os::elapsedTime();
ysr@777 1137
ysr@777 1138 weakRefsWork(clear_all_soft_refs);
ysr@777 1139
ysr@777 1140 if (has_overflown()) {
ysr@777 1141 // Oops. We overflowed. Restart concurrent marking.
ysr@777 1142 _restart_for_overflow = true;
ysr@777 1143 // Clear the flag. We do not need it any more.
ysr@777 1144 clear_has_overflown();
tonyp@2973 1145 if (G1TraceMarkStackOverflow) {
ysr@777 1146 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
tonyp@2973 1147 }
ysr@777 1148 } else {
johnc@3463 1149 // Aggregate the per-task counting data that we have accumulated
johnc@3463 1150 // while marking.
johnc@3463 1151 aggregate_count_data();
johnc@3463 1152
tonyp@2469 1153 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 1154 // We're done with marking.
tonyp@1752 1155 // This is the end of the marking cycle, we're expected all
tonyp@1752 1156 // threads to have SATB queues with active set to true.
tonyp@2469 1157 satb_mq_set.set_active_all_threads(false, /* new active value */
tonyp@2469 1158 true /* expected_active */);
tonyp@1246 1159
tonyp@1246 1160 if (VerifyDuringGC) {
ysr@1280 1161 HandleMark hm; // handle scope
ysr@1280 1162 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1163 Universe::heap()->prepare_for_verify();
brutisso@3711 1164 Universe::verify(/* silent */ false,
johnc@2969 1165 /* option */ VerifyOption_G1UseNextMarking);
tonyp@1246 1166 }
johnc@2494 1167 assert(!restart_for_overflow(), "sanity");
johnc@2494 1168 }
johnc@2494 1169
johnc@2494 1170 // Reset the marking state if marking completed
johnc@2494 1171 if (!restart_for_overflow()) {
johnc@2494 1172 set_non_marking_state();
ysr@777 1173 }
ysr@777 1174
ysr@777 1175 #if VERIFY_OBJS_PROCESSED
ysr@777 1176 _scan_obj_cl.objs_processed = 0;
ysr@777 1177 ThreadLocalObjQueue::objs_enqueued = 0;
ysr@777 1178 #endif
ysr@777 1179
ysr@777 1180 // Statistics
ysr@777 1181 double now = os::elapsedTime();
ysr@777 1182 _remark_mark_times.add((mark_work_end - start) * 1000.0);
ysr@777 1183 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
ysr@777 1184 _remark_times.add((now - start) * 1000.0);
ysr@777 1185
ysr@777 1186 g1p->record_concurrent_mark_remark_end();
ysr@777 1187 }
ysr@777 1188
johnc@3731 1189 // Base class of the closures that finalize and verify the
johnc@3731 1190 // liveness counting data.
johnc@3731 1191 class CMCountDataClosureBase: public HeapRegionClosure {
johnc@3731 1192 protected:
ysr@777 1193 ConcurrentMark* _cm;
johnc@3463 1194 BitMap* _region_bm;
johnc@3463 1195 BitMap* _card_bm;
johnc@3463 1196
johnc@3731 1197 void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
johnc@3731 1198 assert(start_idx <= last_idx, "sanity");
johnc@3731 1199
johnc@3731 1200 // Set the inclusive bit range [start_idx, last_idx].
johnc@3731 1201 // For small ranges (up to 8 cards) use a simple loop; otherwise
johnc@3731 1202 // use par_at_put_range.
johnc@3731 1203 if ((last_idx - start_idx) < 8) {
johnc@3731 1204 for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
johnc@3731 1205 _card_bm->par_set_bit(i);
johnc@3731 1206 }
johnc@3731 1207 } else {
johnc@3731 1208 assert(last_idx < _card_bm->size(), "sanity");
johnc@3731 1209 // Note BitMap::par_at_put_range() is exclusive.
johnc@3731 1210 _card_bm->par_at_put_range(start_idx, last_idx+1, true);
ysr@777 1211 }
ysr@777 1212 }
ysr@777 1213
tonyp@1264 1214 // It takes a region that's not empty (i.e., it has at least one
tonyp@1264 1215 // live object in it and sets its corresponding bit on the region
tonyp@1264 1216 // bitmap to 1. If the region is "starts humongous" it will also set
tonyp@1264 1217 // to 1 the bits on the region bitmap that correspond to its
tonyp@1264 1218 // associated "continues humongous" regions.
tonyp@1264 1219 void set_bit_for_region(HeapRegion* hr) {
tonyp@1264 1220 assert(!hr->continuesHumongous(), "should have filtered those out");
tonyp@1264 1221
tonyp@3713 1222 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
tonyp@1264 1223 if (!hr->startsHumongous()) {
tonyp@1264 1224 // Normal (non-humongous) case: just set the bit.
tonyp@3713 1225 _region_bm->par_at_put(index, true);
tonyp@1264 1226 } else {
tonyp@1264 1227 // Starts humongous case: calculate how many regions are part of
johnc@3463 1228 // this humongous region and then set the bit range.
tonyp@1264 1229 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3463 1230 HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
tonyp@3713 1231 BitMap::idx_t end_index = (BitMap::idx_t) last_hr->hrs_index() + 1;
tonyp@3713 1232 _region_bm->par_at_put_range(index, end_index, true);
tonyp@1264 1233 }
tonyp@1264 1234 }
tonyp@1264 1235
johnc@3731 1236 public:
johnc@3731 1237 CMCountDataClosureBase(ConcurrentMark *cm,
johnc@3731 1238 BitMap* region_bm, BitMap* card_bm):
johnc@3731 1239 _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
johnc@3731 1240 };
johnc@3731 1241
johnc@3731 1242 // Closure that calculates the # live objects per region. Used
johnc@3731 1243 // for verification purposes during the cleanup pause.
johnc@3731 1244 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
johnc@3731 1245 CMBitMapRO* _bm;
johnc@3731 1246 size_t _region_marked_bytes;
johnc@3731 1247
johnc@3731 1248 public:
johnc@3731 1249 CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
johnc@3731 1250 BitMap* region_bm, BitMap* card_bm) :
johnc@3731 1251 CMCountDataClosureBase(cm, region_bm, card_bm),
johnc@3731 1252 _bm(bm), _region_marked_bytes(0) { }
johnc@3731 1253
ysr@777 1254 bool doHeapRegion(HeapRegion* hr) {
ysr@777 1255
iveresov@1074 1256 if (hr->continuesHumongous()) {
tonyp@1264 1257 // We will ignore these here and process them when their
tonyp@1264 1258 // associated "starts humongous" region is processed (see
tonyp@1264 1259 // set_bit_for_heap_region()). Note that we cannot rely on their
tonyp@1264 1260 // associated "starts humongous" region to have their bit set to
tonyp@1264 1261 // 1 since, due to the region chunking in the parallel region
tonyp@1264 1262 // iteration, a "continues humongous" region might be visited
tonyp@1264 1263 // before its associated "starts humongous".
iveresov@1074 1264 return false;
iveresov@1074 1265 }
ysr@777 1266
ysr@777 1267 HeapWord* nextTop = hr->next_top_at_mark_start();
johnc@3463 1268 HeapWord* start = hr->bottom();
johnc@3463 1269
johnc@3463 1270 assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
johnc@3463 1271 err_msg("Preconditions not met - "
johnc@3463 1272 "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 1273 start, nextTop, hr->end()));
johnc@3463 1274
ysr@777 1275 // Find the first marked object at or after "start".
ysr@777 1276 start = _bm->getNextMarkedWordAddress(start, nextTop);
johnc@3463 1277
ysr@777 1278 size_t marked_bytes = 0;
ysr@777 1279
ysr@777 1280 while (start < nextTop) {
ysr@777 1281 oop obj = oop(start);
ysr@777 1282 int obj_sz = obj->size();
ysr@777 1283 HeapWord* obj_last = start + obj_sz - 1;
johnc@3731 1284
johnc@3731 1285 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3731 1286 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);
johnc@3731 1287
johnc@3731 1288 // Set the bits in the card BM for this object (inclusive).
johnc@3731 1289 set_card_bitmap_range(start_idx, last_idx);
johnc@3731 1290
johnc@3731 1291 // Add the size of this object to the number of marked bytes.
apetrusenko@1465 1292 marked_bytes += (size_t)obj_sz * HeapWordSize;
johnc@3463 1293
ysr@777 1294 // Find the next marked object after this one.
johnc@3731 1295 start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
tonyp@2973 1296 }
johnc@3463 1297
johnc@3463 1298 // Mark the allocated-since-marking portion...
johnc@3463 1299 HeapWord* top = hr->top();
johnc@3463 1300 if (nextTop < top) {
johnc@3731 1301 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
johnc@3731 1302 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
johnc@3731 1303
johnc@3731 1304 set_card_bitmap_range(start_idx, last_idx);
johnc@3463 1305
johnc@3463 1306 // This definitely means the region has live objects.
johnc@3463 1307 set_bit_for_region(hr);
ysr@777 1308 }
ysr@777 1309
ysr@777 1310 // Update the live region bitmap.
ysr@777 1311 if (marked_bytes > 0) {
tonyp@1264 1312 set_bit_for_region(hr);
ysr@777 1313 }
johnc@3463 1314
johnc@3463 1315 // Set the marked bytes for the current region so that
johnc@3463 1316 // it can be queried by a calling verificiation routine
johnc@3463 1317 _region_marked_bytes = marked_bytes;
johnc@3463 1318
johnc@3463 1319 return false;
johnc@3463 1320 }
johnc@3463 1321
johnc@3463 1322 size_t region_marked_bytes() const { return _region_marked_bytes; }
johnc@3463 1323 };
johnc@3463 1324
johnc@3463 1325 // Heap region closure used for verifying the counting data
johnc@3463 1326 // that was accumulated concurrently and aggregated during
johnc@3463 1327 // the remark pause. This closure is applied to the heap
johnc@3463 1328 // regions during the STW cleanup pause.
johnc@3463 1329
johnc@3463 1330 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
johnc@3463 1331 ConcurrentMark* _cm;
johnc@3463 1332 CalcLiveObjectsClosure _calc_cl;
johnc@3463 1333 BitMap* _region_bm; // Region BM to be verified
johnc@3463 1334 BitMap* _card_bm; // Card BM to be verified
johnc@3463 1335 bool _verbose; // verbose output?
johnc@3463 1336
johnc@3463 1337 BitMap* _exp_region_bm; // Expected Region BM values
johnc@3463 1338 BitMap* _exp_card_bm; // Expected card BM values
johnc@3463 1339
johnc@3463 1340 int _failures;
johnc@3463 1341
johnc@3463 1342 public:
johnc@3463 1343 VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
johnc@3463 1344 BitMap* region_bm,
johnc@3463 1345 BitMap* card_bm,
johnc@3463 1346 BitMap* exp_region_bm,
johnc@3463 1347 BitMap* exp_card_bm,
johnc@3463 1348 bool verbose) :
johnc@3463 1349 _cm(cm),
johnc@3463 1350 _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
johnc@3463 1351 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
johnc@3463 1352 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
johnc@3463 1353 _failures(0) { }
johnc@3463 1354
johnc@3463 1355 int failures() const { return _failures; }
johnc@3463 1356
johnc@3463 1357 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1358 if (hr->continuesHumongous()) {
johnc@3463 1359 // We will ignore these here and process them when their
johnc@3463 1360 // associated "starts humongous" region is processed (see
johnc@3463 1361 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1362 // associated "starts humongous" region to have their bit set to
johnc@3463 1363 // 1 since, due to the region chunking in the parallel region
johnc@3463 1364 // iteration, a "continues humongous" region might be visited
johnc@3463 1365 // before its associated "starts humongous".
johnc@3463 1366 return false;
johnc@3463 1367 }
johnc@3463 1368
johnc@3463 1369 int failures = 0;
johnc@3463 1370
johnc@3463 1371 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
johnc@3463 1372 // this region and set the corresponding bits in the expected region
johnc@3463 1373 // and card bitmaps.
johnc@3463 1374 bool res = _calc_cl.doHeapRegion(hr);
johnc@3463 1375 assert(res == false, "should be continuing");
johnc@3463 1376
johnc@3463 1377 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
johnc@3463 1378 Mutex::_no_safepoint_check_flag);
johnc@3463 1379
johnc@3463 1380 // Verify the marked bytes for this region.
johnc@3463 1381 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
johnc@3463 1382 size_t act_marked_bytes = hr->next_marked_bytes();
johnc@3463 1383
johnc@3463 1384 // We're not OK if expected marked bytes > actual marked bytes. It means
johnc@3463 1385 // we have missed accounting some objects during the actual marking.
johnc@3463 1386 if (exp_marked_bytes > act_marked_bytes) {
johnc@3463 1387 if (_verbose) {
tonyp@3713 1388 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
johnc@3463 1389 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
johnc@3463 1390 hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
johnc@3463 1391 }
johnc@3463 1392 failures += 1;
johnc@3463 1393 }
johnc@3463 1394
johnc@3463 1395 // Verify the bit, for this region, in the actual and expected
johnc@3463 1396 // (which was just calculated) region bit maps.
johnc@3463 1397 // We're not OK if the bit in the calculated expected region
johnc@3463 1398 // bitmap is set and the bit in the actual region bitmap is not.
tonyp@3713 1399 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
johnc@3463 1400
johnc@3463 1401 bool expected = _exp_region_bm->at(index);
johnc@3463 1402 bool actual = _region_bm->at(index);
johnc@3463 1403 if (expected && !actual) {
johnc@3463 1404 if (_verbose) {
tonyp@3713 1405 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
tonyp@3713 1406 "expected: %s, actual: %s",
tonyp@3713 1407 hr->hrs_index(),
tonyp@3713 1408 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
johnc@3463 1409 }
johnc@3463 1410 failures += 1;
johnc@3463 1411 }
johnc@3463 1412
johnc@3463 1413 // Verify that the card bit maps for the cards spanned by the current
johnc@3463 1414 // region match. We have an error if we have a set bit in the expected
johnc@3463 1415 // bit map and the corresponding bit in the actual bitmap is not set.
johnc@3463 1416
johnc@3463 1417 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
johnc@3463 1418 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
johnc@3463 1419
johnc@3463 1420 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
johnc@3463 1421 expected = _exp_card_bm->at(i);
johnc@3463 1422 actual = _card_bm->at(i);
johnc@3463 1423
johnc@3463 1424 if (expected && !actual) {
johnc@3463 1425 if (_verbose) {
tonyp@3713 1426 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
tonyp@3713 1427 "expected: %s, actual: %s",
tonyp@3713 1428 hr->hrs_index(), i,
tonyp@3713 1429 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
ysr@777 1430 }
johnc@3463 1431 failures += 1;
ysr@777 1432 }
ysr@777 1433 }
ysr@777 1434
johnc@3463 1435 if (failures > 0 && _verbose) {
johnc@3463 1436 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
johnc@3463 1437 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
johnc@3463 1438 HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
johnc@3463 1439 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
johnc@3463 1440 }
johnc@3463 1441
johnc@3463 1442 _failures += failures;
johnc@3463 1443
johnc@3463 1444 // We could stop iteration over the heap when we
johnc@3731 1445 // find the first violating region by returning true.
ysr@777 1446 return false;
ysr@777 1447 }
ysr@777 1448 };
ysr@777 1449
ysr@777 1450
johnc@3463 1451 class G1ParVerifyFinalCountTask: public AbstractGangTask {
johnc@3463 1452 protected:
johnc@3463 1453 G1CollectedHeap* _g1h;
johnc@3463 1454 ConcurrentMark* _cm;
johnc@3463 1455 BitMap* _actual_region_bm;
johnc@3463 1456 BitMap* _actual_card_bm;
johnc@3463 1457
johnc@3463 1458 uint _n_workers;
johnc@3463 1459
johnc@3463 1460 BitMap* _expected_region_bm;
johnc@3463 1461 BitMap* _expected_card_bm;
johnc@3463 1462
johnc@3463 1463 int _failures;
johnc@3463 1464 bool _verbose;
johnc@3463 1465
johnc@3463 1466 public:
johnc@3463 1467 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
johnc@3463 1468 BitMap* region_bm, BitMap* card_bm,
johnc@3463 1469 BitMap* expected_region_bm, BitMap* expected_card_bm)
johnc@3463 1470 : AbstractGangTask("G1 verify final counting"),
johnc@3463 1471 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1472 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1473 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
johnc@3463 1474 _failures(0), _verbose(false),
johnc@3463 1475 _n_workers(0) {
johnc@3463 1476 assert(VerifyDuringGC, "don't call this otherwise");
johnc@3463 1477
johnc@3463 1478 // Use the value already set as the number of active threads
johnc@3463 1479 // in the call to run_task().
johnc@3463 1480 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1481 assert( _g1h->workers()->active_workers() > 0,
johnc@3463 1482 "Should have been previously set");
johnc@3463 1483 _n_workers = _g1h->workers()->active_workers();
johnc@3463 1484 } else {
johnc@3463 1485 _n_workers = 1;
johnc@3463 1486 }
johnc@3463 1487
johnc@3463 1488 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
johnc@3463 1489 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
johnc@3463 1490
johnc@3463 1491 _verbose = _cm->verbose_medium();
johnc@3463 1492 }
johnc@3463 1493
johnc@3463 1494 void work(uint worker_id) {
johnc@3463 1495 assert(worker_id < _n_workers, "invariant");
johnc@3463 1496
johnc@3463 1497 VerifyLiveObjectDataHRClosure verify_cl(_cm,
johnc@3463 1498 _actual_region_bm, _actual_card_bm,
johnc@3463 1499 _expected_region_bm,
johnc@3463 1500 _expected_card_bm,
johnc@3463 1501 _verbose);
johnc@3463 1502
johnc@3463 1503 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1504 _g1h->heap_region_par_iterate_chunked(&verify_cl,
johnc@3463 1505 worker_id,
johnc@3463 1506 _n_workers,
johnc@3463 1507 HeapRegion::VerifyCountClaimValue);
johnc@3463 1508 } else {
johnc@3463 1509 _g1h->heap_region_iterate(&verify_cl);
johnc@3463 1510 }
johnc@3463 1511
johnc@3463 1512 Atomic::add(verify_cl.failures(), &_failures);
johnc@3463 1513 }
johnc@3463 1514
johnc@3463 1515 int failures() const { return _failures; }
johnc@3463 1516 };
johnc@3463 1517
johnc@3731 1518 // Closure that finalizes the liveness counting data.
johnc@3731 1519 // Used during the cleanup pause.
johnc@3731 1520 // Sets the bits corresponding to the interval [NTAMS, top]
johnc@3731 1521 // (which contains the implicitly live objects) in the
johnc@3731 1522 // card liveness bitmap. Also sets the bit for each region,
johnc@3731 1523 // containing live data, in the region liveness bitmap.
johnc@3731 1524
johnc@3731 1525 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
johnc@3463 1526 public:
johnc@3463 1527 FinalCountDataUpdateClosure(ConcurrentMark* cm,
johnc@3463 1528 BitMap* region_bm,
johnc@3463 1529 BitMap* card_bm) :
johnc@3731 1530 CMCountDataClosureBase(cm, region_bm, card_bm) { }
johnc@3463 1531
johnc@3463 1532 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1533
johnc@3463 1534 if (hr->continuesHumongous()) {
johnc@3463 1535 // We will ignore these here and process them when their
johnc@3463 1536 // associated "starts humongous" region is processed (see
johnc@3463 1537 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1538 // associated "starts humongous" region to have their bit set to
johnc@3463 1539 // 1 since, due to the region chunking in the parallel region
johnc@3463 1540 // iteration, a "continues humongous" region might be visited
johnc@3463 1541 // before its associated "starts humongous".
johnc@3463 1542 return false;
johnc@3463 1543 }
johnc@3463 1544
johnc@3463 1545 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@3463 1546 HeapWord* top = hr->top();
johnc@3463 1547
johnc@3731 1548 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
johnc@3463 1549
johnc@3463 1550 // Mark the allocated-since-marking portion...
johnc@3463 1551 if (ntams < top) {
johnc@3463 1552 // This definitely means the region has live objects.
johnc@3463 1553 set_bit_for_region(hr);
johnc@3463 1554 }
johnc@3463 1555
johnc@3731 1556 // Now set the bits for [ntams, top]
johnc@3731 1557 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@3463 1558 BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
johnc@3463 1559 set_card_bitmap_range(start_idx, last_idx);
johnc@3463 1560
johnc@3463 1561 // Set the bit for the region if it contains live data
johnc@3463 1562 if (hr->next_marked_bytes() > 0) {
johnc@3463 1563 set_bit_for_region(hr);
johnc@3463 1564 }
johnc@3463 1565
johnc@3463 1566 return false;
johnc@3463 1567 }
johnc@3463 1568 };
ysr@777 1569
ysr@777 1570 class G1ParFinalCountTask: public AbstractGangTask {
ysr@777 1571 protected:
ysr@777 1572 G1CollectedHeap* _g1h;
johnc@3463 1573 ConcurrentMark* _cm;
johnc@3463 1574 BitMap* _actual_region_bm;
johnc@3463 1575 BitMap* _actual_card_bm;
johnc@3463 1576
jmasa@3357 1577 uint _n_workers;
johnc@3463 1578
ysr@777 1579 public:
johnc@3463 1580 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
johnc@3463 1581 : AbstractGangTask("G1 final counting"),
johnc@3463 1582 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1583 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1584 _n_workers(0) {
jmasa@3294 1585 // Use the value already set as the number of active threads
tonyp@3714 1586 // in the call to run_task().
jmasa@3294 1587 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1588 assert( _g1h->workers()->active_workers() > 0,
jmasa@3294 1589 "Should have been previously set");
jmasa@3294 1590 _n_workers = _g1h->workers()->active_workers();
tonyp@2973 1591 } else {
ysr@777 1592 _n_workers = 1;
tonyp@2973 1593 }
ysr@777 1594 }
ysr@777 1595
jmasa@3357 1596 void work(uint worker_id) {
johnc@3463 1597 assert(worker_id < _n_workers, "invariant");
johnc@3463 1598
johnc@3463 1599 FinalCountDataUpdateClosure final_update_cl(_cm,
johnc@3463 1600 _actual_region_bm,
johnc@3463 1601 _actual_card_bm);
johnc@3463 1602
jmasa@2188 1603 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1604 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
johnc@3463 1605 worker_id,
johnc@3463 1606 _n_workers,
tonyp@790 1607 HeapRegion::FinalCountClaimValue);
ysr@777 1608 } else {
johnc@3463 1609 _g1h->heap_region_iterate(&final_update_cl);
ysr@777 1610 }
ysr@777 1611 }
ysr@777 1612 };
ysr@777 1613
ysr@777 1614 class G1ParNoteEndTask;
ysr@777 1615
ysr@777 1616 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
ysr@777 1617 G1CollectedHeap* _g1;
ysr@777 1618 int _worker_num;
ysr@777 1619 size_t _max_live_bytes;
tonyp@3713 1620 uint _regions_claimed;
ysr@777 1621 size_t _freed_bytes;
tonyp@2493 1622 FreeRegionList* _local_cleanup_list;
tonyp@3268 1623 OldRegionSet* _old_proxy_set;
tonyp@2493 1624 HumongousRegionSet* _humongous_proxy_set;
tonyp@2493 1625 HRRSCleanupTask* _hrrs_cleanup_task;
ysr@777 1626 double _claimed_region_time;
ysr@777 1627 double _max_region_time;
ysr@777 1628
ysr@777 1629 public:
ysr@777 1630 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
tonyp@2493 1631 int worker_num,
tonyp@2493 1632 FreeRegionList* local_cleanup_list,
tonyp@3268 1633 OldRegionSet* old_proxy_set,
tonyp@2493 1634 HumongousRegionSet* humongous_proxy_set,
johnc@3292 1635 HRRSCleanupTask* hrrs_cleanup_task) :
johnc@3292 1636 _g1(g1), _worker_num(worker_num),
johnc@3292 1637 _max_live_bytes(0), _regions_claimed(0),
johnc@3292 1638 _freed_bytes(0),
johnc@3292 1639 _claimed_region_time(0.0), _max_region_time(0.0),
johnc@3292 1640 _local_cleanup_list(local_cleanup_list),
johnc@3292 1641 _old_proxy_set(old_proxy_set),
johnc@3292 1642 _humongous_proxy_set(humongous_proxy_set),
johnc@3292 1643 _hrrs_cleanup_task(hrrs_cleanup_task) { }
johnc@3292 1644
ysr@777 1645 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1646
johnc@3292 1647 bool doHeapRegion(HeapRegion *hr) {
johnc@3292 1648 // We use a claim value of zero here because all regions
johnc@3292 1649 // were claimed with value 1 in the FinalCount task.
johnc@3292 1650 hr->reset_gc_time_stamp();
johnc@3292 1651 if (!hr->continuesHumongous()) {
johnc@3292 1652 double start = os::elapsedTime();
johnc@3292 1653 _regions_claimed++;
johnc@3292 1654 hr->note_end_of_marking();
johnc@3292 1655 _max_live_bytes += hr->max_live_bytes();
johnc@3292 1656 _g1->free_region_if_empty(hr,
johnc@3292 1657 &_freed_bytes,
johnc@3292 1658 _local_cleanup_list,
johnc@3292 1659 _old_proxy_set,
johnc@3292 1660 _humongous_proxy_set,
johnc@3292 1661 _hrrs_cleanup_task,
johnc@3292 1662 true /* par */);
johnc@3292 1663 double region_time = (os::elapsedTime() - start);
johnc@3292 1664 _claimed_region_time += region_time;
johnc@3292 1665 if (region_time > _max_region_time) {
johnc@3292 1666 _max_region_time = region_time;
johnc@3292 1667 }
johnc@3292 1668 }
johnc@3292 1669 return false;
johnc@3292 1670 }
ysr@777 1671
ysr@777 1672 size_t max_live_bytes() { return _max_live_bytes; }
tonyp@3713 1673 uint regions_claimed() { return _regions_claimed; }
ysr@777 1674 double claimed_region_time_sec() { return _claimed_region_time; }
ysr@777 1675 double max_region_time_sec() { return _max_region_time; }
ysr@777 1676 };
ysr@777 1677
ysr@777 1678 class G1ParNoteEndTask: public AbstractGangTask {
ysr@777 1679 friend class G1NoteEndOfConcMarkClosure;
tonyp@2472 1680
ysr@777 1681 protected:
ysr@777 1682 G1CollectedHeap* _g1h;
ysr@777 1683 size_t _max_live_bytes;
ysr@777 1684 size_t _freed_bytes;
tonyp@2472 1685 FreeRegionList* _cleanup_list;
tonyp@2472 1686
ysr@777 1687 public:
ysr@777 1688 G1ParNoteEndTask(G1CollectedHeap* g1h,
tonyp@2472 1689 FreeRegionList* cleanup_list) :
ysr@777 1690 AbstractGangTask("G1 note end"), _g1h(g1h),
tonyp@2472 1691 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
ysr@777 1692
jmasa@3357 1693 void work(uint worker_id) {
ysr@777 1694 double start = os::elapsedTime();
tonyp@2493 1695 FreeRegionList local_cleanup_list("Local Cleanup List");
tonyp@3268 1696 OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
tonyp@2493 1697 HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
tonyp@2493 1698 HRRSCleanupTask hrrs_cleanup_task;
jmasa@3357 1699 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
tonyp@3268 1700 &old_proxy_set,
tonyp@2493 1701 &humongous_proxy_set,
tonyp@2493 1702 &hrrs_cleanup_task);
jmasa@2188 1703 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1704 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
jmasa@3294 1705 _g1h->workers()->active_workers(),
tonyp@790 1706 HeapRegion::NoteEndClaimValue);
ysr@777 1707 } else {
ysr@777 1708 _g1h->heap_region_iterate(&g1_note_end);
ysr@777 1709 }
ysr@777 1710 assert(g1_note_end.complete(), "Shouldn't have yielded!");
ysr@777 1711
tonyp@2472 1712 // Now update the lists
tonyp@2472 1713 _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
tonyp@2472 1714 NULL /* free_list */,
tonyp@3268 1715 &old_proxy_set,
tonyp@2493 1716 &humongous_proxy_set,
tonyp@2472 1717 true /* par */);
ysr@777 1718 {
ysr@777 1719 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 1720 _max_live_bytes += g1_note_end.max_live_bytes();
ysr@777 1721 _freed_bytes += g1_note_end.freed_bytes();
tonyp@2472 1722
tonyp@2975 1723 // If we iterate over the global cleanup list at the end of
tonyp@2975 1724 // cleanup to do this printing we will not guarantee to only
tonyp@2975 1725 // generate output for the newly-reclaimed regions (the list
tonyp@2975 1726 // might not be empty at the beginning of cleanup; we might
tonyp@2975 1727 // still be working on its previous contents). So we do the
tonyp@2975 1728 // printing here, before we append the new regions to the global
tonyp@2975 1729 // cleanup list.
tonyp@2975 1730
tonyp@2975 1731 G1HRPrinter* hr_printer = _g1h->hr_printer();
tonyp@2975 1732 if (hr_printer->is_active()) {
tonyp@2975 1733 HeapRegionLinkedListIterator iter(&local_cleanup_list);
tonyp@2975 1734 while (iter.more_available()) {
tonyp@2975 1735 HeapRegion* hr = iter.get_next();
tonyp@2975 1736 hr_printer->cleanup(hr);
tonyp@2975 1737 }
tonyp@2975 1738 }
tonyp@2975 1739
tonyp@2493 1740 _cleanup_list->add_as_tail(&local_cleanup_list);
tonyp@2493 1741 assert(local_cleanup_list.is_empty(), "post-condition");
tonyp@2493 1742
tonyp@2493 1743 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
ysr@777 1744 }
ysr@777 1745 }
ysr@777 1746 size_t max_live_bytes() { return _max_live_bytes; }
ysr@777 1747 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1748 };
ysr@777 1749
ysr@777 1750 class G1ParScrubRemSetTask: public AbstractGangTask {
ysr@777 1751 protected:
ysr@777 1752 G1RemSet* _g1rs;
ysr@777 1753 BitMap* _region_bm;
ysr@777 1754 BitMap* _card_bm;
ysr@777 1755 public:
ysr@777 1756 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
ysr@777 1757 BitMap* region_bm, BitMap* card_bm) :
ysr@777 1758 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
johnc@3463 1759 _region_bm(region_bm), _card_bm(card_bm) { }
ysr@777 1760
jmasa@3357 1761 void work(uint worker_id) {
jmasa@2188 1762 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1763 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
tonyp@790 1764 HeapRegion::ScrubRemSetClaimValue);
ysr@777 1765 } else {
ysr@777 1766 _g1rs->scrub(_region_bm, _card_bm);
ysr@777 1767 }
ysr@777 1768 }
ysr@777 1769
ysr@777 1770 };
ysr@777 1771
ysr@777 1772 void ConcurrentMark::cleanup() {
ysr@777 1773 // world is stopped at this checkpoint
ysr@777 1774 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1775 "world should be stopped");
ysr@777 1776 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1777
ysr@777 1778 // If a full collection has happened, we shouldn't do this.
ysr@777 1779 if (has_aborted()) {
ysr@777 1780 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1781 return;
ysr@777 1782 }
ysr@777 1783
tonyp@3268 1784 HRSPhaseSetter x(HRSPhaseCleanup);
tonyp@2472 1785 g1h->verify_region_sets_optional();
tonyp@2472 1786
ysr@1280 1787 if (VerifyDuringGC) {
ysr@1280 1788 HandleMark hm; // handle scope
ysr@1280 1789 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1790 Universe::heap()->prepare_for_verify();
brutisso@3711 1791 Universe::verify(/* silent */ false,
johnc@2969 1792 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1793 }
ysr@1280 1794
ysr@777 1795 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
ysr@777 1796 g1p->record_concurrent_mark_cleanup_start();
ysr@777 1797
ysr@777 1798 double start = os::elapsedTime();
ysr@777 1799
tonyp@2493 1800 HeapRegionRemSet::reset_for_cleanup_tasks();
tonyp@2493 1801
jmasa@3357 1802 uint n_workers;
jmasa@3294 1803
ysr@777 1804 // Do counting once more with the world stopped for good measure.
johnc@3463 1805 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
johnc@3463 1806
jmasa@2188 1807 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1808 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@790 1809 "sanity check");
tonyp@790 1810
johnc@3338 1811 g1h->set_par_threads();
johnc@3338 1812 n_workers = g1h->n_par_threads();
jmasa@3357 1813 assert(g1h->n_par_threads() == n_workers,
johnc@3338 1814 "Should not have been reset");
ysr@777 1815 g1h->workers()->run_task(&g1_par_count_task);
jmasa@3294 1816 // Done with the parallel phase so reset to 0.
ysr@777 1817 g1h->set_par_threads(0);
tonyp@790 1818
johnc@3463 1819 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
tonyp@790 1820 "sanity check");
ysr@777 1821 } else {
johnc@3338 1822 n_workers = 1;
ysr@777 1823 g1_par_count_task.work(0);
ysr@777 1824 }
ysr@777 1825
johnc@3463 1826 if (VerifyDuringGC) {
johnc@3463 1827 // Verify that the counting data accumulated during marking matches
johnc@3463 1828 // that calculated by walking the marking bitmap.
johnc@3463 1829
johnc@3463 1830 // Bitmaps to hold expected values
johnc@3463 1831 BitMap expected_region_bm(_region_bm.size(), false);
johnc@3463 1832 BitMap expected_card_bm(_card_bm.size(), false);
johnc@3463 1833
johnc@3463 1834 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
johnc@3463 1835 &_region_bm,
johnc@3463 1836 &_card_bm,
johnc@3463 1837 &expected_region_bm,
johnc@3463 1838 &expected_card_bm);
johnc@3463 1839
johnc@3463 1840 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1841 g1h->set_par_threads((int)n_workers);
johnc@3463 1842 g1h->workers()->run_task(&g1_par_verify_task);
johnc@3463 1843 // Done with the parallel phase so reset to 0.
johnc@3463 1844 g1h->set_par_threads(0);
johnc@3463 1845
johnc@3463 1846 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
johnc@3463 1847 "sanity check");
johnc@3463 1848 } else {
johnc@3463 1849 g1_par_verify_task.work(0);
johnc@3463 1850 }
johnc@3463 1851
johnc@3463 1852 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
johnc@3463 1853 }
johnc@3463 1854
ysr@777 1855 size_t start_used_bytes = g1h->used();
ysr@777 1856 g1h->set_marking_complete();
ysr@777 1857
ysr@777 1858 double count_end = os::elapsedTime();
ysr@777 1859 double this_final_counting_time = (count_end - start);
ysr@777 1860 _total_counting_time += this_final_counting_time;
ysr@777 1861
tonyp@2717 1862 if (G1PrintRegionLivenessInfo) {
tonyp@2717 1863 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
tonyp@2717 1864 _g1h->heap_region_iterate(&cl);
tonyp@2717 1865 }
tonyp@2717 1866
ysr@777 1867 // Install newly created mark bitMap as "prev".
ysr@777 1868 swapMarkBitMaps();
ysr@777 1869
ysr@777 1870 g1h->reset_gc_time_stamp();
ysr@777 1871
ysr@777 1872 // Note end of marking in all heap regions.
tonyp@2472 1873 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
jmasa@2188 1874 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1875 g1h->set_par_threads((int)n_workers);
ysr@777 1876 g1h->workers()->run_task(&g1_par_note_end_task);
ysr@777 1877 g1h->set_par_threads(0);
tonyp@790 1878
tonyp@790 1879 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
tonyp@790 1880 "sanity check");
ysr@777 1881 } else {
ysr@777 1882 g1_par_note_end_task.work(0);
ysr@777 1883 }
tonyp@2472 1884
tonyp@2472 1885 if (!cleanup_list_is_empty()) {
tonyp@2472 1886 // The cleanup list is not empty, so we'll have to process it
tonyp@2472 1887 // concurrently. Notify anyone else that might be wanting free
tonyp@2472 1888 // regions that there will be more free regions coming soon.
tonyp@2472 1889 g1h->set_free_regions_coming();
tonyp@2472 1890 }
ysr@777 1891
ysr@777 1892 // call below, since it affects the metric by which we sort the heap
ysr@777 1893 // regions.
ysr@777 1894 if (G1ScrubRemSets) {
ysr@777 1895 double rs_scrub_start = os::elapsedTime();
ysr@777 1896 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
jmasa@2188 1897 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1898 g1h->set_par_threads((int)n_workers);
ysr@777 1899 g1h->workers()->run_task(&g1_par_scrub_rs_task);
ysr@777 1900 g1h->set_par_threads(0);
tonyp@790 1901
tonyp@790 1902 assert(g1h->check_heap_region_claim_values(
tonyp@790 1903 HeapRegion::ScrubRemSetClaimValue),
tonyp@790 1904 "sanity check");
ysr@777 1905 } else {
ysr@777 1906 g1_par_scrub_rs_task.work(0);
ysr@777 1907 }
ysr@777 1908
ysr@777 1909 double rs_scrub_end = os::elapsedTime();
ysr@777 1910 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
ysr@777 1911 _total_rs_scrub_time += this_rs_scrub_time;
ysr@777 1912 }
ysr@777 1913
ysr@777 1914 // this will also free any regions totally full of garbage objects,
ysr@777 1915 // and sort the regions.
jmasa@3294 1916 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
ysr@777 1917
ysr@777 1918 // Statistics.
ysr@777 1919 double end = os::elapsedTime();
ysr@777 1920 _cleanup_times.add((end - start) * 1000.0);
ysr@777 1921
brutisso@3710 1922 if (G1Log::fine()) {
ysr@777 1923 g1h->print_size_transition(gclog_or_tty,
ysr@777 1924 start_used_bytes,
ysr@777 1925 g1h->used(),
ysr@777 1926 g1h->capacity());
ysr@777 1927 }
ysr@777 1928
johnc@3175 1929 // Clean up will have freed any regions completely full of garbage.
johnc@3175 1930 // Update the soft reference policy with the new heap occupancy.
johnc@3175 1931 Universe::update_heap_info_at_gc();
johnc@3175 1932
ysr@777 1933 // We need to make this be a "collection" so any collection pause that
ysr@777 1934 // races with it goes around and waits for completeCleanup to finish.
ysr@777 1935 g1h->increment_total_collections();
ysr@777 1936
tonyp@3457 1937 // We reclaimed old regions so we should calculate the sizes to make
tonyp@3457 1938 // sure we update the old gen/space data.
tonyp@3457 1939 g1h->g1mm()->update_sizes();
tonyp@3457 1940
johnc@1186 1941 if (VerifyDuringGC) {
ysr@1280 1942 HandleMark hm; // handle scope
ysr@1280 1943 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1944 Universe::heap()->prepare_for_verify();
brutisso@3711 1945 Universe::verify(/* silent */ false,
johnc@2969 1946 /* option */ VerifyOption_G1UsePrevMarking);
ysr@777 1947 }
tonyp@2472 1948
tonyp@2472 1949 g1h->verify_region_sets_optional();
ysr@777 1950 }
ysr@777 1951
ysr@777 1952 void ConcurrentMark::completeCleanup() {
ysr@777 1953 if (has_aborted()) return;
ysr@777 1954
tonyp@2472 1955 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2472 1956
tonyp@2472 1957 _cleanup_list.verify_optional();
tonyp@2643 1958 FreeRegionList tmp_free_list("Tmp Free List");
tonyp@2472 1959
tonyp@2472 1960 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1961 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1962 "cleanup list has %u entries",
tonyp@2472 1963 _cleanup_list.length());
tonyp@2472 1964 }
tonyp@2472 1965
tonyp@2472 1966 // Noone else should be accessing the _cleanup_list at this point,
tonyp@2472 1967 // so it's not necessary to take any locks
tonyp@2472 1968 while (!_cleanup_list.is_empty()) {
tonyp@2472 1969 HeapRegion* hr = _cleanup_list.remove_head();
tonyp@2472 1970 assert(hr != NULL, "the list was not empty");
tonyp@2849 1971 hr->par_clear();
tonyp@2643 1972 tmp_free_list.add_as_tail(hr);
tonyp@2472 1973
tonyp@2472 1974 // Instead of adding one region at a time to the secondary_free_list,
tonyp@2472 1975 // we accumulate them in the local list and move them a few at a
tonyp@2472 1976 // time. This also cuts down on the number of notify_all() calls
tonyp@2472 1977 // we do during this process. We'll also append the local list when
tonyp@2472 1978 // _cleanup_list is empty (which means we just removed the last
tonyp@2472 1979 // region from the _cleanup_list).
tonyp@2643 1980 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
tonyp@2472 1981 _cleanup_list.is_empty()) {
tonyp@2472 1982 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 1983 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 1984 "appending %u entries to the secondary_free_list, "
tonyp@3713 1985 "cleanup list still has %u entries",
tonyp@2643 1986 tmp_free_list.length(),
tonyp@2472 1987 _cleanup_list.length());
ysr@777 1988 }
tonyp@2472 1989
tonyp@2472 1990 {
tonyp@2472 1991 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2643 1992 g1h->secondary_free_list_add_as_tail(&tmp_free_list);
tonyp@2472 1993 SecondaryFreeList_lock->notify_all();
tonyp@2472 1994 }
tonyp@2472 1995
tonyp@2472 1996 if (G1StressConcRegionFreeing) {
tonyp@2472 1997 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
tonyp@2472 1998 os::sleep(Thread::current(), (jlong) 1, false);
tonyp@2472 1999 }
tonyp@2472 2000 }
ysr@777 2001 }
ysr@777 2002 }
tonyp@2643 2003 assert(tmp_free_list.is_empty(), "post-condition");
ysr@777 2004 }
ysr@777 2005
johnc@2494 2006 // Support closures for reference procssing in G1
johnc@2494 2007
johnc@2379 2008 bool G1CMIsAliveClosure::do_object_b(oop obj) {
johnc@2379 2009 HeapWord* addr = (HeapWord*)obj;
johnc@2379 2010 return addr != NULL &&
johnc@2379 2011 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
johnc@2379 2012 }
ysr@777 2013
ysr@777 2014 class G1CMKeepAliveClosure: public OopClosure {
ysr@777 2015 G1CollectedHeap* _g1;
ysr@777 2016 ConcurrentMark* _cm;
ysr@777 2017 public:
johnc@3463 2018 G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
johnc@3463 2019 _g1(g1), _cm(cm) {
johnc@3463 2020 assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
johnc@3463 2021 }
ysr@777 2022
ysr@1280 2023 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2024 virtual void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2025
ysr@1280 2026 template <class T> void do_oop_work(T* p) {
johnc@2494 2027 oop obj = oopDesc::load_decode_heap_oop(p);
johnc@2494 2028 HeapWord* addr = (HeapWord*)obj;
johnc@2494 2029
tonyp@2973 2030 if (_cm->verbose_high()) {
johnc@2494 2031 gclog_or_tty->print_cr("\t[0] we're looking at location "
tonyp@2973 2032 "*"PTR_FORMAT" = "PTR_FORMAT,
tonyp@2973 2033 p, (void*) obj);
tonyp@2973 2034 }
johnc@2494 2035
johnc@2494 2036 if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
johnc@3463 2037 _cm->mark_and_count(obj);
johnc@2494 2038 _cm->mark_stack_push(obj);
ysr@777 2039 }
ysr@777 2040 }
ysr@777 2041 };
ysr@777 2042
ysr@777 2043 class G1CMDrainMarkingStackClosure: public VoidClosure {
johnc@3463 2044 ConcurrentMark* _cm;
ysr@777 2045 CMMarkStack* _markStack;
ysr@777 2046 G1CMKeepAliveClosure* _oopClosure;
ysr@777 2047 public:
johnc@3463 2048 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
ysr@777 2049 G1CMKeepAliveClosure* oopClosure) :
johnc@3463 2050 _cm(cm),
ysr@777 2051 _markStack(markStack),
johnc@3463 2052 _oopClosure(oopClosure) { }
ysr@777 2053
ysr@777 2054 void do_void() {
johnc@3463 2055 _markStack->drain((OopClosure*)_oopClosure, _cm->nextMarkBitMap(), false);
ysr@777 2056 }
ysr@777 2057 };
ysr@777 2058
johnc@2494 2059 // 'Keep Alive' closure used by parallel reference processing.
johnc@2494 2060 // An instance of this closure is used in the parallel reference processing
johnc@2494 2061 // code rather than an instance of G1CMKeepAliveClosure. We could have used
johnc@2494 2062 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
johnc@2494 2063 // placed on to discovered ref lists once so we can mark and push with no
johnc@2494 2064 // need to check whether the object has already been marked. Using the
johnc@2494 2065 // G1CMKeepAliveClosure would mean, however, having all the worker threads
johnc@2494 2066 // operating on the global mark stack. This means that an individual
johnc@2494 2067 // worker would be doing lock-free pushes while it processes its own
johnc@2494 2068 // discovered ref list followed by drain call. If the discovered ref lists
johnc@2494 2069 // are unbalanced then this could cause interference with the other
johnc@2494 2070 // workers. Using a CMTask (and its embedded local data structures)
johnc@2494 2071 // avoids that potential interference.
johnc@2494 2072 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
johnc@2494 2073 ConcurrentMark* _cm;
johnc@2494 2074 CMTask* _task;
johnc@2494 2075 int _ref_counter_limit;
johnc@2494 2076 int _ref_counter;
johnc@2494 2077 public:
johnc@3292 2078 G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3292 2079 _cm(cm), _task(task),
johnc@3292 2080 _ref_counter_limit(G1RefProcDrainInterval) {
johnc@2494 2081 assert(_ref_counter_limit > 0, "sanity");
johnc@2494 2082 _ref_counter = _ref_counter_limit;
johnc@2494 2083 }
johnc@2494 2084
johnc@2494 2085 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
johnc@2494 2086 virtual void do_oop( oop* p) { do_oop_work(p); }
johnc@2494 2087
johnc@2494 2088 template <class T> void do_oop_work(T* p) {
johnc@2494 2089 if (!_cm->has_overflown()) {
johnc@2494 2090 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@2973 2091 if (_cm->verbose_high()) {
johnc@2494 2092 gclog_or_tty->print_cr("\t[%d] we're looking at location "
johnc@2494 2093 "*"PTR_FORMAT" = "PTR_FORMAT,
johnc@2494 2094 _task->task_id(), p, (void*) obj);
tonyp@2973 2095 }
johnc@2494 2096
johnc@2494 2097 _task->deal_with_reference(obj);
johnc@2494 2098 _ref_counter--;
johnc@2494 2099
johnc@2494 2100 if (_ref_counter == 0) {
johnc@2494 2101 // We have dealt with _ref_counter_limit references, pushing them and objects
johnc@2494 2102 // reachable from them on to the local stack (and possibly the global stack).
johnc@2494 2103 // Call do_marking_step() to process these entries. We call the routine in a
johnc@2494 2104 // loop, which we'll exit if there's nothing more to do (i.e. we're done
johnc@2494 2105 // with the entries that we've pushed as a result of the deal_with_reference
johnc@2494 2106 // calls above) or we overflow.
johnc@2494 2107 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2108 // while there may still be some work to do. (See the comment at the
johnc@2494 2109 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2110 // is reaching the specified time target.) It is only when
johnc@2494 2111 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2112 // that the marking has completed.
johnc@2494 2113 do {
johnc@2494 2114 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 2115 _task->do_marking_step(mark_step_duration_ms,
johnc@2494 2116 false /* do_stealing */,
johnc@2494 2117 false /* do_termination */);
johnc@2494 2118 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2119 _ref_counter = _ref_counter_limit;
johnc@2494 2120 }
johnc@2494 2121 } else {
tonyp@2973 2122 if (_cm->verbose_high()) {
johnc@2494 2123 gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
tonyp@2973 2124 }
johnc@2494 2125 }
johnc@2494 2126 }
johnc@2494 2127 };
johnc@2494 2128
johnc@2494 2129 class G1CMParDrainMarkingStackClosure: public VoidClosure {
johnc@2494 2130 ConcurrentMark* _cm;
johnc@2494 2131 CMTask* _task;
johnc@2494 2132 public:
johnc@2494 2133 G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3463 2134 _cm(cm), _task(task) { }
johnc@2494 2135
johnc@2494 2136 void do_void() {
johnc@2494 2137 do {
tonyp@2973 2138 if (_cm->verbose_high()) {
tonyp@2973 2139 gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
tonyp@2973 2140 _task->task_id());
tonyp@2973 2141 }
johnc@2494 2142
johnc@2494 2143 // We call CMTask::do_marking_step() to completely drain the local and
johnc@2494 2144 // global marking stacks. The routine is called in a loop, which we'll
johnc@2494 2145 // exit if there's nothing more to do (i.e. we'completely drained the
johnc@2494 2146 // entries that were pushed as a result of applying the
johnc@2494 2147 // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
johnc@2494 2148 // lists above) or we overflow the global marking stack.
johnc@2494 2149 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2150 // while there may still be some work to do. (See the comment at the
johnc@2494 2151 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2152 // is reaching the specified time target.) It is only when
johnc@2494 2153 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2154 // that the marking has completed.
johnc@2494 2155
johnc@2494 2156 _task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2157 true /* do_stealing */,
johnc@2494 2158 true /* do_termination */);
johnc@2494 2159 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2160 }
johnc@2494 2161 };
johnc@2494 2162
johnc@3175 2163 // Implementation of AbstractRefProcTaskExecutor for parallel
johnc@3175 2164 // reference processing at the end of G1 concurrent marking
johnc@3175 2165
johnc@3175 2166 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
johnc@2494 2167 private:
johnc@2494 2168 G1CollectedHeap* _g1h;
johnc@2494 2169 ConcurrentMark* _cm;
johnc@2494 2170 WorkGang* _workers;
johnc@2494 2171 int _active_workers;
johnc@2494 2172
johnc@2494 2173 public:
johnc@3175 2174 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
johnc@2494 2175 ConcurrentMark* cm,
johnc@2494 2176 WorkGang* workers,
johnc@2494 2177 int n_workers) :
johnc@3292 2178 _g1h(g1h), _cm(cm),
johnc@3292 2179 _workers(workers), _active_workers(n_workers) { }
johnc@2494 2180
johnc@2494 2181 // Executes the given task using concurrent marking worker threads.
johnc@2494 2182 virtual void execute(ProcessTask& task);
johnc@2494 2183 virtual void execute(EnqueueTask& task);
johnc@2494 2184 };
johnc@2494 2185
johnc@3175 2186 class G1CMRefProcTaskProxy: public AbstractGangTask {
johnc@2494 2187 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
johnc@2494 2188 ProcessTask& _proc_task;
johnc@2494 2189 G1CollectedHeap* _g1h;
johnc@2494 2190 ConcurrentMark* _cm;
johnc@2494 2191
johnc@2494 2192 public:
johnc@3175 2193 G1CMRefProcTaskProxy(ProcessTask& proc_task,
johnc@2494 2194 G1CollectedHeap* g1h,
johnc@3292 2195 ConcurrentMark* cm) :
johnc@2494 2196 AbstractGangTask("Process reference objects in parallel"),
johnc@3292 2197 _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
johnc@2494 2198
jmasa@3357 2199 virtual void work(uint worker_id) {
jmasa@3357 2200 CMTask* marking_task = _cm->task(worker_id);
johnc@2494 2201 G1CMIsAliveClosure g1_is_alive(_g1h);
johnc@3292 2202 G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
johnc@2494 2203 G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
johnc@2494 2204
jmasa@3357 2205 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
johnc@2494 2206 }
johnc@2494 2207 };
johnc@2494 2208
johnc@3175 2209 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
johnc@2494 2210 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2211
johnc@3292 2212 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
johnc@2494 2213
johnc@2494 2214 // We need to reset the phase for each task execution so that
johnc@2494 2215 // the termination protocol of CMTask::do_marking_step works.
johnc@2494 2216 _cm->set_phase(_active_workers, false /* concurrent */);
johnc@2494 2217 _g1h->set_par_threads(_active_workers);
johnc@2494 2218 _workers->run_task(&proc_task_proxy);
johnc@2494 2219 _g1h->set_par_threads(0);
johnc@2494 2220 }
johnc@2494 2221
johnc@3175 2222 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
johnc@2494 2223 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
johnc@2494 2224 EnqueueTask& _enq_task;
johnc@2494 2225
johnc@2494 2226 public:
johnc@3175 2227 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
johnc@2494 2228 AbstractGangTask("Enqueue reference objects in parallel"),
johnc@3292 2229 _enq_task(enq_task) { }
johnc@2494 2230
jmasa@3357 2231 virtual void work(uint worker_id) {
jmasa@3357 2232 _enq_task.work(worker_id);
johnc@2494 2233 }
johnc@2494 2234 };
johnc@2494 2235
johnc@3175 2236 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
johnc@2494 2237 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2238
johnc@3175 2239 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
johnc@2494 2240
johnc@2494 2241 _g1h->set_par_threads(_active_workers);
johnc@2494 2242 _workers->run_task(&enq_task_proxy);
johnc@2494 2243 _g1h->set_par_threads(0);
johnc@2494 2244 }
johnc@2494 2245
ysr@777 2246 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
ysr@777 2247 ResourceMark rm;
ysr@777 2248 HandleMark hm;
johnc@3171 2249
johnc@3171 2250 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3171 2251
johnc@3171 2252 // Is alive closure.
johnc@3171 2253 G1CMIsAliveClosure g1_is_alive(g1h);
johnc@3171 2254
johnc@3171 2255 // Inner scope to exclude the cleaning of the string and symbol
johnc@3171 2256 // tables from the displayed time.
johnc@3171 2257 {
brutisso@3710 2258 if (G1Log::finer()) {
johnc@3171 2259 gclog_or_tty->put(' ');
johnc@3171 2260 }
brutisso@3710 2261 TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
johnc@3171 2262
johnc@3175 2263 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3171 2264
johnc@3171 2265 // See the comment in G1CollectedHeap::ref_processing_init()
johnc@3171 2266 // about how reference processing currently works in G1.
johnc@3171 2267
johnc@3171 2268 // Process weak references.
johnc@3171 2269 rp->setup_policy(clear_all_soft_refs);
johnc@3171 2270 assert(_markStack.isEmpty(), "mark stack should be empty");
johnc@3171 2271
johnc@3463 2272 G1CMKeepAliveClosure g1_keep_alive(g1h, this);
johnc@3171 2273 G1CMDrainMarkingStackClosure
johnc@3463 2274 g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
johnc@3171 2275
johnc@3171 2276 // We use the work gang from the G1CollectedHeap and we utilize all
johnc@3171 2277 // the worker threads.
jmasa@3357 2278 uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
jmasa@3357 2279 active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
johnc@3171 2280
johnc@3292 2281 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
johnc@3175 2282 g1h->workers(), active_workers);
johnc@3171 2283
johnc@3171 2284 if (rp->processing_is_mt()) {
johnc@3171 2285 // Set the degree of MT here. If the discovery is done MT, there
johnc@3171 2286 // may have been a different number of threads doing the discovery
johnc@3171 2287 // and a different number of discovered lists may have Ref objects.
johnc@3171 2288 // That is OK as long as the Reference lists are balanced (see
johnc@3171 2289 // balance_all_queues() and balance_queues()).
johnc@3171 2290 rp->set_active_mt_degree(active_workers);
johnc@3171 2291
johnc@3171 2292 rp->process_discovered_references(&g1_is_alive,
johnc@2494 2293 &g1_keep_alive,
johnc@2494 2294 &g1_drain_mark_stack,
johnc@2494 2295 &par_task_executor);
johnc@2494 2296
johnc@3171 2297 // The work routines of the parallel keep_alive and drain_marking_stack
johnc@3171 2298 // will set the has_overflown flag if we overflow the global marking
johnc@3171 2299 // stack.
johnc@3171 2300 } else {
johnc@3171 2301 rp->process_discovered_references(&g1_is_alive,
johnc@3171 2302 &g1_keep_alive,
johnc@3171 2303 &g1_drain_mark_stack,
johnc@3171 2304 NULL);
johnc@3171 2305 }
johnc@3171 2306
johnc@3171 2307 assert(_markStack.overflow() || _markStack.isEmpty(),
johnc@3171 2308 "mark stack should be empty (unless it overflowed)");
johnc@3171 2309 if (_markStack.overflow()) {
johnc@3171 2310 // Should have been done already when we tried to push an
johnc@3171 2311 // entry on to the global mark stack. But let's do it again.
johnc@3171 2312 set_has_overflown();
johnc@3171 2313 }
johnc@3171 2314
johnc@3171 2315 if (rp->processing_is_mt()) {
johnc@3171 2316 assert(rp->num_q() == active_workers, "why not");
johnc@3171 2317 rp->enqueue_discovered_references(&par_task_executor);
johnc@3171 2318 } else {
johnc@3171 2319 rp->enqueue_discovered_references();
johnc@3171 2320 }
johnc@3171 2321
johnc@3171 2322 rp->verify_no_references_recorded();
johnc@3175 2323 assert(!rp->discovery_enabled(), "Post condition");
johnc@2494 2324 }
johnc@2494 2325
coleenp@2497 2326 // Now clean up stale oops in StringTable
johnc@2379 2327 StringTable::unlink(&g1_is_alive);
coleenp@2497 2328 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2329 SymbolTable::unlink();
ysr@777 2330 }
ysr@777 2331
ysr@777 2332 void ConcurrentMark::swapMarkBitMaps() {
ysr@777 2333 CMBitMapRO* temp = _prevMarkBitMap;
ysr@777 2334 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
ysr@777 2335 _nextMarkBitMap = (CMBitMap*) temp;
ysr@777 2336 }
ysr@777 2337
ysr@777 2338 class CMRemarkTask: public AbstractGangTask {
ysr@777 2339 private:
ysr@777 2340 ConcurrentMark *_cm;
ysr@777 2341
ysr@777 2342 public:
jmasa@3357 2343 void work(uint worker_id) {
ysr@777 2344 // Since all available tasks are actually started, we should
ysr@777 2345 // only proceed if we're supposed to be actived.
jmasa@3357 2346 if (worker_id < _cm->active_tasks()) {
jmasa@3357 2347 CMTask* task = _cm->task(worker_id);
ysr@777 2348 task->record_start_time();
ysr@777 2349 do {
johnc@2494 2350 task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2351 true /* do_stealing */,
johnc@2494 2352 true /* do_termination */);
ysr@777 2353 } while (task->has_aborted() && !_cm->has_overflown());
ysr@777 2354 // If we overflow, then we do not want to restart. We instead
ysr@777 2355 // want to abort remark and do concurrent marking again.
ysr@777 2356 task->record_end_time();
ysr@777 2357 }
ysr@777 2358 }
ysr@777 2359
johnc@3338 2360 CMRemarkTask(ConcurrentMark* cm, int active_workers) :
jmasa@3294 2361 AbstractGangTask("Par Remark"), _cm(cm) {
johnc@3338 2362 _cm->terminator()->reset_for_reuse(active_workers);
jmasa@3294 2363 }
ysr@777 2364 };
ysr@777 2365
ysr@777 2366 void ConcurrentMark::checkpointRootsFinalWork() {
ysr@777 2367 ResourceMark rm;
ysr@777 2368 HandleMark hm;
ysr@777 2369 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 2370
ysr@777 2371 g1h->ensure_parsability(false);
ysr@777 2372
jmasa@2188 2373 if (G1CollectedHeap::use_parallel_gc_threads()) {
jrose@1424 2374 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3294 2375 // this is remark, so we'll use up all active threads
jmasa@3357 2376 uint active_workers = g1h->workers()->active_workers();
jmasa@3294 2377 if (active_workers == 0) {
jmasa@3294 2378 assert(active_workers > 0, "Should have been set earlier");
jmasa@3357 2379 active_workers = (uint) ParallelGCThreads;
jmasa@3294 2380 g1h->workers()->set_active_workers(active_workers);
jmasa@3294 2381 }
johnc@2494 2382 set_phase(active_workers, false /* concurrent */);
jmasa@3294 2383 // Leave _parallel_marking_threads at it's
jmasa@3294 2384 // value originally calculated in the ConcurrentMark
jmasa@3294 2385 // constructor and pass values of the active workers
jmasa@3294 2386 // through the gang in the task.
ysr@777 2387
johnc@3338 2388 CMRemarkTask remarkTask(this, active_workers);
jmasa@3294 2389 g1h->set_par_threads(active_workers);
ysr@777 2390 g1h->workers()->run_task(&remarkTask);
ysr@777 2391 g1h->set_par_threads(0);
ysr@777 2392 } else {
jrose@1424 2393 G1CollectedHeap::StrongRootsScope srs(g1h);
ysr@777 2394 // this is remark, so we'll use up all available threads
jmasa@3357 2395 uint active_workers = 1;
johnc@2494 2396 set_phase(active_workers, false /* concurrent */);
ysr@777 2397
johnc@3338 2398 CMRemarkTask remarkTask(this, active_workers);
ysr@777 2399 // We will start all available threads, even if we decide that the
ysr@777 2400 // active_workers will be fewer. The extra ones will just bail out
ysr@777 2401 // immediately.
ysr@777 2402 remarkTask.work(0);
ysr@777 2403 }
tonyp@1458 2404 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1458 2405 guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 2406
ysr@777 2407 print_stats();
ysr@777 2408
ysr@777 2409 #if VERIFY_OBJS_PROCESSED
ysr@777 2410 if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
ysr@777 2411 gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
ysr@777 2412 _scan_obj_cl.objs_processed,
ysr@777 2413 ThreadLocalObjQueue::objs_enqueued);
ysr@777 2414 guarantee(_scan_obj_cl.objs_processed ==
ysr@777 2415 ThreadLocalObjQueue::objs_enqueued,
ysr@777 2416 "Different number of objs processed and enqueued.");
ysr@777 2417 }
ysr@777 2418 #endif
ysr@777 2419 }
ysr@777 2420
tonyp@1479 2421 #ifndef PRODUCT
tonyp@1479 2422
tonyp@1823 2423 class PrintReachableOopClosure: public OopClosure {
ysr@777 2424 private:
ysr@777 2425 G1CollectedHeap* _g1h;
ysr@777 2426 outputStream* _out;
johnc@2969 2427 VerifyOption _vo;
tonyp@1823 2428 bool _all;
ysr@777 2429
ysr@777 2430 public:
johnc@2969 2431 PrintReachableOopClosure(outputStream* out,
johnc@2969 2432 VerifyOption vo,
tonyp@1823 2433 bool all) :
tonyp@1479 2434 _g1h(G1CollectedHeap::heap()),
johnc@2969 2435 _out(out), _vo(vo), _all(all) { }
ysr@777 2436
ysr@1280 2437 void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2438 void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2439
ysr@1280 2440 template <class T> void do_oop_work(T* p) {
ysr@1280 2441 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@777 2442 const char* str = NULL;
ysr@777 2443 const char* str2 = "";
ysr@777 2444
tonyp@1823 2445 if (obj == NULL) {
tonyp@1823 2446 str = "";
tonyp@1823 2447 } else if (!_g1h->is_in_g1_reserved(obj)) {
tonyp@1823 2448 str = " O";
tonyp@1823 2449 } else {
ysr@777 2450 HeapRegion* hr = _g1h->heap_region_containing(obj);
tonyp@1458 2451 guarantee(hr != NULL, "invariant");
tonyp@1479 2452 bool over_tams = false;
johnc@2969 2453 bool marked = false;
johnc@2969 2454
johnc@2969 2455 switch (_vo) {
johnc@2969 2456 case VerifyOption_G1UsePrevMarking:
johnc@2969 2457 over_tams = hr->obj_allocated_since_prev_marking(obj);
johnc@2969 2458 marked = _g1h->isMarkedPrev(obj);
johnc@2969 2459 break;
johnc@2969 2460 case VerifyOption_G1UseNextMarking:
johnc@2969 2461 over_tams = hr->obj_allocated_since_next_marking(obj);
johnc@2969 2462 marked = _g1h->isMarkedNext(obj);
johnc@2969 2463 break;
johnc@2969 2464 case VerifyOption_G1UseMarkWord:
johnc@2969 2465 marked = obj->is_gc_marked();
johnc@2969 2466 break;
johnc@2969 2467 default:
johnc@2969 2468 ShouldNotReachHere();
tonyp@1479 2469 }
tonyp@1479 2470
tonyp@1479 2471 if (over_tams) {
tonyp@1823 2472 str = " >";
tonyp@1823 2473 if (marked) {
ysr@777 2474 str2 = " AND MARKED";
tonyp@1479 2475 }
tonyp@1823 2476 } else if (marked) {
tonyp@1823 2477 str = " M";
tonyp@1479 2478 } else {
tonyp@1823 2479 str = " NOT";
tonyp@1479 2480 }
ysr@777 2481 }
ysr@777 2482
tonyp@1823 2483 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
ysr@777 2484 p, (void*) obj, str, str2);
ysr@777 2485 }
ysr@777 2486 };
ysr@777 2487
tonyp@1823 2488 class PrintReachableObjectClosure : public ObjectClosure {
ysr@777 2489 private:
johnc@2969 2490 G1CollectedHeap* _g1h;
johnc@2969 2491 outputStream* _out;
johnc@2969 2492 VerifyOption _vo;
johnc@2969 2493 bool _all;
johnc@2969 2494 HeapRegion* _hr;
ysr@777 2495
ysr@777 2496 public:
johnc@2969 2497 PrintReachableObjectClosure(outputStream* out,
johnc@2969 2498 VerifyOption vo,
tonyp@1823 2499 bool all,
tonyp@1823 2500 HeapRegion* hr) :
johnc@2969 2501 _g1h(G1CollectedHeap::heap()),
johnc@2969 2502 _out(out), _vo(vo), _all(all), _hr(hr) { }
tonyp@1823 2503
tonyp@1823 2504 void do_object(oop o) {
johnc@2969 2505 bool over_tams = false;
johnc@2969 2506 bool marked = false;
johnc@2969 2507
johnc@2969 2508 switch (_vo) {
johnc@2969 2509 case VerifyOption_G1UsePrevMarking:
johnc@2969 2510 over_tams = _hr->obj_allocated_since_prev_marking(o);
johnc@2969 2511 marked = _g1h->isMarkedPrev(o);
johnc@2969 2512 break;
johnc@2969 2513 case VerifyOption_G1UseNextMarking:
johnc@2969 2514 over_tams = _hr->obj_allocated_since_next_marking(o);
johnc@2969 2515 marked = _g1h->isMarkedNext(o);
johnc@2969 2516 break;
johnc@2969 2517 case VerifyOption_G1UseMarkWord:
johnc@2969 2518 marked = o->is_gc_marked();
johnc@2969 2519 break;
johnc@2969 2520 default:
johnc@2969 2521 ShouldNotReachHere();
tonyp@1823 2522 }
tonyp@1823 2523 bool print_it = _all || over_tams || marked;
tonyp@1823 2524
tonyp@1823 2525 if (print_it) {
tonyp@1823 2526 _out->print_cr(" "PTR_FORMAT"%s",
tonyp@1823 2527 o, (over_tams) ? " >" : (marked) ? " M" : "");
johnc@2969 2528 PrintReachableOopClosure oopCl(_out, _vo, _all);
tonyp@1823 2529 o->oop_iterate(&oopCl);
tonyp@1823 2530 }
ysr@777 2531 }
ysr@777 2532 };
ysr@777 2533
tonyp@1823 2534 class PrintReachableRegionClosure : public HeapRegionClosure {
ysr@777 2535 private:
ysr@777 2536 outputStream* _out;
johnc@2969 2537 VerifyOption _vo;
tonyp@1823 2538 bool _all;
ysr@777 2539
ysr@777 2540 public:
ysr@777 2541 bool doHeapRegion(HeapRegion* hr) {
ysr@777 2542 HeapWord* b = hr->bottom();
ysr@777 2543 HeapWord* e = hr->end();
ysr@777 2544 HeapWord* t = hr->top();
tonyp@1479 2545 HeapWord* p = NULL;
johnc@2969 2546
johnc@2969 2547 switch (_vo) {
johnc@2969 2548 case VerifyOption_G1UsePrevMarking:
johnc@2969 2549 p = hr->prev_top_at_mark_start();
johnc@2969 2550 break;
johnc@2969 2551 case VerifyOption_G1UseNextMarking:
johnc@2969 2552 p = hr->next_top_at_mark_start();
johnc@2969 2553 break;
johnc@2969 2554 case VerifyOption_G1UseMarkWord:
johnc@2969 2555 // When we are verifying marking using the mark word
johnc@2969 2556 // TAMS has no relevance.
johnc@2969 2557 assert(p == NULL, "post-condition");
johnc@2969 2558 break;
johnc@2969 2559 default:
johnc@2969 2560 ShouldNotReachHere();
tonyp@1479 2561 }
ysr@777 2562 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
tonyp@1479 2563 "TAMS: "PTR_FORMAT, b, e, t, p);
tonyp@1823 2564 _out->cr();
tonyp@1823 2565
tonyp@1823 2566 HeapWord* from = b;
tonyp@1823 2567 HeapWord* to = t;
tonyp@1823 2568
tonyp@1823 2569 if (to > from) {
tonyp@1823 2570 _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
tonyp@1823 2571 _out->cr();
johnc@2969 2572 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
tonyp@1823 2573 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
tonyp@1823 2574 _out->cr();
tonyp@1823 2575 }
ysr@777 2576
ysr@777 2577 return false;
ysr@777 2578 }
ysr@777 2579
johnc@2969 2580 PrintReachableRegionClosure(outputStream* out,
johnc@2969 2581 VerifyOption vo,
tonyp@1823 2582 bool all) :
johnc@2969 2583 _out(out), _vo(vo), _all(all) { }
ysr@777 2584 };
ysr@777 2585
johnc@2969 2586 static const char* verify_option_to_tams(VerifyOption vo) {
johnc@2969 2587 switch (vo) {
johnc@2969 2588 case VerifyOption_G1UsePrevMarking:
johnc@2969 2589 return "PTAMS";
johnc@2969 2590 case VerifyOption_G1UseNextMarking:
johnc@2969 2591 return "NTAMS";
johnc@2969 2592 default:
johnc@2969 2593 return "NONE";
johnc@2969 2594 }
johnc@2969 2595 }
johnc@2969 2596
tonyp@1823 2597 void ConcurrentMark::print_reachable(const char* str,
johnc@2969 2598 VerifyOption vo,
tonyp@1823 2599 bool all) {
tonyp@1823 2600 gclog_or_tty->cr();
tonyp@1823 2601 gclog_or_tty->print_cr("== Doing heap dump... ");
tonyp@1479 2602
tonyp@1479 2603 if (G1PrintReachableBaseFile == NULL) {
tonyp@1479 2604 gclog_or_tty->print_cr(" #### error: no base file defined");
tonyp@1479 2605 return;
tonyp@1479 2606 }
tonyp@1479 2607
tonyp@1479 2608 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
tonyp@1479 2609 (JVM_MAXPATHLEN - 1)) {
tonyp@1479 2610 gclog_or_tty->print_cr(" #### error: file name too long");
tonyp@1479 2611 return;
tonyp@1479 2612 }
tonyp@1479 2613
tonyp@1479 2614 char file_name[JVM_MAXPATHLEN];
tonyp@1479 2615 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
tonyp@1479 2616 gclog_or_tty->print_cr(" dumping to file %s", file_name);
tonyp@1479 2617
tonyp@1479 2618 fileStream fout(file_name);
tonyp@1479 2619 if (!fout.is_open()) {
tonyp@1479 2620 gclog_or_tty->print_cr(" #### error: could not open file");
tonyp@1479 2621 return;
tonyp@1479 2622 }
tonyp@1479 2623
tonyp@1479 2624 outputStream* out = &fout;
johnc@2969 2625 out->print_cr("-- USING %s", verify_option_to_tams(vo));
tonyp@1479 2626 out->cr();
tonyp@1479 2627
tonyp@1823 2628 out->print_cr("--- ITERATING OVER REGIONS");
tonyp@1479 2629 out->cr();
johnc@2969 2630 PrintReachableRegionClosure rcl(out, vo, all);
ysr@777 2631 _g1h->heap_region_iterate(&rcl);
tonyp@1479 2632 out->cr();
tonyp@1479 2633
tonyp@1479 2634 gclog_or_tty->print_cr(" done");
tonyp@1823 2635 gclog_or_tty->flush();
ysr@777 2636 }
ysr@777 2637
tonyp@1479 2638 #endif // PRODUCT
tonyp@1479 2639
tonyp@3416 2640 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
ysr@777 2641 // Note we are overriding the read-only view of the prev map here, via
ysr@777 2642 // the cast.
ysr@777 2643 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
tonyp@3416 2644 }
tonyp@3416 2645
tonyp@3416 2646 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
ysr@777 2647 _nextMarkBitMap->clearRange(mr);
ysr@777 2648 }
ysr@777 2649
tonyp@3416 2650 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
tonyp@3416 2651 clearRangePrevBitmap(mr);
tonyp@3416 2652 clearRangeNextBitmap(mr);
tonyp@3416 2653 }
tonyp@3416 2654
ysr@777 2655 HeapRegion*
ysr@777 2656 ConcurrentMark::claim_region(int task_num) {
ysr@777 2657 // "checkpoint" the finger
ysr@777 2658 HeapWord* finger = _finger;
ysr@777 2659
ysr@777 2660 // _heap_end will not change underneath our feet; it only changes at
ysr@777 2661 // yield points.
ysr@777 2662 while (finger < _heap_end) {
tonyp@1458 2663 assert(_g1h->is_in_g1_reserved(finger), "invariant");
ysr@777 2664
tonyp@2968 2665 // Note on how this code handles humongous regions. In the
tonyp@2968 2666 // normal case the finger will reach the start of a "starts
tonyp@2968 2667 // humongous" (SH) region. Its end will either be the end of the
tonyp@2968 2668 // last "continues humongous" (CH) region in the sequence, or the
tonyp@2968 2669 // standard end of the SH region (if the SH is the only region in
tonyp@2968 2670 // the sequence). That way claim_region() will skip over the CH
tonyp@2968 2671 // regions. However, there is a subtle race between a CM thread
tonyp@2968 2672 // executing this method and a mutator thread doing a humongous
tonyp@2968 2673 // object allocation. The two are not mutually exclusive as the CM
tonyp@2968 2674 // thread does not need to hold the Heap_lock when it gets
tonyp@2968 2675 // here. So there is a chance that claim_region() will come across
tonyp@2968 2676 // a free region that's in the progress of becoming a SH or a CH
tonyp@2968 2677 // region. In the former case, it will either
tonyp@2968 2678 // a) Miss the update to the region's end, in which case it will
tonyp@2968 2679 // visit every subsequent CH region, will find their bitmaps
tonyp@2968 2680 // empty, and do nothing, or
tonyp@2968 2681 // b) Will observe the update of the region's end (in which case
tonyp@2968 2682 // it will skip the subsequent CH regions).
tonyp@2968 2683 // If it comes across a region that suddenly becomes CH, the
tonyp@2968 2684 // scenario will be similar to b). So, the race between
tonyp@2968 2685 // claim_region() and a humongous object allocation might force us
tonyp@2968 2686 // to do a bit of unnecessary work (due to some unnecessary bitmap
tonyp@2968 2687 // iterations) but it should not introduce and correctness issues.
tonyp@2968 2688 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
ysr@777 2689 HeapWord* bottom = curr_region->bottom();
ysr@777 2690 HeapWord* end = curr_region->end();
ysr@777 2691 HeapWord* limit = curr_region->next_top_at_mark_start();
ysr@777 2692
tonyp@2968 2693 if (verbose_low()) {
ysr@777 2694 gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
ysr@777 2695 "["PTR_FORMAT", "PTR_FORMAT"), "
ysr@777 2696 "limit = "PTR_FORMAT,
ysr@777 2697 task_num, curr_region, bottom, end, limit);
tonyp@2968 2698 }
tonyp@2968 2699
tonyp@2968 2700 // Is the gap between reading the finger and doing the CAS too long?
tonyp@2968 2701 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
ysr@777 2702 if (res == finger) {
ysr@777 2703 // we succeeded
ysr@777 2704
ysr@777 2705 // notice that _finger == end cannot be guaranteed here since,
ysr@777 2706 // someone else might have moved the finger even further
tonyp@1458 2707 assert(_finger >= end, "the finger should have moved forward");
ysr@777 2708
tonyp@2973 2709 if (verbose_low()) {
ysr@777 2710 gclog_or_tty->print_cr("[%d] we were successful with region = "
ysr@777 2711 PTR_FORMAT, task_num, curr_region);
tonyp@2973 2712 }
ysr@777 2713
ysr@777 2714 if (limit > bottom) {
tonyp@2973 2715 if (verbose_low()) {
ysr@777 2716 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
ysr@777 2717 "returning it ", task_num, curr_region);
tonyp@2973 2718 }
ysr@777 2719 return curr_region;
ysr@777 2720 } else {
tonyp@1458 2721 assert(limit == bottom,
tonyp@1458 2722 "the region limit should be at bottom");
tonyp@2973 2723 if (verbose_low()) {
ysr@777 2724 gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
ysr@777 2725 "returning NULL", task_num, curr_region);
tonyp@2973 2726 }
ysr@777 2727 // we return NULL and the caller should try calling
ysr@777 2728 // claim_region() again.
ysr@777 2729 return NULL;
ysr@777 2730 }
ysr@777 2731 } else {
tonyp@1458 2732 assert(_finger > finger, "the finger should have moved forward");
tonyp@2973 2733 if (verbose_low()) {
ysr@777 2734 gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
ysr@777 2735 "global finger = "PTR_FORMAT", "
ysr@777 2736 "our finger = "PTR_FORMAT,
ysr@777 2737 task_num, _finger, finger);
tonyp@2973 2738 }
ysr@777 2739
ysr@777 2740 // read it again
ysr@777 2741 finger = _finger;
ysr@777 2742 }
ysr@777 2743 }
ysr@777 2744
ysr@777 2745 return NULL;
ysr@777 2746 }
ysr@777 2747
tonyp@3416 2748 #ifndef PRODUCT
tonyp@3416 2749 enum VerifyNoCSetOopsPhase {
tonyp@3416 2750 VerifyNoCSetOopsStack,
tonyp@3416 2751 VerifyNoCSetOopsQueues,
tonyp@3416 2752 VerifyNoCSetOopsSATBCompleted,
tonyp@3416 2753 VerifyNoCSetOopsSATBThread
tonyp@3416 2754 };
tonyp@3416 2755
tonyp@3416 2756 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
tonyp@3416 2757 private:
tonyp@3416 2758 G1CollectedHeap* _g1h;
tonyp@3416 2759 VerifyNoCSetOopsPhase _phase;
tonyp@3416 2760 int _info;
tonyp@3416 2761
tonyp@3416 2762 const char* phase_str() {
tonyp@3416 2763 switch (_phase) {
tonyp@3416 2764 case VerifyNoCSetOopsStack: return "Stack";
tonyp@3416 2765 case VerifyNoCSetOopsQueues: return "Queue";
tonyp@3416 2766 case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
tonyp@3416 2767 case VerifyNoCSetOopsSATBThread: return "Thread SATB Buffers";
tonyp@3416 2768 default: ShouldNotReachHere();
tonyp@3416 2769 }
tonyp@3416 2770 return NULL;
ysr@777 2771 }
johnc@2190 2772
tonyp@3416 2773 void do_object_work(oop obj) {
tonyp@3416 2774 guarantee(!_g1h->obj_in_cs(obj),
tonyp@3416 2775 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
tonyp@3416 2776 (void*) obj, phase_str(), _info));
johnc@2190 2777 }
johnc@2190 2778
tonyp@3416 2779 public:
tonyp@3416 2780 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
tonyp@3416 2781
tonyp@3416 2782 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
tonyp@3416 2783 _phase = phase;
tonyp@3416 2784 _info = info;
tonyp@3416 2785 }
tonyp@3416 2786
tonyp@3416 2787 virtual void do_oop(oop* p) {
tonyp@3416 2788 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@3416 2789 do_object_work(obj);
tonyp@3416 2790 }
tonyp@3416 2791
tonyp@3416 2792 virtual void do_oop(narrowOop* p) {
tonyp@3416 2793 // We should not come across narrow oops while scanning marking
tonyp@3416 2794 // stacks and SATB buffers.
tonyp@3416 2795 ShouldNotReachHere();
tonyp@3416 2796 }
tonyp@3416 2797
tonyp@3416 2798 virtual void do_object(oop obj) {
tonyp@3416 2799 do_object_work(obj);
tonyp@3416 2800 }
tonyp@3416 2801 };
tonyp@3416 2802
tonyp@3416 2803 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
tonyp@3416 2804 bool verify_enqueued_buffers,
tonyp@3416 2805 bool verify_thread_buffers,
tonyp@3416 2806 bool verify_fingers) {
tonyp@3416 2807 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
tonyp@3416 2808 if (!G1CollectedHeap::heap()->mark_in_progress()) {
tonyp@3416 2809 return;
tonyp@3416 2810 }
tonyp@3416 2811
tonyp@3416 2812 VerifyNoCSetOopsClosure cl;
tonyp@3416 2813
tonyp@3416 2814 if (verify_stacks) {
tonyp@3416 2815 // Verify entries on the global mark stack
tonyp@3416 2816 cl.set_phase(VerifyNoCSetOopsStack);
tonyp@3416 2817 _markStack.oops_do(&cl);
tonyp@3416 2818
tonyp@3416 2819 // Verify entries on the task queues
tonyp@3416 2820 for (int i = 0; i < (int) _max_task_num; i += 1) {
tonyp@3416 2821 cl.set_phase(VerifyNoCSetOopsQueues, i);
tonyp@3416 2822 OopTaskQueue* queue = _task_queues->queue(i);
tonyp@3416 2823 queue->oops_do(&cl);
tonyp@3416 2824 }
tonyp@3416 2825 }
tonyp@3416 2826
tonyp@3416 2827 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@3416 2828
tonyp@3416 2829 // Verify entries on the enqueued SATB buffers
tonyp@3416 2830 if (verify_enqueued_buffers) {
tonyp@3416 2831 cl.set_phase(VerifyNoCSetOopsSATBCompleted);
tonyp@3416 2832 satb_qs.iterate_completed_buffers_read_only(&cl);
tonyp@3416 2833 }
tonyp@3416 2834
tonyp@3416 2835 // Verify entries on the per-thread SATB buffers
tonyp@3416 2836 if (verify_thread_buffers) {
tonyp@3416 2837 cl.set_phase(VerifyNoCSetOopsSATBThread);
tonyp@3416 2838 satb_qs.iterate_thread_buffers_read_only(&cl);
tonyp@3416 2839 }
tonyp@3416 2840
tonyp@3416 2841 if (verify_fingers) {
tonyp@3416 2842 // Verify the global finger
tonyp@3416 2843 HeapWord* global_finger = finger();
tonyp@3416 2844 if (global_finger != NULL && global_finger < _heap_end) {
tonyp@3416 2845 // The global finger always points to a heap region boundary. We
tonyp@3416 2846 // use heap_region_containing_raw() to get the containing region
tonyp@3416 2847 // given that the global finger could be pointing to a free region
tonyp@3416 2848 // which subsequently becomes continues humongous. If that
tonyp@3416 2849 // happens, heap_region_containing() will return the bottom of the
tonyp@3416 2850 // corresponding starts humongous region and the check below will
tonyp@3416 2851 // not hold any more.
tonyp@3416 2852 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
tonyp@3416 2853 guarantee(global_finger == global_hr->bottom(),
tonyp@3416 2854 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2855 global_finger, HR_FORMAT_PARAMS(global_hr)));
tonyp@3416 2856 }
tonyp@3416 2857
tonyp@3416 2858 // Verify the task fingers
tonyp@3416 2859 assert(parallel_marking_threads() <= _max_task_num, "sanity");
tonyp@3416 2860 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
tonyp@3416 2861 CMTask* task = _tasks[i];
tonyp@3416 2862 HeapWord* task_finger = task->finger();
tonyp@3416 2863 if (task_finger != NULL && task_finger < _heap_end) {
tonyp@3416 2864 // See above note on the global finger verification.
tonyp@3416 2865 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
tonyp@3416 2866 guarantee(task_finger == task_hr->bottom() ||
tonyp@3416 2867 !task_hr->in_collection_set(),
tonyp@3416 2868 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2869 task_finger, HR_FORMAT_PARAMS(task_hr)));
tonyp@3416 2870 }
tonyp@3416 2871 }
tonyp@3416 2872 }
ysr@777 2873 }
tonyp@3416 2874 #endif // PRODUCT
ysr@777 2875
tonyp@2848 2876 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
ysr@777 2877 _markStack.setEmpty();
ysr@777 2878 _markStack.clear_overflow();
tonyp@2848 2879 if (clear_overflow) {
tonyp@2848 2880 clear_has_overflown();
tonyp@2848 2881 } else {
tonyp@2848 2882 assert(has_overflown(), "pre-condition");
tonyp@2848 2883 }
ysr@777 2884 _finger = _heap_start;
ysr@777 2885
ysr@777 2886 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 2887 OopTaskQueue* queue = _task_queues->queue(i);
ysr@777 2888 queue->set_empty();
ysr@777 2889 }
ysr@777 2890 }
ysr@777 2891
johnc@3463 2892 // Aggregate the counting data that was constructed concurrently
johnc@3463 2893 // with marking.
johnc@3463 2894 class AggregateCountDataHRClosure: public HeapRegionClosure {
johnc@3463 2895 ConcurrentMark* _cm;
johnc@3463 2896 BitMap* _cm_card_bm;
johnc@3463 2897 size_t _max_task_num;
johnc@3463 2898
johnc@3463 2899 public:
johnc@3463 2900 AggregateCountDataHRClosure(ConcurrentMark *cm,
johnc@3463 2901 BitMap* cm_card_bm,
johnc@3463 2902 size_t max_task_num) :
johnc@3463 2903 _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 2904 _max_task_num(max_task_num) { }
johnc@3463 2905
johnc@3463 2906 bool is_card_aligned(HeapWord* p) {
johnc@3463 2907 return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
johnc@3463 2908 }
johnc@3463 2909
johnc@3463 2910 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 2911 if (hr->continuesHumongous()) {
johnc@3463 2912 // We will ignore these here and process them when their
johnc@3463 2913 // associated "starts humongous" region is processed.
johnc@3463 2914 // Note that we cannot rely on their associated
johnc@3463 2915 // "starts humongous" region to have their bit set to 1
johnc@3463 2916 // since, due to the region chunking in the parallel region
johnc@3463 2917 // iteration, a "continues humongous" region might be visited
johnc@3463 2918 // before its associated "starts humongous".
johnc@3463 2919 return false;
johnc@3463 2920 }
johnc@3463 2921
johnc@3463 2922 HeapWord* start = hr->bottom();
johnc@3463 2923 HeapWord* limit = hr->next_top_at_mark_start();
johnc@3463 2924 HeapWord* end = hr->end();
johnc@3463 2925
johnc@3463 2926 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
johnc@3463 2927 err_msg("Preconditions not met - "
johnc@3463 2928 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
johnc@3463 2929 "top: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 2930 start, limit, hr->top(), hr->end()));
johnc@3463 2931
johnc@3463 2932 assert(hr->next_marked_bytes() == 0, "Precondition");
johnc@3463 2933
johnc@3463 2934 if (start == limit) {
johnc@3463 2935 // NTAMS of this region has not been set so nothing to do.
johnc@3463 2936 return false;
johnc@3463 2937 }
johnc@3463 2938
johnc@3463 2939 assert(is_card_aligned(start), "sanity");
johnc@3463 2940 assert(is_card_aligned(end), "sanity");
johnc@3463 2941
johnc@3463 2942 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3463 2943 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
johnc@3463 2944 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
johnc@3463 2945
johnc@3463 2946 // If ntams is not card aligned then we bump the index for
johnc@3463 2947 // limit so that we get the card spanning ntams.
johnc@3463 2948 if (!is_card_aligned(limit)) {
johnc@3463 2949 limit_idx += 1;
johnc@3463 2950 }
johnc@3463 2951
johnc@3463 2952 assert(limit_idx <= end_idx, "or else use atomics");
johnc@3463 2953
johnc@3463 2954 // Aggregate the "stripe" in the count data associated with hr.
tonyp@3713 2955 uint hrs_index = hr->hrs_index();
johnc@3463 2956 size_t marked_bytes = 0;
johnc@3463 2957
johnc@3463 2958 for (int i = 0; (size_t)i < _max_task_num; i += 1) {
johnc@3463 2959 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
johnc@3463 2960 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
johnc@3463 2961
johnc@3463 2962 // Fetch the marked_bytes in this region for task i and
johnc@3463 2963 // add it to the running total for this region.
johnc@3463 2964 marked_bytes += marked_bytes_array[hrs_index];
johnc@3463 2965
johnc@3463 2966 // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
johnc@3463 2967 // into the global card bitmap.
johnc@3463 2968 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
johnc@3463 2969
johnc@3463 2970 while (scan_idx < limit_idx) {
johnc@3463 2971 assert(task_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2972 _cm_card_bm->set_bit(scan_idx);
johnc@3463 2973 assert(_cm_card_bm->at(scan_idx) == true, "should be");
johnc@3463 2974
johnc@3463 2975 // BitMap::get_next_one_offset() can handle the case when
johnc@3463 2976 // its left_offset parameter is greater than its right_offset
johnc@3463 2977 // parameter. If does, however, have an early exit if
johnc@3463 2978 // left_offset == right_offset. So let's limit the value
johnc@3463 2979 // passed in for left offset here.
johnc@3463 2980 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
johnc@3463 2981 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
johnc@3463 2982 }
johnc@3463 2983 }
johnc@3463 2984
johnc@3463 2985 // Update the marked bytes for this region.
johnc@3463 2986 hr->add_to_marked_bytes(marked_bytes);
johnc@3463 2987
johnc@3463 2988 // Next heap region
johnc@3463 2989 return false;
johnc@3463 2990 }
johnc@3463 2991 };
johnc@3463 2992
johnc@3463 2993 class G1AggregateCountDataTask: public AbstractGangTask {
johnc@3463 2994 protected:
johnc@3463 2995 G1CollectedHeap* _g1h;
johnc@3463 2996 ConcurrentMark* _cm;
johnc@3463 2997 BitMap* _cm_card_bm;
johnc@3463 2998 size_t _max_task_num;
johnc@3463 2999 int _active_workers;
johnc@3463 3000
johnc@3463 3001 public:
johnc@3463 3002 G1AggregateCountDataTask(G1CollectedHeap* g1h,
johnc@3463 3003 ConcurrentMark* cm,
johnc@3463 3004 BitMap* cm_card_bm,
johnc@3463 3005 size_t max_task_num,
johnc@3463 3006 int n_workers) :
johnc@3463 3007 AbstractGangTask("Count Aggregation"),
johnc@3463 3008 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
johnc@3463 3009 _max_task_num(max_task_num),
johnc@3463 3010 _active_workers(n_workers) { }
johnc@3463 3011
johnc@3463 3012 void work(uint worker_id) {
johnc@3463 3013 AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);
johnc@3463 3014
johnc@3463 3015 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3016 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
johnc@3463 3017 _active_workers,
johnc@3463 3018 HeapRegion::AggregateCountClaimValue);
johnc@3463 3019 } else {
johnc@3463 3020 _g1h->heap_region_iterate(&cl);
johnc@3463 3021 }
johnc@3463 3022 }
johnc@3463 3023 };
johnc@3463 3024
johnc@3463 3025
johnc@3463 3026 void ConcurrentMark::aggregate_count_data() {
johnc@3463 3027 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
johnc@3463 3028 _g1h->workers()->active_workers() :
johnc@3463 3029 1);
johnc@3463 3030
johnc@3463 3031 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
johnc@3463 3032 _max_task_num, n_workers);
johnc@3463 3033
johnc@3463 3034 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3035 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
johnc@3463 3036 "sanity check");
johnc@3463 3037 _g1h->set_par_threads(n_workers);
johnc@3463 3038 _g1h->workers()->run_task(&g1_par_agg_task);
johnc@3463 3039 _g1h->set_par_threads(0);
johnc@3463 3040
johnc@3463 3041 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
johnc@3463 3042 "sanity check");
johnc@3463 3043 _g1h->reset_heap_region_claim_values();
johnc@3463 3044 } else {
johnc@3463 3045 g1_par_agg_task.work(0);
johnc@3463 3046 }
johnc@3463 3047 }
johnc@3463 3048
johnc@3463 3049 // Clear the per-worker arrays used to store the per-region counting data
johnc@3463 3050 void ConcurrentMark::clear_all_count_data() {
johnc@3463 3051 // Clear the global card bitmap - it will be filled during
johnc@3463 3052 // liveness count aggregation (during remark) and the
johnc@3463 3053 // final counting task.
johnc@3463 3054 _card_bm.clear();
johnc@3463 3055
johnc@3463 3056 // Clear the global region bitmap - it will be filled as part
johnc@3463 3057 // of the final counting task.
johnc@3463 3058 _region_bm.clear();
johnc@3463 3059
tonyp@3713 3060 uint max_regions = _g1h->max_regions();
johnc@3463 3061 assert(_max_task_num != 0, "unitialized");
johnc@3463 3062
johnc@3463 3063 for (int i = 0; (size_t) i < _max_task_num; i += 1) {
johnc@3463 3064 BitMap* task_card_bm = count_card_bitmap_for(i);
johnc@3463 3065 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
johnc@3463 3066
johnc@3463 3067 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 3068 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 3069
tonyp@3713 3070 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
johnc@3463 3071 task_card_bm->clear();
johnc@3463 3072 }
johnc@3463 3073 }
johnc@3463 3074
ysr@777 3075 void ConcurrentMark::print_stats() {
ysr@777 3076 if (verbose_stats()) {
ysr@777 3077 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3078 for (size_t i = 0; i < _active_tasks; ++i) {
ysr@777 3079 _tasks[i]->print_stats();
ysr@777 3080 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3081 }
ysr@777 3082 }
ysr@777 3083 }
ysr@777 3084
ysr@777 3085 // abandon current marking iteration due to a Full GC
ysr@777 3086 void ConcurrentMark::abort() {
ysr@777 3087 // Clear all marks to force marking thread to do nothing
ysr@777 3088 _nextMarkBitMap->clearAll();
johnc@3463 3089 // Clear the liveness counting data
johnc@3463 3090 clear_all_count_data();
ysr@777 3091 // Empty mark stack
ysr@777 3092 clear_marking_state();
johnc@2190 3093 for (int i = 0; i < (int)_max_task_num; ++i) {
ysr@777 3094 _tasks[i]->clear_region_fields();
johnc@2190 3095 }
ysr@777 3096 _has_aborted = true;
ysr@777 3097
ysr@777 3098 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3099 satb_mq_set.abandon_partial_marking();
tonyp@1752 3100 // This can be called either during or outside marking, we'll read
tonyp@1752 3101 // the expected_active value from the SATB queue set.
tonyp@1752 3102 satb_mq_set.set_active_all_threads(
tonyp@1752 3103 false, /* new active value */
tonyp@1752 3104 satb_mq_set.is_active() /* expected_active */);
ysr@777 3105 }
ysr@777 3106
ysr@777 3107 static void print_ms_time_info(const char* prefix, const char* name,
ysr@777 3108 NumberSeq& ns) {
ysr@777 3109 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3110 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
ysr@777 3111 if (ns.num() > 0) {
ysr@777 3112 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
ysr@777 3113 prefix, ns.sd(), ns.maximum());
ysr@777 3114 }
ysr@777 3115 }
ysr@777 3116
ysr@777 3117 void ConcurrentMark::print_summary_info() {
ysr@777 3118 gclog_or_tty->print_cr(" Concurrent marking:");
ysr@777 3119 print_ms_time_info(" ", "init marks", _init_times);
ysr@777 3120 print_ms_time_info(" ", "remarks", _remark_times);
ysr@777 3121 {
ysr@777 3122 print_ms_time_info(" ", "final marks", _remark_mark_times);
ysr@777 3123 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
ysr@777 3124
ysr@777 3125 }
ysr@777 3126 print_ms_time_info(" ", "cleanups", _cleanup_times);
ysr@777 3127 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3128 _total_counting_time,
ysr@777 3129 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
ysr@777 3130 (double)_cleanup_times.num()
ysr@777 3131 : 0.0));
ysr@777 3132 if (G1ScrubRemSets) {
ysr@777 3133 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3134 _total_rs_scrub_time,
ysr@777 3135 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
ysr@777 3136 (double)_cleanup_times.num()
ysr@777 3137 : 0.0));
ysr@777 3138 }
ysr@777 3139 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
ysr@777 3140 (_init_times.sum() + _remark_times.sum() +
ysr@777 3141 _cleanup_times.sum())/1000.0);
ysr@777 3142 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
johnc@3463 3143 "(%8.2f s marking).",
ysr@777 3144 cmThread()->vtime_accum(),
johnc@3463 3145 cmThread()->vtime_mark_accum());
ysr@777 3146 }
ysr@777 3147
tonyp@1454 3148 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
tonyp@1454 3149 _parallel_workers->print_worker_threads_on(st);
tonyp@1454 3150 }
tonyp@1454 3151
ysr@777 3152 // We take a break if someone is trying to stop the world.
jmasa@3357 3153 bool ConcurrentMark::do_yield_check(uint worker_id) {
ysr@777 3154 if (should_yield()) {
jmasa@3357 3155 if (worker_id == 0) {
ysr@777 3156 _g1h->g1_policy()->record_concurrent_pause();
tonyp@2973 3157 }
ysr@777 3158 cmThread()->yield();
jmasa@3357 3159 if (worker_id == 0) {
ysr@777 3160 _g1h->g1_policy()->record_concurrent_pause_end();
tonyp@2973 3161 }
ysr@777 3162 return true;
ysr@777 3163 } else {
ysr@777 3164 return false;
ysr@777 3165 }
ysr@777 3166 }
ysr@777 3167
ysr@777 3168 bool ConcurrentMark::should_yield() {
ysr@777 3169 return cmThread()->should_yield();
ysr@777 3170 }
ysr@777 3171
ysr@777 3172 bool ConcurrentMark::containing_card_is_marked(void* p) {
ysr@777 3173 size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
ysr@777 3174 return _card_bm.at(offset >> CardTableModRefBS::card_shift);
ysr@777 3175 }
ysr@777 3176
ysr@777 3177 bool ConcurrentMark::containing_cards_are_marked(void* start,
ysr@777 3178 void* last) {
tonyp@2973 3179 return containing_card_is_marked(start) &&
tonyp@2973 3180 containing_card_is_marked(last);
ysr@777 3181 }
ysr@777 3182
ysr@777 3183 #ifndef PRODUCT
ysr@777 3184 // for debugging purposes
ysr@777 3185 void ConcurrentMark::print_finger() {
ysr@777 3186 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
ysr@777 3187 _heap_start, _heap_end, _finger);
ysr@777 3188 for (int i = 0; i < (int) _max_task_num; ++i) {
ysr@777 3189 gclog_or_tty->print(" %d: "PTR_FORMAT, i, _tasks[i]->finger());
ysr@777 3190 }
ysr@777 3191 gclog_or_tty->print_cr("");
ysr@777 3192 }
ysr@777 3193 #endif
ysr@777 3194
tonyp@2968 3195 void CMTask::scan_object(oop obj) {
tonyp@2968 3196 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
tonyp@2968 3197
tonyp@2968 3198 if (_cm->verbose_high()) {
tonyp@2968 3199 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
tonyp@2968 3200 _task_id, (void*) obj);
tonyp@2968 3201 }
tonyp@2968 3202
tonyp@2968 3203 size_t obj_size = obj->size();
tonyp@2968 3204 _words_scanned += obj_size;
tonyp@2968 3205
tonyp@2968 3206 obj->oop_iterate(_cm_oop_closure);
tonyp@2968 3207 statsOnly( ++_objs_scanned );
tonyp@2968 3208 check_limits();
tonyp@2968 3209 }
tonyp@2968 3210
ysr@777 3211 // Closure for iteration over bitmaps
ysr@777 3212 class CMBitMapClosure : public BitMapClosure {
ysr@777 3213 private:
ysr@777 3214 // the bitmap that is being iterated over
ysr@777 3215 CMBitMap* _nextMarkBitMap;
ysr@777 3216 ConcurrentMark* _cm;
ysr@777 3217 CMTask* _task;
ysr@777 3218
ysr@777 3219 public:
tonyp@3691 3220 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
tonyp@3691 3221 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
ysr@777 3222
ysr@777 3223 bool do_bit(size_t offset) {
ysr@777 3224 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tonyp@1458 3225 assert(_nextMarkBitMap->isMarked(addr), "invariant");
tonyp@1458 3226 assert( addr < _cm->finger(), "invariant");
ysr@777 3227
tonyp@3691 3228 statsOnly( _task->increase_objs_found_on_bitmap() );
tonyp@3691 3229 assert(addr >= _task->finger(), "invariant");
tonyp@3691 3230
tonyp@3691 3231 // We move that task's local finger along.
tonyp@3691 3232 _task->move_finger_to(addr);
ysr@777 3233
ysr@777 3234 _task->scan_object(oop(addr));
ysr@777 3235 // we only partially drain the local queue and global stack
ysr@777 3236 _task->drain_local_queue(true);
ysr@777 3237 _task->drain_global_stack(true);
ysr@777 3238
ysr@777 3239 // if the has_aborted flag has been raised, we need to bail out of
ysr@777 3240 // the iteration
ysr@777 3241 return !_task->has_aborted();
ysr@777 3242 }
ysr@777 3243 };
ysr@777 3244
ysr@777 3245 // Closure for iterating over objects, currently only used for
ysr@777 3246 // processing SATB buffers.
ysr@777 3247 class CMObjectClosure : public ObjectClosure {
ysr@777 3248 private:
ysr@777 3249 CMTask* _task;
ysr@777 3250
ysr@777 3251 public:
ysr@777 3252 void do_object(oop obj) {
ysr@777 3253 _task->deal_with_reference(obj);
ysr@777 3254 }
ysr@777 3255
ysr@777 3256 CMObjectClosure(CMTask* task) : _task(task) { }
ysr@777 3257 };
ysr@777 3258
tonyp@2968 3259 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
tonyp@2968 3260 ConcurrentMark* cm,
tonyp@2968 3261 CMTask* task)
tonyp@2968 3262 : _g1h(g1h), _cm(cm), _task(task) {
tonyp@2968 3263 assert(_ref_processor == NULL, "should be initialized to NULL");
tonyp@2968 3264
tonyp@2968 3265 if (G1UseConcMarkReferenceProcessing) {
johnc@3175 3266 _ref_processor = g1h->ref_processor_cm();
tonyp@2968 3267 assert(_ref_processor != NULL, "should not be NULL");
ysr@777 3268 }
tonyp@2968 3269 }
ysr@777 3270
ysr@777 3271 void CMTask::setup_for_region(HeapRegion* hr) {
tonyp@1458 3272 // Separated the asserts so that we know which one fires.
tonyp@1458 3273 assert(hr != NULL,
tonyp@1458 3274 "claim_region() should have filtered out continues humongous regions");
tonyp@1458 3275 assert(!hr->continuesHumongous(),
tonyp@1458 3276 "claim_region() should have filtered out continues humongous regions");
ysr@777 3277
tonyp@2973 3278 if (_cm->verbose_low()) {
ysr@777 3279 gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
ysr@777 3280 _task_id, hr);
tonyp@2973 3281 }
ysr@777 3282
ysr@777 3283 _curr_region = hr;
ysr@777 3284 _finger = hr->bottom();
ysr@777 3285 update_region_limit();
ysr@777 3286 }
ysr@777 3287
ysr@777 3288 void CMTask::update_region_limit() {
ysr@777 3289 HeapRegion* hr = _curr_region;
ysr@777 3290 HeapWord* bottom = hr->bottom();
ysr@777 3291 HeapWord* limit = hr->next_top_at_mark_start();
ysr@777 3292
ysr@777 3293 if (limit == bottom) {
tonyp@2973 3294 if (_cm->verbose_low()) {
ysr@777 3295 gclog_or_tty->print_cr("[%d] found an empty region "
ysr@777 3296 "["PTR_FORMAT", "PTR_FORMAT")",
ysr@777 3297 _task_id, bottom, limit);
tonyp@2973 3298 }
ysr@777 3299 // The region was collected underneath our feet.
ysr@777 3300 // We set the finger to bottom to ensure that the bitmap
ysr@777 3301 // iteration that will follow this will not do anything.
ysr@777 3302 // (this is not a condition that holds when we set the region up,
ysr@777 3303 // as the region is not supposed to be empty in the first place)
ysr@777 3304 _finger = bottom;
ysr@777 3305 } else if (limit >= _region_limit) {
tonyp@1458 3306 assert(limit >= _finger, "peace of mind");
ysr@777 3307 } else {
tonyp@1458 3308 assert(limit < _region_limit, "only way to get here");
ysr@777 3309 // This can happen under some pretty unusual circumstances. An
ysr@777 3310 // evacuation pause empties the region underneath our feet (NTAMS
ysr@777 3311 // at bottom). We then do some allocation in the region (NTAMS
ysr@777 3312 // stays at bottom), followed by the region being used as a GC
ysr@777 3313 // alloc region (NTAMS will move to top() and the objects
ysr@777 3314 // originally below it will be grayed). All objects now marked in
ysr@777 3315 // the region are explicitly grayed, if below the global finger,
ysr@777 3316 // and we do not need in fact to scan anything else. So, we simply
ysr@777 3317 // set _finger to be limit to ensure that the bitmap iteration
ysr@777 3318 // doesn't do anything.
ysr@777 3319 _finger = limit;
ysr@777 3320 }
ysr@777 3321
ysr@777 3322 _region_limit = limit;
ysr@777 3323 }
ysr@777 3324
ysr@777 3325 void CMTask::giveup_current_region() {
tonyp@1458 3326 assert(_curr_region != NULL, "invariant");
tonyp@2973 3327 if (_cm->verbose_low()) {
ysr@777 3328 gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
ysr@777 3329 _task_id, _curr_region);
tonyp@2973 3330 }
ysr@777 3331 clear_region_fields();
ysr@777 3332 }
ysr@777 3333
ysr@777 3334 void CMTask::clear_region_fields() {
ysr@777 3335 // Values for these three fields that indicate that we're not
ysr@777 3336 // holding on to a region.
ysr@777 3337 _curr_region = NULL;
ysr@777 3338 _finger = NULL;
ysr@777 3339 _region_limit = NULL;
ysr@777 3340 }
ysr@777 3341
tonyp@2968 3342 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
tonyp@2968 3343 if (cm_oop_closure == NULL) {
tonyp@2968 3344 assert(_cm_oop_closure != NULL, "invariant");
tonyp@2968 3345 } else {
tonyp@2968 3346 assert(_cm_oop_closure == NULL, "invariant");
tonyp@2968 3347 }
tonyp@2968 3348 _cm_oop_closure = cm_oop_closure;
tonyp@2968 3349 }
tonyp@2968 3350
ysr@777 3351 void CMTask::reset(CMBitMap* nextMarkBitMap) {
tonyp@1458 3352 guarantee(nextMarkBitMap != NULL, "invariant");
ysr@777 3353
tonyp@2973 3354 if (_cm->verbose_low()) {
ysr@777 3355 gclog_or_tty->print_cr("[%d] resetting", _task_id);
tonyp@2973 3356 }
ysr@777 3357
ysr@777 3358 _nextMarkBitMap = nextMarkBitMap;
ysr@777 3359 clear_region_fields();
ysr@777 3360
ysr@777 3361 _calls = 0;
ysr@777 3362 _elapsed_time_ms = 0.0;
ysr@777 3363 _termination_time_ms = 0.0;
ysr@777 3364 _termination_start_time_ms = 0.0;
ysr@777 3365
ysr@777 3366 #if _MARKING_STATS_
ysr@777 3367 _local_pushes = 0;
ysr@777 3368 _local_pops = 0;
ysr@777 3369 _local_max_size = 0;
ysr@777 3370 _objs_scanned = 0;
ysr@777 3371 _global_pushes = 0;
ysr@777 3372 _global_pops = 0;
ysr@777 3373 _global_max_size = 0;
ysr@777 3374 _global_transfers_to = 0;
ysr@777 3375 _global_transfers_from = 0;
ysr@777 3376 _regions_claimed = 0;
ysr@777 3377 _objs_found_on_bitmap = 0;
ysr@777 3378 _satb_buffers_processed = 0;
ysr@777 3379 _steal_attempts = 0;
ysr@777 3380 _steals = 0;
ysr@777 3381 _aborted = 0;
ysr@777 3382 _aborted_overflow = 0;
ysr@777 3383 _aborted_cm_aborted = 0;
ysr@777 3384 _aborted_yield = 0;
ysr@777 3385 _aborted_timed_out = 0;
ysr@777 3386 _aborted_satb = 0;
ysr@777 3387 _aborted_termination = 0;
ysr@777 3388 #endif // _MARKING_STATS_
ysr@777 3389 }
ysr@777 3390
ysr@777 3391 bool CMTask::should_exit_termination() {
ysr@777 3392 regular_clock_call();
ysr@777 3393 // This is called when we are in the termination protocol. We should
ysr@777 3394 // quit if, for some reason, this task wants to abort or the global
ysr@777 3395 // stack is not empty (this means that we can get work from it).
ysr@777 3396 return !_cm->mark_stack_empty() || has_aborted();
ysr@777 3397 }
ysr@777 3398
ysr@777 3399 void CMTask::reached_limit() {
tonyp@1458 3400 assert(_words_scanned >= _words_scanned_limit ||
tonyp@1458 3401 _refs_reached >= _refs_reached_limit ,
tonyp@1458 3402 "shouldn't have been called otherwise");
ysr@777 3403 regular_clock_call();
ysr@777 3404 }
ysr@777 3405
ysr@777 3406 void CMTask::regular_clock_call() {
tonyp@2973 3407 if (has_aborted()) return;
ysr@777 3408
ysr@777 3409 // First, we need to recalculate the words scanned and refs reached
ysr@777 3410 // limits for the next clock call.
ysr@777 3411 recalculate_limits();
ysr@777 3412
ysr@777 3413 // During the regular clock call we do the following
ysr@777 3414
ysr@777 3415 // (1) If an overflow has been flagged, then we abort.
ysr@777 3416 if (_cm->has_overflown()) {
ysr@777 3417 set_has_aborted();
ysr@777 3418 return;
ysr@777 3419 }
ysr@777 3420
ysr@777 3421 // If we are not concurrent (i.e. we're doing remark) we don't need
ysr@777 3422 // to check anything else. The other steps are only needed during
ysr@777 3423 // the concurrent marking phase.
tonyp@2973 3424 if (!concurrent()) return;
ysr@777 3425
ysr@777 3426 // (2) If marking has been aborted for Full GC, then we also abort.
ysr@777 3427 if (_cm->has_aborted()) {
ysr@777 3428 set_has_aborted();
ysr@777 3429 statsOnly( ++_aborted_cm_aborted );
ysr@777 3430 return;
ysr@777 3431 }
ysr@777 3432
ysr@777 3433 double curr_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3434
ysr@777 3435 // (3) If marking stats are enabled, then we update the step history.
ysr@777 3436 #if _MARKING_STATS_
tonyp@2973 3437 if (_words_scanned >= _words_scanned_limit) {
ysr@777 3438 ++_clock_due_to_scanning;
tonyp@2973 3439 }
tonyp@2973 3440 if (_refs_reached >= _refs_reached_limit) {
ysr@777 3441 ++_clock_due_to_marking;
tonyp@2973 3442 }
ysr@777 3443
ysr@777 3444 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
ysr@777 3445 _interval_start_time_ms = curr_time_ms;
ysr@777 3446 _all_clock_intervals_ms.add(last_interval_ms);
ysr@777 3447
ysr@777 3448 if (_cm->verbose_medium()) {
tonyp@2973 3449 gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
tonyp@2973 3450 "scanned = %d%s, refs reached = %d%s",
tonyp@2973 3451 _task_id, last_interval_ms,
tonyp@2973 3452 _words_scanned,
tonyp@2973 3453 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
tonyp@2973 3454 _refs_reached,
tonyp@2973 3455 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
ysr@777 3456 }
ysr@777 3457 #endif // _MARKING_STATS_
ysr@777 3458
ysr@777 3459 // (4) We check whether we should yield. If we have to, then we abort.
ysr@777 3460 if (_cm->should_yield()) {
ysr@777 3461 // We should yield. To do this we abort the task. The caller is
ysr@777 3462 // responsible for yielding.
ysr@777 3463 set_has_aborted();
ysr@777 3464 statsOnly( ++_aborted_yield );
ysr@777 3465 return;
ysr@777 3466 }
ysr@777 3467
ysr@777 3468 // (5) We check whether we've reached our time quota. If we have,
ysr@777 3469 // then we abort.
ysr@777 3470 double elapsed_time_ms = curr_time_ms - _start_time_ms;
ysr@777 3471 if (elapsed_time_ms > _time_target_ms) {
ysr@777 3472 set_has_aborted();
johnc@2494 3473 _has_timed_out = true;
ysr@777 3474 statsOnly( ++_aborted_timed_out );
ysr@777 3475 return;
ysr@777 3476 }
ysr@777 3477
ysr@777 3478 // (6) Finally, we check whether there are enough completed STAB
ysr@777 3479 // buffers available for processing. If there are, we abort.
ysr@777 3480 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3481 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
tonyp@2973 3482 if (_cm->verbose_low()) {
ysr@777 3483 gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
ysr@777 3484 _task_id);
tonyp@2973 3485 }
ysr@777 3486 // we do need to process SATB buffers, we'll abort and restart
ysr@777 3487 // the marking task to do so
ysr@777 3488 set_has_aborted();
ysr@777 3489 statsOnly( ++_aborted_satb );
ysr@777 3490 return;
ysr@777 3491 }
ysr@777 3492 }
ysr@777 3493
ysr@777 3494 void CMTask::recalculate_limits() {
ysr@777 3495 _real_words_scanned_limit = _words_scanned + words_scanned_period;
ysr@777 3496 _words_scanned_limit = _real_words_scanned_limit;
ysr@777 3497
ysr@777 3498 _real_refs_reached_limit = _refs_reached + refs_reached_period;
ysr@777 3499 _refs_reached_limit = _real_refs_reached_limit;
ysr@777 3500 }
ysr@777 3501
ysr@777 3502 void CMTask::decrease_limits() {
ysr@777 3503 // This is called when we believe that we're going to do an infrequent
ysr@777 3504 // operation which will increase the per byte scanned cost (i.e. move
ysr@777 3505 // entries to/from the global stack). It basically tries to decrease the
ysr@777 3506 // scanning limit so that the clock is called earlier.
ysr@777 3507
tonyp@2973 3508 if (_cm->verbose_medium()) {
ysr@777 3509 gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
tonyp@2973 3510 }
ysr@777 3511
ysr@777 3512 _words_scanned_limit = _real_words_scanned_limit -
ysr@777 3513 3 * words_scanned_period / 4;
ysr@777 3514 _refs_reached_limit = _real_refs_reached_limit -
ysr@777 3515 3 * refs_reached_period / 4;
ysr@777 3516 }
ysr@777 3517
ysr@777 3518 void CMTask::move_entries_to_global_stack() {
ysr@777 3519 // local array where we'll store the entries that will be popped
ysr@777 3520 // from the local queue
ysr@777 3521 oop buffer[global_stack_transfer_size];
ysr@777 3522
ysr@777 3523 int n = 0;
ysr@777 3524 oop obj;
ysr@777 3525 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
ysr@777 3526 buffer[n] = obj;
ysr@777 3527 ++n;
ysr@777 3528 }
ysr@777 3529
ysr@777 3530 if (n > 0) {
ysr@777 3531 // we popped at least one entry from the local queue
ysr@777 3532
ysr@777 3533 statsOnly( ++_global_transfers_to; _local_pops += n );
ysr@777 3534
ysr@777 3535 if (!_cm->mark_stack_push(buffer, n)) {
tonyp@2973 3536 if (_cm->verbose_low()) {
tonyp@2973 3537 gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
tonyp@2973 3538 _task_id);
tonyp@2973 3539 }
ysr@777 3540 set_has_aborted();
ysr@777 3541 } else {
ysr@777 3542 // the transfer was successful
ysr@777 3543
tonyp@2973 3544 if (_cm->verbose_medium()) {
ysr@777 3545 gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
ysr@777 3546 _task_id, n);
tonyp@2973 3547 }
ysr@777 3548 statsOnly( int tmp_size = _cm->mark_stack_size();
tonyp@2973 3549 if (tmp_size > _global_max_size) {
ysr@777 3550 _global_max_size = tmp_size;
tonyp@2973 3551 }
ysr@777 3552 _global_pushes += n );
ysr@777 3553 }
ysr@777 3554 }
ysr@777 3555
ysr@777 3556 // this operation was quite expensive, so decrease the limits
ysr@777 3557 decrease_limits();
ysr@777 3558 }
ysr@777 3559
ysr@777 3560 void CMTask::get_entries_from_global_stack() {
ysr@777 3561 // local array where we'll store the entries that will be popped
ysr@777 3562 // from the global stack.
ysr@777 3563 oop buffer[global_stack_transfer_size];
ysr@777 3564 int n;
ysr@777 3565 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tonyp@1458 3566 assert(n <= global_stack_transfer_size,
tonyp@1458 3567 "we should not pop more than the given limit");
ysr@777 3568 if (n > 0) {
ysr@777 3569 // yes, we did actually pop at least one entry
ysr@777 3570
ysr@777 3571 statsOnly( ++_global_transfers_from; _global_pops += n );
tonyp@2973 3572 if (_cm->verbose_medium()) {
ysr@777 3573 gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
ysr@777 3574 _task_id, n);
tonyp@2973 3575 }
ysr@777 3576 for (int i = 0; i < n; ++i) {
ysr@777 3577 bool success = _task_queue->push(buffer[i]);
ysr@777 3578 // We only call this when the local queue is empty or under a
ysr@777 3579 // given target limit. So, we do not expect this push to fail.
tonyp@1458 3580 assert(success, "invariant");
ysr@777 3581 }
ysr@777 3582
ysr@777 3583 statsOnly( int tmp_size = _task_queue->size();
tonyp@2973 3584 if (tmp_size > _local_max_size) {
ysr@777 3585 _local_max_size = tmp_size;
tonyp@2973 3586 }
ysr@777 3587 _local_pushes += n );
ysr@777 3588 }
ysr@777 3589
ysr@777 3590 // this operation was quite expensive, so decrease the limits
ysr@777 3591 decrease_limits();
ysr@777 3592 }
ysr@777 3593
ysr@777 3594 void CMTask::drain_local_queue(bool partially) {
tonyp@2973 3595 if (has_aborted()) return;
ysr@777 3596
ysr@777 3597 // Decide what the target size is, depending whether we're going to
ysr@777 3598 // drain it partially (so that other tasks can steal if they run out
ysr@777 3599 // of things to do) or totally (at the very end).
ysr@777 3600 size_t target_size;
tonyp@2973 3601 if (partially) {
ysr@777 3602 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
tonyp@2973 3603 } else {
ysr@777 3604 target_size = 0;
tonyp@2973 3605 }
ysr@777 3606
ysr@777 3607 if (_task_queue->size() > target_size) {
tonyp@2973 3608 if (_cm->verbose_high()) {
ysr@777 3609 gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
ysr@777 3610 _task_id, target_size);
tonyp@2973 3611 }
ysr@777 3612
ysr@777 3613 oop obj;
ysr@777 3614 bool ret = _task_queue->pop_local(obj);
ysr@777 3615 while (ret) {
ysr@777 3616 statsOnly( ++_local_pops );
ysr@777 3617
tonyp@2973 3618 if (_cm->verbose_high()) {
ysr@777 3619 gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
ysr@777 3620 (void*) obj);
tonyp@2973 3621 }
ysr@777 3622
tonyp@1458 3623 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
tonyp@2643 3624 assert(!_g1h->is_on_master_free_list(
tonyp@2472 3625 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
ysr@777 3626
ysr@777 3627 scan_object(obj);
ysr@777 3628
tonyp@2973 3629 if (_task_queue->size() <= target_size || has_aborted()) {
ysr@777 3630 ret = false;
tonyp@2973 3631 } else {
ysr@777 3632 ret = _task_queue->pop_local(obj);
tonyp@2973 3633 }
ysr@777 3634 }
ysr@777 3635
tonyp@2973 3636 if (_cm->verbose_high()) {
ysr@777 3637 gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
ysr@777 3638 _task_id, _task_queue->size());
tonyp@2973 3639 }
ysr@777 3640 }
ysr@777 3641 }
ysr@777 3642
ysr@777 3643 void CMTask::drain_global_stack(bool partially) {
tonyp@2973 3644 if (has_aborted()) return;
ysr@777 3645
ysr@777 3646 // We have a policy to drain the local queue before we attempt to
ysr@777 3647 // drain the global stack.
tonyp@1458 3648 assert(partially || _task_queue->size() == 0, "invariant");
ysr@777 3649
ysr@777 3650 // Decide what the target size is, depending whether we're going to
ysr@777 3651 // drain it partially (so that other tasks can steal if they run out
ysr@777 3652 // of things to do) or totally (at the very end). Notice that,
ysr@777 3653 // because we move entries from the global stack in chunks or
ysr@777 3654 // because another task might be doing the same, we might in fact
ysr@777 3655 // drop below the target. But, this is not a problem.
ysr@777 3656 size_t target_size;
tonyp@2973 3657 if (partially) {
ysr@777 3658 target_size = _cm->partial_mark_stack_size_target();
tonyp@2973 3659 } else {
ysr@777 3660 target_size = 0;
tonyp@2973 3661 }
ysr@777 3662
ysr@777 3663 if (_cm->mark_stack_size() > target_size) {
tonyp@2973 3664 if (_cm->verbose_low()) {
ysr@777 3665 gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
ysr@777 3666 _task_id, target_size);
tonyp@2973 3667 }
ysr@777 3668
ysr@777 3669 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
ysr@777 3670 get_entries_from_global_stack();
ysr@777 3671 drain_local_queue(partially);
ysr@777 3672 }
ysr@777 3673
tonyp@2973 3674 if (_cm->verbose_low()) {
ysr@777 3675 gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
ysr@777 3676 _task_id, _cm->mark_stack_size());
tonyp@2973 3677 }
ysr@777 3678 }
ysr@777 3679 }
ysr@777 3680
ysr@777 3681 // SATB Queue has several assumptions on whether to call the par or
ysr@777 3682 // non-par versions of the methods. this is why some of the code is
ysr@777 3683 // replicated. We should really get rid of the single-threaded version
ysr@777 3684 // of the code to simplify things.
ysr@777 3685 void CMTask::drain_satb_buffers() {
tonyp@2973 3686 if (has_aborted()) return;
ysr@777 3687
ysr@777 3688 // We set this so that the regular clock knows that we're in the
ysr@777 3689 // middle of draining buffers and doesn't set the abort flag when it
ysr@777 3690 // notices that SATB buffers are available for draining. It'd be
ysr@777 3691 // very counter productive if it did that. :-)
ysr@777 3692 _draining_satb_buffers = true;
ysr@777 3693
ysr@777 3694 CMObjectClosure oc(this);
ysr@777 3695 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@2973 3696 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3697 satb_mq_set.set_par_closure(_task_id, &oc);
tonyp@2973 3698 } else {
ysr@777 3699 satb_mq_set.set_closure(&oc);
tonyp@2973 3700 }
ysr@777 3701
ysr@777 3702 // This keeps claiming and applying the closure to completed buffers
ysr@777 3703 // until we run out of buffers or we need to abort.
jmasa@2188 3704 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3705 while (!has_aborted() &&
ysr@777 3706 satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
tonyp@2973 3707 if (_cm->verbose_medium()) {
ysr@777 3708 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3709 }
ysr@777 3710 statsOnly( ++_satb_buffers_processed );
ysr@777 3711 regular_clock_call();
ysr@777 3712 }
ysr@777 3713 } else {
ysr@777 3714 while (!has_aborted() &&
ysr@777 3715 satb_mq_set.apply_closure_to_completed_buffer()) {
tonyp@2973 3716 if (_cm->verbose_medium()) {
ysr@777 3717 gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
tonyp@2973 3718 }
ysr@777 3719 statsOnly( ++_satb_buffers_processed );
ysr@777 3720 regular_clock_call();
ysr@777 3721 }
ysr@777 3722 }
ysr@777 3723
ysr@777 3724 if (!concurrent() && !has_aborted()) {
ysr@777 3725 // We should only do this during remark.
tonyp@2973 3726 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3727 satb_mq_set.par_iterate_closure_all_threads(_task_id);
tonyp@2973 3728 } else {
ysr@777 3729 satb_mq_set.iterate_closure_all_threads();
tonyp@2973 3730 }
ysr@777 3731 }
ysr@777 3732
ysr@777 3733 _draining_satb_buffers = false;
ysr@777 3734
tonyp@1458 3735 assert(has_aborted() ||
tonyp@1458 3736 concurrent() ||
tonyp@1458 3737 satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 3738
tonyp@2973 3739 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3740 satb_mq_set.set_par_closure(_task_id, NULL);
tonyp@2973 3741 } else {
ysr@777 3742 satb_mq_set.set_closure(NULL);
tonyp@2973 3743 }
ysr@777 3744
ysr@777 3745 // again, this was a potentially expensive operation, decrease the
ysr@777 3746 // limits to get the regular clock call early
ysr@777 3747 decrease_limits();
ysr@777 3748 }
ysr@777 3749
ysr@777 3750 void CMTask::print_stats() {
ysr@777 3751 gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
ysr@777 3752 _task_id, _calls);
ysr@777 3753 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
ysr@777 3754 _elapsed_time_ms, _termination_time_ms);
ysr@777 3755 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3756 _step_times_ms.num(), _step_times_ms.avg(),
ysr@777 3757 _step_times_ms.sd());
ysr@777 3758 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3759 _step_times_ms.maximum(), _step_times_ms.sum());
ysr@777 3760
ysr@777 3761 #if _MARKING_STATS_
ysr@777 3762 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3763 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
ysr@777 3764 _all_clock_intervals_ms.sd());
ysr@777 3765 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3766 _all_clock_intervals_ms.maximum(),
ysr@777 3767 _all_clock_intervals_ms.sum());
ysr@777 3768 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
ysr@777 3769 _clock_due_to_scanning, _clock_due_to_marking);
ysr@777 3770 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
ysr@777 3771 _objs_scanned, _objs_found_on_bitmap);
ysr@777 3772 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
ysr@777 3773 _local_pushes, _local_pops, _local_max_size);
ysr@777 3774 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
ysr@777 3775 _global_pushes, _global_pops, _global_max_size);
ysr@777 3776 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
ysr@777 3777 _global_transfers_to,_global_transfers_from);
tonyp@3691 3778 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
ysr@777 3779 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
ysr@777 3780 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
ysr@777 3781 _steal_attempts, _steals);
ysr@777 3782 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
ysr@777 3783 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
ysr@777 3784 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
ysr@777 3785 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
ysr@777 3786 _aborted_timed_out, _aborted_satb, _aborted_termination);
ysr@777 3787 #endif // _MARKING_STATS_
ysr@777 3788 }
ysr@777 3789
ysr@777 3790 /*****************************************************************************
ysr@777 3791
ysr@777 3792 The do_marking_step(time_target_ms) method is the building block
ysr@777 3793 of the parallel marking framework. It can be called in parallel
ysr@777 3794 with other invocations of do_marking_step() on different tasks
ysr@777 3795 (but only one per task, obviously) and concurrently with the
ysr@777 3796 mutator threads, or during remark, hence it eliminates the need
ysr@777 3797 for two versions of the code. When called during remark, it will
ysr@777 3798 pick up from where the task left off during the concurrent marking
ysr@777 3799 phase. Interestingly, tasks are also claimable during evacuation
ysr@777 3800 pauses too, since do_marking_step() ensures that it aborts before
ysr@777 3801 it needs to yield.
ysr@777 3802
ysr@777 3803 The data structures that is uses to do marking work are the
ysr@777 3804 following:
ysr@777 3805
ysr@777 3806 (1) Marking Bitmap. If there are gray objects that appear only
ysr@777 3807 on the bitmap (this happens either when dealing with an overflow
ysr@777 3808 or when the initial marking phase has simply marked the roots
ysr@777 3809 and didn't push them on the stack), then tasks claim heap
ysr@777 3810 regions whose bitmap they then scan to find gray objects. A
ysr@777 3811 global finger indicates where the end of the last claimed region
ysr@777 3812 is. A local finger indicates how far into the region a task has
ysr@777 3813 scanned. The two fingers are used to determine how to gray an
ysr@777 3814 object (i.e. whether simply marking it is OK, as it will be
ysr@777 3815 visited by a task in the future, or whether it needs to be also
ysr@777 3816 pushed on a stack).
ysr@777 3817
ysr@777 3818 (2) Local Queue. The local queue of the task which is accessed
ysr@777 3819 reasonably efficiently by the task. Other tasks can steal from
ysr@777 3820 it when they run out of work. Throughout the marking phase, a
ysr@777 3821 task attempts to keep its local queue short but not totally
ysr@777 3822 empty, so that entries are available for stealing by other
ysr@777 3823 tasks. Only when there is no more work, a task will totally
ysr@777 3824 drain its local queue.
ysr@777 3825
ysr@777 3826 (3) Global Mark Stack. This handles local queue overflow. During
ysr@777 3827 marking only sets of entries are moved between it and the local
ysr@777 3828 queues, as access to it requires a mutex and more fine-grain
ysr@777 3829 interaction with it which might cause contention. If it
ysr@777 3830 overflows, then the marking phase should restart and iterate
ysr@777 3831 over the bitmap to identify gray objects. Throughout the marking
ysr@777 3832 phase, tasks attempt to keep the global mark stack at a small
ysr@777 3833 length but not totally empty, so that entries are available for
ysr@777 3834 popping by other tasks. Only when there is no more work, tasks
ysr@777 3835 will totally drain the global mark stack.
ysr@777 3836
tonyp@3691 3837 (4) SATB Buffer Queue. This is where completed SATB buffers are
ysr@777 3838 made available. Buffers are regularly removed from this queue
ysr@777 3839 and scanned for roots, so that the queue doesn't get too
ysr@777 3840 long. During remark, all completed buffers are processed, as
ysr@777 3841 well as the filled in parts of any uncompleted buffers.
ysr@777 3842
ysr@777 3843 The do_marking_step() method tries to abort when the time target
ysr@777 3844 has been reached. There are a few other cases when the
ysr@777 3845 do_marking_step() method also aborts:
ysr@777 3846
ysr@777 3847 (1) When the marking phase has been aborted (after a Full GC).
ysr@777 3848
tonyp@3691 3849 (2) When a global overflow (on the global stack) has been
tonyp@3691 3850 triggered. Before the task aborts, it will actually sync up with
tonyp@3691 3851 the other tasks to ensure that all the marking data structures
tonyp@3691 3852 (local queues, stacks, fingers etc.) are re-initialised so that
tonyp@3691 3853 when do_marking_step() completes, the marking phase can
tonyp@3691 3854 immediately restart.
ysr@777 3855
ysr@777 3856 (3) When enough completed SATB buffers are available. The
ysr@777 3857 do_marking_step() method only tries to drain SATB buffers right
ysr@777 3858 at the beginning. So, if enough buffers are available, the
ysr@777 3859 marking step aborts and the SATB buffers are processed at
ysr@777 3860 the beginning of the next invocation.
ysr@777 3861
ysr@777 3862 (4) To yield. when we have to yield then we abort and yield
ysr@777 3863 right at the end of do_marking_step(). This saves us from a lot
ysr@777 3864 of hassle as, by yielding we might allow a Full GC. If this
ysr@777 3865 happens then objects will be compacted underneath our feet, the
ysr@777 3866 heap might shrink, etc. We save checking for this by just
ysr@777 3867 aborting and doing the yield right at the end.
ysr@777 3868
ysr@777 3869 From the above it follows that the do_marking_step() method should
ysr@777 3870 be called in a loop (or, otherwise, regularly) until it completes.
ysr@777 3871
ysr@777 3872 If a marking step completes without its has_aborted() flag being
ysr@777 3873 true, it means it has completed the current marking phase (and
ysr@777 3874 also all other marking tasks have done so and have all synced up).
ysr@777 3875
ysr@777 3876 A method called regular_clock_call() is invoked "regularly" (in
ysr@777 3877 sub ms intervals) throughout marking. It is this clock method that
ysr@777 3878 checks all the abort conditions which were mentioned above and
ysr@777 3879 decides when the task should abort. A work-based scheme is used to
ysr@777 3880 trigger this clock method: when the number of object words the
ysr@777 3881 marking phase has scanned or the number of references the marking
ysr@777 3882 phase has visited reach a given limit. Additional invocations to
ysr@777 3883 the method clock have been planted in a few other strategic places
ysr@777 3884 too. The initial reason for the clock method was to avoid calling
ysr@777 3885 vtime too regularly, as it is quite expensive. So, once it was in
ysr@777 3886 place, it was natural to piggy-back all the other conditions on it
ysr@777 3887 too and not constantly check them throughout the code.
ysr@777 3888
ysr@777 3889 *****************************************************************************/
ysr@777 3890
johnc@2494 3891 void CMTask::do_marking_step(double time_target_ms,
johnc@2494 3892 bool do_stealing,
johnc@2494 3893 bool do_termination) {
tonyp@1458 3894 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
tonyp@1458 3895 assert(concurrent() == _cm->concurrent(), "they should be the same");
tonyp@1458 3896
ysr@777 3897 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
tonyp@1458 3898 assert(_task_queues != NULL, "invariant");
tonyp@1458 3899 assert(_task_queue != NULL, "invariant");
tonyp@1458 3900 assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
tonyp@1458 3901
tonyp@1458 3902 assert(!_claimed,
tonyp@1458 3903 "only one thread should claim this task at any one time");
ysr@777 3904
ysr@777 3905 // OK, this doesn't safeguard again all possible scenarios, as it is
ysr@777 3906 // possible for two threads to set the _claimed flag at the same
ysr@777 3907 // time. But it is only for debugging purposes anyway and it will
ysr@777 3908 // catch most problems.
ysr@777 3909 _claimed = true;
ysr@777 3910
ysr@777 3911 _start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3912 statsOnly( _interval_start_time_ms = _start_time_ms );
ysr@777 3913
ysr@777 3914 double diff_prediction_ms =
ysr@777 3915 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
ysr@777 3916 _time_target_ms = time_target_ms - diff_prediction_ms;
ysr@777 3917
ysr@777 3918 // set up the variables that are used in the work-based scheme to
ysr@777 3919 // call the regular clock method
ysr@777 3920 _words_scanned = 0;
ysr@777 3921 _refs_reached = 0;
ysr@777 3922 recalculate_limits();
ysr@777 3923
ysr@777 3924 // clear all flags
ysr@777 3925 clear_has_aborted();
johnc@2494 3926 _has_timed_out = false;
ysr@777 3927 _draining_satb_buffers = false;
ysr@777 3928
ysr@777 3929 ++_calls;
ysr@777 3930
tonyp@2973 3931 if (_cm->verbose_low()) {
ysr@777 3932 gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
ysr@777 3933 "target = %1.2lfms >>>>>>>>>>",
ysr@777 3934 _task_id, _calls, _time_target_ms);
tonyp@2973 3935 }
ysr@777 3936
ysr@777 3937 // Set up the bitmap and oop closures. Anything that uses them is
ysr@777 3938 // eventually called from this method, so it is OK to allocate these
ysr@777 3939 // statically.
ysr@777 3940 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
tonyp@2968 3941 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
tonyp@2968 3942 set_cm_oop_closure(&cm_oop_closure);
ysr@777 3943
ysr@777 3944 if (_cm->has_overflown()) {
tonyp@3691 3945 // This can happen if the mark stack overflows during a GC pause
tonyp@3691 3946 // and this task, after a yield point, restarts. We have to abort
tonyp@3691 3947 // as we need to get into the overflow protocol which happens
tonyp@3691 3948 // right at the end of this task.
ysr@777 3949 set_has_aborted();
ysr@777 3950 }
ysr@777 3951
ysr@777 3952 // First drain any available SATB buffers. After this, we will not
ysr@777 3953 // look at SATB buffers before the next invocation of this method.
ysr@777 3954 // If enough completed SATB buffers are queued up, the regular clock
ysr@777 3955 // will abort this task so that it restarts.
ysr@777 3956 drain_satb_buffers();
ysr@777 3957 // ...then partially drain the local queue and the global stack
ysr@777 3958 drain_local_queue(true);
ysr@777 3959 drain_global_stack(true);
ysr@777 3960
ysr@777 3961 do {
ysr@777 3962 if (!has_aborted() && _curr_region != NULL) {
ysr@777 3963 // This means that we're already holding on to a region.
tonyp@1458 3964 assert(_finger != NULL, "if region is not NULL, then the finger "
tonyp@1458 3965 "should not be NULL either");
ysr@777 3966
ysr@777 3967 // We might have restarted this task after an evacuation pause
ysr@777 3968 // which might have evacuated the region we're holding on to
ysr@777 3969 // underneath our feet. Let's read its limit again to make sure
ysr@777 3970 // that we do not iterate over a region of the heap that
ysr@777 3971 // contains garbage (update_region_limit() will also move
ysr@777 3972 // _finger to the start of the region if it is found empty).
ysr@777 3973 update_region_limit();
ysr@777 3974 // We will start from _finger not from the start of the region,
ysr@777 3975 // as we might be restarting this task after aborting half-way
ysr@777 3976 // through scanning this region. In this case, _finger points to
ysr@777 3977 // the address where we last found a marked object. If this is a
ysr@777 3978 // fresh region, _finger points to start().
ysr@777 3979 MemRegion mr = MemRegion(_finger, _region_limit);
ysr@777 3980
tonyp@2973 3981 if (_cm->verbose_low()) {
ysr@777 3982 gclog_or_tty->print_cr("[%d] we're scanning part "
ysr@777 3983 "["PTR_FORMAT", "PTR_FORMAT") "
ysr@777 3984 "of region "PTR_FORMAT,
ysr@777 3985 _task_id, _finger, _region_limit, _curr_region);
tonyp@2973 3986 }
ysr@777 3987
ysr@777 3988 // Let's iterate over the bitmap of the part of the
ysr@777 3989 // region that is left.
tonyp@3691 3990 if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
ysr@777 3991 // We successfully completed iterating over the region. Now,
ysr@777 3992 // let's give up the region.
ysr@777 3993 giveup_current_region();
ysr@777 3994 regular_clock_call();
ysr@777 3995 } else {
tonyp@1458 3996 assert(has_aborted(), "currently the only way to do so");
ysr@777 3997 // The only way to abort the bitmap iteration is to return
ysr@777 3998 // false from the do_bit() method. However, inside the
ysr@777 3999 // do_bit() method we move the _finger to point to the
ysr@777 4000 // object currently being looked at. So, if we bail out, we
ysr@777 4001 // have definitely set _finger to something non-null.
tonyp@1458 4002 assert(_finger != NULL, "invariant");
ysr@777 4003
ysr@777 4004 // Region iteration was actually aborted. So now _finger
ysr@777 4005 // points to the address of the object we last scanned. If we
ysr@777 4006 // leave it there, when we restart this task, we will rescan
ysr@777 4007 // the object. It is easy to avoid this. We move the finger by
ysr@777 4008 // enough to point to the next possible object header (the
ysr@777 4009 // bitmap knows by how much we need to move it as it knows its
ysr@777 4010 // granularity).
apetrusenko@1749 4011 assert(_finger < _region_limit, "invariant");
apetrusenko@1749 4012 HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
apetrusenko@1749 4013 // Check if bitmap iteration was aborted while scanning the last object
apetrusenko@1749 4014 if (new_finger >= _region_limit) {
tonyp@3691 4015 giveup_current_region();
apetrusenko@1749 4016 } else {
tonyp@3691 4017 move_finger_to(new_finger);
apetrusenko@1749 4018 }
ysr@777 4019 }
ysr@777 4020 }
ysr@777 4021 // At this point we have either completed iterating over the
ysr@777 4022 // region we were holding on to, or we have aborted.
ysr@777 4023
ysr@777 4024 // We then partially drain the local queue and the global stack.
ysr@777 4025 // (Do we really need this?)
ysr@777 4026 drain_local_queue(true);
ysr@777 4027 drain_global_stack(true);
ysr@777 4028
ysr@777 4029 // Read the note on the claim_region() method on why it might
ysr@777 4030 // return NULL with potentially more regions available for
ysr@777 4031 // claiming and why we have to check out_of_regions() to determine
ysr@777 4032 // whether we're done or not.
ysr@777 4033 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
ysr@777 4034 // We are going to try to claim a new region. We should have
ysr@777 4035 // given up on the previous one.
tonyp@1458 4036 // Separated the asserts so that we know which one fires.
tonyp@1458 4037 assert(_curr_region == NULL, "invariant");
tonyp@1458 4038 assert(_finger == NULL, "invariant");
tonyp@1458 4039 assert(_region_limit == NULL, "invariant");
tonyp@2973 4040 if (_cm->verbose_low()) {
ysr@777 4041 gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
tonyp@2973 4042 }
ysr@777 4043 HeapRegion* claimed_region = _cm->claim_region(_task_id);
ysr@777 4044 if (claimed_region != NULL) {
ysr@777 4045 // Yes, we managed to claim one
ysr@777 4046 statsOnly( ++_regions_claimed );
ysr@777 4047
tonyp@2973 4048 if (_cm->verbose_low()) {
ysr@777 4049 gclog_or_tty->print_cr("[%d] we successfully claimed "
ysr@777 4050 "region "PTR_FORMAT,
ysr@777 4051 _task_id, claimed_region);
tonyp@2973 4052 }
ysr@777 4053
ysr@777 4054 setup_for_region(claimed_region);
tonyp@1458 4055 assert(_curr_region == claimed_region, "invariant");
ysr@777 4056 }
ysr@777 4057 // It is important to call the regular clock here. It might take
ysr@777 4058 // a while to claim a region if, for example, we hit a large
ysr@777 4059 // block of empty regions. So we need to call the regular clock
ysr@777 4060 // method once round the loop to make sure it's called
ysr@777 4061 // frequently enough.
ysr@777 4062 regular_clock_call();
ysr@777 4063 }
ysr@777 4064
ysr@777 4065 if (!has_aborted() && _curr_region == NULL) {
tonyp@1458 4066 assert(_cm->out_of_regions(),
tonyp@1458 4067 "at this point we should be out of regions");
ysr@777 4068 }
ysr@777 4069 } while ( _curr_region != NULL && !has_aborted());
ysr@777 4070
ysr@777 4071 if (!has_aborted()) {
ysr@777 4072 // We cannot check whether the global stack is empty, since other
tonyp@3691 4073 // tasks might be pushing objects to it concurrently.
tonyp@1458 4074 assert(_cm->out_of_regions(),
tonyp@1458 4075 "at this point we should be out of regions");
ysr@777 4076
tonyp@2973 4077 if (_cm->verbose_low()) {
ysr@777 4078 gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
tonyp@2973 4079 }
ysr@777 4080
ysr@777 4081 // Try to reduce the number of available SATB buffers so that
ysr@777 4082 // remark has less work to do.
ysr@777 4083 drain_satb_buffers();
ysr@777 4084 }
ysr@777 4085
ysr@777 4086 // Since we've done everything else, we can now totally drain the
ysr@777 4087 // local queue and global stack.
ysr@777 4088 drain_local_queue(false);
ysr@777 4089 drain_global_stack(false);
ysr@777 4090
ysr@777 4091 // Attempt at work stealing from other task's queues.
johnc@2494 4092 if (do_stealing && !has_aborted()) {
ysr@777 4093 // We have not aborted. This means that we have finished all that
ysr@777 4094 // we could. Let's try to do some stealing...
ysr@777 4095
ysr@777 4096 // We cannot check whether the global stack is empty, since other
tonyp@3691 4097 // tasks might be pushing objects to it concurrently.
tonyp@1458 4098 assert(_cm->out_of_regions() && _task_queue->size() == 0,
tonyp@1458 4099 "only way to reach here");
ysr@777 4100
tonyp@2973 4101 if (_cm->verbose_low()) {
ysr@777 4102 gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
tonyp@2973 4103 }
ysr@777 4104
ysr@777 4105 while (!has_aborted()) {
ysr@777 4106 oop obj;
ysr@777 4107 statsOnly( ++_steal_attempts );
ysr@777 4108
ysr@777 4109 if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
tonyp@2973 4110 if (_cm->verbose_medium()) {
ysr@777 4111 gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
ysr@777 4112 _task_id, (void*) obj);
tonyp@2973 4113 }
ysr@777 4114
ysr@777 4115 statsOnly( ++_steals );
ysr@777 4116
tonyp@1458 4117 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
tonyp@1458 4118 "any stolen object should be marked");
ysr@777 4119 scan_object(obj);
ysr@777 4120
ysr@777 4121 // And since we're towards the end, let's totally drain the
ysr@777 4122 // local queue and global stack.
ysr@777 4123 drain_local_queue(false);
ysr@777 4124 drain_global_stack(false);
ysr@777 4125 } else {
ysr@777 4126 break;
ysr@777 4127 }
ysr@777 4128 }
ysr@777 4129 }
ysr@777 4130
tonyp@2848 4131 // If we are about to wrap up and go into termination, check if we
tonyp@2848 4132 // should raise the overflow flag.
tonyp@2848 4133 if (do_termination && !has_aborted()) {
tonyp@2848 4134 if (_cm->force_overflow()->should_force()) {
tonyp@2848 4135 _cm->set_has_overflown();
tonyp@2848 4136 regular_clock_call();
tonyp@2848 4137 }
tonyp@2848 4138 }
tonyp@2848 4139
ysr@777 4140 // We still haven't aborted. Now, let's try to get into the
ysr@777 4141 // termination protocol.
johnc@2494 4142 if (do_termination && !has_aborted()) {
ysr@777 4143 // We cannot check whether the global stack is empty, since other
tonyp@3691 4144 // tasks might be concurrently pushing objects on it.
tonyp@1458 4145 // Separated the asserts so that we know which one fires.
tonyp@1458 4146 assert(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4147 assert(_task_queue->size() == 0, "only way to reach here");
ysr@777 4148
tonyp@2973 4149 if (_cm->verbose_low()) {
ysr@777 4150 gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
tonyp@2973 4151 }
ysr@777 4152
ysr@777 4153 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4154 // The CMTask class also extends the TerminatorTerminator class,
ysr@777 4155 // hence its should_exit_termination() method will also decide
ysr@777 4156 // whether to exit the termination protocol or not.
ysr@777 4157 bool finished = _cm->terminator()->offer_termination(this);
ysr@777 4158 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4159 _termination_time_ms +=
ysr@777 4160 termination_end_time_ms - _termination_start_time_ms;
ysr@777 4161
ysr@777 4162 if (finished) {
ysr@777 4163 // We're all done.
ysr@777 4164
ysr@777 4165 if (_task_id == 0) {
ysr@777 4166 // let's allow task 0 to do this
ysr@777 4167 if (concurrent()) {
tonyp@1458 4168 assert(_cm->concurrent_marking_in_progress(), "invariant");
ysr@777 4169 // we need to set this to false before the next
ysr@777 4170 // safepoint. This way we ensure that the marking phase
ysr@777 4171 // doesn't observe any more heap expansions.
ysr@777 4172 _cm->clear_concurrent_marking_in_progress();
ysr@777 4173 }
ysr@777 4174 }
ysr@777 4175
ysr@777 4176 // We can now guarantee that the global stack is empty, since
tonyp@1458 4177 // all other tasks have finished. We separated the guarantees so
tonyp@1458 4178 // that, if a condition is false, we can immediately find out
tonyp@1458 4179 // which one.
tonyp@1458 4180 guarantee(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4181 guarantee(_cm->mark_stack_empty(), "only way to reach here");
tonyp@1458 4182 guarantee(_task_queue->size() == 0, "only way to reach here");
tonyp@1458 4183 guarantee(!_cm->has_overflown(), "only way to reach here");
tonyp@1458 4184 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
ysr@777 4185
tonyp@2973 4186 if (_cm->verbose_low()) {
ysr@777 4187 gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
tonyp@2973 4188 }
ysr@777 4189 } else {
ysr@777 4190 // Apparently there's more work to do. Let's abort this task. It
ysr@777 4191 // will restart it and we can hopefully find more things to do.
ysr@777 4192
tonyp@2973 4193 if (_cm->verbose_low()) {
tonyp@2973 4194 gclog_or_tty->print_cr("[%d] apparently there is more work to do",
tonyp@2973 4195 _task_id);
tonyp@2973 4196 }
ysr@777 4197
ysr@777 4198 set_has_aborted();
ysr@777 4199 statsOnly( ++_aborted_termination );
ysr@777 4200 }
ysr@777 4201 }
ysr@777 4202
ysr@777 4203 // Mainly for debugging purposes to make sure that a pointer to the
ysr@777 4204 // closure which was statically allocated in this frame doesn't
ysr@777 4205 // escape it by accident.
tonyp@2968 4206 set_cm_oop_closure(NULL);
ysr@777 4207 double end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4208 double elapsed_time_ms = end_time_ms - _start_time_ms;
ysr@777 4209 // Update the step history.
ysr@777 4210 _step_times_ms.add(elapsed_time_ms);
ysr@777 4211
ysr@777 4212 if (has_aborted()) {
ysr@777 4213 // The task was aborted for some reason.
ysr@777 4214
ysr@777 4215 statsOnly( ++_aborted );
ysr@777 4216
johnc@2494 4217 if (_has_timed_out) {
ysr@777 4218 double diff_ms = elapsed_time_ms - _time_target_ms;
ysr@777 4219 // Keep statistics of how well we did with respect to hitting
ysr@777 4220 // our target only if we actually timed out (if we aborted for
ysr@777 4221 // other reasons, then the results might get skewed).
ysr@777 4222 _marking_step_diffs_ms.add(diff_ms);
ysr@777 4223 }
ysr@777 4224
ysr@777 4225 if (_cm->has_overflown()) {
ysr@777 4226 // This is the interesting one. We aborted because a global
ysr@777 4227 // overflow was raised. This means we have to restart the
ysr@777 4228 // marking phase and start iterating over regions. However, in
ysr@777 4229 // order to do this we have to make sure that all tasks stop
ysr@777 4230 // what they are doing and re-initialise in a safe manner. We
ysr@777 4231 // will achieve this with the use of two barrier sync points.
ysr@777 4232
tonyp@2973 4233 if (_cm->verbose_low()) {
ysr@777 4234 gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
tonyp@2973 4235 }
ysr@777 4236
ysr@777 4237 _cm->enter_first_sync_barrier(_task_id);
ysr@777 4238 // When we exit this sync barrier we know that all tasks have
ysr@777 4239 // stopped doing marking work. So, it's now safe to
ysr@777 4240 // re-initialise our data structures. At the end of this method,
ysr@777 4241 // task 0 will clear the global data structures.
ysr@777 4242
ysr@777 4243 statsOnly( ++_aborted_overflow );
ysr@777 4244
ysr@777 4245 // We clear the local state of this task...
ysr@777 4246 clear_region_fields();
ysr@777 4247
ysr@777 4248 // ...and enter the second barrier.
ysr@777 4249 _cm->enter_second_sync_barrier(_task_id);
ysr@777 4250 // At this point everything has bee re-initialised and we're
ysr@777 4251 // ready to restart.
ysr@777 4252 }
ysr@777 4253
ysr@777 4254 if (_cm->verbose_low()) {
ysr@777 4255 gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
ysr@777 4256 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4257 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4258 if (_cm->has_aborted()) {
ysr@777 4259 gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
ysr@777 4260 _task_id);
tonyp@2973 4261 }
ysr@777 4262 }
ysr@777 4263 } else {
tonyp@2973 4264 if (_cm->verbose_low()) {
ysr@777 4265 gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
ysr@777 4266 "elapsed = %1.2lfms <<<<<<<<<<",
ysr@777 4267 _task_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4268 }
ysr@777 4269 }
ysr@777 4270
ysr@777 4271 _claimed = false;
ysr@777 4272 }
ysr@777 4273
ysr@777 4274 CMTask::CMTask(int task_id,
ysr@777 4275 ConcurrentMark* cm,
johnc@3463 4276 size_t* marked_bytes,
johnc@3463 4277 BitMap* card_bm,
ysr@777 4278 CMTaskQueue* task_queue,
ysr@777 4279 CMTaskQueueSet* task_queues)
ysr@777 4280 : _g1h(G1CollectedHeap::heap()),
ysr@777 4281 _task_id(task_id), _cm(cm),
ysr@777 4282 _claimed(false),
ysr@777 4283 _nextMarkBitMap(NULL), _hash_seed(17),
ysr@777 4284 _task_queue(task_queue),
ysr@777 4285 _task_queues(task_queues),
tonyp@2968 4286 _cm_oop_closure(NULL),
johnc@3463 4287 _marked_bytes_array(marked_bytes),
johnc@3463 4288 _card_bm(card_bm) {
tonyp@1458 4289 guarantee(task_queue != NULL, "invariant");
tonyp@1458 4290 guarantee(task_queues != NULL, "invariant");
ysr@777 4291
ysr@777 4292 statsOnly( _clock_due_to_scanning = 0;
ysr@777 4293 _clock_due_to_marking = 0 );
ysr@777 4294
ysr@777 4295 _marking_step_diffs_ms.add(0.5);
ysr@777 4296 }
tonyp@2717 4297
tonyp@2717 4298 // These are formatting macros that are used below to ensure
tonyp@2717 4299 // consistent formatting. The *_H_* versions are used to format the
tonyp@2717 4300 // header for a particular value and they should be kept consistent
tonyp@2717 4301 // with the corresponding macro. Also note that most of the macros add
tonyp@2717 4302 // the necessary white space (as a prefix) which makes them a bit
tonyp@2717 4303 // easier to compose.
tonyp@2717 4304
tonyp@2717 4305 // All the output lines are prefixed with this string to be able to
tonyp@2717 4306 // identify them easily in a large log file.
tonyp@2717 4307 #define G1PPRL_LINE_PREFIX "###"
tonyp@2717 4308
tonyp@2717 4309 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
tonyp@2717 4310 #ifdef _LP64
tonyp@2717 4311 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
tonyp@2717 4312 #else // _LP64
tonyp@2717 4313 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
tonyp@2717 4314 #endif // _LP64
tonyp@2717 4315
tonyp@2717 4316 // For per-region info
tonyp@2717 4317 #define G1PPRL_TYPE_FORMAT " %-4s"
tonyp@2717 4318 #define G1PPRL_TYPE_H_FORMAT " %4s"
tonyp@2717 4319 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
tonyp@2717 4320 #define G1PPRL_BYTE_H_FORMAT " %9s"
tonyp@2717 4321 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
tonyp@2717 4322 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
tonyp@2717 4323
tonyp@2717 4324 // For summary info
tonyp@2717 4325 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4326 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
tonyp@2717 4327 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
tonyp@2717 4328 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
tonyp@2717 4329
tonyp@2717 4330 G1PrintRegionLivenessInfoClosure::
tonyp@2717 4331 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
tonyp@2717 4332 : _out(out),
tonyp@2717 4333 _total_used_bytes(0), _total_capacity_bytes(0),
tonyp@2717 4334 _total_prev_live_bytes(0), _total_next_live_bytes(0),
tonyp@2717 4335 _hum_used_bytes(0), _hum_capacity_bytes(0),
tonyp@2717 4336 _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
tonyp@2717 4337 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2717 4338 MemRegion g1_committed = g1h->g1_committed();
tonyp@2717 4339 MemRegion g1_reserved = g1h->g1_reserved();
tonyp@2717 4340 double now = os::elapsedTime();
tonyp@2717 4341
tonyp@2717 4342 // Print the header of the output.
tonyp@2717 4343 _out->cr();
tonyp@2717 4344 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
tonyp@2717 4345 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
tonyp@2717 4346 G1PPRL_SUM_ADDR_FORMAT("committed")
tonyp@2717 4347 G1PPRL_SUM_ADDR_FORMAT("reserved")
tonyp@2717 4348 G1PPRL_SUM_BYTE_FORMAT("region-size"),
tonyp@2717 4349 g1_committed.start(), g1_committed.end(),
tonyp@2717 4350 g1_reserved.start(), g1_reserved.end(),
johnc@3182 4351 HeapRegion::GrainBytes);
tonyp@2717 4352 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4353 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4354 G1PPRL_TYPE_H_FORMAT
tonyp@2717 4355 G1PPRL_ADDR_BASE_H_FORMAT
tonyp@2717 4356 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4357 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4358 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4359 G1PPRL_DOUBLE_H_FORMAT,
tonyp@2717 4360 "type", "address-range",
tonyp@2717 4361 "used", "prev-live", "next-live", "gc-eff");
johnc@3173 4362 _out->print_cr(G1PPRL_LINE_PREFIX
johnc@3173 4363 G1PPRL_TYPE_H_FORMAT
johnc@3173 4364 G1PPRL_ADDR_BASE_H_FORMAT
johnc@3173 4365 G1PPRL_BYTE_H_FORMAT
johnc@3173 4366 G1PPRL_BYTE_H_FORMAT
johnc@3173 4367 G1PPRL_BYTE_H_FORMAT
johnc@3173 4368 G1PPRL_DOUBLE_H_FORMAT,
johnc@3173 4369 "", "",
johnc@3173 4370 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
tonyp@2717 4371 }
tonyp@2717 4372
tonyp@2717 4373 // It takes as a parameter a reference to one of the _hum_* fields, it
tonyp@2717 4374 // deduces the corresponding value for a region in a humongous region
tonyp@2717 4375 // series (either the region size, or what's left if the _hum_* field
tonyp@2717 4376 // is < the region size), and updates the _hum_* field accordingly.
tonyp@2717 4377 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
tonyp@2717 4378 size_t bytes = 0;
tonyp@2717 4379 // The > 0 check is to deal with the prev and next live bytes which
tonyp@2717 4380 // could be 0.
tonyp@2717 4381 if (*hum_bytes > 0) {
johnc@3182 4382 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
tonyp@2717 4383 *hum_bytes -= bytes;
tonyp@2717 4384 }
tonyp@2717 4385 return bytes;
tonyp@2717 4386 }
tonyp@2717 4387
tonyp@2717 4388 // It deduces the values for a region in a humongous region series
tonyp@2717 4389 // from the _hum_* fields and updates those accordingly. It assumes
tonyp@2717 4390 // that that _hum_* fields have already been set up from the "starts
tonyp@2717 4391 // humongous" region and we visit the regions in address order.
tonyp@2717 4392 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
tonyp@2717 4393 size_t* capacity_bytes,
tonyp@2717 4394 size_t* prev_live_bytes,
tonyp@2717 4395 size_t* next_live_bytes) {
tonyp@2717 4396 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
tonyp@2717 4397 *used_bytes = get_hum_bytes(&_hum_used_bytes);
tonyp@2717 4398 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
tonyp@2717 4399 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
tonyp@2717 4400 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
tonyp@2717 4401 }
tonyp@2717 4402
tonyp@2717 4403 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
tonyp@2717 4404 const char* type = "";
tonyp@2717 4405 HeapWord* bottom = r->bottom();
tonyp@2717 4406 HeapWord* end = r->end();
tonyp@2717 4407 size_t capacity_bytes = r->capacity();
tonyp@2717 4408 size_t used_bytes = r->used();
tonyp@2717 4409 size_t prev_live_bytes = r->live_bytes();
tonyp@2717 4410 size_t next_live_bytes = r->next_live_bytes();
tonyp@2717 4411 double gc_eff = r->gc_efficiency();
tonyp@2717 4412 if (r->used() == 0) {
tonyp@2717 4413 type = "FREE";
tonyp@2717 4414 } else if (r->is_survivor()) {
tonyp@2717 4415 type = "SURV";
tonyp@2717 4416 } else if (r->is_young()) {
tonyp@2717 4417 type = "EDEN";
tonyp@2717 4418 } else if (r->startsHumongous()) {
tonyp@2717 4419 type = "HUMS";
tonyp@2717 4420
tonyp@2717 4421 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
tonyp@2717 4422 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
tonyp@2717 4423 "they should have been zeroed after the last time we used them");
tonyp@2717 4424 // Set up the _hum_* fields.
tonyp@2717 4425 _hum_capacity_bytes = capacity_bytes;
tonyp@2717 4426 _hum_used_bytes = used_bytes;
tonyp@2717 4427 _hum_prev_live_bytes = prev_live_bytes;
tonyp@2717 4428 _hum_next_live_bytes = next_live_bytes;
tonyp@2717 4429 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4430 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4431 end = bottom + HeapRegion::GrainWords;
tonyp@2717 4432 } else if (r->continuesHumongous()) {
tonyp@2717 4433 type = "HUMC";
tonyp@2717 4434 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4435 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4436 assert(end == bottom + HeapRegion::GrainWords, "invariant");
tonyp@2717 4437 } else {
tonyp@2717 4438 type = "OLD";
tonyp@2717 4439 }
tonyp@2717 4440
tonyp@2717 4441 _total_used_bytes += used_bytes;
tonyp@2717 4442 _total_capacity_bytes += capacity_bytes;
tonyp@2717 4443 _total_prev_live_bytes += prev_live_bytes;
tonyp@2717 4444 _total_next_live_bytes += next_live_bytes;
tonyp@2717 4445
tonyp@2717 4446 // Print a line for this particular region.
tonyp@2717 4447 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4448 G1PPRL_TYPE_FORMAT
tonyp@2717 4449 G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4450 G1PPRL_BYTE_FORMAT
tonyp@2717 4451 G1PPRL_BYTE_FORMAT
tonyp@2717 4452 G1PPRL_BYTE_FORMAT
tonyp@2717 4453 G1PPRL_DOUBLE_FORMAT,
tonyp@2717 4454 type, bottom, end,
tonyp@2717 4455 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
tonyp@2717 4456
tonyp@2717 4457 return false;
tonyp@2717 4458 }
tonyp@2717 4459
tonyp@2717 4460 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
tonyp@2717 4461 // Print the footer of the output.
tonyp@2717 4462 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4463 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4464 " SUMMARY"
tonyp@2717 4465 G1PPRL_SUM_MB_FORMAT("capacity")
tonyp@2717 4466 G1PPRL_SUM_MB_PERC_FORMAT("used")
tonyp@2717 4467 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
tonyp@2717 4468 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
tonyp@2717 4469 bytes_to_mb(_total_capacity_bytes),
tonyp@2717 4470 bytes_to_mb(_total_used_bytes),
tonyp@2717 4471 perc(_total_used_bytes, _total_capacity_bytes),
tonyp@2717 4472 bytes_to_mb(_total_prev_live_bytes),
tonyp@2717 4473 perc(_total_prev_live_bytes, _total_capacity_bytes),
tonyp@2717 4474 bytes_to_mb(_total_next_live_bytes),
tonyp@2717 4475 perc(_total_next_live_bytes, _total_capacity_bytes));
tonyp@2717 4476 _out->cr();
tonyp@2717 4477 }

mercurial