src/cpu/x86/vm/stubGenerator_x86_64.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1800
6476042f815c
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

duke@435 1 /*
never@1609 2 * Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
coleenp@548 33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 34 #define a__ ((Assembler*)_masm)->
duke@435 35
duke@435 36 #ifdef PRODUCT
duke@435 37 #define BLOCK_COMMENT(str) /* nothing */
duke@435 38 #else
duke@435 39 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 40 #endif
duke@435 41
duke@435 42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44
duke@435 45 // Stub Code definitions
duke@435 46
duke@435 47 static address handle_unsafe_access() {
duke@435 48 JavaThread* thread = JavaThread::current();
duke@435 49 address pc = thread->saved_exception_pc();
duke@435 50 // pc is the instruction which we must emulate
duke@435 51 // doing a no-op is fine: return garbage from the load
duke@435 52 // therefore, compute npc
duke@435 53 address npc = Assembler::locate_next_instruction(pc);
duke@435 54
duke@435 55 // request an async exception
duke@435 56 thread->set_pending_unsafe_access_error();
duke@435 57
duke@435 58 // return address of next instruction to execute
duke@435 59 return npc;
duke@435 60 }
duke@435 61
duke@435 62 class StubGenerator: public StubCodeGenerator {
duke@435 63 private:
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define inc_counter_np(counter) (0)
duke@435 67 #else
duke@435 68 void inc_counter_np_(int& counter) {
duke@435 69 __ incrementl(ExternalAddress((address)&counter));
duke@435 70 }
duke@435 71 #define inc_counter_np(counter) \
duke@435 72 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 73 inc_counter_np_(counter);
duke@435 74 #endif
duke@435 75
duke@435 76 // Call stubs are used to call Java from C
duke@435 77 //
duke@435 78 // Linux Arguments:
duke@435 79 // c_rarg0: call wrapper address address
duke@435 80 // c_rarg1: result address
duke@435 81 // c_rarg2: result type BasicType
duke@435 82 // c_rarg3: method methodOop
duke@435 83 // c_rarg4: (interpreter) entry point address
duke@435 84 // c_rarg5: parameters intptr_t*
duke@435 85 // 16(rbp): parameter size (in words) int
duke@435 86 // 24(rbp): thread Thread*
duke@435 87 //
duke@435 88 // [ return_from_Java ] <--- rsp
duke@435 89 // [ argument word n ]
duke@435 90 // ...
duke@435 91 // -12 [ argument word 1 ]
duke@435 92 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 93 // -10 [ saved r14 ]
duke@435 94 // -9 [ saved r13 ]
duke@435 95 // -8 [ saved r12 ]
duke@435 96 // -7 [ saved rbx ]
duke@435 97 // -6 [ call wrapper ]
duke@435 98 // -5 [ result ]
duke@435 99 // -4 [ result type ]
duke@435 100 // -3 [ method ]
duke@435 101 // -2 [ entry point ]
duke@435 102 // -1 [ parameters ]
duke@435 103 // 0 [ saved rbp ] <--- rbp
duke@435 104 // 1 [ return address ]
duke@435 105 // 2 [ parameter size ]
duke@435 106 // 3 [ thread ]
duke@435 107 //
duke@435 108 // Windows Arguments:
duke@435 109 // c_rarg0: call wrapper address address
duke@435 110 // c_rarg1: result address
duke@435 111 // c_rarg2: result type BasicType
duke@435 112 // c_rarg3: method methodOop
duke@435 113 // 48(rbp): (interpreter) entry point address
duke@435 114 // 56(rbp): parameters intptr_t*
duke@435 115 // 64(rbp): parameter size (in words) int
duke@435 116 // 72(rbp): thread Thread*
duke@435 117 //
duke@435 118 // [ return_from_Java ] <--- rsp
duke@435 119 // [ argument word n ]
duke@435 120 // ...
duke@435 121 // -8 [ argument word 1 ]
duke@435 122 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 123 // -6 [ saved r14 ]
duke@435 124 // -5 [ saved r13 ]
duke@435 125 // -4 [ saved r12 ]
duke@435 126 // -3 [ saved rdi ]
duke@435 127 // -2 [ saved rsi ]
duke@435 128 // -1 [ saved rbx ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ call wrapper ]
duke@435 132 // 3 [ result ]
duke@435 133 // 4 [ result type ]
duke@435 134 // 5 [ method ]
duke@435 135 // 6 [ entry point ]
duke@435 136 // 7 [ parameters ]
duke@435 137 // 8 [ parameter size ]
duke@435 138 // 9 [ thread ]
duke@435 139 //
duke@435 140 // Windows reserves the callers stack space for arguments 1-4.
duke@435 141 // We spill c_rarg0-c_rarg3 to this space.
duke@435 142
duke@435 143 // Call stub stack layout word offsets from rbp
duke@435 144 enum call_stub_layout {
duke@435 145 #ifdef _WIN64
duke@435 146 rsp_after_call_off = -7,
duke@435 147 r15_off = rsp_after_call_off,
duke@435 148 r14_off = -6,
duke@435 149 r13_off = -5,
duke@435 150 r12_off = -4,
duke@435 151 rdi_off = -3,
duke@435 152 rsi_off = -2,
duke@435 153 rbx_off = -1,
duke@435 154 rbp_off = 0,
duke@435 155 retaddr_off = 1,
duke@435 156 call_wrapper_off = 2,
duke@435 157 result_off = 3,
duke@435 158 result_type_off = 4,
duke@435 159 method_off = 5,
duke@435 160 entry_point_off = 6,
duke@435 161 parameters_off = 7,
duke@435 162 parameter_size_off = 8,
duke@435 163 thread_off = 9
duke@435 164 #else
duke@435 165 rsp_after_call_off = -12,
duke@435 166 mxcsr_off = rsp_after_call_off,
duke@435 167 r15_off = -11,
duke@435 168 r14_off = -10,
duke@435 169 r13_off = -9,
duke@435 170 r12_off = -8,
duke@435 171 rbx_off = -7,
duke@435 172 call_wrapper_off = -6,
duke@435 173 result_off = -5,
duke@435 174 result_type_off = -4,
duke@435 175 method_off = -3,
duke@435 176 entry_point_off = -2,
duke@435 177 parameters_off = -1,
duke@435 178 rbp_off = 0,
duke@435 179 retaddr_off = 1,
duke@435 180 parameter_size_off = 2,
duke@435 181 thread_off = 3
duke@435 182 #endif
duke@435 183 };
duke@435 184
duke@435 185 address generate_call_stub(address& return_address) {
duke@435 186 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 187 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 188 "adjust this code");
duke@435 189 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 190 address start = __ pc();
duke@435 191
duke@435 192 // same as in generate_catch_exception()!
duke@435 193 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 194
duke@435 195 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 196 const Address result (rbp, result_off * wordSize);
duke@435 197 const Address result_type (rbp, result_type_off * wordSize);
duke@435 198 const Address method (rbp, method_off * wordSize);
duke@435 199 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 200 const Address parameters (rbp, parameters_off * wordSize);
duke@435 201 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 202
duke@435 203 // same as in generate_catch_exception()!
duke@435 204 const Address thread (rbp, thread_off * wordSize);
duke@435 205
duke@435 206 const Address r15_save(rbp, r15_off * wordSize);
duke@435 207 const Address r14_save(rbp, r14_off * wordSize);
duke@435 208 const Address r13_save(rbp, r13_off * wordSize);
duke@435 209 const Address r12_save(rbp, r12_off * wordSize);
duke@435 210 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 211
duke@435 212 // stub code
duke@435 213 __ enter();
never@739 214 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 215
duke@435 216 // save register parameters
duke@435 217 #ifndef _WIN64
never@739 218 __ movptr(parameters, c_rarg5); // parameters
never@739 219 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 220 #endif
duke@435 221
never@739 222 __ movptr(method, c_rarg3); // method
never@739 223 __ movl(result_type, c_rarg2); // result type
never@739 224 __ movptr(result, c_rarg1); // result
never@739 225 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 226
duke@435 227 // save regs belonging to calling function
never@739 228 __ movptr(rbx_save, rbx);
never@739 229 __ movptr(r12_save, r12);
never@739 230 __ movptr(r13_save, r13);
never@739 231 __ movptr(r14_save, r14);
never@739 232 __ movptr(r15_save, r15);
duke@435 233
duke@435 234 #ifdef _WIN64
duke@435 235 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 236 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 237
never@739 238 __ movptr(rsi_save, rsi);
never@739 239 __ movptr(rdi_save, rdi);
duke@435 240 #else
duke@435 241 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 242 {
duke@435 243 Label skip_ldmx;
duke@435 244 __ stmxcsr(mxcsr_save);
duke@435 245 __ movl(rax, mxcsr_save);
duke@435 246 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 247 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 248 __ cmp32(rax, mxcsr_std);
duke@435 249 __ jcc(Assembler::equal, skip_ldmx);
duke@435 250 __ ldmxcsr(mxcsr_std);
duke@435 251 __ bind(skip_ldmx);
duke@435 252 }
duke@435 253 #endif
duke@435 254
duke@435 255 // Load up thread register
never@739 256 __ movptr(r15_thread, thread);
coleenp@548 257 __ reinit_heapbase();
duke@435 258
duke@435 259 #ifdef ASSERT
duke@435 260 // make sure we have no pending exceptions
duke@435 261 {
duke@435 262 Label L;
never@739 263 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 264 __ jcc(Assembler::equal, L);
duke@435 265 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 266 __ bind(L);
duke@435 267 }
duke@435 268 #endif
duke@435 269
duke@435 270 // pass parameters if any
duke@435 271 BLOCK_COMMENT("pass parameters if any");
duke@435 272 Label parameters_done;
duke@435 273 __ movl(c_rarg3, parameter_size);
duke@435 274 __ testl(c_rarg3, c_rarg3);
duke@435 275 __ jcc(Assembler::zero, parameters_done);
duke@435 276
duke@435 277 Label loop;
never@739 278 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 279 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 280 __ BIND(loop);
never@739 281 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 282 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 283 __ decrementl(c_rarg1); // decrement counter
never@739 284 __ push(rax); // pass parameter
duke@435 285 __ jcc(Assembler::notZero, loop);
duke@435 286
duke@435 287 // call Java function
duke@435 288 __ BIND(parameters_done);
never@739 289 __ movptr(rbx, method); // get methodOop
never@739 290 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 291 __ mov(r13, rsp); // set sender sp
duke@435 292 BLOCK_COMMENT("call Java function");
duke@435 293 __ call(c_rarg1);
duke@435 294
duke@435 295 BLOCK_COMMENT("call_stub_return_address:");
duke@435 296 return_address = __ pc();
duke@435 297
duke@435 298 // store result depending on type (everything that is not
duke@435 299 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 300 __ movptr(c_rarg0, result);
duke@435 301 Label is_long, is_float, is_double, exit;
duke@435 302 __ movl(c_rarg1, result_type);
duke@435 303 __ cmpl(c_rarg1, T_OBJECT);
duke@435 304 __ jcc(Assembler::equal, is_long);
duke@435 305 __ cmpl(c_rarg1, T_LONG);
duke@435 306 __ jcc(Assembler::equal, is_long);
duke@435 307 __ cmpl(c_rarg1, T_FLOAT);
duke@435 308 __ jcc(Assembler::equal, is_float);
duke@435 309 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 310 __ jcc(Assembler::equal, is_double);
duke@435 311
duke@435 312 // handle T_INT case
duke@435 313 __ movl(Address(c_rarg0, 0), rax);
duke@435 314
duke@435 315 __ BIND(exit);
duke@435 316
duke@435 317 // pop parameters
never@739 318 __ lea(rsp, rsp_after_call);
duke@435 319
duke@435 320 #ifdef ASSERT
duke@435 321 // verify that threads correspond
duke@435 322 {
duke@435 323 Label L, S;
never@739 324 __ cmpptr(r15_thread, thread);
duke@435 325 __ jcc(Assembler::notEqual, S);
duke@435 326 __ get_thread(rbx);
never@739 327 __ cmpptr(r15_thread, rbx);
duke@435 328 __ jcc(Assembler::equal, L);
duke@435 329 __ bind(S);
duke@435 330 __ jcc(Assembler::equal, L);
duke@435 331 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 332 __ bind(L);
duke@435 333 }
duke@435 334 #endif
duke@435 335
duke@435 336 // restore regs belonging to calling function
never@739 337 __ movptr(r15, r15_save);
never@739 338 __ movptr(r14, r14_save);
never@739 339 __ movptr(r13, r13_save);
never@739 340 __ movptr(r12, r12_save);
never@739 341 __ movptr(rbx, rbx_save);
duke@435 342
duke@435 343 #ifdef _WIN64
never@739 344 __ movptr(rdi, rdi_save);
never@739 345 __ movptr(rsi, rsi_save);
duke@435 346 #else
duke@435 347 __ ldmxcsr(mxcsr_save);
duke@435 348 #endif
duke@435 349
duke@435 350 // restore rsp
never@739 351 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 352
duke@435 353 // return
never@739 354 __ pop(rbp);
duke@435 355 __ ret(0);
duke@435 356
duke@435 357 // handle return types different from T_INT
duke@435 358 __ BIND(is_long);
duke@435 359 __ movq(Address(c_rarg0, 0), rax);
duke@435 360 __ jmp(exit);
duke@435 361
duke@435 362 __ BIND(is_float);
duke@435 363 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 364 __ jmp(exit);
duke@435 365
duke@435 366 __ BIND(is_double);
duke@435 367 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 368 __ jmp(exit);
duke@435 369
duke@435 370 return start;
duke@435 371 }
duke@435 372
duke@435 373 // Return point for a Java call if there's an exception thrown in
duke@435 374 // Java code. The exception is caught and transformed into a
duke@435 375 // pending exception stored in JavaThread that can be tested from
duke@435 376 // within the VM.
duke@435 377 //
duke@435 378 // Note: Usually the parameters are removed by the callee. In case
duke@435 379 // of an exception crossing an activation frame boundary, that is
duke@435 380 // not the case if the callee is compiled code => need to setup the
duke@435 381 // rsp.
duke@435 382 //
duke@435 383 // rax: exception oop
duke@435 384
duke@435 385 address generate_catch_exception() {
duke@435 386 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 387 address start = __ pc();
duke@435 388
duke@435 389 // same as in generate_call_stub():
duke@435 390 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 391 const Address thread (rbp, thread_off * wordSize);
duke@435 392
duke@435 393 #ifdef ASSERT
duke@435 394 // verify that threads correspond
duke@435 395 {
duke@435 396 Label L, S;
never@739 397 __ cmpptr(r15_thread, thread);
duke@435 398 __ jcc(Assembler::notEqual, S);
duke@435 399 __ get_thread(rbx);
never@739 400 __ cmpptr(r15_thread, rbx);
duke@435 401 __ jcc(Assembler::equal, L);
duke@435 402 __ bind(S);
duke@435 403 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 404 __ bind(L);
duke@435 405 }
duke@435 406 #endif
duke@435 407
duke@435 408 // set pending exception
duke@435 409 __ verify_oop(rax);
duke@435 410
never@739 411 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 412 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 413 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 414 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 415
duke@435 416 // complete return to VM
duke@435 417 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 418 "_call_stub_return_address must have been generated before");
duke@435 419 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 420
duke@435 421 return start;
duke@435 422 }
duke@435 423
duke@435 424 // Continuation point for runtime calls returning with a pending
duke@435 425 // exception. The pending exception check happened in the runtime
duke@435 426 // or native call stub. The pending exception in Thread is
duke@435 427 // converted into a Java-level exception.
duke@435 428 //
duke@435 429 // Contract with Java-level exception handlers:
duke@435 430 // rax: exception
duke@435 431 // rdx: throwing pc
duke@435 432 //
duke@435 433 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 434
duke@435 435 address generate_forward_exception() {
duke@435 436 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 437 address start = __ pc();
duke@435 438
duke@435 439 // Upon entry, the sp points to the return address returning into
duke@435 440 // Java (interpreted or compiled) code; i.e., the return address
duke@435 441 // becomes the throwing pc.
duke@435 442 //
duke@435 443 // Arguments pushed before the runtime call are still on the stack
duke@435 444 // but the exception handler will reset the stack pointer ->
duke@435 445 // ignore them. A potential result in registers can be ignored as
duke@435 446 // well.
duke@435 447
duke@435 448 #ifdef ASSERT
duke@435 449 // make sure this code is only executed if there is a pending exception
duke@435 450 {
duke@435 451 Label L;
never@739 452 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 453 __ jcc(Assembler::notEqual, L);
duke@435 454 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 455 __ bind(L);
duke@435 456 }
duke@435 457 #endif
duke@435 458
duke@435 459 // compute exception handler into rbx
never@739 460 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 461 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 462 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 463 SharedRuntime::exception_handler_for_return_address),
twisti@1730 464 r15_thread, c_rarg0);
never@739 465 __ mov(rbx, rax);
duke@435 466
duke@435 467 // setup rax & rdx, remove return address & clear pending exception
never@739 468 __ pop(rdx);
never@739 469 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 470 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 471
duke@435 472 #ifdef ASSERT
duke@435 473 // make sure exception is set
duke@435 474 {
duke@435 475 Label L;
never@739 476 __ testptr(rax, rax);
duke@435 477 __ jcc(Assembler::notEqual, L);
duke@435 478 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 479 __ bind(L);
duke@435 480 }
duke@435 481 #endif
duke@435 482
duke@435 483 // continue at exception handler (return address removed)
duke@435 484 // rax: exception
duke@435 485 // rbx: exception handler
duke@435 486 // rdx: throwing pc
duke@435 487 __ verify_oop(rax);
duke@435 488 __ jmp(rbx);
duke@435 489
duke@435 490 return start;
duke@435 491 }
duke@435 492
duke@435 493 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 494 //
duke@435 495 // Arguments :
duke@435 496 // c_rarg0: exchange_value
duke@435 497 // c_rarg0: dest
duke@435 498 //
duke@435 499 // Result:
duke@435 500 // *dest <- ex, return (orig *dest)
duke@435 501 address generate_atomic_xchg() {
duke@435 502 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 503 address start = __ pc();
duke@435 504
duke@435 505 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 506 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 507 __ ret(0);
duke@435 508
duke@435 509 return start;
duke@435 510 }
duke@435 511
duke@435 512 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 513 //
duke@435 514 // Arguments :
duke@435 515 // c_rarg0: exchange_value
duke@435 516 // c_rarg1: dest
duke@435 517 //
duke@435 518 // Result:
duke@435 519 // *dest <- ex, return (orig *dest)
duke@435 520 address generate_atomic_xchg_ptr() {
duke@435 521 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 522 address start = __ pc();
duke@435 523
never@739 524 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 525 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 526 __ ret(0);
duke@435 527
duke@435 528 return start;
duke@435 529 }
duke@435 530
duke@435 531 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 532 // jint compare_value)
duke@435 533 //
duke@435 534 // Arguments :
duke@435 535 // c_rarg0: exchange_value
duke@435 536 // c_rarg1: dest
duke@435 537 // c_rarg2: compare_value
duke@435 538 //
duke@435 539 // Result:
duke@435 540 // if ( compare_value == *dest ) {
duke@435 541 // *dest = exchange_value
duke@435 542 // return compare_value;
duke@435 543 // else
duke@435 544 // return *dest;
duke@435 545 address generate_atomic_cmpxchg() {
duke@435 546 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 547 address start = __ pc();
duke@435 548
duke@435 549 __ movl(rax, c_rarg2);
duke@435 550 if ( os::is_MP() ) __ lock();
duke@435 551 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 552 __ ret(0);
duke@435 553
duke@435 554 return start;
duke@435 555 }
duke@435 556
duke@435 557 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 558 // volatile jlong* dest,
duke@435 559 // jlong compare_value)
duke@435 560 // Arguments :
duke@435 561 // c_rarg0: exchange_value
duke@435 562 // c_rarg1: dest
duke@435 563 // c_rarg2: compare_value
duke@435 564 //
duke@435 565 // Result:
duke@435 566 // if ( compare_value == *dest ) {
duke@435 567 // *dest = exchange_value
duke@435 568 // return compare_value;
duke@435 569 // else
duke@435 570 // return *dest;
duke@435 571 address generate_atomic_cmpxchg_long() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 573 address start = __ pc();
duke@435 574
duke@435 575 __ movq(rax, c_rarg2);
duke@435 576 if ( os::is_MP() ) __ lock();
duke@435 577 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 578 __ ret(0);
duke@435 579
duke@435 580 return start;
duke@435 581 }
duke@435 582
duke@435 583 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 584 //
duke@435 585 // Arguments :
duke@435 586 // c_rarg0: add_value
duke@435 587 // c_rarg1: dest
duke@435 588 //
duke@435 589 // Result:
duke@435 590 // *dest += add_value
duke@435 591 // return *dest;
duke@435 592 address generate_atomic_add() {
duke@435 593 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 594 address start = __ pc();
duke@435 595
duke@435 596 __ movl(rax, c_rarg0);
duke@435 597 if ( os::is_MP() ) __ lock();
duke@435 598 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 599 __ addl(rax, c_rarg0);
duke@435 600 __ ret(0);
duke@435 601
duke@435 602 return start;
duke@435 603 }
duke@435 604
duke@435 605 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 606 //
duke@435 607 // Arguments :
duke@435 608 // c_rarg0: add_value
duke@435 609 // c_rarg1: dest
duke@435 610 //
duke@435 611 // Result:
duke@435 612 // *dest += add_value
duke@435 613 // return *dest;
duke@435 614 address generate_atomic_add_ptr() {
duke@435 615 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 616 address start = __ pc();
duke@435 617
never@739 618 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 619 if ( os::is_MP() ) __ lock();
never@739 620 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 621 __ addptr(rax, c_rarg0);
duke@435 622 __ ret(0);
duke@435 623
duke@435 624 return start;
duke@435 625 }
duke@435 626
duke@435 627 // Support for intptr_t OrderAccess::fence()
duke@435 628 //
duke@435 629 // Arguments :
duke@435 630 //
duke@435 631 // Result:
duke@435 632 address generate_orderaccess_fence() {
duke@435 633 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 634 address start = __ pc();
never@1106 635 __ membar(Assembler::StoreLoad);
duke@435 636 __ ret(0);
duke@435 637
duke@435 638 return start;
duke@435 639 }
duke@435 640
duke@435 641 // Support for intptr_t get_previous_fp()
duke@435 642 //
duke@435 643 // This routine is used to find the previous frame pointer for the
duke@435 644 // caller (current_frame_guess). This is used as part of debugging
duke@435 645 // ps() is seemingly lost trying to find frames.
duke@435 646 // This code assumes that caller current_frame_guess) has a frame.
duke@435 647 address generate_get_previous_fp() {
duke@435 648 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 649 const Address old_fp(rbp, 0);
duke@435 650 const Address older_fp(rax, 0);
duke@435 651 address start = __ pc();
duke@435 652
duke@435 653 __ enter();
never@739 654 __ movptr(rax, old_fp); // callers fp
never@739 655 __ movptr(rax, older_fp); // the frame for ps()
never@739 656 __ pop(rbp);
duke@435 657 __ ret(0);
duke@435 658
duke@435 659 return start;
duke@435 660 }
duke@435 661
duke@435 662 //----------------------------------------------------------------------------------------------------
duke@435 663 // Support for void verify_mxcsr()
duke@435 664 //
duke@435 665 // This routine is used with -Xcheck:jni to verify that native
duke@435 666 // JNI code does not return to Java code without restoring the
duke@435 667 // MXCSR register to our expected state.
duke@435 668
duke@435 669 address generate_verify_mxcsr() {
duke@435 670 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 671 address start = __ pc();
duke@435 672
duke@435 673 const Address mxcsr_save(rsp, 0);
duke@435 674
duke@435 675 if (CheckJNICalls) {
duke@435 676 Label ok_ret;
never@739 677 __ push(rax);
never@739 678 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 679 __ stmxcsr(mxcsr_save);
duke@435 680 __ movl(rax, mxcsr_save);
duke@435 681 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 682 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 683 __ jcc(Assembler::equal, ok_ret);
duke@435 684
duke@435 685 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 686
never@739 687 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 688
duke@435 689 __ bind(ok_ret);
never@739 690 __ addptr(rsp, wordSize);
never@739 691 __ pop(rax);
duke@435 692 }
duke@435 693
duke@435 694 __ ret(0);
duke@435 695
duke@435 696 return start;
duke@435 697 }
duke@435 698
duke@435 699 address generate_f2i_fixup() {
duke@435 700 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 701 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 702
duke@435 703 address start = __ pc();
duke@435 704
duke@435 705 Label L;
duke@435 706
never@739 707 __ push(rax);
never@739 708 __ push(c_rarg3);
never@739 709 __ push(c_rarg2);
never@739 710 __ push(c_rarg1);
duke@435 711
duke@435 712 __ movl(rax, 0x7f800000);
duke@435 713 __ xorl(c_rarg3, c_rarg3);
duke@435 714 __ movl(c_rarg2, inout);
duke@435 715 __ movl(c_rarg1, c_rarg2);
duke@435 716 __ andl(c_rarg1, 0x7fffffff);
duke@435 717 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 718 __ jcc(Assembler::negative, L);
duke@435 719 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 720 __ movl(c_rarg3, 0x80000000);
duke@435 721 __ movl(rax, 0x7fffffff);
duke@435 722 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 723
duke@435 724 __ bind(L);
never@739 725 __ movptr(inout, c_rarg3);
never@739 726
never@739 727 __ pop(c_rarg1);
never@739 728 __ pop(c_rarg2);
never@739 729 __ pop(c_rarg3);
never@739 730 __ pop(rax);
duke@435 731
duke@435 732 __ ret(0);
duke@435 733
duke@435 734 return start;
duke@435 735 }
duke@435 736
duke@435 737 address generate_f2l_fixup() {
duke@435 738 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 739 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 740 address start = __ pc();
duke@435 741
duke@435 742 Label L;
duke@435 743
never@739 744 __ push(rax);
never@739 745 __ push(c_rarg3);
never@739 746 __ push(c_rarg2);
never@739 747 __ push(c_rarg1);
duke@435 748
duke@435 749 __ movl(rax, 0x7f800000);
duke@435 750 __ xorl(c_rarg3, c_rarg3);
duke@435 751 __ movl(c_rarg2, inout);
duke@435 752 __ movl(c_rarg1, c_rarg2);
duke@435 753 __ andl(c_rarg1, 0x7fffffff);
duke@435 754 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 755 __ jcc(Assembler::negative, L);
duke@435 756 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 757 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 758 __ mov64(rax, 0x7fffffffffffffff);
never@739 759 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 760
duke@435 761 __ bind(L);
never@739 762 __ movptr(inout, c_rarg3);
never@739 763
never@739 764 __ pop(c_rarg1);
never@739 765 __ pop(c_rarg2);
never@739 766 __ pop(c_rarg3);
never@739 767 __ pop(rax);
duke@435 768
duke@435 769 __ ret(0);
duke@435 770
duke@435 771 return start;
duke@435 772 }
duke@435 773
duke@435 774 address generate_d2i_fixup() {
duke@435 775 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 776 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 777
duke@435 778 address start = __ pc();
duke@435 779
duke@435 780 Label L;
duke@435 781
never@739 782 __ push(rax);
never@739 783 __ push(c_rarg3);
never@739 784 __ push(c_rarg2);
never@739 785 __ push(c_rarg1);
never@739 786 __ push(c_rarg0);
duke@435 787
duke@435 788 __ movl(rax, 0x7ff00000);
duke@435 789 __ movq(c_rarg2, inout);
duke@435 790 __ movl(c_rarg3, c_rarg2);
never@739 791 __ mov(c_rarg1, c_rarg2);
never@739 792 __ mov(c_rarg0, c_rarg2);
duke@435 793 __ negl(c_rarg3);
never@739 794 __ shrptr(c_rarg1, 0x20);
duke@435 795 __ orl(c_rarg3, c_rarg2);
duke@435 796 __ andl(c_rarg1, 0x7fffffff);
duke@435 797 __ xorl(c_rarg2, c_rarg2);
duke@435 798 __ shrl(c_rarg3, 0x1f);
duke@435 799 __ orl(c_rarg1, c_rarg3);
duke@435 800 __ cmpl(rax, c_rarg1);
duke@435 801 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 802 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 803 __ movl(c_rarg2, 0x80000000);
duke@435 804 __ movl(rax, 0x7fffffff);
never@739 805 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 806
duke@435 807 __ bind(L);
never@739 808 __ movptr(inout, c_rarg2);
never@739 809
never@739 810 __ pop(c_rarg0);
never@739 811 __ pop(c_rarg1);
never@739 812 __ pop(c_rarg2);
never@739 813 __ pop(c_rarg3);
never@739 814 __ pop(rax);
duke@435 815
duke@435 816 __ ret(0);
duke@435 817
duke@435 818 return start;
duke@435 819 }
duke@435 820
duke@435 821 address generate_d2l_fixup() {
duke@435 822 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 823 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 824
duke@435 825 address start = __ pc();
duke@435 826
duke@435 827 Label L;
duke@435 828
never@739 829 __ push(rax);
never@739 830 __ push(c_rarg3);
never@739 831 __ push(c_rarg2);
never@739 832 __ push(c_rarg1);
never@739 833 __ push(c_rarg0);
duke@435 834
duke@435 835 __ movl(rax, 0x7ff00000);
duke@435 836 __ movq(c_rarg2, inout);
duke@435 837 __ movl(c_rarg3, c_rarg2);
never@739 838 __ mov(c_rarg1, c_rarg2);
never@739 839 __ mov(c_rarg0, c_rarg2);
duke@435 840 __ negl(c_rarg3);
never@739 841 __ shrptr(c_rarg1, 0x20);
duke@435 842 __ orl(c_rarg3, c_rarg2);
duke@435 843 __ andl(c_rarg1, 0x7fffffff);
duke@435 844 __ xorl(c_rarg2, c_rarg2);
duke@435 845 __ shrl(c_rarg3, 0x1f);
duke@435 846 __ orl(c_rarg1, c_rarg3);
duke@435 847 __ cmpl(rax, c_rarg1);
duke@435 848 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 849 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 850 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 851 __ mov64(rax, 0x7fffffffffffffff);
duke@435 852 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 853
duke@435 854 __ bind(L);
duke@435 855 __ movq(inout, c_rarg2);
duke@435 856
never@739 857 __ pop(c_rarg0);
never@739 858 __ pop(c_rarg1);
never@739 859 __ pop(c_rarg2);
never@739 860 __ pop(c_rarg3);
never@739 861 __ pop(rax);
duke@435 862
duke@435 863 __ ret(0);
duke@435 864
duke@435 865 return start;
duke@435 866 }
duke@435 867
duke@435 868 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 869 __ align(CodeEntryAlignment);
duke@435 870 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 871 address start = __ pc();
duke@435 872
duke@435 873 __ emit_data64( mask, relocInfo::none );
duke@435 874 __ emit_data64( mask, relocInfo::none );
duke@435 875
duke@435 876 return start;
duke@435 877 }
duke@435 878
duke@435 879 // The following routine generates a subroutine to throw an
duke@435 880 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 881 // could not be reasonably prevented by the programmer. (Example:
duke@435 882 // SIGBUS/OBJERR.)
duke@435 883 address generate_handler_for_unsafe_access() {
duke@435 884 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 885 address start = __ pc();
duke@435 886
never@739 887 __ push(0); // hole for return address-to-be
never@739 888 __ pusha(); // push registers
duke@435 889 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 890
never@739 891 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 892 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 893 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 894 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 895
never@739 896 __ movptr(next_pc, rax); // stuff next address
never@739 897 __ popa();
duke@435 898 __ ret(0); // jump to next address
duke@435 899
duke@435 900 return start;
duke@435 901 }
duke@435 902
duke@435 903 // Non-destructive plausibility checks for oops
duke@435 904 //
duke@435 905 // Arguments:
duke@435 906 // all args on stack!
duke@435 907 //
duke@435 908 // Stack after saving c_rarg3:
duke@435 909 // [tos + 0]: saved c_rarg3
duke@435 910 // [tos + 1]: saved c_rarg2
kvn@559 911 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 912 // [tos + 3]: saved flags
kvn@559 913 // [tos + 4]: return address
kvn@559 914 // * [tos + 5]: error message (char*)
kvn@559 915 // * [tos + 6]: object to verify (oop)
kvn@559 916 // * [tos + 7]: saved rax - saved by caller and bashed
duke@435 917 // * = popped on exit
duke@435 918 address generate_verify_oop() {
duke@435 919 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 920 address start = __ pc();
duke@435 921
duke@435 922 Label exit, error;
duke@435 923
never@739 924 __ pushf();
duke@435 925 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 926
never@739 927 __ push(r12);
kvn@559 928
duke@435 929 // save c_rarg2 and c_rarg3
never@739 930 __ push(c_rarg2);
never@739 931 __ push(c_rarg3);
duke@435 932
kvn@559 933 enum {
kvn@559 934 // After previous pushes.
kvn@559 935 oop_to_verify = 6 * wordSize,
kvn@559 936 saved_rax = 7 * wordSize,
kvn@559 937
kvn@559 938 // Before the call to MacroAssembler::debug(), see below.
kvn@559 939 return_addr = 16 * wordSize,
kvn@559 940 error_msg = 17 * wordSize
kvn@559 941 };
kvn@559 942
duke@435 943 // get object
never@739 944 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 945
duke@435 946 // make sure object is 'reasonable'
never@739 947 __ testptr(rax, rax);
duke@435 948 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 949 // Check if the oop is in the right area of memory
never@739 950 __ movptr(c_rarg2, rax);
xlu@947 951 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 952 __ andptr(c_rarg2, c_rarg3);
xlu@947 953 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 954 __ cmpptr(c_rarg2, c_rarg3);
duke@435 955 __ jcc(Assembler::notZero, error);
duke@435 956
kvn@559 957 // set r12 to heapbase for load_klass()
kvn@559 958 __ reinit_heapbase();
kvn@559 959
duke@435 960 // make sure klass is 'reasonable'
coleenp@548 961 __ load_klass(rax, rax); // get klass
never@739 962 __ testptr(rax, rax);
duke@435 963 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 964 // Check if the klass is in the right area of memory
never@739 965 __ mov(c_rarg2, rax);
xlu@947 966 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 967 __ andptr(c_rarg2, c_rarg3);
xlu@947 968 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 969 __ cmpptr(c_rarg2, c_rarg3);
duke@435 970 __ jcc(Assembler::notZero, error);
duke@435 971
duke@435 972 // make sure klass' klass is 'reasonable'
coleenp@548 973 __ load_klass(rax, rax);
never@739 974 __ testptr(rax, rax);
duke@435 975 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 976 // Check if the klass' klass is in the right area of memory
xlu@947 977 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 978 __ andptr(rax, c_rarg3);
xlu@947 979 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 980 __ cmpptr(rax, c_rarg3);
duke@435 981 __ jcc(Assembler::notZero, error);
duke@435 982
duke@435 983 // return if everything seems ok
duke@435 984 __ bind(exit);
never@739 985 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
never@739 986 __ pop(c_rarg3); // restore c_rarg3
never@739 987 __ pop(c_rarg2); // restore c_rarg2
never@739 988 __ pop(r12); // restore r12
never@739 989 __ popf(); // restore flags
duke@435 990 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 991
duke@435 992 // handle errors
duke@435 993 __ bind(error);
never@739 994 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
never@739 995 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 996 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 997 __ pop(r12); // get saved r12 back
never@739 998 __ popf(); // get saved flags off stack --
duke@435 999 // will be ignored
duke@435 1000
never@739 1001 __ pusha(); // push registers
duke@435 1002 // (rip is already
duke@435 1003 // already pushed)
kvn@559 1004 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1005 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1006 // pushed all the registers, so now the stack looks like:
duke@435 1007 // [tos + 0] 16 saved registers
duke@435 1008 // [tos + 16] return address
kvn@559 1009 // * [tos + 17] error message (char*)
kvn@559 1010 // * [tos + 18] object to verify (oop)
kvn@559 1011 // * [tos + 19] saved rax - saved by caller and bashed
kvn@559 1012 // * = popped on exit
kvn@559 1013
never@739 1014 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1015 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1016 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1017 __ mov(r12, rsp); // remember rsp
never@739 1018 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1019 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1020 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1021 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1022 __ mov(rsp, r12); // restore rsp
never@739 1023 __ popa(); // pop registers (includes r12)
never@739 1024 __ ret(3 * wordSize); // pop caller saved stuff
duke@435 1025
duke@435 1026 return start;
duke@435 1027 }
duke@435 1028
duke@435 1029 static address disjoint_byte_copy_entry;
duke@435 1030 static address disjoint_short_copy_entry;
duke@435 1031 static address disjoint_int_copy_entry;
duke@435 1032 static address disjoint_long_copy_entry;
duke@435 1033 static address disjoint_oop_copy_entry;
duke@435 1034
duke@435 1035 static address byte_copy_entry;
duke@435 1036 static address short_copy_entry;
duke@435 1037 static address int_copy_entry;
duke@435 1038 static address long_copy_entry;
duke@435 1039 static address oop_copy_entry;
duke@435 1040
duke@435 1041 static address checkcast_copy_entry;
duke@435 1042
duke@435 1043 //
duke@435 1044 // Verify that a register contains clean 32-bits positive value
duke@435 1045 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1046 //
duke@435 1047 // Input:
duke@435 1048 // Rint - 32-bits value
duke@435 1049 // Rtmp - scratch
duke@435 1050 //
duke@435 1051 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1052 #ifdef ASSERT
duke@435 1053 Label L;
duke@435 1054 assert_different_registers(Rtmp, Rint);
duke@435 1055 __ movslq(Rtmp, Rint);
duke@435 1056 __ cmpq(Rtmp, Rint);
kvn@559 1057 __ jcc(Assembler::equal, L);
duke@435 1058 __ stop("high 32-bits of int value are not 0");
duke@435 1059 __ bind(L);
duke@435 1060 #endif
duke@435 1061 }
duke@435 1062
duke@435 1063 // Generate overlap test for array copy stubs
duke@435 1064 //
duke@435 1065 // Input:
duke@435 1066 // c_rarg0 - from
duke@435 1067 // c_rarg1 - to
duke@435 1068 // c_rarg2 - element count
duke@435 1069 //
duke@435 1070 // Output:
duke@435 1071 // rax - &from[element count - 1]
duke@435 1072 //
duke@435 1073 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1074 assert(no_overlap_target != NULL, "must be generated");
duke@435 1075 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1076 }
duke@435 1077 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1078 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1079 }
duke@435 1080 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1081 const Register from = c_rarg0;
duke@435 1082 const Register to = c_rarg1;
duke@435 1083 const Register count = c_rarg2;
duke@435 1084 const Register end_from = rax;
duke@435 1085
never@739 1086 __ cmpptr(to, from);
never@739 1087 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1088 if (NOLp == NULL) {
duke@435 1089 ExternalAddress no_overlap(no_overlap_target);
duke@435 1090 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1091 __ cmpptr(to, end_from);
duke@435 1092 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1093 } else {
duke@435 1094 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1095 __ cmpptr(to, end_from);
duke@435 1096 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1101 //
duke@435 1102 // Outputs:
duke@435 1103 // rdi - rcx
duke@435 1104 // rsi - rdx
duke@435 1105 // rdx - r8
duke@435 1106 // rcx - r9
duke@435 1107 //
duke@435 1108 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1109 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1110 //
duke@435 1111 void setup_arg_regs(int nargs = 3) {
duke@435 1112 const Register saved_rdi = r9;
duke@435 1113 const Register saved_rsi = r10;
duke@435 1114 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1115 #ifdef _WIN64
duke@435 1116 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1117 "unexpected argument registers");
duke@435 1118 if (nargs >= 4)
never@739 1119 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1120 __ movptr(saved_rdi, rdi);
never@739 1121 __ movptr(saved_rsi, rsi);
never@739 1122 __ mov(rdi, rcx); // c_rarg0
never@739 1123 __ mov(rsi, rdx); // c_rarg1
never@739 1124 __ mov(rdx, r8); // c_rarg2
duke@435 1125 if (nargs >= 4)
never@739 1126 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1127 #else
duke@435 1128 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1129 "unexpected argument registers");
duke@435 1130 #endif
duke@435 1131 }
duke@435 1132
duke@435 1133 void restore_arg_regs() {
duke@435 1134 const Register saved_rdi = r9;
duke@435 1135 const Register saved_rsi = r10;
duke@435 1136 #ifdef _WIN64
never@739 1137 __ movptr(rdi, saved_rdi);
never@739 1138 __ movptr(rsi, saved_rsi);
duke@435 1139 #endif
duke@435 1140 }
duke@435 1141
duke@435 1142 // Generate code for an array write pre barrier
duke@435 1143 //
duke@435 1144 // addr - starting address
duke@435 1145 // count - element count
duke@435 1146 //
duke@435 1147 // Destroy no registers!
duke@435 1148 //
duke@435 1149 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1150 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1151 switch (bs->kind()) {
duke@435 1152 case BarrierSet::G1SATBCT:
duke@435 1153 case BarrierSet::G1SATBCTLogging:
duke@435 1154 {
never@739 1155 __ pusha(); // push registers
ysr@777 1156 if (count == c_rarg0) {
ysr@777 1157 if (addr == c_rarg1) {
ysr@777 1158 // exactly backwards!!
apetrusenko@797 1159 __ xchgptr(c_rarg1, c_rarg0);
ysr@777 1160 } else {
apetrusenko@797 1161 __ movptr(c_rarg1, count);
apetrusenko@797 1162 __ movptr(c_rarg0, addr);
ysr@777 1163 }
ysr@777 1164
ysr@777 1165 } else {
apetrusenko@797 1166 __ movptr(c_rarg0, addr);
apetrusenko@797 1167 __ movptr(c_rarg1, count);
ysr@777 1168 }
apetrusenko@1627 1169 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
never@739 1170 __ popa();
duke@435 1171 }
duke@435 1172 break;
duke@435 1173 case BarrierSet::CardTableModRef:
duke@435 1174 case BarrierSet::CardTableExtension:
duke@435 1175 case BarrierSet::ModRef:
duke@435 1176 break;
ysr@777 1177 default:
duke@435 1178 ShouldNotReachHere();
duke@435 1179
duke@435 1180 }
duke@435 1181 }
duke@435 1182
duke@435 1183 //
duke@435 1184 // Generate code for an array write post barrier
duke@435 1185 //
duke@435 1186 // Input:
duke@435 1187 // start - register containing starting address of destination array
duke@435 1188 // end - register containing ending address of destination array
duke@435 1189 // scratch - scratch register
duke@435 1190 //
duke@435 1191 // The input registers are overwritten.
duke@435 1192 // The ending address is inclusive.
duke@435 1193 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1194 assert_different_registers(start, end, scratch);
duke@435 1195 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1196 switch (bs->kind()) {
duke@435 1197 case BarrierSet::G1SATBCT:
duke@435 1198 case BarrierSet::G1SATBCTLogging:
duke@435 1199
duke@435 1200 {
never@739 1201 __ pusha(); // push registers (overkill)
duke@435 1202 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1203 assert_different_registers(start, end, scratch);
ysr@1280 1204 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1205 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1206 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1207 __ mov(c_rarg0, start);
never@739 1208 __ mov(c_rarg1, scratch);
apetrusenko@1627 1209 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1210 __ popa();
duke@435 1211 }
duke@435 1212 break;
duke@435 1213 case BarrierSet::CardTableModRef:
duke@435 1214 case BarrierSet::CardTableExtension:
duke@435 1215 {
duke@435 1216 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1217 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1218
duke@435 1219 Label L_loop;
duke@435 1220
never@739 1221 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1222 __ addptr(end, BytesPerHeapOop);
never@739 1223 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1224 __ subptr(end, start); // number of bytes to copy
duke@435 1225
never@684 1226 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1227 if (__ is_simm32(disp)) {
never@684 1228 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1229 __ lea(scratch, cardtable);
never@684 1230 } else {
never@684 1231 ExternalAddress cardtable((address)disp);
never@684 1232 __ lea(scratch, cardtable);
never@684 1233 }
never@684 1234
duke@435 1235 const Register count = end; // 'end' register contains bytes count now
never@739 1236 __ addptr(start, scratch);
duke@435 1237 __ BIND(L_loop);
duke@435 1238 __ movb(Address(start, count, Address::times_1), 0);
never@739 1239 __ decrement(count);
duke@435 1240 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1241 }
ysr@777 1242 break;
ysr@777 1243 default:
ysr@777 1244 ShouldNotReachHere();
ysr@777 1245
ysr@777 1246 }
ysr@777 1247 }
duke@435 1248
kvn@840 1249
duke@435 1250 // Copy big chunks forward
duke@435 1251 //
duke@435 1252 // Inputs:
duke@435 1253 // end_from - source arrays end address
duke@435 1254 // end_to - destination array end address
duke@435 1255 // qword_count - 64-bits element count, negative
duke@435 1256 // to - scratch
duke@435 1257 // L_copy_32_bytes - entry label
duke@435 1258 // L_copy_8_bytes - exit label
duke@435 1259 //
duke@435 1260 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1261 Register qword_count, Register to,
duke@435 1262 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1263 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1264 Label L_loop;
kvn@1800 1265 __ align(OptoLoopAlignment);
duke@435 1266 __ BIND(L_loop);
kvn@840 1267 if(UseUnalignedLoadStores) {
kvn@840 1268 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1269 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1270 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1271 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1272
kvn@840 1273 } else {
kvn@840 1274 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1275 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1276 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1277 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1278 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1279 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1280 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1281 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1282 }
duke@435 1283 __ BIND(L_copy_32_bytes);
never@739 1284 __ addptr(qword_count, 4);
duke@435 1285 __ jcc(Assembler::lessEqual, L_loop);
never@739 1286 __ subptr(qword_count, 4);
duke@435 1287 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1288 }
duke@435 1289
duke@435 1290
duke@435 1291 // Copy big chunks backward
duke@435 1292 //
duke@435 1293 // Inputs:
duke@435 1294 // from - source arrays address
duke@435 1295 // dest - destination array address
duke@435 1296 // qword_count - 64-bits element count
duke@435 1297 // to - scratch
duke@435 1298 // L_copy_32_bytes - entry label
duke@435 1299 // L_copy_8_bytes - exit label
duke@435 1300 //
duke@435 1301 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1302 Register qword_count, Register to,
duke@435 1303 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1304 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1305 Label L_loop;
kvn@1800 1306 __ align(OptoLoopAlignment);
duke@435 1307 __ BIND(L_loop);
kvn@840 1308 if(UseUnalignedLoadStores) {
kvn@840 1309 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1310 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1311 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1312 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1313
kvn@840 1314 } else {
kvn@840 1315 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1316 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1317 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1318 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1319 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1320 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1321 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1322 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1323 }
duke@435 1324 __ BIND(L_copy_32_bytes);
never@739 1325 __ subptr(qword_count, 4);
duke@435 1326 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1327 __ addptr(qword_count, 4);
duke@435 1328 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1329 }
duke@435 1330
duke@435 1331
duke@435 1332 // Arguments:
duke@435 1333 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1334 // ignored
duke@435 1335 // name - stub name string
duke@435 1336 //
duke@435 1337 // Inputs:
duke@435 1338 // c_rarg0 - source array address
duke@435 1339 // c_rarg1 - destination array address
duke@435 1340 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1341 //
duke@435 1342 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1343 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1344 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1345 // and stored atomically.
duke@435 1346 //
duke@435 1347 // Side Effects:
duke@435 1348 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1349 // used by generate_conjoint_byte_copy().
duke@435 1350 //
duke@435 1351 address generate_disjoint_byte_copy(bool aligned, const char *name) {
duke@435 1352 __ align(CodeEntryAlignment);
duke@435 1353 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1354 address start = __ pc();
duke@435 1355
duke@435 1356 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1357 Label L_copy_byte, L_exit;
duke@435 1358 const Register from = rdi; // source array address
duke@435 1359 const Register to = rsi; // destination array address
duke@435 1360 const Register count = rdx; // elements count
duke@435 1361 const Register byte_count = rcx;
duke@435 1362 const Register qword_count = count;
duke@435 1363 const Register end_from = from; // source array end address
duke@435 1364 const Register end_to = to; // destination array end address
duke@435 1365 // End pointers are inclusive, and if count is not zero they point
duke@435 1366 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1367
duke@435 1368 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1369 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1370
duke@435 1371 disjoint_byte_copy_entry = __ pc();
duke@435 1372 BLOCK_COMMENT("Entry:");
duke@435 1373 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1374
duke@435 1375 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1376 // r9 and r10 may be used to save non-volatile registers
duke@435 1377
duke@435 1378 // 'from', 'to' and 'count' are now valid
never@739 1379 __ movptr(byte_count, count);
never@739 1380 __ shrptr(count, 3); // count => qword_count
duke@435 1381
duke@435 1382 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1383 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1384 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1385 __ negptr(qword_count); // make the count negative
duke@435 1386 __ jmp(L_copy_32_bytes);
duke@435 1387
duke@435 1388 // Copy trailing qwords
duke@435 1389 __ BIND(L_copy_8_bytes);
duke@435 1390 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1391 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1392 __ increment(qword_count);
duke@435 1393 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1394
duke@435 1395 // Check for and copy trailing dword
duke@435 1396 __ BIND(L_copy_4_bytes);
never@739 1397 __ testl(byte_count, 4);
duke@435 1398 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1399 __ movl(rax, Address(end_from, 8));
duke@435 1400 __ movl(Address(end_to, 8), rax);
duke@435 1401
never@739 1402 __ addptr(end_from, 4);
never@739 1403 __ addptr(end_to, 4);
duke@435 1404
duke@435 1405 // Check for and copy trailing word
duke@435 1406 __ BIND(L_copy_2_bytes);
never@739 1407 __ testl(byte_count, 2);
duke@435 1408 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1409 __ movw(rax, Address(end_from, 8));
duke@435 1410 __ movw(Address(end_to, 8), rax);
duke@435 1411
never@739 1412 __ addptr(end_from, 2);
never@739 1413 __ addptr(end_to, 2);
duke@435 1414
duke@435 1415 // Check for and copy trailing byte
duke@435 1416 __ BIND(L_copy_byte);
never@739 1417 __ testl(byte_count, 1);
duke@435 1418 __ jccb(Assembler::zero, L_exit);
duke@435 1419 __ movb(rax, Address(end_from, 8));
duke@435 1420 __ movb(Address(end_to, 8), rax);
duke@435 1421
duke@435 1422 __ BIND(L_exit);
duke@435 1423 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1424 restore_arg_regs();
never@739 1425 __ xorptr(rax, rax); // return 0
duke@435 1426 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1427 __ ret(0);
duke@435 1428
duke@435 1429 // Copy in 32-bytes chunks
duke@435 1430 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1431 __ jmp(L_copy_4_bytes);
duke@435 1432
duke@435 1433 return start;
duke@435 1434 }
duke@435 1435
duke@435 1436 // Arguments:
duke@435 1437 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1438 // ignored
duke@435 1439 // name - stub name string
duke@435 1440 //
duke@435 1441 // Inputs:
duke@435 1442 // c_rarg0 - source array address
duke@435 1443 // c_rarg1 - destination array address
duke@435 1444 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1445 //
duke@435 1446 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1447 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1448 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1449 // and stored atomically.
duke@435 1450 //
duke@435 1451 address generate_conjoint_byte_copy(bool aligned, const char *name) {
duke@435 1452 __ align(CodeEntryAlignment);
duke@435 1453 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1454 address start = __ pc();
duke@435 1455
duke@435 1456 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1457 const Register from = rdi; // source array address
duke@435 1458 const Register to = rsi; // destination array address
duke@435 1459 const Register count = rdx; // elements count
duke@435 1460 const Register byte_count = rcx;
duke@435 1461 const Register qword_count = count;
duke@435 1462
duke@435 1463 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1464 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1465
duke@435 1466 byte_copy_entry = __ pc();
duke@435 1467 BLOCK_COMMENT("Entry:");
duke@435 1468 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1469
duke@435 1470 array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
duke@435 1471 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1472 // r9 and r10 may be used to save non-volatile registers
duke@435 1473
duke@435 1474 // 'from', 'to' and 'count' are now valid
never@739 1475 __ movptr(byte_count, count);
never@739 1476 __ shrptr(count, 3); // count => qword_count
duke@435 1477
duke@435 1478 // Copy from high to low addresses.
duke@435 1479
duke@435 1480 // Check for and copy trailing byte
never@739 1481 __ testl(byte_count, 1);
duke@435 1482 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1483 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1484 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1485 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1486
duke@435 1487 // Check for and copy trailing word
duke@435 1488 __ BIND(L_copy_2_bytes);
never@739 1489 __ testl(byte_count, 2);
duke@435 1490 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1491 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1492 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1493
duke@435 1494 // Check for and copy trailing dword
duke@435 1495 __ BIND(L_copy_4_bytes);
never@739 1496 __ testl(byte_count, 4);
duke@435 1497 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1498 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1499 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1500 __ jmp(L_copy_32_bytes);
duke@435 1501
duke@435 1502 // Copy trailing qwords
duke@435 1503 __ BIND(L_copy_8_bytes);
duke@435 1504 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1505 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1506 __ decrement(qword_count);
duke@435 1507 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1508
duke@435 1509 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1510 restore_arg_regs();
never@739 1511 __ xorptr(rax, rax); // return 0
duke@435 1512 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1513 __ ret(0);
duke@435 1514
duke@435 1515 // Copy in 32-bytes chunks
duke@435 1516 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1517
duke@435 1518 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1519 restore_arg_regs();
never@739 1520 __ xorptr(rax, rax); // return 0
duke@435 1521 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1522 __ ret(0);
duke@435 1523
duke@435 1524 return start;
duke@435 1525 }
duke@435 1526
duke@435 1527 // Arguments:
duke@435 1528 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1529 // ignored
duke@435 1530 // name - stub name string
duke@435 1531 //
duke@435 1532 // Inputs:
duke@435 1533 // c_rarg0 - source array address
duke@435 1534 // c_rarg1 - destination array address
duke@435 1535 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1536 //
duke@435 1537 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1538 // let the hardware handle it. The two or four words within dwords
duke@435 1539 // or qwords that span cache line boundaries will still be loaded
duke@435 1540 // and stored atomically.
duke@435 1541 //
duke@435 1542 // Side Effects:
duke@435 1543 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1544 // used by generate_conjoint_short_copy().
duke@435 1545 //
duke@435 1546 address generate_disjoint_short_copy(bool aligned, const char *name) {
duke@435 1547 __ align(CodeEntryAlignment);
duke@435 1548 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1549 address start = __ pc();
duke@435 1550
duke@435 1551 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1552 const Register from = rdi; // source array address
duke@435 1553 const Register to = rsi; // destination array address
duke@435 1554 const Register count = rdx; // elements count
duke@435 1555 const Register word_count = rcx;
duke@435 1556 const Register qword_count = count;
duke@435 1557 const Register end_from = from; // source array end address
duke@435 1558 const Register end_to = to; // destination array end address
duke@435 1559 // End pointers are inclusive, and if count is not zero they point
duke@435 1560 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1561
duke@435 1562 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1563 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1564
duke@435 1565 disjoint_short_copy_entry = __ pc();
duke@435 1566 BLOCK_COMMENT("Entry:");
duke@435 1567 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1568
duke@435 1569 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1570 // r9 and r10 may be used to save non-volatile registers
duke@435 1571
duke@435 1572 // 'from', 'to' and 'count' are now valid
never@739 1573 __ movptr(word_count, count);
never@739 1574 __ shrptr(count, 2); // count => qword_count
duke@435 1575
duke@435 1576 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1577 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1578 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1579 __ negptr(qword_count);
duke@435 1580 __ jmp(L_copy_32_bytes);
duke@435 1581
duke@435 1582 // Copy trailing qwords
duke@435 1583 __ BIND(L_copy_8_bytes);
duke@435 1584 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1585 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1586 __ increment(qword_count);
duke@435 1587 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1588
duke@435 1589 // Original 'dest' is trashed, so we can't use it as a
duke@435 1590 // base register for a possible trailing word copy
duke@435 1591
duke@435 1592 // Check for and copy trailing dword
duke@435 1593 __ BIND(L_copy_4_bytes);
never@739 1594 __ testl(word_count, 2);
duke@435 1595 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1596 __ movl(rax, Address(end_from, 8));
duke@435 1597 __ movl(Address(end_to, 8), rax);
duke@435 1598
never@739 1599 __ addptr(end_from, 4);
never@739 1600 __ addptr(end_to, 4);
duke@435 1601
duke@435 1602 // Check for and copy trailing word
duke@435 1603 __ BIND(L_copy_2_bytes);
never@739 1604 __ testl(word_count, 1);
duke@435 1605 __ jccb(Assembler::zero, L_exit);
duke@435 1606 __ movw(rax, Address(end_from, 8));
duke@435 1607 __ movw(Address(end_to, 8), rax);
duke@435 1608
duke@435 1609 __ BIND(L_exit);
duke@435 1610 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1611 restore_arg_regs();
never@739 1612 __ xorptr(rax, rax); // return 0
duke@435 1613 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1614 __ ret(0);
duke@435 1615
duke@435 1616 // Copy in 32-bytes chunks
duke@435 1617 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1618 __ jmp(L_copy_4_bytes);
duke@435 1619
duke@435 1620 return start;
duke@435 1621 }
duke@435 1622
duke@435 1623 // Arguments:
duke@435 1624 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1625 // ignored
duke@435 1626 // name - stub name string
duke@435 1627 //
duke@435 1628 // Inputs:
duke@435 1629 // c_rarg0 - source array address
duke@435 1630 // c_rarg1 - destination array address
duke@435 1631 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1632 //
duke@435 1633 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1634 // let the hardware handle it. The two or four words within dwords
duke@435 1635 // or qwords that span cache line boundaries will still be loaded
duke@435 1636 // and stored atomically.
duke@435 1637 //
duke@435 1638 address generate_conjoint_short_copy(bool aligned, const char *name) {
duke@435 1639 __ align(CodeEntryAlignment);
duke@435 1640 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1641 address start = __ pc();
duke@435 1642
duke@435 1643 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1644 const Register from = rdi; // source array address
duke@435 1645 const Register to = rsi; // destination array address
duke@435 1646 const Register count = rdx; // elements count
duke@435 1647 const Register word_count = rcx;
duke@435 1648 const Register qword_count = count;
duke@435 1649
duke@435 1650 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1651 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1652
duke@435 1653 short_copy_entry = __ pc();
duke@435 1654 BLOCK_COMMENT("Entry:");
duke@435 1655 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1656
duke@435 1657 array_overlap_test(disjoint_short_copy_entry, Address::times_2);
duke@435 1658 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1659 // r9 and r10 may be used to save non-volatile registers
duke@435 1660
duke@435 1661 // 'from', 'to' and 'count' are now valid
never@739 1662 __ movptr(word_count, count);
never@739 1663 __ shrptr(count, 2); // count => qword_count
duke@435 1664
duke@435 1665 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1666
duke@435 1667 // Check for and copy trailing word
never@739 1668 __ testl(word_count, 1);
duke@435 1669 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1670 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1671 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1672
duke@435 1673 // Check for and copy trailing dword
duke@435 1674 __ BIND(L_copy_4_bytes);
never@739 1675 __ testl(word_count, 2);
duke@435 1676 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1677 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1678 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1679 __ jmp(L_copy_32_bytes);
duke@435 1680
duke@435 1681 // Copy trailing qwords
duke@435 1682 __ BIND(L_copy_8_bytes);
duke@435 1683 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1684 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1685 __ decrement(qword_count);
duke@435 1686 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1687
duke@435 1688 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1689 restore_arg_regs();
never@739 1690 __ xorptr(rax, rax); // return 0
duke@435 1691 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1692 __ ret(0);
duke@435 1693
duke@435 1694 // Copy in 32-bytes chunks
duke@435 1695 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1696
duke@435 1697 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1698 restore_arg_regs();
never@739 1699 __ xorptr(rax, rax); // return 0
duke@435 1700 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1701 __ ret(0);
duke@435 1702
duke@435 1703 return start;
duke@435 1704 }
duke@435 1705
duke@435 1706 // Arguments:
duke@435 1707 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1708 // ignored
coleenp@548 1709 // is_oop - true => oop array, so generate store check code
duke@435 1710 // name - stub name string
duke@435 1711 //
duke@435 1712 // Inputs:
duke@435 1713 // c_rarg0 - source array address
duke@435 1714 // c_rarg1 - destination array address
duke@435 1715 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1716 //
duke@435 1717 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1718 // the hardware handle it. The two dwords within qwords that span
duke@435 1719 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1720 //
duke@435 1721 // Side Effects:
duke@435 1722 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1723 // used by generate_conjoint_int_oop_copy().
duke@435 1724 //
coleenp@548 1725 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1726 __ align(CodeEntryAlignment);
duke@435 1727 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1728 address start = __ pc();
duke@435 1729
duke@435 1730 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1731 const Register from = rdi; // source array address
duke@435 1732 const Register to = rsi; // destination array address
duke@435 1733 const Register count = rdx; // elements count
duke@435 1734 const Register dword_count = rcx;
duke@435 1735 const Register qword_count = count;
duke@435 1736 const Register end_from = from; // source array end address
duke@435 1737 const Register end_to = to; // destination array end address
coleenp@548 1738 const Register saved_to = r11; // saved destination array address
duke@435 1739 // End pointers are inclusive, and if count is not zero they point
duke@435 1740 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1741
duke@435 1742 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1743 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1744
coleenp@548 1745 (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
coleenp@548 1746
coleenp@548 1747 if (is_oop) {
coleenp@548 1748 // no registers are destroyed by this call
coleenp@548 1749 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1750 }
coleenp@548 1751
duke@435 1752 BLOCK_COMMENT("Entry:");
duke@435 1753 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1754
duke@435 1755 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1756 // r9 and r10 may be used to save non-volatile registers
duke@435 1757
coleenp@548 1758 if (is_oop) {
coleenp@548 1759 __ movq(saved_to, to);
coleenp@548 1760 }
coleenp@548 1761
duke@435 1762 // 'from', 'to' and 'count' are now valid
never@739 1763 __ movptr(dword_count, count);
never@739 1764 __ shrptr(count, 1); // count => qword_count
duke@435 1765
duke@435 1766 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1767 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1768 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1769 __ negptr(qword_count);
duke@435 1770 __ jmp(L_copy_32_bytes);
duke@435 1771
duke@435 1772 // Copy trailing qwords
duke@435 1773 __ BIND(L_copy_8_bytes);
duke@435 1774 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1775 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1776 __ increment(qword_count);
duke@435 1777 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1778
duke@435 1779 // Check for and copy trailing dword
duke@435 1780 __ BIND(L_copy_4_bytes);
never@739 1781 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1782 __ jccb(Assembler::zero, L_exit);
duke@435 1783 __ movl(rax, Address(end_from, 8));
duke@435 1784 __ movl(Address(end_to, 8), rax);
duke@435 1785
duke@435 1786 __ BIND(L_exit);
coleenp@548 1787 if (is_oop) {
coleenp@548 1788 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1789 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1790 }
duke@435 1791 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1792 restore_arg_regs();
never@739 1793 __ xorptr(rax, rax); // return 0
duke@435 1794 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1795 __ ret(0);
duke@435 1796
duke@435 1797 // Copy 32-bytes chunks
duke@435 1798 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1799 __ jmp(L_copy_4_bytes);
duke@435 1800
duke@435 1801 return start;
duke@435 1802 }
duke@435 1803
duke@435 1804 // Arguments:
duke@435 1805 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1806 // ignored
coleenp@548 1807 // is_oop - true => oop array, so generate store check code
duke@435 1808 // name - stub name string
duke@435 1809 //
duke@435 1810 // Inputs:
duke@435 1811 // c_rarg0 - source array address
duke@435 1812 // c_rarg1 - destination array address
duke@435 1813 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1814 //
duke@435 1815 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1816 // the hardware handle it. The two dwords within qwords that span
duke@435 1817 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1818 //
coleenp@548 1819 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1820 __ align(CodeEntryAlignment);
duke@435 1821 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1822 address start = __ pc();
duke@435 1823
coleenp@548 1824 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1825 const Register from = rdi; // source array address
duke@435 1826 const Register to = rsi; // destination array address
duke@435 1827 const Register count = rdx; // elements count
duke@435 1828 const Register dword_count = rcx;
duke@435 1829 const Register qword_count = count;
duke@435 1830
duke@435 1831 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1832 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1833
coleenp@548 1834 if (is_oop) {
coleenp@548 1835 // no registers are destroyed by this call
coleenp@548 1836 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1837 }
coleenp@548 1838
coleenp@548 1839 (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
duke@435 1840 BLOCK_COMMENT("Entry:");
duke@435 1841 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1842
coleenp@548 1843 array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
coleenp@548 1844 Address::times_4);
duke@435 1845 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1846 // r9 and r10 may be used to save non-volatile registers
duke@435 1847
coleenp@548 1848 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1849 // 'from', 'to' and 'count' are now valid
never@739 1850 __ movptr(dword_count, count);
never@739 1851 __ shrptr(count, 1); // count => qword_count
duke@435 1852
duke@435 1853 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1854
duke@435 1855 // Check for and copy trailing dword
never@739 1856 __ testl(dword_count, 1);
duke@435 1857 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1858 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1859 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1860 __ jmp(L_copy_32_bytes);
duke@435 1861
duke@435 1862 // Copy trailing qwords
duke@435 1863 __ BIND(L_copy_8_bytes);
duke@435 1864 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1865 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1866 __ decrement(qword_count);
duke@435 1867 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1868
duke@435 1869 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1870 if (is_oop) {
coleenp@548 1871 __ jmp(L_exit);
coleenp@548 1872 }
duke@435 1873 restore_arg_regs();
never@739 1874 __ xorptr(rax, rax); // return 0
duke@435 1875 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1876 __ ret(0);
duke@435 1877
duke@435 1878 // Copy in 32-bytes chunks
duke@435 1879 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1880
coleenp@548 1881 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1882 __ bind(L_exit);
coleenp@548 1883 if (is_oop) {
coleenp@548 1884 Register end_to = rdx;
coleenp@548 1885 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1886 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1887 }
duke@435 1888 restore_arg_regs();
never@739 1889 __ xorptr(rax, rax); // return 0
duke@435 1890 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1891 __ ret(0);
duke@435 1892
duke@435 1893 return start;
duke@435 1894 }
duke@435 1895
duke@435 1896 // Arguments:
duke@435 1897 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1898 // ignored
duke@435 1899 // is_oop - true => oop array, so generate store check code
duke@435 1900 // name - stub name string
duke@435 1901 //
duke@435 1902 // Inputs:
duke@435 1903 // c_rarg0 - source array address
duke@435 1904 // c_rarg1 - destination array address
duke@435 1905 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1906 //
coleenp@548 1907 // Side Effects:
duke@435 1908 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1909 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1910 //
duke@435 1911 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1912 __ align(CodeEntryAlignment);
duke@435 1913 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1914 address start = __ pc();
duke@435 1915
duke@435 1916 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1917 const Register from = rdi; // source array address
duke@435 1918 const Register to = rsi; // destination array address
duke@435 1919 const Register qword_count = rdx; // elements count
duke@435 1920 const Register end_from = from; // source array end address
duke@435 1921 const Register end_to = rcx; // destination array end address
duke@435 1922 const Register saved_to = to;
duke@435 1923 // End pointers are inclusive, and if count is not zero they point
duke@435 1924 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1925
duke@435 1926 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1927 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1928 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1929
duke@435 1930 if (is_oop) {
duke@435 1931 disjoint_oop_copy_entry = __ pc();
duke@435 1932 // no registers are destroyed by this call
duke@435 1933 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
duke@435 1934 } else {
duke@435 1935 disjoint_long_copy_entry = __ pc();
duke@435 1936 }
duke@435 1937 BLOCK_COMMENT("Entry:");
duke@435 1938 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1939
duke@435 1940 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1941 // r9 and r10 may be used to save non-volatile registers
duke@435 1942
duke@435 1943 // 'from', 'to' and 'qword_count' are now valid
duke@435 1944
duke@435 1945 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1946 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1947 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1948 __ negptr(qword_count);
duke@435 1949 __ jmp(L_copy_32_bytes);
duke@435 1950
duke@435 1951 // Copy trailing qwords
duke@435 1952 __ BIND(L_copy_8_bytes);
duke@435 1953 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1954 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1955 __ increment(qword_count);
duke@435 1956 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1957
duke@435 1958 if (is_oop) {
duke@435 1959 __ jmp(L_exit);
duke@435 1960 } else {
duke@435 1961 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1962 restore_arg_regs();
never@739 1963 __ xorptr(rax, rax); // return 0
duke@435 1964 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1965 __ ret(0);
duke@435 1966 }
duke@435 1967
duke@435 1968 // Copy 64-byte chunks
duke@435 1969 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1970
duke@435 1971 if (is_oop) {
duke@435 1972 __ BIND(L_exit);
duke@435 1973 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 1974 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 1975 } else {
duke@435 1976 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1977 }
duke@435 1978 restore_arg_regs();
never@739 1979 __ xorptr(rax, rax); // return 0
duke@435 1980 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1981 __ ret(0);
duke@435 1982
duke@435 1983 return start;
duke@435 1984 }
duke@435 1985
duke@435 1986 // Arguments:
duke@435 1987 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1988 // ignored
duke@435 1989 // is_oop - true => oop array, so generate store check code
duke@435 1990 // name - stub name string
duke@435 1991 //
duke@435 1992 // Inputs:
duke@435 1993 // c_rarg0 - source array address
duke@435 1994 // c_rarg1 - destination array address
duke@435 1995 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1996 //
duke@435 1997 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1998 __ align(CodeEntryAlignment);
duke@435 1999 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2000 address start = __ pc();
duke@435 2001
duke@435 2002 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2003 const Register from = rdi; // source array address
duke@435 2004 const Register to = rsi; // destination array address
duke@435 2005 const Register qword_count = rdx; // elements count
duke@435 2006 const Register saved_count = rcx;
duke@435 2007
duke@435 2008 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2009 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2010
duke@435 2011 address disjoint_copy_entry = NULL;
duke@435 2012 if (is_oop) {
coleenp@548 2013 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
duke@435 2014 disjoint_copy_entry = disjoint_oop_copy_entry;
duke@435 2015 oop_copy_entry = __ pc();
coleenp@548 2016 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
duke@435 2017 } else {
duke@435 2018 disjoint_copy_entry = disjoint_long_copy_entry;
duke@435 2019 long_copy_entry = __ pc();
coleenp@548 2020 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
duke@435 2021 }
duke@435 2022 BLOCK_COMMENT("Entry:");
duke@435 2023 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2024
duke@435 2025 array_overlap_test(disjoint_copy_entry, Address::times_8);
duke@435 2026 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2027 // r9 and r10 may be used to save non-volatile registers
duke@435 2028
duke@435 2029 // 'from', 'to' and 'qword_count' are now valid
duke@435 2030
duke@435 2031 if (is_oop) {
duke@435 2032 // Save to and count for store barrier
never@739 2033 __ movptr(saved_count, qword_count);
duke@435 2034 // No registers are destroyed by this call
duke@435 2035 gen_write_ref_array_pre_barrier(to, saved_count);
duke@435 2036 }
duke@435 2037
duke@435 2038 __ jmp(L_copy_32_bytes);
duke@435 2039
duke@435 2040 // Copy trailing qwords
duke@435 2041 __ BIND(L_copy_8_bytes);
duke@435 2042 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2043 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2044 __ decrement(qword_count);
duke@435 2045 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2046
duke@435 2047 if (is_oop) {
duke@435 2048 __ jmp(L_exit);
duke@435 2049 } else {
duke@435 2050 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2051 restore_arg_regs();
never@739 2052 __ xorptr(rax, rax); // return 0
duke@435 2053 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2054 __ ret(0);
duke@435 2055 }
duke@435 2056
duke@435 2057 // Copy in 32-bytes chunks
duke@435 2058 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2059
duke@435 2060 if (is_oop) {
duke@435 2061 __ BIND(L_exit);
never@739 2062 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2063 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2064 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2065 } else {
duke@435 2066 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2067 }
duke@435 2068 restore_arg_regs();
never@739 2069 __ xorptr(rax, rax); // return 0
duke@435 2070 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2071 __ ret(0);
duke@435 2072
duke@435 2073 return start;
duke@435 2074 }
duke@435 2075
duke@435 2076
duke@435 2077 // Helper for generating a dynamic type check.
duke@435 2078 // Smashes no registers.
duke@435 2079 void generate_type_check(Register sub_klass,
duke@435 2080 Register super_check_offset,
duke@435 2081 Register super_klass,
duke@435 2082 Label& L_success) {
duke@435 2083 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2084
duke@435 2085 BLOCK_COMMENT("type_check:");
duke@435 2086
duke@435 2087 Label L_miss;
duke@435 2088
jrose@1079 2089 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2090 super_check_offset);
jrose@1079 2091 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2092
duke@435 2093 // Fall through on failure!
duke@435 2094 __ BIND(L_miss);
duke@435 2095 }
duke@435 2096
duke@435 2097 //
duke@435 2098 // Generate checkcasting array copy stub
duke@435 2099 //
duke@435 2100 // Input:
duke@435 2101 // c_rarg0 - source array address
duke@435 2102 // c_rarg1 - destination array address
duke@435 2103 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2104 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2105 // not Win64
duke@435 2106 // c_rarg4 - oop ckval (super_klass)
duke@435 2107 // Win64
duke@435 2108 // rsp+40 - oop ckval (super_klass)
duke@435 2109 //
duke@435 2110 // Output:
duke@435 2111 // rax == 0 - success
duke@435 2112 // rax == -1^K - failure, where K is partial transfer count
duke@435 2113 //
duke@435 2114 address generate_checkcast_copy(const char *name) {
duke@435 2115
duke@435 2116 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2117
duke@435 2118 // Input registers (after setup_arg_regs)
duke@435 2119 const Register from = rdi; // source array address
duke@435 2120 const Register to = rsi; // destination array address
duke@435 2121 const Register length = rdx; // elements count
duke@435 2122 const Register ckoff = rcx; // super_check_offset
duke@435 2123 const Register ckval = r8; // super_klass
duke@435 2124
duke@435 2125 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2126 const Register end_from = from; // source array end address
duke@435 2127 const Register end_to = r13; // destination array end address
duke@435 2128 const Register count = rdx; // -(count_remaining)
duke@435 2129 const Register r14_length = r14; // saved copy of length
duke@435 2130 // End pointers are inclusive, and if length is not zero they point
duke@435 2131 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2132
duke@435 2133 const Register rax_oop = rax; // actual oop copied
duke@435 2134 const Register r11_klass = r11; // oop._klass
duke@435 2135
duke@435 2136 //---------------------------------------------------------------
duke@435 2137 // Assembler stub will be used for this call to arraycopy
duke@435 2138 // if the two arrays are subtypes of Object[] but the
duke@435 2139 // destination array type is not equal to or a supertype
duke@435 2140 // of the source type. Each element must be separately
duke@435 2141 // checked.
duke@435 2142
duke@435 2143 __ align(CodeEntryAlignment);
duke@435 2144 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2145 address start = __ pc();
duke@435 2146
duke@435 2147 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2148
duke@435 2149 checkcast_copy_entry = __ pc();
duke@435 2150 BLOCK_COMMENT("Entry:");
duke@435 2151
duke@435 2152 #ifdef ASSERT
duke@435 2153 // caller guarantees that the arrays really are different
duke@435 2154 // otherwise, we would have to make conjoint checks
duke@435 2155 { Label L;
coleenp@548 2156 array_overlap_test(L, TIMES_OOP);
duke@435 2157 __ stop("checkcast_copy within a single array");
duke@435 2158 __ bind(L);
duke@435 2159 }
duke@435 2160 #endif //ASSERT
duke@435 2161
duke@435 2162 // allocate spill slots for r13, r14
duke@435 2163 enum {
duke@435 2164 saved_r13_offset,
duke@435 2165 saved_r14_offset,
duke@435 2166 saved_rbp_offset,
duke@435 2167 saved_rip_offset,
duke@435 2168 saved_rarg0_offset
duke@435 2169 };
never@739 2170 __ subptr(rsp, saved_rbp_offset * wordSize);
never@739 2171 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
never@739 2172 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
duke@435 2173 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2174 // ckoff => rcx, ckval => r8
duke@435 2175 // r9 and r10 may be used to save non-volatile registers
duke@435 2176 #ifdef _WIN64
duke@435 2177 // last argument (#4) is on stack on Win64
duke@435 2178 const int ckval_offset = saved_rarg0_offset + 4;
never@739 2179 __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
duke@435 2180 #endif
duke@435 2181
duke@435 2182 // check that int operands are properly extended to size_t
duke@435 2183 assert_clean_int(length, rax);
duke@435 2184 assert_clean_int(ckoff, rax);
duke@435 2185
duke@435 2186 #ifdef ASSERT
duke@435 2187 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2188 // The ckoff and ckval must be mutually consistent,
duke@435 2189 // even though caller generates both.
duke@435 2190 { Label L;
duke@435 2191 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2192 Klass::super_check_offset_offset_in_bytes());
duke@435 2193 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2194 __ jcc(Assembler::equal, L);
duke@435 2195 __ stop("super_check_offset inconsistent");
duke@435 2196 __ bind(L);
duke@435 2197 }
duke@435 2198 #endif //ASSERT
duke@435 2199
duke@435 2200 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2201 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2202 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2203 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2204 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2205 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2206
duke@435 2207 gen_write_ref_array_pre_barrier(to, count);
duke@435 2208
duke@435 2209 // Copy from low to high addresses, indexed from the end of each array.
never@739 2210 __ lea(end_from, end_from_addr);
never@739 2211 __ lea(end_to, end_to_addr);
never@739 2212 __ movptr(r14_length, length); // save a copy of the length
never@739 2213 assert(length == count, ""); // else fix next line:
never@739 2214 __ negptr(count); // negate and test the length
duke@435 2215 __ jcc(Assembler::notZero, L_load_element);
duke@435 2216
duke@435 2217 // Empty array: Nothing to do.
never@739 2218 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2219 __ jmp(L_done);
duke@435 2220
duke@435 2221 // ======== begin loop ========
duke@435 2222 // (Loop is rotated; its entry is L_load_element.)
duke@435 2223 // Loop control:
duke@435 2224 // for (count = -count; count != 0; count++)
duke@435 2225 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2226 __ align(OptoLoopAlignment);
duke@435 2227
duke@435 2228 __ BIND(L_store_element);
coleenp@548 2229 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2230 __ increment(count); // increment the count toward zero
duke@435 2231 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2232
duke@435 2233 // ======== loop entry is here ========
duke@435 2234 __ BIND(L_load_element);
coleenp@548 2235 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2236 __ testptr(rax_oop, rax_oop);
duke@435 2237 __ jcc(Assembler::zero, L_store_element);
duke@435 2238
coleenp@548 2239 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2240 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2241 // ======== end loop ========
duke@435 2242
duke@435 2243 // It was a real error; we must depend on the caller to finish the job.
duke@435 2244 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2245 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2246 // and report their number to the caller.
duke@435 2247 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2248 __ lea(end_to, to_element_addr);
ysr@1280 2249 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2250 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2251 __ movptr(rax, r14_length); // original oops
never@739 2252 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2253 __ notptr(rax); // report (-1^K) to caller
duke@435 2254 __ jmp(L_done);
duke@435 2255
duke@435 2256 // Come here on success only.
duke@435 2257 __ BIND(L_do_card_marks);
ysr@1280 2258 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2259 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2260 __ xorptr(rax, rax); // return 0 on success
duke@435 2261
duke@435 2262 // Common exit point (success or failure).
duke@435 2263 __ BIND(L_done);
never@739 2264 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2265 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2266 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2267 restore_arg_regs();
duke@435 2268 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2269 __ ret(0);
duke@435 2270
duke@435 2271 return start;
duke@435 2272 }
duke@435 2273
duke@435 2274 //
duke@435 2275 // Generate 'unsafe' array copy stub
duke@435 2276 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2277 // size_t argument instead of an element count.
duke@435 2278 //
duke@435 2279 // Input:
duke@435 2280 // c_rarg0 - source array address
duke@435 2281 // c_rarg1 - destination array address
duke@435 2282 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2283 //
duke@435 2284 // Examines the alignment of the operands and dispatches
duke@435 2285 // to a long, int, short, or byte copy loop.
duke@435 2286 //
duke@435 2287 address generate_unsafe_copy(const char *name) {
duke@435 2288
duke@435 2289 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2290
duke@435 2291 // Input registers (before setup_arg_regs)
duke@435 2292 const Register from = c_rarg0; // source array address
duke@435 2293 const Register to = c_rarg1; // destination array address
duke@435 2294 const Register size = c_rarg2; // byte count (size_t)
duke@435 2295
duke@435 2296 // Register used as a temp
duke@435 2297 const Register bits = rax; // test copy of low bits
duke@435 2298
duke@435 2299 __ align(CodeEntryAlignment);
duke@435 2300 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2301 address start = __ pc();
duke@435 2302
duke@435 2303 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2304
duke@435 2305 // bump this on entry, not on exit:
duke@435 2306 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2307
never@739 2308 __ mov(bits, from);
never@739 2309 __ orptr(bits, to);
never@739 2310 __ orptr(bits, size);
duke@435 2311
duke@435 2312 __ testb(bits, BytesPerLong-1);
duke@435 2313 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2314
duke@435 2315 __ testb(bits, BytesPerInt-1);
duke@435 2316 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2317
duke@435 2318 __ testb(bits, BytesPerShort-1);
duke@435 2319 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2320
duke@435 2321 __ BIND(L_short_aligned);
never@739 2322 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2323 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2324
duke@435 2325 __ BIND(L_int_aligned);
never@739 2326 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2327 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2328
duke@435 2329 __ BIND(L_long_aligned);
never@739 2330 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2331 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2332
duke@435 2333 return start;
duke@435 2334 }
duke@435 2335
duke@435 2336 // Perform range checks on the proposed arraycopy.
duke@435 2337 // Kills temp, but nothing else.
duke@435 2338 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2339 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2340 Register src_pos, // source position (c_rarg1)
duke@435 2341 Register dst, // destination array oo (c_rarg2)
duke@435 2342 Register dst_pos, // destination position (c_rarg3)
duke@435 2343 Register length,
duke@435 2344 Register temp,
duke@435 2345 Label& L_failed) {
duke@435 2346 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2347
duke@435 2348 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2349 __ movl(temp, length);
duke@435 2350 __ addl(temp, src_pos); // src_pos + length
duke@435 2351 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2352 __ jcc(Assembler::above, L_failed);
duke@435 2353
duke@435 2354 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2355 __ movl(temp, length);
duke@435 2356 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2357 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2358 __ jcc(Assembler::above, L_failed);
duke@435 2359
duke@435 2360 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2361 // Move with sign extension can be used since they are positive.
duke@435 2362 __ movslq(src_pos, src_pos);
duke@435 2363 __ movslq(dst_pos, dst_pos);
duke@435 2364
duke@435 2365 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2366 }
duke@435 2367
duke@435 2368 //
duke@435 2369 // Generate generic array copy stubs
duke@435 2370 //
duke@435 2371 // Input:
duke@435 2372 // c_rarg0 - src oop
duke@435 2373 // c_rarg1 - src_pos (32-bits)
duke@435 2374 // c_rarg2 - dst oop
duke@435 2375 // c_rarg3 - dst_pos (32-bits)
duke@435 2376 // not Win64
duke@435 2377 // c_rarg4 - element count (32-bits)
duke@435 2378 // Win64
duke@435 2379 // rsp+40 - element count (32-bits)
duke@435 2380 //
duke@435 2381 // Output:
duke@435 2382 // rax == 0 - success
duke@435 2383 // rax == -1^K - failure, where K is partial transfer count
duke@435 2384 //
duke@435 2385 address generate_generic_copy(const char *name) {
duke@435 2386
duke@435 2387 Label L_failed, L_failed_0, L_objArray;
duke@435 2388 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2389
duke@435 2390 // Input registers
duke@435 2391 const Register src = c_rarg0; // source array oop
duke@435 2392 const Register src_pos = c_rarg1; // source position
duke@435 2393 const Register dst = c_rarg2; // destination array oop
duke@435 2394 const Register dst_pos = c_rarg3; // destination position
duke@435 2395 // elements count is on stack on Win64
duke@435 2396 #ifdef _WIN64
duke@435 2397 #define C_RARG4 Address(rsp, 6 * wordSize)
duke@435 2398 #else
duke@435 2399 #define C_RARG4 c_rarg4
duke@435 2400 #endif
duke@435 2401
duke@435 2402 { int modulus = CodeEntryAlignment;
duke@435 2403 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2404 int advance = target - (__ offset() % modulus);
duke@435 2405 if (advance < 0) advance += modulus;
duke@435 2406 if (advance > 0) __ nop(advance);
duke@435 2407 }
duke@435 2408 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2409
duke@435 2410 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2411 __ BIND(L_failed_0);
duke@435 2412 __ jmp(L_failed);
duke@435 2413 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2414
duke@435 2415 __ align(CodeEntryAlignment);
duke@435 2416 address start = __ pc();
duke@435 2417
duke@435 2418 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2419
duke@435 2420 // bump this on entry, not on exit:
duke@435 2421 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2422
duke@435 2423 //-----------------------------------------------------------------------
duke@435 2424 // Assembler stub will be used for this call to arraycopy
duke@435 2425 // if the following conditions are met:
duke@435 2426 //
duke@435 2427 // (1) src and dst must not be null.
duke@435 2428 // (2) src_pos must not be negative.
duke@435 2429 // (3) dst_pos must not be negative.
duke@435 2430 // (4) length must not be negative.
duke@435 2431 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2432 // (6) src and dst should be arrays.
duke@435 2433 // (7) src_pos + length must not exceed length of src.
duke@435 2434 // (8) dst_pos + length must not exceed length of dst.
duke@435 2435 //
duke@435 2436
duke@435 2437 // if (src == NULL) return -1;
never@739 2438 __ testptr(src, src); // src oop
duke@435 2439 size_t j1off = __ offset();
duke@435 2440 __ jccb(Assembler::zero, L_failed_0);
duke@435 2441
duke@435 2442 // if (src_pos < 0) return -1;
duke@435 2443 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2444 __ jccb(Assembler::negative, L_failed_0);
duke@435 2445
duke@435 2446 // if (dst == NULL) return -1;
never@739 2447 __ testptr(dst, dst); // dst oop
duke@435 2448 __ jccb(Assembler::zero, L_failed_0);
duke@435 2449
duke@435 2450 // if (dst_pos < 0) return -1;
duke@435 2451 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2452 size_t j4off = __ offset();
duke@435 2453 __ jccb(Assembler::negative, L_failed_0);
duke@435 2454
duke@435 2455 // The first four tests are very dense code,
duke@435 2456 // but not quite dense enough to put four
duke@435 2457 // jumps in a 16-byte instruction fetch buffer.
duke@435 2458 // That's good, because some branch predicters
duke@435 2459 // do not like jumps so close together.
duke@435 2460 // Make sure of this.
duke@435 2461 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2462
duke@435 2463 // registers used as temp
duke@435 2464 const Register r11_length = r11; // elements count to copy
duke@435 2465 const Register r10_src_klass = r10; // array klass
coleenp@548 2466 const Register r9_dst_klass = r9; // dest array klass
duke@435 2467
duke@435 2468 // if (length < 0) return -1;
duke@435 2469 __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value)
duke@435 2470 __ testl(r11_length, r11_length);
duke@435 2471 __ jccb(Assembler::negative, L_failed_0);
duke@435 2472
coleenp@548 2473 __ load_klass(r10_src_klass, src);
duke@435 2474 #ifdef ASSERT
duke@435 2475 // assert(src->klass() != NULL);
duke@435 2476 BLOCK_COMMENT("assert klasses not null");
duke@435 2477 { Label L1, L2;
never@739 2478 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2479 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2480 __ bind(L1);
duke@435 2481 __ stop("broken null klass");
duke@435 2482 __ bind(L2);
coleenp@548 2483 __ load_klass(r9_dst_klass, dst);
coleenp@548 2484 __ cmpq(r9_dst_klass, 0);
duke@435 2485 __ jcc(Assembler::equal, L1); // this would be broken also
duke@435 2486 BLOCK_COMMENT("assert done");
duke@435 2487 }
duke@435 2488 #endif
duke@435 2489
duke@435 2490 // Load layout helper (32-bits)
duke@435 2491 //
duke@435 2492 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2493 // 32 30 24 16 8 2 0
duke@435 2494 //
duke@435 2495 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2496 //
duke@435 2497
duke@435 2498 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2499 Klass::layout_helper_offset_in_bytes();
duke@435 2500
duke@435 2501 const Register rax_lh = rax; // layout helper
duke@435 2502
duke@435 2503 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2504
duke@435 2505 // Handle objArrays completely differently...
duke@435 2506 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2507 __ cmpl(rax_lh, objArray_lh);
duke@435 2508 __ jcc(Assembler::equal, L_objArray);
duke@435 2509
duke@435 2510 // if (src->klass() != dst->klass()) return -1;
coleenp@548 2511 __ load_klass(r9_dst_klass, dst);
coleenp@548 2512 __ cmpq(r10_src_klass, r9_dst_klass);
duke@435 2513 __ jcc(Assembler::notEqual, L_failed);
duke@435 2514
duke@435 2515 // if (!src->is_Array()) return -1;
duke@435 2516 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2517 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2518
duke@435 2519 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2520 #ifdef ASSERT
duke@435 2521 { Label L;
duke@435 2522 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2523 __ jcc(Assembler::greaterEqual, L);
duke@435 2524 __ stop("must be a primitive array");
duke@435 2525 __ bind(L);
duke@435 2526 }
duke@435 2527 #endif
duke@435 2528
duke@435 2529 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2530 r10, L_failed);
duke@435 2531
duke@435 2532 // typeArrayKlass
duke@435 2533 //
duke@435 2534 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2535 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2536 //
duke@435 2537
duke@435 2538 const Register r10_offset = r10; // array offset
duke@435 2539 const Register rax_elsize = rax_lh; // element size
duke@435 2540
duke@435 2541 __ movl(r10_offset, rax_lh);
duke@435 2542 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2543 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2544 __ addptr(src, r10_offset); // src array offset
never@739 2545 __ addptr(dst, r10_offset); // dst array offset
duke@435 2546 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2547 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2548
duke@435 2549 // next registers should be set before the jump to corresponding stub
duke@435 2550 const Register from = c_rarg0; // source array address
duke@435 2551 const Register to = c_rarg1; // destination array address
duke@435 2552 const Register count = c_rarg2; // elements count
duke@435 2553
duke@435 2554 // 'from', 'to', 'count' registers should be set in such order
duke@435 2555 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2556
duke@435 2557 __ BIND(L_copy_bytes);
duke@435 2558 __ cmpl(rax_elsize, 0);
duke@435 2559 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2560 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2561 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2562 __ movl2ptr(count, r11_length); // length
duke@435 2563 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2564
duke@435 2565 __ BIND(L_copy_shorts);
duke@435 2566 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2567 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2568 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2569 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2570 __ movl2ptr(count, r11_length); // length
duke@435 2571 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2572
duke@435 2573 __ BIND(L_copy_ints);
duke@435 2574 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2575 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2576 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2577 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2578 __ movl2ptr(count, r11_length); // length
duke@435 2579 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2580
duke@435 2581 __ BIND(L_copy_longs);
duke@435 2582 #ifdef ASSERT
duke@435 2583 { Label L;
duke@435 2584 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2585 __ jcc(Assembler::equal, L);
duke@435 2586 __ stop("must be long copy, but elsize is wrong");
duke@435 2587 __ bind(L);
duke@435 2588 }
duke@435 2589 #endif
never@739 2590 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2591 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2592 __ movl2ptr(count, r11_length); // length
duke@435 2593 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2594
duke@435 2595 // objArrayKlass
duke@435 2596 __ BIND(L_objArray);
duke@435 2597 // live at this point: r10_src_klass, src[_pos], dst[_pos]
duke@435 2598
duke@435 2599 Label L_plain_copy, L_checkcast_copy;
duke@435 2600 // test array classes for subtyping
coleenp@548 2601 __ load_klass(r9_dst_klass, dst);
coleenp@548 2602 __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
duke@435 2603 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2604
duke@435 2605 // Identically typed arrays can be copied without element-wise checks.
duke@435 2606 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2607 r10, L_failed);
duke@435 2608
never@739 2609 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2610 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2611 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2612 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2613 __ movl2ptr(count, r11_length); // length
duke@435 2614 __ BIND(L_plain_copy);
duke@435 2615 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2616
duke@435 2617 __ BIND(L_checkcast_copy);
duke@435 2618 // live at this point: r10_src_klass, !r11_length
duke@435 2619 {
duke@435 2620 // assert(r11_length == C_RARG4); // will reload from here
duke@435 2621 Register r11_dst_klass = r11;
coleenp@548 2622 __ load_klass(r11_dst_klass, dst);
duke@435 2623
duke@435 2624 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2625 __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
duke@435 2626 __ jcc(Assembler::notEqual, L_failed);
duke@435 2627
duke@435 2628 // It is safe to examine both src.length and dst.length.
duke@435 2629 #ifndef _WIN64
duke@435 2630 arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
duke@435 2631 rax, L_failed);
duke@435 2632 #else
duke@435 2633 __ movl(r11_length, C_RARG4); // reload
duke@435 2634 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2635 rax, L_failed);
coleenp@548 2636 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2637 #endif
duke@435 2638
duke@435 2639 // Marshal the base address arguments now, freeing registers.
never@739 2640 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2641 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2642 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2643 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 2644 __ movl(count, C_RARG4); // length (reloaded)
duke@435 2645 Register sco_temp = c_rarg3; // this register is free now
duke@435 2646 assert_different_registers(from, to, count, sco_temp,
duke@435 2647 r11_dst_klass, r10_src_klass);
duke@435 2648 assert_clean_int(count, sco_temp);
duke@435 2649
duke@435 2650 // Generate the type check.
duke@435 2651 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2652 Klass::super_check_offset_offset_in_bytes());
duke@435 2653 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2654 assert_clean_int(sco_temp, rax);
duke@435 2655 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2656
duke@435 2657 // Fetch destination element klass from the objArrayKlass header.
duke@435 2658 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2659 objArrayKlass::element_klass_offset_in_bytes());
never@739 2660 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
duke@435 2661 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2662 assert_clean_int(sco_temp, rax);
duke@435 2663
duke@435 2664 // the checkcast_copy loop needs two extra arguments:
duke@435 2665 assert(c_rarg3 == sco_temp, "#3 already in place");
never@739 2666 __ movptr(C_RARG4, r11_dst_klass); // dst.klass.element_klass
duke@435 2667 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2668 }
duke@435 2669
duke@435 2670 __ BIND(L_failed);
never@739 2671 __ xorptr(rax, rax);
never@739 2672 __ notptr(rax); // return -1
duke@435 2673 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2674 __ ret(0);
duke@435 2675
duke@435 2676 return start;
duke@435 2677 }
duke@435 2678
duke@435 2679 #undef length_arg
duke@435 2680
duke@435 2681 void generate_arraycopy_stubs() {
duke@435 2682 // Call the conjoint generation methods immediately after
duke@435 2683 // the disjoint ones so that short branches from the former
duke@435 2684 // to the latter can be generated.
duke@435 2685 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2686 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2687
duke@435 2688 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2689 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2690
coleenp@548 2691 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
coleenp@548 2692 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
duke@435 2693
duke@435 2694 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
duke@435 2695 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
duke@435 2696
coleenp@548 2697
coleenp@548 2698 if (UseCompressedOops) {
coleenp@548 2699 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2700 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2701 } else {
coleenp@548 2702 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2703 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2704 }
duke@435 2705
duke@435 2706 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2707 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2708 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2709
duke@435 2710 // We don't generate specialized code for HeapWord-aligned source
duke@435 2711 // arrays, so just use the code we've already generated
duke@435 2712 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2713 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2714
duke@435 2715 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2716 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2717
duke@435 2718 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2719 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2720
duke@435 2721 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2722 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2723
duke@435 2724 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2725 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2726 }
duke@435 2727
never@1609 2728 void generate_math_stubs() {
never@1609 2729 {
never@1609 2730 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2731 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2732
never@1609 2733 __ subq(rsp, 8);
never@1609 2734 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2735 __ fld_d(Address(rsp, 0));
never@1609 2736 __ flog();
never@1609 2737 __ fstp_d(Address(rsp, 0));
never@1609 2738 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2739 __ addq(rsp, 8);
never@1609 2740 __ ret(0);
never@1609 2741 }
never@1609 2742 {
never@1609 2743 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2744 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2745
never@1609 2746 __ subq(rsp, 8);
never@1609 2747 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2748 __ fld_d(Address(rsp, 0));
never@1609 2749 __ flog10();
never@1609 2750 __ fstp_d(Address(rsp, 0));
never@1609 2751 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2752 __ addq(rsp, 8);
never@1609 2753 __ ret(0);
never@1609 2754 }
never@1609 2755 {
never@1609 2756 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2757 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2758
never@1609 2759 __ subq(rsp, 8);
never@1609 2760 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2761 __ fld_d(Address(rsp, 0));
never@1609 2762 __ trigfunc('s');
never@1609 2763 __ fstp_d(Address(rsp, 0));
never@1609 2764 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2765 __ addq(rsp, 8);
never@1609 2766 __ ret(0);
never@1609 2767 }
never@1609 2768 {
never@1609 2769 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2770 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2771
never@1609 2772 __ subq(rsp, 8);
never@1609 2773 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2774 __ fld_d(Address(rsp, 0));
never@1609 2775 __ trigfunc('c');
never@1609 2776 __ fstp_d(Address(rsp, 0));
never@1609 2777 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2778 __ addq(rsp, 8);
never@1609 2779 __ ret(0);
never@1609 2780 }
never@1609 2781 {
never@1609 2782 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2783 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2784
never@1609 2785 __ subq(rsp, 8);
never@1609 2786 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2787 __ fld_d(Address(rsp, 0));
never@1609 2788 __ trigfunc('t');
never@1609 2789 __ fstp_d(Address(rsp, 0));
never@1609 2790 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2791 __ addq(rsp, 8);
never@1609 2792 __ ret(0);
never@1609 2793 }
never@1609 2794
never@1609 2795 // The intrinsic version of these seem to return the same value as
never@1609 2796 // the strict version.
never@1609 2797 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2798 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2799 }
never@1609 2800
duke@435 2801 #undef __
duke@435 2802 #define __ masm->
duke@435 2803
duke@435 2804 // Continuation point for throwing of implicit exceptions that are
duke@435 2805 // not handled in the current activation. Fabricates an exception
duke@435 2806 // oop and initiates normal exception dispatching in this
duke@435 2807 // frame. Since we need to preserve callee-saved values (currently
duke@435 2808 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2809 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2810 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2811 // be preserved between the fault point and the exception handler
duke@435 2812 // then it must assume responsibility for that in
duke@435 2813 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2814 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2815 // implicit exceptions (e.g., NullPointerException or
duke@435 2816 // AbstractMethodError on entry) are either at call sites or
duke@435 2817 // otherwise assume that stack unwinding will be initiated, so
duke@435 2818 // caller saved registers were assumed volatile in the compiler.
duke@435 2819 address generate_throw_exception(const char* name,
duke@435 2820 address runtime_entry,
duke@435 2821 bool restore_saved_exception_pc) {
duke@435 2822 // Information about frame layout at time of blocking runtime call.
duke@435 2823 // Note that we only have to preserve callee-saved registers since
duke@435 2824 // the compilers are responsible for supplying a continuation point
duke@435 2825 // if they expect all registers to be preserved.
duke@435 2826 enum layout {
duke@435 2827 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2828 rbp_off2,
duke@435 2829 return_off,
duke@435 2830 return_off2,
duke@435 2831 framesize // inclusive of return address
duke@435 2832 };
duke@435 2833
duke@435 2834 int insts_size = 512;
duke@435 2835 int locs_size = 64;
duke@435 2836
duke@435 2837 CodeBuffer code(name, insts_size, locs_size);
duke@435 2838 OopMapSet* oop_maps = new OopMapSet();
duke@435 2839 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2840
duke@435 2841 address start = __ pc();
duke@435 2842
duke@435 2843 // This is an inlined and slightly modified version of call_VM
duke@435 2844 // which has the ability to fetch the return PC out of
duke@435 2845 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2846 // differently than the real call_VM
duke@435 2847 if (restore_saved_exception_pc) {
never@739 2848 __ movptr(rax,
never@739 2849 Address(r15_thread,
never@739 2850 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2851 __ push(rax);
duke@435 2852 }
duke@435 2853
duke@435 2854 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2855
duke@435 2856 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2857
duke@435 2858 // return address and rbp are already in place
never@739 2859 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2860
duke@435 2861 int frame_complete = __ pc() - start;
duke@435 2862
duke@435 2863 // Set up last_Java_sp and last_Java_fp
duke@435 2864 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2865
duke@435 2866 // Call runtime
never@739 2867 __ movptr(c_rarg0, r15_thread);
duke@435 2868 BLOCK_COMMENT("call runtime_entry");
duke@435 2869 __ call(RuntimeAddress(runtime_entry));
duke@435 2870
duke@435 2871 // Generate oop map
duke@435 2872 OopMap* map = new OopMap(framesize, 0);
duke@435 2873
duke@435 2874 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2875
duke@435 2876 __ reset_last_Java_frame(true, false);
duke@435 2877
duke@435 2878 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2879
duke@435 2880 // check for pending exceptions
duke@435 2881 #ifdef ASSERT
duke@435 2882 Label L;
never@739 2883 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 2884 (int32_t) NULL_WORD);
duke@435 2885 __ jcc(Assembler::notEqual, L);
duke@435 2886 __ should_not_reach_here();
duke@435 2887 __ bind(L);
duke@435 2888 #endif // ASSERT
duke@435 2889 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2890
duke@435 2891
duke@435 2892 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2893 RuntimeStub* stub =
duke@435 2894 RuntimeStub::new_runtime_stub(name,
duke@435 2895 &code,
duke@435 2896 frame_complete,
duke@435 2897 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2898 oop_maps, false);
duke@435 2899 return stub->entry_point();
duke@435 2900 }
duke@435 2901
duke@435 2902 // Initialization
duke@435 2903 void generate_initial() {
duke@435 2904 // Generates all stubs and initializes the entry points
duke@435 2905
duke@435 2906 // This platform-specific stub is needed by generate_call_stub()
never@739 2907 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 2908
duke@435 2909 // entry points that exist in all platforms Note: This is code
duke@435 2910 // that could be shared among different platforms - however the
duke@435 2911 // benefit seems to be smaller than the disadvantage of having a
duke@435 2912 // much more complicated generator structure. See also comment in
duke@435 2913 // stubRoutines.hpp.
duke@435 2914
duke@435 2915 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2916
duke@435 2917 StubRoutines::_call_stub_entry =
duke@435 2918 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2919
duke@435 2920 // is referenced by megamorphic call
duke@435 2921 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2922
duke@435 2923 // atomic calls
duke@435 2924 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2925 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 2926 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2927 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2928 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2929 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 2930 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 2931
duke@435 2932 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2933 generate_handler_for_unsafe_access();
duke@435 2934
duke@435 2935 // platform dependent
never@739 2936 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 2937
never@739 2938 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2939 }
duke@435 2940
duke@435 2941 void generate_all() {
duke@435 2942 // Generates all stubs and initializes the entry points
duke@435 2943
duke@435 2944 // These entry points require SharedInfo::stack0 to be set up in
duke@435 2945 // non-core builds and need to be relocatable, so they each
duke@435 2946 // fabricate a RuntimeStub internally.
duke@435 2947 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 2948 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 2949 CAST_FROM_FN_PTR(address,
duke@435 2950 SharedRuntime::
duke@435 2951 throw_AbstractMethodError),
duke@435 2952 false);
duke@435 2953
dcubed@451 2954 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 2955 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 2956 CAST_FROM_FN_PTR(address,
dcubed@451 2957 SharedRuntime::
dcubed@451 2958 throw_IncompatibleClassChangeError),
dcubed@451 2959 false);
dcubed@451 2960
duke@435 2961 StubRoutines::_throw_ArithmeticException_entry =
duke@435 2962 generate_throw_exception("ArithmeticException throw_exception",
duke@435 2963 CAST_FROM_FN_PTR(address,
duke@435 2964 SharedRuntime::
duke@435 2965 throw_ArithmeticException),
duke@435 2966 true);
duke@435 2967
duke@435 2968 StubRoutines::_throw_NullPointerException_entry =
duke@435 2969 generate_throw_exception("NullPointerException throw_exception",
duke@435 2970 CAST_FROM_FN_PTR(address,
duke@435 2971 SharedRuntime::
duke@435 2972 throw_NullPointerException),
duke@435 2973 true);
duke@435 2974
duke@435 2975 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 2976 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 2977 CAST_FROM_FN_PTR(address,
duke@435 2978 SharedRuntime::
duke@435 2979 throw_NullPointerException_at_call),
duke@435 2980 false);
duke@435 2981
duke@435 2982 StubRoutines::_throw_StackOverflowError_entry =
duke@435 2983 generate_throw_exception("StackOverflowError throw_exception",
duke@435 2984 CAST_FROM_FN_PTR(address,
duke@435 2985 SharedRuntime::
duke@435 2986 throw_StackOverflowError),
duke@435 2987 false);
duke@435 2988
duke@435 2989 // entry points that are platform specific
never@739 2990 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 2991 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 2992 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 2993 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 2994
never@739 2995 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 2996 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 2997 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 2998 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 2999
duke@435 3000 // support for verify_oop (must happen after universe_init)
duke@435 3001 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3002
duke@435 3003 // arraycopy stubs used by compilers
duke@435 3004 generate_arraycopy_stubs();
twisti@1543 3005
never@1609 3006 generate_math_stubs();
duke@435 3007 }
duke@435 3008
duke@435 3009 public:
duke@435 3010 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3011 if (all) {
duke@435 3012 generate_all();
duke@435 3013 } else {
duke@435 3014 generate_initial();
duke@435 3015 }
duke@435 3016 }
duke@435 3017 }; // end class declaration
duke@435 3018
duke@435 3019 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3020 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3021 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3022 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3023 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3024
duke@435 3025 address StubGenerator::byte_copy_entry = NULL;
duke@435 3026 address StubGenerator::short_copy_entry = NULL;
duke@435 3027 address StubGenerator::int_copy_entry = NULL;
duke@435 3028 address StubGenerator::long_copy_entry = NULL;
duke@435 3029 address StubGenerator::oop_copy_entry = NULL;
duke@435 3030
duke@435 3031 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3032
duke@435 3033 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3034 StubGenerator g(code, all);
duke@435 3035 }

mercurial