src/share/vm/opto/gcm.cpp

Fri, 15 Nov 2013 11:05:32 -0800

author
goetz
date
Fri, 15 Nov 2013 11:05:32 -0800
changeset 6479
2113136690bc
parent 6472
2b8e28fdf503
child 6490
41b780b43b74
permissions
-rw-r--r--

8024921: PPC64 (part 113): Extend Load and Store nodes to know about memory ordering
Summary: Add a field to C2 LoadNode and StoreNode classes which indicates whether the load/store should do an acquire/release on platforms which support it.
Reviewed-by: kvn

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/block.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/machnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "runtime/deoptimization.hpp"
stefank@2314 38 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 39 # include "adfiles/ad_x86_32.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 42 # include "adfiles/ad_x86_64.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 45 # include "adfiles/ad_sparc.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 48 # include "adfiles/ad_zero.hpp"
stefank@2314 49 #endif
bobv@2508 50 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 51 # include "adfiles/ad_arm.hpp"
bobv@2508 52 #endif
goetz@6441 53 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 54 # include "adfiles/ad_ppc_32.hpp"
bobv@2508 55 #endif
goetz@6441 56 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 57 # include "adfiles/ad_ppc_64.hpp"
goetz@6441 58 #endif
goetz@6441 59
stefank@2314 60
duke@435 61 // Portions of code courtesy of Clifford Click
duke@435 62
duke@435 63 // Optimization - Graph Style
duke@435 64
kvn@987 65 // To avoid float value underflow
kvn@987 66 #define MIN_BLOCK_FREQUENCY 1.e-35f
kvn@987 67
duke@435 68 //----------------------------schedule_node_into_block-------------------------
duke@435 69 // Insert node n into block b. Look for projections of n and make sure they
duke@435 70 // are in b also.
duke@435 71 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
duke@435 72 // Set basic block of n, Add n to b,
adlertz@5509 73 map_node_to_block(n, b);
duke@435 74 b->add_inst(n);
duke@435 75
duke@435 76 // After Matching, nearly any old Node may have projections trailing it.
duke@435 77 // These are usually machine-dependent flags. In any case, they might
duke@435 78 // float to another block below this one. Move them up.
duke@435 79 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 80 Node* use = n->fast_out(i);
duke@435 81 if (use->is_Proj()) {
adlertz@5509 82 Block* buse = get_block_for_node(use);
duke@435 83 if (buse != b) { // In wrong block?
adlertz@5509 84 if (buse != NULL) {
duke@435 85 buse->find_remove(use); // Remove from wrong block
adlertz@5509 86 }
adlertz@5509 87 map_node_to_block(use, b);
duke@435 88 b->add_inst(use);
duke@435 89 }
duke@435 90 }
duke@435 91 }
duke@435 92 }
duke@435 93
kvn@1036 94 //----------------------------replace_block_proj_ctrl-------------------------
kvn@1036 95 // Nodes that have is_block_proj() nodes as their control need to use
kvn@1036 96 // the appropriate Region for their actual block as their control since
kvn@1036 97 // the projection will be in a predecessor block.
kvn@1036 98 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
kvn@1036 99 const Node *in0 = n->in(0);
kvn@1036 100 assert(in0 != NULL, "Only control-dependent");
kvn@1036 101 const Node *p = in0->is_block_proj();
kvn@1036 102 if (p != NULL && p != n) { // Control from a block projection?
kvn@3311 103 assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
kvn@1036 104 // Find trailing Region
adlertz@5509 105 Block *pb = get_block_for_node(in0); // Block-projection already has basic block
kvn@1036 106 uint j = 0;
kvn@1036 107 if (pb->_num_succs != 1) { // More then 1 successor?
kvn@1036 108 // Search for successor
adlertz@5635 109 uint max = pb->number_of_nodes();
kvn@1036 110 assert( max > 1, "" );
kvn@1036 111 uint start = max - pb->_num_succs;
kvn@1036 112 // Find which output path belongs to projection
kvn@1036 113 for (j = start; j < max; j++) {
adlertz@5635 114 if( pb->get_node(j) == in0 )
kvn@1036 115 break;
kvn@1036 116 }
kvn@1036 117 assert( j < max, "must find" );
kvn@1036 118 // Change control to match head of successor basic block
kvn@1036 119 j -= start;
kvn@1036 120 }
kvn@1036 121 n->set_req(0, pb->_succs[j]->head());
kvn@1036 122 }
kvn@1036 123 }
kvn@1036 124
duke@435 125
duke@435 126 //------------------------------schedule_pinned_nodes--------------------------
duke@435 127 // Set the basic block for Nodes pinned into blocks
adlertz@5539 128 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
duke@435 129 // Allocate node stack of size C->unique()+8 to avoid frequent realloc
adlertz@5539 130 GrowableArray <Node *> spstack(C->unique() + 8);
duke@435 131 spstack.push(_root);
adlertz@5539 132 while (spstack.is_nonempty()) {
adlertz@5539 133 Node* node = spstack.pop();
adlertz@5539 134 if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
adlertz@5539 135 if (node->pinned() && !has_block(node)) { // Pinned? Nail it down!
adlertz@5539 136 assert(node->in(0), "pinned Node must have Control");
kvn@1036 137 // Before setting block replace block_proj control edge
adlertz@5539 138 replace_block_proj_ctrl(node);
adlertz@5539 139 Node* input = node->in(0);
adlertz@5509 140 while (!input->is_block_start()) {
duke@435 141 input = input->in(0);
adlertz@5509 142 }
adlertz@5539 143 Block* block = get_block_for_node(input); // Basic block of controlling input
adlertz@5539 144 schedule_node_into_block(node, block);
duke@435 145 }
adlertz@5539 146
adlertz@5539 147 // process all inputs that are non NULL
adlertz@5539 148 for (int i = node->req() - 1; i >= 0; --i) {
adlertz@5539 149 if (node->in(i) != NULL) {
adlertz@5539 150 spstack.push(node->in(i));
adlertz@5539 151 }
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 }
duke@435 156
duke@435 157 #ifdef ASSERT
duke@435 158 // Assert that new input b2 is dominated by all previous inputs.
duke@435 159 // Check this by by seeing that it is dominated by b1, the deepest
duke@435 160 // input observed until b2.
adlertz@5509 161 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
duke@435 162 if (b1 == NULL) return;
duke@435 163 assert(b1->_dom_depth < b2->_dom_depth, "sanity");
duke@435 164 Block* tmp = b2;
duke@435 165 while (tmp != b1 && tmp != NULL) {
duke@435 166 tmp = tmp->_idom;
duke@435 167 }
duke@435 168 if (tmp != b1) {
duke@435 169 // Detected an unschedulable graph. Print some nice stuff and die.
duke@435 170 tty->print_cr("!!! Unschedulable graph !!!");
duke@435 171 for (uint j=0; j<n->len(); j++) { // For all inputs
duke@435 172 Node* inn = n->in(j); // Get input
duke@435 173 if (inn == NULL) continue; // Ignore NULL, missing inputs
adlertz@5509 174 Block* inb = cfg->get_block_for_node(inn);
duke@435 175 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
duke@435 176 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
duke@435 177 inn->dump();
duke@435 178 }
duke@435 179 tty->print("Failing node: ");
duke@435 180 n->dump();
duke@435 181 assert(false, "unscheduable graph");
duke@435 182 }
duke@435 183 }
duke@435 184 #endif
duke@435 185
adlertz@5509 186 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
duke@435 187 // Find the last input dominated by all other inputs.
duke@435 188 Block* deepb = NULL; // Deepest block so far
duke@435 189 int deepb_dom_depth = 0;
duke@435 190 for (uint k = 0; k < n->len(); k++) { // For all inputs
duke@435 191 Node* inn = n->in(k); // Get input
duke@435 192 if (inn == NULL) continue; // Ignore NULL, missing inputs
adlertz@5509 193 Block* inb = cfg->get_block_for_node(inn);
duke@435 194 assert(inb != NULL, "must already have scheduled this input");
duke@435 195 if (deepb_dom_depth < (int) inb->_dom_depth) {
duke@435 196 // The new inb must be dominated by the previous deepb.
duke@435 197 // The various inputs must be linearly ordered in the dom
duke@435 198 // tree, or else there will not be a unique deepest block.
adlertz@5509 199 DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
duke@435 200 deepb = inb; // Save deepest block
duke@435 201 deepb_dom_depth = deepb->_dom_depth;
duke@435 202 }
duke@435 203 }
duke@435 204 assert(deepb != NULL, "must be at least one input to n");
duke@435 205 return deepb;
duke@435 206 }
duke@435 207
duke@435 208
duke@435 209 //------------------------------schedule_early---------------------------------
duke@435 210 // Find the earliest Block any instruction can be placed in. Some instructions
duke@435 211 // are pinned into Blocks. Unpinned instructions can appear in last block in
duke@435 212 // which all their inputs occur.
duke@435 213 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
duke@435 214 // Allocate stack with enough space to avoid frequent realloc
adlertz@5539 215 Node_Stack nstack(roots.Size() + 8);
adlertz@5539 216 // _root will be processed among C->top() inputs
duke@435 217 roots.push(C->top());
duke@435 218 visited.set(C->top()->_idx);
duke@435 219
duke@435 220 while (roots.size() != 0) {
duke@435 221 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 222 // on stack's top.
adlertz@5539 223 Node* parent_node = roots.pop();
adlertz@5539 224 uint input_index = 0;
adlertz@5539 225
duke@435 226 while (true) {
adlertz@5539 227 if (input_index == 0) {
kvn@1036 228 // Fixup some control. Constants without control get attached
kvn@1036 229 // to root and nodes that use is_block_proj() nodes should be attached
kvn@1036 230 // to the region that starts their block.
adlertz@5539 231 const Node* control_input = parent_node->in(0);
adlertz@5539 232 if (control_input != NULL) {
adlertz@5539 233 replace_block_proj_ctrl(parent_node);
adlertz@5539 234 } else {
adlertz@5539 235 // Is a constant with NO inputs?
adlertz@5539 236 if (parent_node->req() == 1) {
adlertz@5539 237 parent_node->set_req(0, _root);
duke@435 238 }
duke@435 239 }
duke@435 240 }
duke@435 241
duke@435 242 // First, visit all inputs and force them to get a block. If an
duke@435 243 // input is already in a block we quit following inputs (to avoid
duke@435 244 // cycles). Instead we put that Node on a worklist to be handled
duke@435 245 // later (since IT'S inputs may not have a block yet).
adlertz@5539 246
adlertz@5539 247 // Assume all n's inputs will be processed
adlertz@5539 248 bool done = true;
adlertz@5539 249
adlertz@5539 250 while (input_index < parent_node->len()) {
adlertz@5539 251 Node* in = parent_node->in(input_index++);
adlertz@5539 252 if (in == NULL) {
adlertz@5539 253 continue;
adlertz@5539 254 }
adlertz@5539 255
duke@435 256 int is_visited = visited.test_set(in->_idx);
adlertz@5539 257 if (!has_block(in)) {
duke@435 258 if (is_visited) {
duke@435 259 return false;
duke@435 260 }
adlertz@5539 261 // Save parent node and next input's index.
adlertz@5539 262 nstack.push(parent_node, input_index);
adlertz@5539 263 // Process current input now.
adlertz@5539 264 parent_node = in;
adlertz@5539 265 input_index = 0;
adlertz@5539 266 // Not all n's inputs processed.
adlertz@5539 267 done = false;
adlertz@5539 268 break;
adlertz@5539 269 } else if (!is_visited) {
adlertz@5539 270 // Visit this guy later, using worklist
adlertz@5539 271 roots.push(in);
duke@435 272 }
duke@435 273 }
adlertz@5539 274
duke@435 275 if (done) {
duke@435 276 // All of n's inputs have been processed, complete post-processing.
duke@435 277
duke@435 278 // Some instructions are pinned into a block. These include Region,
duke@435 279 // Phi, Start, Return, and other control-dependent instructions and
duke@435 280 // any projections which depend on them.
adlertz@5539 281 if (!parent_node->pinned()) {
duke@435 282 // Set earliest legal block.
adlertz@5539 283 Block* earliest_block = find_deepest_input(parent_node, this);
adlertz@5539 284 map_node_to_block(parent_node, earliest_block);
kvn@1036 285 } else {
adlertz@5539 286 assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
duke@435 287 }
duke@435 288
duke@435 289 if (nstack.is_empty()) {
duke@435 290 // Finished all nodes on stack.
duke@435 291 // Process next node on the worklist 'roots'.
duke@435 292 break;
duke@435 293 }
duke@435 294 // Get saved parent node and next input's index.
adlertz@5539 295 parent_node = nstack.node();
adlertz@5539 296 input_index = nstack.index();
duke@435 297 nstack.pop();
adlertz@5539 298 }
adlertz@5539 299 }
adlertz@5539 300 }
duke@435 301 return true;
duke@435 302 }
duke@435 303
duke@435 304 //------------------------------dom_lca----------------------------------------
duke@435 305 // Find least common ancestor in dominator tree
duke@435 306 // LCA is a current notion of LCA, to be raised above 'this'.
duke@435 307 // As a convenient boundary condition, return 'this' if LCA is NULL.
duke@435 308 // Find the LCA of those two nodes.
duke@435 309 Block* Block::dom_lca(Block* LCA) {
duke@435 310 if (LCA == NULL || LCA == this) return this;
duke@435 311
duke@435 312 Block* anc = this;
duke@435 313 while (anc->_dom_depth > LCA->_dom_depth)
duke@435 314 anc = anc->_idom; // Walk up till anc is as high as LCA
duke@435 315
duke@435 316 while (LCA->_dom_depth > anc->_dom_depth)
duke@435 317 LCA = LCA->_idom; // Walk up till LCA is as high as anc
duke@435 318
duke@435 319 while (LCA != anc) { // Walk both up till they are the same
duke@435 320 LCA = LCA->_idom;
duke@435 321 anc = anc->_idom;
duke@435 322 }
duke@435 323
duke@435 324 return LCA;
duke@435 325 }
duke@435 326
duke@435 327 //--------------------------raise_LCA_above_use--------------------------------
duke@435 328 // We are placing a definition, and have been given a def->use edge.
duke@435 329 // The definition must dominate the use, so move the LCA upward in the
duke@435 330 // dominator tree to dominate the use. If the use is a phi, adjust
duke@435 331 // the LCA only with the phi input paths which actually use this def.
adlertz@5509 332 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
adlertz@5509 333 Block* buse = cfg->get_block_for_node(use);
duke@435 334 if (buse == NULL) return LCA; // Unused killing Projs have no use block
duke@435 335 if (!use->is_Phi()) return buse->dom_lca(LCA);
duke@435 336 uint pmax = use->req(); // Number of Phi inputs
duke@435 337 // Why does not this loop just break after finding the matching input to
duke@435 338 // the Phi? Well...it's like this. I do not have true def-use/use-def
duke@435 339 // chains. Means I cannot distinguish, from the def-use direction, which
duke@435 340 // of many use-defs lead from the same use to the same def. That is, this
duke@435 341 // Phi might have several uses of the same def. Each use appears in a
duke@435 342 // different predecessor block. But when I enter here, I cannot distinguish
duke@435 343 // which use-def edge I should find the predecessor block for. So I find
duke@435 344 // them all. Means I do a little extra work if a Phi uses the same value
duke@435 345 // more than once.
duke@435 346 for (uint j=1; j<pmax; j++) { // For all inputs
duke@435 347 if (use->in(j) == def) { // Found matching input?
adlertz@5509 348 Block* pred = cfg->get_block_for_node(buse->pred(j));
duke@435 349 LCA = pred->dom_lca(LCA);
duke@435 350 }
duke@435 351 }
duke@435 352 return LCA;
duke@435 353 }
duke@435 354
duke@435 355 //----------------------------raise_LCA_above_marks----------------------------
duke@435 356 // Return a new LCA that dominates LCA and any of its marked predecessors.
duke@435 357 // Search all my parents up to 'early' (exclusive), looking for predecessors
duke@435 358 // which are marked with the given index. Return the LCA (in the dom tree)
duke@435 359 // of all marked blocks. If there are none marked, return the original
duke@435 360 // LCA.
adlertz@5509 361 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
duke@435 362 Block_List worklist;
duke@435 363 worklist.push(LCA);
duke@435 364 while (worklist.size() > 0) {
duke@435 365 Block* mid = worklist.pop();
duke@435 366 if (mid == early) continue; // stop searching here
duke@435 367
duke@435 368 // Test and set the visited bit.
duke@435 369 if (mid->raise_LCA_visited() == mark) continue; // already visited
duke@435 370
duke@435 371 // Don't process the current LCA, otherwise the search may terminate early
duke@435 372 if (mid != LCA && mid->raise_LCA_mark() == mark) {
duke@435 373 // Raise the LCA.
duke@435 374 LCA = mid->dom_lca(LCA);
duke@435 375 if (LCA == early) break; // stop searching everywhere
duke@435 376 assert(early->dominates(LCA), "early is high enough");
duke@435 377 // Resume searching at that point, skipping intermediate levels.
duke@435 378 worklist.push(LCA);
kvn@650 379 if (LCA == mid)
kvn@650 380 continue; // Don't mark as visited to avoid early termination.
duke@435 381 } else {
duke@435 382 // Keep searching through this block's predecessors.
duke@435 383 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
adlertz@5509 384 Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
duke@435 385 worklist.push(mid_parent);
duke@435 386 }
duke@435 387 }
kvn@650 388 mid->set_raise_LCA_visited(mark);
duke@435 389 }
duke@435 390 return LCA;
duke@435 391 }
duke@435 392
duke@435 393 //--------------------------memory_early_block--------------------------------
duke@435 394 // This is a variation of find_deepest_input, the heart of schedule_early.
duke@435 395 // Find the "early" block for a load, if we considered only memory and
duke@435 396 // address inputs, that is, if other data inputs were ignored.
duke@435 397 //
duke@435 398 // Because a subset of edges are considered, the resulting block will
duke@435 399 // be earlier (at a shallower dom_depth) than the true schedule_early
duke@435 400 // point of the node. We compute this earlier block as a more permissive
duke@435 401 // site for anti-dependency insertion, but only if subsume_loads is enabled.
adlertz@5509 402 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
duke@435 403 Node* base;
duke@435 404 Node* index;
duke@435 405 Node* store = load->in(MemNode::Memory);
duke@435 406 load->as_Mach()->memory_inputs(base, index);
duke@435 407
duke@435 408 assert(base != NodeSentinel && index != NodeSentinel,
duke@435 409 "unexpected base/index inputs");
duke@435 410
duke@435 411 Node* mem_inputs[4];
duke@435 412 int mem_inputs_length = 0;
duke@435 413 if (base != NULL) mem_inputs[mem_inputs_length++] = base;
duke@435 414 if (index != NULL) mem_inputs[mem_inputs_length++] = index;
duke@435 415 if (store != NULL) mem_inputs[mem_inputs_length++] = store;
duke@435 416
duke@435 417 // In the comparision below, add one to account for the control input,
duke@435 418 // which may be null, but always takes up a spot in the in array.
duke@435 419 if (mem_inputs_length + 1 < (int) load->req()) {
duke@435 420 // This "load" has more inputs than just the memory, base and index inputs.
duke@435 421 // For purposes of checking anti-dependences, we need to start
duke@435 422 // from the early block of only the address portion of the instruction,
duke@435 423 // and ignore other blocks that may have factored into the wider
duke@435 424 // schedule_early calculation.
duke@435 425 if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
duke@435 426
duke@435 427 Block* deepb = NULL; // Deepest block so far
duke@435 428 int deepb_dom_depth = 0;
duke@435 429 for (int i = 0; i < mem_inputs_length; i++) {
adlertz@5509 430 Block* inb = cfg->get_block_for_node(mem_inputs[i]);
duke@435 431 if (deepb_dom_depth < (int) inb->_dom_depth) {
duke@435 432 // The new inb must be dominated by the previous deepb.
duke@435 433 // The various inputs must be linearly ordered in the dom
duke@435 434 // tree, or else there will not be a unique deepest block.
adlertz@5509 435 DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
duke@435 436 deepb = inb; // Save deepest block
duke@435 437 deepb_dom_depth = deepb->_dom_depth;
duke@435 438 }
duke@435 439 }
duke@435 440 early = deepb;
duke@435 441 }
duke@435 442
duke@435 443 return early;
duke@435 444 }
duke@435 445
duke@435 446 //--------------------------insert_anti_dependences---------------------------
duke@435 447 // A load may need to witness memory that nearby stores can overwrite.
duke@435 448 // For each nearby store, either insert an "anti-dependence" edge
duke@435 449 // from the load to the store, or else move LCA upward to force the
duke@435 450 // load to (eventually) be scheduled in a block above the store.
duke@435 451 //
duke@435 452 // Do not add edges to stores on distinct control-flow paths;
duke@435 453 // only add edges to stores which might interfere.
duke@435 454 //
duke@435 455 // Return the (updated) LCA. There will not be any possibly interfering
duke@435 456 // store between the load's "early block" and the updated LCA.
duke@435 457 // Any stores in the updated LCA will have new precedence edges
duke@435 458 // back to the load. The caller is expected to schedule the load
duke@435 459 // in the LCA, in which case the precedence edges will make LCM
duke@435 460 // preserve anti-dependences. The caller may also hoist the load
duke@435 461 // above the LCA, if it is not the early block.
duke@435 462 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
duke@435 463 assert(load->needs_anti_dependence_check(), "must be a load of some sort");
duke@435 464 assert(LCA != NULL, "");
duke@435 465 DEBUG_ONLY(Block* LCA_orig = LCA);
duke@435 466
duke@435 467 // Compute the alias index. Loads and stores with different alias indices
duke@435 468 // do not need anti-dependence edges.
duke@435 469 uint load_alias_idx = C->get_alias_index(load->adr_type());
duke@435 470 #ifdef ASSERT
duke@435 471 if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
duke@435 472 (PrintOpto || VerifyAliases ||
duke@435 473 PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 474 // Load nodes should not consume all of memory.
duke@435 475 // Reporting a bottom type indicates a bug in adlc.
duke@435 476 // If some particular type of node validly consumes all of memory,
duke@435 477 // sharpen the preceding "if" to exclude it, so we can catch bugs here.
duke@435 478 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
duke@435 479 load->dump(2);
duke@435 480 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
duke@435 481 }
duke@435 482 #endif
duke@435 483 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
duke@435 484 "String compare is only known 'load' that does not conflict with any stores");
cfang@1116 485 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
cfang@1116 486 "String equals is a 'load' that does not conflict with any stores");
cfang@1116 487 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
cfang@1116 488 "String indexOf is a 'load' that does not conflict with any stores");
cfang@1116 489 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
cfang@1116 490 "Arrays equals is a 'load' that do not conflict with any stores");
duke@435 491
duke@435 492 if (!C->alias_type(load_alias_idx)->is_rewritable()) {
duke@435 493 // It is impossible to spoil this load by putting stores before it,
duke@435 494 // because we know that the stores will never update the value
duke@435 495 // which 'load' must witness.
duke@435 496 return LCA;
duke@435 497 }
duke@435 498
duke@435 499 node_idx_t load_index = load->_idx;
duke@435 500
duke@435 501 // Note the earliest legal placement of 'load', as determined by
duke@435 502 // by the unique point in the dom tree where all memory effects
duke@435 503 // and other inputs are first available. (Computed by schedule_early.)
duke@435 504 // For normal loads, 'early' is the shallowest place (dom graph wise)
duke@435 505 // to look for anti-deps between this load and any store.
adlertz@5509 506 Block* early = get_block_for_node(load);
duke@435 507
duke@435 508 // If we are subsuming loads, compute an "early" block that only considers
duke@435 509 // memory or address inputs. This block may be different than the
duke@435 510 // schedule_early block in that it could be at an even shallower depth in the
duke@435 511 // dominator tree, and allow for a broader discovery of anti-dependences.
duke@435 512 if (C->subsume_loads()) {
adlertz@5509 513 early = memory_early_block(load, early, this);
duke@435 514 }
duke@435 515
duke@435 516 ResourceArea *area = Thread::current()->resource_area();
duke@435 517 Node_List worklist_mem(area); // prior memory state to store
duke@435 518 Node_List worklist_store(area); // possible-def to explore
kvn@466 519 Node_List worklist_visited(area); // visited mergemem nodes
duke@435 520 Node_List non_early_stores(area); // all relevant stores outside of early
duke@435 521 bool must_raise_LCA = false;
duke@435 522
duke@435 523 #ifdef TRACK_PHI_INPUTS
duke@435 524 // %%% This extra checking fails because MergeMem nodes are not GVNed.
duke@435 525 // Provide "phi_inputs" to check if every input to a PhiNode is from the
duke@435 526 // original memory state. This indicates a PhiNode for which should not
duke@435 527 // prevent the load from sinking. For such a block, set_raise_LCA_mark
duke@435 528 // may be overly conservative.
duke@435 529 // Mechanism: count inputs seen for each Phi encountered in worklist_store.
duke@435 530 DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
duke@435 531 #endif
duke@435 532
duke@435 533 // 'load' uses some memory state; look for users of the same state.
duke@435 534 // Recurse through MergeMem nodes to the stores that use them.
duke@435 535
duke@435 536 // Each of these stores is a possible definition of memory
duke@435 537 // that 'load' needs to use. We need to force 'load'
duke@435 538 // to occur before each such store. When the store is in
duke@435 539 // the same block as 'load', we insert an anti-dependence
duke@435 540 // edge load->store.
duke@435 541
duke@435 542 // The relevant stores "nearby" the load consist of a tree rooted
duke@435 543 // at initial_mem, with internal nodes of type MergeMem.
duke@435 544 // Therefore, the branches visited by the worklist are of this form:
duke@435 545 // initial_mem -> (MergeMem ->)* store
duke@435 546 // The anti-dependence constraints apply only to the fringe of this tree.
duke@435 547
duke@435 548 Node* initial_mem = load->in(MemNode::Memory);
duke@435 549 worklist_store.push(initial_mem);
kvn@466 550 worklist_visited.push(initial_mem);
duke@435 551 worklist_mem.push(NULL);
duke@435 552 while (worklist_store.size() > 0) {
duke@435 553 // Examine a nearby store to see if it might interfere with our load.
duke@435 554 Node* mem = worklist_mem.pop();
duke@435 555 Node* store = worklist_store.pop();
duke@435 556 uint op = store->Opcode();
duke@435 557
duke@435 558 // MergeMems do not directly have anti-deps.
duke@435 559 // Treat them as internal nodes in a forward tree of memory states,
duke@435 560 // the leaves of which are each a 'possible-def'.
duke@435 561 if (store == initial_mem // root (exclusive) of tree we are searching
duke@435 562 || op == Op_MergeMem // internal node of tree we are searching
duke@435 563 ) {
duke@435 564 mem = store; // It's not a possibly interfering store.
kvn@466 565 if (store == initial_mem)
kvn@466 566 initial_mem = NULL; // only process initial memory once
kvn@466 567
duke@435 568 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 569 store = mem->fast_out(i);
duke@435 570 if (store->is_MergeMem()) {
duke@435 571 // Be sure we don't get into combinatorial problems.
duke@435 572 // (Allow phis to be repeated; they can merge two relevant states.)
kvn@466 573 uint j = worklist_visited.size();
kvn@466 574 for (; j > 0; j--) {
kvn@466 575 if (worklist_visited.at(j-1) == store) break;
duke@435 576 }
kvn@466 577 if (j > 0) continue; // already on work list; do not repeat
kvn@466 578 worklist_visited.push(store);
duke@435 579 }
duke@435 580 worklist_mem.push(mem);
duke@435 581 worklist_store.push(store);
duke@435 582 }
duke@435 583 continue;
duke@435 584 }
duke@435 585
duke@435 586 if (op == Op_MachProj || op == Op_Catch) continue;
duke@435 587 if (store->needs_anti_dependence_check()) continue; // not really a store
duke@435 588
duke@435 589 // Compute the alias index. Loads and stores with different alias
duke@435 590 // indices do not need anti-dependence edges. Wide MemBar's are
duke@435 591 // anti-dependent on everything (except immutable memories).
duke@435 592 const TypePtr* adr_type = store->adr_type();
duke@435 593 if (!C->can_alias(adr_type, load_alias_idx)) continue;
duke@435 594
duke@435 595 // Most slow-path runtime calls do NOT modify Java memory, but
duke@435 596 // they can block and so write Raw memory.
duke@435 597 if (store->is_Mach()) {
duke@435 598 MachNode* mstore = store->as_Mach();
duke@435 599 if (load_alias_idx != Compile::AliasIdxRaw) {
duke@435 600 // Check for call into the runtime using the Java calling
duke@435 601 // convention (and from there into a wrapper); it has no
duke@435 602 // _method. Can't do this optimization for Native calls because
duke@435 603 // they CAN write to Java memory.
duke@435 604 if (mstore->ideal_Opcode() == Op_CallStaticJava) {
duke@435 605 assert(mstore->is_MachSafePoint(), "");
duke@435 606 MachSafePointNode* ms = (MachSafePointNode*) mstore;
duke@435 607 assert(ms->is_MachCallJava(), "");
duke@435 608 MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
duke@435 609 if (mcj->_method == NULL) {
duke@435 610 // These runtime calls do not write to Java visible memory
duke@435 611 // (other than Raw) and so do not require anti-dependence edges.
duke@435 612 continue;
duke@435 613 }
duke@435 614 }
duke@435 615 // Same for SafePoints: they read/write Raw but only read otherwise.
duke@435 616 // This is basically a workaround for SafePoints only defining control
duke@435 617 // instead of control + memory.
duke@435 618 if (mstore->ideal_Opcode() == Op_SafePoint)
duke@435 619 continue;
duke@435 620 } else {
duke@435 621 // Some raw memory, such as the load of "top" at an allocation,
duke@435 622 // can be control dependent on the previous safepoint. See
duke@435 623 // comments in GraphKit::allocate_heap() about control input.
duke@435 624 // Inserting an anti-dep between such a safepoint and a use
duke@435 625 // creates a cycle, and will cause a subsequent failure in
duke@435 626 // local scheduling. (BugId 4919904)
duke@435 627 // (%%% How can a control input be a safepoint and not a projection??)
duke@435 628 if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
duke@435 629 continue;
duke@435 630 }
duke@435 631 }
duke@435 632
duke@435 633 // Identify a block that the current load must be above,
duke@435 634 // or else observe that 'store' is all the way up in the
duke@435 635 // earliest legal block for 'load'. In the latter case,
duke@435 636 // immediately insert an anti-dependence edge.
adlertz@5509 637 Block* store_block = get_block_for_node(store);
duke@435 638 assert(store_block != NULL, "unused killing projections skipped above");
duke@435 639
duke@435 640 if (store->is_Phi()) {
duke@435 641 // 'load' uses memory which is one (or more) of the Phi's inputs.
duke@435 642 // It must be scheduled not before the Phi, but rather before
duke@435 643 // each of the relevant Phi inputs.
duke@435 644 //
duke@435 645 // Instead of finding the LCA of all inputs to a Phi that match 'mem',
duke@435 646 // we mark each corresponding predecessor block and do a combined
duke@435 647 // hoisting operation later (raise_LCA_above_marks).
duke@435 648 //
duke@435 649 // Do not assert(store_block != early, "Phi merging memory after access")
duke@435 650 // PhiNode may be at start of block 'early' with backedge to 'early'
duke@435 651 DEBUG_ONLY(bool found_match = false);
duke@435 652 for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
duke@435 653 if (store->in(j) == mem) { // Found matching input?
duke@435 654 DEBUG_ONLY(found_match = true);
adlertz@5509 655 Block* pred_block = get_block_for_node(store_block->pred(j));
duke@435 656 if (pred_block != early) {
duke@435 657 // If any predecessor of the Phi matches the load's "early block",
duke@435 658 // we do not need a precedence edge between the Phi and 'load'
twisti@1040 659 // since the load will be forced into a block preceding the Phi.
duke@435 660 pred_block->set_raise_LCA_mark(load_index);
duke@435 661 assert(!LCA_orig->dominates(pred_block) ||
duke@435 662 early->dominates(pred_block), "early is high enough");
duke@435 663 must_raise_LCA = true;
kvn@1223 664 } else {
kvn@1223 665 // anti-dependent upon PHI pinned below 'early', no edge needed
kvn@1223 666 LCA = early; // but can not schedule below 'early'
duke@435 667 }
duke@435 668 }
duke@435 669 }
duke@435 670 assert(found_match, "no worklist bug");
duke@435 671 #ifdef TRACK_PHI_INPUTS
duke@435 672 #ifdef ASSERT
duke@435 673 // This assert asks about correct handling of PhiNodes, which may not
duke@435 674 // have all input edges directly from 'mem'. See BugId 4621264
duke@435 675 int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
duke@435 676 // Increment by exactly one even if there are multiple copies of 'mem'
duke@435 677 // coming into the phi, because we will run this block several times
duke@435 678 // if there are several copies of 'mem'. (That's how DU iterators work.)
duke@435 679 phi_inputs.at_put(store->_idx, num_mem_inputs);
duke@435 680 assert(PhiNode::Input + num_mem_inputs < store->req(),
duke@435 681 "Expect at least one phi input will not be from original memory state");
duke@435 682 #endif //ASSERT
duke@435 683 #endif //TRACK_PHI_INPUTS
duke@435 684 } else if (store_block != early) {
duke@435 685 // 'store' is between the current LCA and earliest possible block.
duke@435 686 // Label its block, and decide later on how to raise the LCA
duke@435 687 // to include the effect on LCA of this store.
duke@435 688 // If this store's block gets chosen as the raised LCA, we
duke@435 689 // will find him on the non_early_stores list and stick him
duke@435 690 // with a precedence edge.
duke@435 691 // (But, don't bother if LCA is already raised all the way.)
duke@435 692 if (LCA != early) {
duke@435 693 store_block->set_raise_LCA_mark(load_index);
duke@435 694 must_raise_LCA = true;
duke@435 695 non_early_stores.push(store);
duke@435 696 }
duke@435 697 } else {
duke@435 698 // Found a possibly-interfering store in the load's 'early' block.
duke@435 699 // This means 'load' cannot sink at all in the dominator tree.
duke@435 700 // Add an anti-dep edge, and squeeze 'load' into the highest block.
duke@435 701 assert(store != load->in(0), "dependence cycle found");
duke@435 702 if (verify) {
duke@435 703 assert(store->find_edge(load) != -1, "missing precedence edge");
duke@435 704 } else {
duke@435 705 store->add_prec(load);
duke@435 706 }
duke@435 707 LCA = early;
duke@435 708 // This turns off the process of gathering non_early_stores.
duke@435 709 }
duke@435 710 }
duke@435 711 // (Worklist is now empty; all nearby stores have been visited.)
duke@435 712
duke@435 713 // Finished if 'load' must be scheduled in its 'early' block.
duke@435 714 // If we found any stores there, they have already been given
duke@435 715 // precedence edges.
duke@435 716 if (LCA == early) return LCA;
duke@435 717
duke@435 718 // We get here only if there are no possibly-interfering stores
duke@435 719 // in the load's 'early' block. Move LCA up above all predecessors
duke@435 720 // which contain stores we have noted.
duke@435 721 //
duke@435 722 // The raised LCA block can be a home to such interfering stores,
duke@435 723 // but its predecessors must not contain any such stores.
duke@435 724 //
duke@435 725 // The raised LCA will be a lower bound for placing the load,
duke@435 726 // preventing the load from sinking past any block containing
duke@435 727 // a store that may invalidate the memory state required by 'load'.
duke@435 728 if (must_raise_LCA)
adlertz@5509 729 LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
duke@435 730 if (LCA == early) return LCA;
duke@435 731
duke@435 732 // Insert anti-dependence edges from 'load' to each store
duke@435 733 // in the non-early LCA block.
duke@435 734 // Mine the non_early_stores list for such stores.
duke@435 735 if (LCA->raise_LCA_mark() == load_index) {
duke@435 736 while (non_early_stores.size() > 0) {
duke@435 737 Node* store = non_early_stores.pop();
adlertz@5509 738 Block* store_block = get_block_for_node(store);
duke@435 739 if (store_block == LCA) {
duke@435 740 // add anti_dependence from store to load in its own block
duke@435 741 assert(store != load->in(0), "dependence cycle found");
duke@435 742 if (verify) {
duke@435 743 assert(store->find_edge(load) != -1, "missing precedence edge");
duke@435 744 } else {
duke@435 745 store->add_prec(load);
duke@435 746 }
duke@435 747 } else {
duke@435 748 assert(store_block->raise_LCA_mark() == load_index, "block was marked");
duke@435 749 // Any other stores we found must be either inside the new LCA
duke@435 750 // or else outside the original LCA. In the latter case, they
duke@435 751 // did not interfere with any use of 'load'.
duke@435 752 assert(LCA->dominates(store_block)
duke@435 753 || !LCA_orig->dominates(store_block), "no stray stores");
duke@435 754 }
duke@435 755 }
duke@435 756 }
duke@435 757
duke@435 758 // Return the highest block containing stores; any stores
duke@435 759 // within that block have been given anti-dependence edges.
duke@435 760 return LCA;
duke@435 761 }
duke@435 762
duke@435 763 // This class is used to iterate backwards over the nodes in the graph.
duke@435 764
duke@435 765 class Node_Backward_Iterator {
duke@435 766
duke@435 767 private:
duke@435 768 Node_Backward_Iterator();
duke@435 769
duke@435 770 public:
duke@435 771 // Constructor for the iterator
adlertz@5509 772 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
duke@435 773
duke@435 774 // Postincrement operator to iterate over the nodes
duke@435 775 Node *next();
duke@435 776
duke@435 777 private:
duke@435 778 VectorSet &_visited;
duke@435 779 Node_List &_stack;
adlertz@5509 780 PhaseCFG &_cfg;
duke@435 781 };
duke@435 782
duke@435 783 // Constructor for the Node_Backward_Iterator
adlertz@5509 784 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
adlertz@5509 785 : _visited(visited), _stack(stack), _cfg(cfg) {
duke@435 786 // The stack should contain exactly the root
duke@435 787 stack.clear();
duke@435 788 stack.push(root);
duke@435 789
duke@435 790 // Clear the visited bits
duke@435 791 visited.Clear();
duke@435 792 }
duke@435 793
duke@435 794 // Iterator for the Node_Backward_Iterator
duke@435 795 Node *Node_Backward_Iterator::next() {
duke@435 796
duke@435 797 // If the _stack is empty, then just return NULL: finished.
duke@435 798 if ( !_stack.size() )
duke@435 799 return NULL;
duke@435 800
duke@435 801 // '_stack' is emulating a real _stack. The 'visit-all-users' loop has been
duke@435 802 // made stateless, so I do not need to record the index 'i' on my _stack.
duke@435 803 // Instead I visit all users each time, scanning for unvisited users.
duke@435 804 // I visit unvisited not-anti-dependence users first, then anti-dependent
duke@435 805 // children next.
duke@435 806 Node *self = _stack.pop();
duke@435 807
duke@435 808 // I cycle here when I am entering a deeper level of recursion.
duke@435 809 // The key variable 'self' was set prior to jumping here.
duke@435 810 while( 1 ) {
duke@435 811
duke@435 812 _visited.set(self->_idx);
duke@435 813
duke@435 814 // Now schedule all uses as late as possible.
adlertz@5509 815 const Node* src = self->is_Proj() ? self->in(0) : self;
adlertz@5509 816 uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
duke@435 817
duke@435 818 // Schedule all nodes in a post-order visit
duke@435 819 Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
duke@435 820
duke@435 821 // Scan for unvisited nodes
duke@435 822 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
duke@435 823 // For all uses, schedule late
duke@435 824 Node* n = self->fast_out(i); // Use
duke@435 825
duke@435 826 // Skip already visited children
duke@435 827 if ( _visited.test(n->_idx) )
duke@435 828 continue;
duke@435 829
duke@435 830 // do not traverse backward control edges
duke@435 831 Node *use = n->is_Proj() ? n->in(0) : n;
adlertz@5509 832 uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
duke@435 833
duke@435 834 if ( use_rpo < src_rpo )
duke@435 835 continue;
duke@435 836
duke@435 837 // Phi nodes always precede uses in a basic block
duke@435 838 if ( use_rpo == src_rpo && use->is_Phi() )
duke@435 839 continue;
duke@435 840
duke@435 841 unvisited = n; // Found unvisited
duke@435 842
duke@435 843 // Check for possible-anti-dependent
duke@435 844 if( !n->needs_anti_dependence_check() )
duke@435 845 break; // Not visited, not anti-dep; schedule it NOW
duke@435 846 }
duke@435 847
duke@435 848 // Did I find an unvisited not-anti-dependent Node?
duke@435 849 if ( !unvisited )
duke@435 850 break; // All done with children; post-visit 'self'
duke@435 851
duke@435 852 // Visit the unvisited Node. Contains the obvious push to
duke@435 853 // indicate I'm entering a deeper level of recursion. I push the
duke@435 854 // old state onto the _stack and set a new state and loop (recurse).
duke@435 855 _stack.push(self);
duke@435 856 self = unvisited;
duke@435 857 } // End recursion loop
duke@435 858
duke@435 859 return self;
duke@435 860 }
duke@435 861
duke@435 862 //------------------------------ComputeLatenciesBackwards----------------------
duke@435 863 // Compute the latency of all the instructions.
adlertz@5539 864 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
duke@435 865 #ifndef PRODUCT
duke@435 866 if (trace_opto_pipelining())
duke@435 867 tty->print("\n#---- ComputeLatenciesBackwards ----\n");
duke@435 868 #endif
duke@435 869
adlertz@5509 870 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
duke@435 871 Node *n;
duke@435 872
duke@435 873 // Walk over all the nodes from last to first
duke@435 874 while (n = iter.next()) {
duke@435 875 // Set the latency for the definitions of this instruction
duke@435 876 partial_latency_of_defs(n);
duke@435 877 }
duke@435 878 } // end ComputeLatenciesBackwards
duke@435 879
duke@435 880 //------------------------------partial_latency_of_defs------------------------
duke@435 881 // Compute the latency impact of this node on all defs. This computes
duke@435 882 // a number that increases as we approach the beginning of the routine.
duke@435 883 void PhaseCFG::partial_latency_of_defs(Node *n) {
duke@435 884 // Set the latency for this instruction
duke@435 885 #ifndef PRODUCT
duke@435 886 if (trace_opto_pipelining()) {
adlertz@5539 887 tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
duke@435 888 dump();
duke@435 889 }
duke@435 890 #endif
duke@435 891
adlertz@5539 892 if (n->is_Proj()) {
duke@435 893 n = n->in(0);
adlertz@5539 894 }
duke@435 895
adlertz@5539 896 if (n->is_Root()) {
duke@435 897 return;
adlertz@5539 898 }
duke@435 899
duke@435 900 uint nlen = n->len();
adlertz@5539 901 uint use_latency = get_latency_for_node(n);
adlertz@5509 902 uint use_pre_order = get_block_for_node(n)->_pre_order;
duke@435 903
adlertz@5539 904 for (uint j = 0; j < nlen; j++) {
duke@435 905 Node *def = n->in(j);
duke@435 906
adlertz@5539 907 if (!def || def == n) {
duke@435 908 continue;
adlertz@5539 909 }
duke@435 910
duke@435 911 // Walk backwards thru projections
adlertz@5539 912 if (def->is_Proj()) {
duke@435 913 def = def->in(0);
adlertz@5539 914 }
duke@435 915
duke@435 916 #ifndef PRODUCT
duke@435 917 if (trace_opto_pipelining()) {
duke@435 918 tty->print("# in(%2d): ", j);
duke@435 919 def->dump();
duke@435 920 }
duke@435 921 #endif
duke@435 922
duke@435 923 // If the defining block is not known, assume it is ok
adlertz@5509 924 Block *def_block = get_block_for_node(def);
duke@435 925 uint def_pre_order = def_block ? def_block->_pre_order : 0;
duke@435 926
adlertz@5539 927 if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
duke@435 928 continue;
adlertz@5539 929 }
duke@435 930
duke@435 931 uint delta_latency = n->latency(j);
duke@435 932 uint current_latency = delta_latency + use_latency;
duke@435 933
adlertz@5539 934 if (get_latency_for_node(def) < current_latency) {
adlertz@5539 935 set_latency_for_node(def, current_latency);
duke@435 936 }
duke@435 937
duke@435 938 #ifndef PRODUCT
duke@435 939 if (trace_opto_pipelining()) {
adlertz@5539 940 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
duke@435 941 }
duke@435 942 #endif
duke@435 943 }
duke@435 944 }
duke@435 945
duke@435 946 //------------------------------latency_from_use-------------------------------
duke@435 947 // Compute the latency of a specific use
duke@435 948 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
duke@435 949 // If self-reference, return no latency
adlertz@5509 950 if (use == n || use->is_Root()) {
duke@435 951 return 0;
adlertz@5509 952 }
duke@435 953
adlertz@5509 954 uint def_pre_order = get_block_for_node(def)->_pre_order;
duke@435 955 uint latency = 0;
duke@435 956
duke@435 957 // If the use is not a projection, then it is simple...
duke@435 958 if (!use->is_Proj()) {
duke@435 959 #ifndef PRODUCT
duke@435 960 if (trace_opto_pipelining()) {
duke@435 961 tty->print("# out(): ");
duke@435 962 use->dump();
duke@435 963 }
duke@435 964 #endif
duke@435 965
adlertz@5509 966 uint use_pre_order = get_block_for_node(use)->_pre_order;
duke@435 967
duke@435 968 if (use_pre_order < def_pre_order)
duke@435 969 return 0;
duke@435 970
duke@435 971 if (use_pre_order == def_pre_order && use->is_Phi())
duke@435 972 return 0;
duke@435 973
duke@435 974 uint nlen = use->len();
adlertz@5539 975 uint nl = get_latency_for_node(use);
duke@435 976
duke@435 977 for ( uint j=0; j<nlen; j++ ) {
duke@435 978 if (use->in(j) == n) {
duke@435 979 // Change this if we want local latencies
duke@435 980 uint ul = use->latency(j);
duke@435 981 uint l = ul + nl;
duke@435 982 if (latency < l) latency = l;
duke@435 983 #ifndef PRODUCT
duke@435 984 if (trace_opto_pipelining()) {
duke@435 985 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
duke@435 986 nl, j, ul, l, latency);
duke@435 987 }
duke@435 988 #endif
duke@435 989 }
duke@435 990 }
duke@435 991 } else {
duke@435 992 // This is a projection, just grab the latency of the use(s)
duke@435 993 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
duke@435 994 uint l = latency_from_use(use, def, use->fast_out(j));
duke@435 995 if (latency < l) latency = l;
duke@435 996 }
duke@435 997 }
duke@435 998
duke@435 999 return latency;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------latency_from_uses------------------------------
duke@435 1003 // Compute the latency of this instruction relative to all of it's uses.
duke@435 1004 // This computes a number that increases as we approach the beginning of the
duke@435 1005 // routine.
duke@435 1006 void PhaseCFG::latency_from_uses(Node *n) {
duke@435 1007 // Set the latency for this instruction
duke@435 1008 #ifndef PRODUCT
duke@435 1009 if (trace_opto_pipelining()) {
adlertz@5539 1010 tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
duke@435 1011 dump();
duke@435 1012 }
duke@435 1013 #endif
duke@435 1014 uint latency=0;
duke@435 1015 const Node *def = n->is_Proj() ? n->in(0): n;
duke@435 1016
duke@435 1017 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1018 uint l = latency_from_use(n, def, n->fast_out(i));
duke@435 1019
duke@435 1020 if (latency < l) latency = l;
duke@435 1021 }
duke@435 1022
adlertz@5539 1023 set_latency_for_node(n, latency);
duke@435 1024 }
duke@435 1025
duke@435 1026 //------------------------------hoist_to_cheaper_block-------------------------
duke@435 1027 // Pick a block for node self, between early and LCA, that is a cheaper
duke@435 1028 // alternative to LCA.
duke@435 1029 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
duke@435 1030 const double delta = 1+PROB_UNLIKELY_MAG(4);
duke@435 1031 Block* least = LCA;
duke@435 1032 double least_freq = least->_freq;
adlertz@5539 1033 uint target = get_latency_for_node(self);
adlertz@5635 1034 uint start_latency = get_latency_for_node(LCA->head());
adlertz@5635 1035 uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx()));
duke@435 1036 bool in_latency = (target <= start_latency);
adlertz@5509 1037 const Block* root_block = get_block_for_node(_root);
duke@435 1038
duke@435 1039 // Turn off latency scheduling if scheduling is just plain off
duke@435 1040 if (!C->do_scheduling())
duke@435 1041 in_latency = true;
duke@435 1042
duke@435 1043 // Do not hoist (to cover latency) instructions which target a
duke@435 1044 // single register. Hoisting stretches the live range of the
duke@435 1045 // single register and may force spilling.
duke@435 1046 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
duke@435 1047 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
duke@435 1048 in_latency = true;
duke@435 1049
duke@435 1050 #ifndef PRODUCT
duke@435 1051 if (trace_opto_pipelining()) {
adlertz@5539 1052 tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
duke@435 1053 self->dump();
duke@435 1054 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
duke@435 1055 LCA->_pre_order,
adlertz@5635 1056 LCA->head()->_idx,
duke@435 1057 start_latency,
adlertz@5635 1058 LCA->get_node(LCA->end_idx())->_idx,
duke@435 1059 end_latency,
duke@435 1060 least_freq);
duke@435 1061 }
duke@435 1062 #endif
duke@435 1063
shade@4691 1064 int cand_cnt = 0; // number of candidates tried
shade@4691 1065
duke@435 1066 // Walk up the dominator tree from LCA (Lowest common ancestor) to
duke@435 1067 // the earliest legal location. Capture the least execution frequency.
duke@435 1068 while (LCA != early) {
duke@435 1069 LCA = LCA->_idom; // Follow up the dominator tree
duke@435 1070
duke@435 1071 if (LCA == NULL) {
duke@435 1072 // Bailout without retry
duke@435 1073 C->record_method_not_compilable("late schedule failed: LCA == NULL");
duke@435 1074 return least;
duke@435 1075 }
duke@435 1076
duke@435 1077 // Don't hoist machine instructions to the root basic block
duke@435 1078 if (mach && LCA == root_block)
duke@435 1079 break;
duke@435 1080
adlertz@5635 1081 uint start_lat = get_latency_for_node(LCA->head());
duke@435 1082 uint end_idx = LCA->end_idx();
adlertz@5635 1083 uint end_lat = get_latency_for_node(LCA->get_node(end_idx));
duke@435 1084 double LCA_freq = LCA->_freq;
duke@435 1085 #ifndef PRODUCT
duke@435 1086 if (trace_opto_pipelining()) {
duke@435 1087 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
adlertz@5635 1088 LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
duke@435 1089 }
duke@435 1090 #endif
shade@4691 1091 cand_cnt++;
duke@435 1092 if (LCA_freq < least_freq || // Better Frequency
shade@4691 1093 (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
shade@4691 1094 (!StressGCM && // Otherwise, choose with latency
shade@4691 1095 !in_latency && // No block containing latency
duke@435 1096 LCA_freq < least_freq * delta && // No worse frequency
duke@435 1097 target >= end_lat && // within latency range
duke@435 1098 !self->is_iteratively_computed() ) // But don't hoist IV increments
duke@435 1099 // because they may end up above other uses of their phi forcing
duke@435 1100 // their result register to be different from their input.
duke@435 1101 ) {
duke@435 1102 least = LCA; // Found cheaper block
duke@435 1103 least_freq = LCA_freq;
duke@435 1104 start_latency = start_lat;
duke@435 1105 end_latency = end_lat;
duke@435 1106 if (target <= start_lat)
duke@435 1107 in_latency = true;
duke@435 1108 }
duke@435 1109 }
duke@435 1110
duke@435 1111 #ifndef PRODUCT
duke@435 1112 if (trace_opto_pipelining()) {
duke@435 1113 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
duke@435 1114 least->_pre_order, start_latency, least_freq);
duke@435 1115 }
duke@435 1116 #endif
duke@435 1117
duke@435 1118 // See if the latency needs to be updated
duke@435 1119 if (target < end_latency) {
duke@435 1120 #ifndef PRODUCT
duke@435 1121 if (trace_opto_pipelining()) {
duke@435 1122 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
duke@435 1123 }
duke@435 1124 #endif
adlertz@5539 1125 set_latency_for_node(self, end_latency);
duke@435 1126 partial_latency_of_defs(self);
duke@435 1127 }
duke@435 1128
duke@435 1129 return least;
duke@435 1130 }
duke@435 1131
duke@435 1132
duke@435 1133 //------------------------------schedule_late-----------------------------------
duke@435 1134 // Now schedule all codes as LATE as possible. This is the LCA in the
duke@435 1135 // dominator tree of all USES of a value. Pick the block with the least
duke@435 1136 // loop nesting depth that is lowest in the dominator tree.
duke@435 1137 extern const char must_clone[];
duke@435 1138 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
duke@435 1139 #ifndef PRODUCT
duke@435 1140 if (trace_opto_pipelining())
duke@435 1141 tty->print("\n#---- schedule_late ----\n");
duke@435 1142 #endif
duke@435 1143
adlertz@5509 1144 Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
duke@435 1145 Node *self;
duke@435 1146
duke@435 1147 // Walk over all the nodes from last to first
duke@435 1148 while (self = iter.next()) {
adlertz@5509 1149 Block* early = get_block_for_node(self); // Earliest legal placement
duke@435 1150
duke@435 1151 if (self->is_top()) {
duke@435 1152 // Top node goes in bb #2 with other constants.
duke@435 1153 // It must be special-cased, because it has no out edges.
duke@435 1154 early->add_inst(self);
duke@435 1155 continue;
duke@435 1156 }
duke@435 1157
duke@435 1158 // No uses, just terminate
duke@435 1159 if (self->outcnt() == 0) {
kvn@3040 1160 assert(self->is_MachProj(), "sanity");
duke@435 1161 continue; // Must be a dead machine projection
duke@435 1162 }
duke@435 1163
duke@435 1164 // If node is pinned in the block, then no scheduling can be done.
duke@435 1165 if( self->pinned() ) // Pinned in block?
duke@435 1166 continue;
duke@435 1167
duke@435 1168 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
duke@435 1169 if (mach) {
duke@435 1170 switch (mach->ideal_Opcode()) {
duke@435 1171 case Op_CreateEx:
duke@435 1172 // Don't move exception creation
duke@435 1173 early->add_inst(self);
duke@435 1174 continue;
duke@435 1175 break;
duke@435 1176 case Op_CheckCastPP:
duke@435 1177 // Don't move CheckCastPP nodes away from their input, if the input
duke@435 1178 // is a rawptr (5071820).
duke@435 1179 Node *def = self->in(1);
duke@435 1180 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
duke@435 1181 early->add_inst(self);
kvn@1268 1182 #ifdef ASSERT
kvn@1268 1183 _raw_oops.push(def);
kvn@1268 1184 #endif
duke@435 1185 continue;
duke@435 1186 }
duke@435 1187 break;
duke@435 1188 }
duke@435 1189 }
duke@435 1190
duke@435 1191 // Gather LCA of all uses
duke@435 1192 Block *LCA = NULL;
duke@435 1193 {
duke@435 1194 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
duke@435 1195 // For all uses, find LCA
duke@435 1196 Node* use = self->fast_out(i);
adlertz@5509 1197 LCA = raise_LCA_above_use(LCA, use, self, this);
duke@435 1198 }
duke@435 1199 } // (Hide defs of imax, i from rest of block.)
duke@435 1200
duke@435 1201 // Place temps in the block of their use. This isn't a
duke@435 1202 // requirement for correctness but it reduces useless
duke@435 1203 // interference between temps and other nodes.
duke@435 1204 if (mach != NULL && mach->is_MachTemp()) {
adlertz@5509 1205 map_node_to_block(self, LCA);
duke@435 1206 LCA->add_inst(self);
duke@435 1207 continue;
duke@435 1208 }
duke@435 1209
duke@435 1210 // Check if 'self' could be anti-dependent on memory
duke@435 1211 if (self->needs_anti_dependence_check()) {
duke@435 1212 // Hoist LCA above possible-defs and insert anti-dependences to
duke@435 1213 // defs in new LCA block.
duke@435 1214 LCA = insert_anti_dependences(LCA, self);
duke@435 1215 }
duke@435 1216
duke@435 1217 if (early->_dom_depth > LCA->_dom_depth) {
duke@435 1218 // Somehow the LCA has moved above the earliest legal point.
duke@435 1219 // (One way this can happen is via memory_early_block.)
duke@435 1220 if (C->subsume_loads() == true && !C->failing()) {
duke@435 1221 // Retry with subsume_loads == false
duke@435 1222 // If this is the first failure, the sentinel string will "stick"
duke@435 1223 // to the Compile object, and the C2Compiler will see it and retry.
duke@435 1224 C->record_failure(C2Compiler::retry_no_subsuming_loads());
duke@435 1225 } else {
duke@435 1226 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
duke@435 1227 C->record_method_not_compilable("late schedule failed: incorrect graph");
duke@435 1228 }
duke@435 1229 return;
duke@435 1230 }
duke@435 1231
duke@435 1232 // If there is no opportunity to hoist, then we're done.
shade@4691 1233 // In stress mode, try to hoist even the single operations.
shade@4691 1234 bool try_to_hoist = StressGCM || (LCA != early);
duke@435 1235
duke@435 1236 // Must clone guys stay next to use; no hoisting allowed.
duke@435 1237 // Also cannot hoist guys that alter memory or are otherwise not
duke@435 1238 // allocatable (hoisting can make a value live longer, leading to
duke@435 1239 // anti and output dependency problems which are normally resolved
duke@435 1240 // by the register allocator giving everyone a different register).
duke@435 1241 if (mach != NULL && must_clone[mach->ideal_Opcode()])
duke@435 1242 try_to_hoist = false;
duke@435 1243
duke@435 1244 Block* late = NULL;
duke@435 1245 if (try_to_hoist) {
duke@435 1246 // Now find the block with the least execution frequency.
duke@435 1247 // Start at the latest schedule and work up to the earliest schedule
duke@435 1248 // in the dominator tree. Thus the Node will dominate all its uses.
duke@435 1249 late = hoist_to_cheaper_block(LCA, early, self);
duke@435 1250 } else {
duke@435 1251 // Just use the LCA of the uses.
duke@435 1252 late = LCA;
duke@435 1253 }
duke@435 1254
duke@435 1255 // Put the node into target block
duke@435 1256 schedule_node_into_block(self, late);
duke@435 1257
duke@435 1258 #ifdef ASSERT
duke@435 1259 if (self->needs_anti_dependence_check()) {
duke@435 1260 // since precedence edges are only inserted when we're sure they
duke@435 1261 // are needed make sure that after placement in a block we don't
duke@435 1262 // need any new precedence edges.
duke@435 1263 verify_anti_dependences(late, self);
duke@435 1264 }
duke@435 1265 #endif
duke@435 1266 } // Loop until all nodes have been visited
duke@435 1267
duke@435 1268 } // end ScheduleLate
duke@435 1269
duke@435 1270 //------------------------------GlobalCodeMotion-------------------------------
adlertz@5539 1271 void PhaseCFG::global_code_motion() {
duke@435 1272 ResourceMark rm;
duke@435 1273
duke@435 1274 #ifndef PRODUCT
duke@435 1275 if (trace_opto_pipelining()) {
duke@435 1276 tty->print("\n---- Start GlobalCodeMotion ----\n");
duke@435 1277 }
duke@435 1278 #endif
duke@435 1279
adlertz@5509 1280 // Initialize the node to block mapping for things on the proj_list
adlertz@5539 1281 for (uint i = 0; i < _matcher.number_of_projections(); i++) {
adlertz@5539 1282 unmap_node_from_block(_matcher.get_projection(i));
adlertz@5509 1283 }
duke@435 1284
duke@435 1285 // Set the basic block for Nodes pinned into blocks
adlertz@5539 1286 Arena* arena = Thread::current()->resource_area();
adlertz@5539 1287 VectorSet visited(arena);
adlertz@5539 1288 schedule_pinned_nodes(visited);
duke@435 1289
duke@435 1290 // Find the earliest Block any instruction can be placed in. Some
duke@435 1291 // instructions are pinned into Blocks. Unpinned instructions can
duke@435 1292 // appear in last block in which all their inputs occur.
duke@435 1293 visited.Clear();
adlertz@5539 1294 Node_List stack(arena);
adlertz@5539 1295 // Pre-grow the list
adlertz@5539 1296 stack.map((C->unique() >> 1) + 16, NULL);
duke@435 1297 if (!schedule_early(visited, stack)) {
duke@435 1298 // Bailout without retry
duke@435 1299 C->record_method_not_compilable("early schedule failed");
duke@435 1300 return;
duke@435 1301 }
duke@435 1302
duke@435 1303 // Build Def-Use edges.
duke@435 1304 // Compute the latency information (via backwards walk) for all the
duke@435 1305 // instructions in the graph
kvn@2040 1306 _node_latency = new GrowableArray<uint>(); // resource_area allocation
duke@435 1307
adlertz@5539 1308 if (C->do_scheduling()) {
adlertz@5539 1309 compute_latencies_backwards(visited, stack);
adlertz@5539 1310 }
duke@435 1311
duke@435 1312 // Now schedule all codes as LATE as possible. This is the LCA in the
duke@435 1313 // dominator tree of all USES of a value. Pick the block with the least
duke@435 1314 // loop nesting depth that is lowest in the dominator tree.
duke@435 1315 // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
duke@435 1316 schedule_late(visited, stack);
adlertz@5539 1317 if (C->failing()) {
duke@435 1318 // schedule_late fails only when graph is incorrect.
duke@435 1319 assert(!VerifyGraphEdges, "verification should have failed");
duke@435 1320 return;
duke@435 1321 }
duke@435 1322
duke@435 1323 #ifndef PRODUCT
duke@435 1324 if (trace_opto_pipelining()) {
duke@435 1325 tty->print("\n---- Detect implicit null checks ----\n");
duke@435 1326 }
duke@435 1327 #endif
duke@435 1328
duke@435 1329 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 1330 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 1331 // I can generate a memory op if there is not one nearby.
duke@435 1332 if (C->is_method_compilation()) {
duke@435 1333 // Don't do it for natives, adapters, or runtime stubs
duke@435 1334 int allowed_reasons = 0;
duke@435 1335 // ...and don't do it when there have been too many traps, globally.
duke@435 1336 for (int reason = (int)Deoptimization::Reason_none+1;
duke@435 1337 reason < Compile::trapHistLength; reason++) {
duke@435 1338 assert(reason < BitsPerInt, "recode bit map");
duke@435 1339 if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
duke@435 1340 allowed_reasons |= nth_bit(reason);
duke@435 1341 }
duke@435 1342 // By reversing the loop direction we get a very minor gain on mpegaudio.
duke@435 1343 // Feel free to revert to a forward loop for clarity.
duke@435 1344 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
adlertz@5539 1345 for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
adlertz@5539 1346 Node* proj = _matcher._null_check_tests[i];
adlertz@5539 1347 Node* val = _matcher._null_check_tests[i + 1];
adlertz@5539 1348 Block* block = get_block_for_node(proj);
adlertz@5639 1349 implicit_null_check(block, proj, val, allowed_reasons);
duke@435 1350 // The implicit_null_check will only perform the transformation
duke@435 1351 // if the null branch is truly uncommon, *and* it leads to an
duke@435 1352 // uncommon trap. Combined with the too_many_traps guards
duke@435 1353 // above, this prevents SEGV storms reported in 6366351,
duke@435 1354 // by recompiling offending methods without this optimization.
duke@435 1355 }
duke@435 1356 }
duke@435 1357
duke@435 1358 #ifndef PRODUCT
duke@435 1359 if (trace_opto_pipelining()) {
duke@435 1360 tty->print("\n---- Start Local Scheduling ----\n");
duke@435 1361 }
duke@435 1362 #endif
duke@435 1363
duke@435 1364 // Schedule locally. Right now a simple topological sort.
duke@435 1365 // Later, do a real latency aware scheduler.
adlertz@5539 1366 GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
duke@435 1367 visited.Clear();
adlertz@5539 1368 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1369 Block* block = get_block(i);
adlertz@5639 1370 if (!schedule_local(block, ready_cnt, visited)) {
duke@435 1371 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
duke@435 1372 C->record_method_not_compilable("local schedule failed");
duke@435 1373 }
duke@435 1374 return;
duke@435 1375 }
duke@435 1376 }
duke@435 1377
duke@435 1378 // If we inserted any instructions between a Call and his CatchNode,
duke@435 1379 // clone the instructions on all paths below the Catch.
adlertz@5539 1380 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1381 Block* block = get_block(i);
adlertz@5639 1382 call_catch_cleanup(block);
adlertz@5509 1383 }
duke@435 1384
duke@435 1385 #ifndef PRODUCT
duke@435 1386 if (trace_opto_pipelining()) {
duke@435 1387 tty->print("\n---- After GlobalCodeMotion ----\n");
adlertz@5539 1388 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1389 Block* block = get_block(i);
adlertz@5539 1390 block->dump();
duke@435 1391 }
duke@435 1392 }
duke@435 1393 #endif
kvn@2040 1394 // Dead.
kvn@2040 1395 _node_latency = (GrowableArray<uint> *)0xdeadbeef;
duke@435 1396 }
duke@435 1397
adlertz@5539 1398 bool PhaseCFG::do_global_code_motion() {
adlertz@5539 1399
adlertz@5539 1400 build_dominator_tree();
adlertz@5539 1401 if (C->failing()) {
adlertz@5539 1402 return false;
adlertz@5539 1403 }
adlertz@5539 1404
adlertz@5539 1405 NOT_PRODUCT( C->verify_graph_edges(); )
adlertz@5539 1406
adlertz@5539 1407 estimate_block_frequency();
adlertz@5539 1408
adlertz@5539 1409 global_code_motion();
adlertz@5539 1410
adlertz@5539 1411 if (C->failing()) {
adlertz@5539 1412 return false;
adlertz@5539 1413 }
adlertz@5539 1414
adlertz@5539 1415 return true;
adlertz@5539 1416 }
duke@435 1417
duke@435 1418 //------------------------------Estimate_Block_Frequency-----------------------
duke@435 1419 // Estimate block frequencies based on IfNode probabilities.
adlertz@5539 1420 void PhaseCFG::estimate_block_frequency() {
rasbold@853 1421
rasbold@853 1422 // Force conditional branches leading to uncommon traps to be unlikely,
rasbold@853 1423 // not because we get to the uncommon_trap with less relative frequency,
rasbold@853 1424 // but because an uncommon_trap typically causes a deopt, so we only get
rasbold@853 1425 // there once.
rasbold@853 1426 if (C->do_freq_based_layout()) {
rasbold@853 1427 Block_List worklist;
adlertz@5539 1428 Block* root_blk = get_block(0);
rasbold@853 1429 for (uint i = 1; i < root_blk->num_preds(); i++) {
adlertz@5509 1430 Block *pb = get_block_for_node(root_blk->pred(i));
rasbold@853 1431 if (pb->has_uncommon_code()) {
rasbold@853 1432 worklist.push(pb);
rasbold@853 1433 }
rasbold@853 1434 }
rasbold@853 1435 while (worklist.size() > 0) {
rasbold@853 1436 Block* uct = worklist.pop();
adlertz@5539 1437 if (uct == get_root_block()) {
adlertz@5539 1438 continue;
adlertz@5539 1439 }
rasbold@853 1440 for (uint i = 1; i < uct->num_preds(); i++) {
adlertz@5509 1441 Block *pb = get_block_for_node(uct->pred(i));
rasbold@853 1442 if (pb->_num_succs == 1) {
rasbold@853 1443 worklist.push(pb);
rasbold@853 1444 } else if (pb->num_fall_throughs() == 2) {
rasbold@853 1445 pb->update_uncommon_branch(uct);
rasbold@853 1446 }
rasbold@853 1447 }
rasbold@853 1448 }
rasbold@853 1449 }
duke@435 1450
duke@435 1451 // Create the loop tree and calculate loop depth.
duke@435 1452 _root_loop = create_loop_tree();
duke@435 1453 _root_loop->compute_loop_depth(0);
duke@435 1454
duke@435 1455 // Compute block frequency of each block, relative to a single loop entry.
duke@435 1456 _root_loop->compute_freq();
duke@435 1457
duke@435 1458 // Adjust all frequencies to be relative to a single method entry
rasbold@853 1459 _root_loop->_freq = 1.0;
duke@435 1460 _root_loop->scale_freq();
duke@435 1461
kvn@1108 1462 // Save outmost loop frequency for LRG frequency threshold
adlertz@5539 1463 _outer_loop_frequency = _root_loop->outer_loop_freq();
kvn@1108 1464
duke@435 1465 // force paths ending at uncommon traps to be infrequent
rasbold@853 1466 if (!C->do_freq_based_layout()) {
rasbold@853 1467 Block_List worklist;
adlertz@5539 1468 Block* root_blk = get_block(0);
rasbold@853 1469 for (uint i = 1; i < root_blk->num_preds(); i++) {
adlertz@5509 1470 Block *pb = get_block_for_node(root_blk->pred(i));
rasbold@853 1471 if (pb->has_uncommon_code()) {
rasbold@853 1472 worklist.push(pb);
rasbold@853 1473 }
duke@435 1474 }
rasbold@853 1475 while (worklist.size() > 0) {
rasbold@853 1476 Block* uct = worklist.pop();
rasbold@853 1477 uct->_freq = PROB_MIN;
rasbold@853 1478 for (uint i = 1; i < uct->num_preds(); i++) {
adlertz@5509 1479 Block *pb = get_block_for_node(uct->pred(i));
rasbold@853 1480 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
rasbold@853 1481 worklist.push(pb);
rasbold@853 1482 }
duke@435 1483 }
duke@435 1484 }
duke@435 1485 }
duke@435 1486
kvn@987 1487 #ifdef ASSERT
adlertz@5539 1488 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1489 Block* b = get_block(i);
twisti@1040 1490 assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
kvn@987 1491 }
kvn@987 1492 #endif
kvn@987 1493
duke@435 1494 #ifndef PRODUCT
duke@435 1495 if (PrintCFGBlockFreq) {
duke@435 1496 tty->print_cr("CFG Block Frequencies");
duke@435 1497 _root_loop->dump_tree();
duke@435 1498 if (Verbose) {
duke@435 1499 tty->print_cr("PhaseCFG dump");
duke@435 1500 dump();
duke@435 1501 tty->print_cr("Node dump");
duke@435 1502 _root->dump(99999);
duke@435 1503 }
duke@435 1504 }
duke@435 1505 #endif
duke@435 1506 }
duke@435 1507
duke@435 1508 //----------------------------create_loop_tree--------------------------------
duke@435 1509 // Create a loop tree from the CFG
duke@435 1510 CFGLoop* PhaseCFG::create_loop_tree() {
duke@435 1511
duke@435 1512 #ifdef ASSERT
adlertz@5539 1513 assert(get_block(0) == get_root_block(), "first block should be root block");
adlertz@5539 1514 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1515 Block* block = get_block(i);
duke@435 1516 // Check that _loop field are clear...we could clear them if not.
adlertz@5539 1517 assert(block->_loop == NULL, "clear _loop expected");
duke@435 1518 // Sanity check that the RPO numbering is reflected in the _blocks array.
duke@435 1519 // It doesn't have to be for the loop tree to be built, but if it is not,
duke@435 1520 // then the blocks have been reordered since dom graph building...which
duke@435 1521 // may question the RPO numbering
adlertz@5539 1522 assert(block->_rpo == i, "unexpected reverse post order number");
duke@435 1523 }
duke@435 1524 #endif
duke@435 1525
duke@435 1526 int idct = 0;
duke@435 1527 CFGLoop* root_loop = new CFGLoop(idct++);
duke@435 1528
duke@435 1529 Block_List worklist;
duke@435 1530
duke@435 1531 // Assign blocks to loops
adlertz@5539 1532 for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
adlertz@5539 1533 Block* block = get_block(i);
duke@435 1534
adlertz@5539 1535 if (block->head()->is_Loop()) {
adlertz@5539 1536 Block* loop_head = block;
duke@435 1537 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
duke@435 1538 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
adlertz@5509 1539 Block* tail = get_block_for_node(tail_n);
duke@435 1540
duke@435 1541 // Defensively filter out Loop nodes for non-single-entry loops.
duke@435 1542 // For all reasonable loops, the head occurs before the tail in RPO.
duke@435 1543 if (i <= tail->_rpo) {
duke@435 1544
duke@435 1545 // The tail and (recursive) predecessors of the tail
duke@435 1546 // are made members of a new loop.
duke@435 1547
duke@435 1548 assert(worklist.size() == 0, "nonempty worklist");
duke@435 1549 CFGLoop* nloop = new CFGLoop(idct++);
duke@435 1550 assert(loop_head->_loop == NULL, "just checking");
duke@435 1551 loop_head->_loop = nloop;
duke@435 1552 // Add to nloop so push_pred() will skip over inner loops
duke@435 1553 nloop->add_member(loop_head);
adlertz@5509 1554 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
duke@435 1555
duke@435 1556 while (worklist.size() > 0) {
duke@435 1557 Block* member = worklist.pop();
duke@435 1558 if (member != loop_head) {
duke@435 1559 for (uint j = 1; j < member->num_preds(); j++) {
adlertz@5509 1560 nloop->push_pred(member, j, worklist, this);
duke@435 1561 }
duke@435 1562 }
duke@435 1563 }
duke@435 1564 }
duke@435 1565 }
duke@435 1566 }
duke@435 1567
duke@435 1568 // Create a member list for each loop consisting
duke@435 1569 // of both blocks and (immediate child) loops.
adlertz@5539 1570 for (uint i = 0; i < number_of_blocks(); i++) {
adlertz@5539 1571 Block* block = get_block(i);
adlertz@5539 1572 CFGLoop* lp = block->_loop;
duke@435 1573 if (lp == NULL) {
duke@435 1574 // Not assigned to a loop. Add it to the method's pseudo loop.
adlertz@5539 1575 block->_loop = root_loop;
duke@435 1576 lp = root_loop;
duke@435 1577 }
adlertz@5539 1578 if (lp == root_loop || block != lp->head()) { // loop heads are already members
adlertz@5539 1579 lp->add_member(block);
duke@435 1580 }
duke@435 1581 if (lp != root_loop) {
duke@435 1582 if (lp->parent() == NULL) {
duke@435 1583 // Not a nested loop. Make it a child of the method's pseudo loop.
duke@435 1584 root_loop->add_nested_loop(lp);
duke@435 1585 }
adlertz@5539 1586 if (block == lp->head()) {
duke@435 1587 // Add nested loop to member list of parent loop.
duke@435 1588 lp->parent()->add_member(lp);
duke@435 1589 }
duke@435 1590 }
duke@435 1591 }
duke@435 1592
duke@435 1593 return root_loop;
duke@435 1594 }
duke@435 1595
duke@435 1596 //------------------------------push_pred--------------------------------------
adlertz@5509 1597 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
duke@435 1598 Node* pred_n = blk->pred(i);
adlertz@5509 1599 Block* pred = cfg->get_block_for_node(pred_n);
duke@435 1600 CFGLoop *pred_loop = pred->_loop;
duke@435 1601 if (pred_loop == NULL) {
duke@435 1602 // Filter out blocks for non-single-entry loops.
duke@435 1603 // For all reasonable loops, the head occurs before the tail in RPO.
duke@435 1604 if (pred->_rpo > head()->_rpo) {
duke@435 1605 pred->_loop = this;
duke@435 1606 worklist.push(pred);
duke@435 1607 }
duke@435 1608 } else if (pred_loop != this) {
duke@435 1609 // Nested loop.
duke@435 1610 while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
duke@435 1611 pred_loop = pred_loop->_parent;
duke@435 1612 }
duke@435 1613 // Make pred's loop be a child
duke@435 1614 if (pred_loop->_parent == NULL) {
duke@435 1615 add_nested_loop(pred_loop);
duke@435 1616 // Continue with loop entry predecessor.
duke@435 1617 Block* pred_head = pred_loop->head();
duke@435 1618 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
duke@435 1619 assert(pred_head != head(), "loop head in only one loop");
adlertz@5509 1620 push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
duke@435 1621 } else {
duke@435 1622 assert(pred_loop->_parent == this && _parent == NULL, "just checking");
duke@435 1623 }
duke@435 1624 }
duke@435 1625 }
duke@435 1626
duke@435 1627 //------------------------------add_nested_loop--------------------------------
duke@435 1628 // Make cl a child of the current loop in the loop tree.
duke@435 1629 void CFGLoop::add_nested_loop(CFGLoop* cl) {
duke@435 1630 assert(_parent == NULL, "no parent yet");
duke@435 1631 assert(cl != this, "not my own parent");
duke@435 1632 cl->_parent = this;
duke@435 1633 CFGLoop* ch = _child;
duke@435 1634 if (ch == NULL) {
duke@435 1635 _child = cl;
duke@435 1636 } else {
duke@435 1637 while (ch->_sibling != NULL) { ch = ch->_sibling; }
duke@435 1638 ch->_sibling = cl;
duke@435 1639 }
duke@435 1640 }
duke@435 1641
duke@435 1642 //------------------------------compute_loop_depth-----------------------------
duke@435 1643 // Store the loop depth in each CFGLoop object.
duke@435 1644 // Recursively walk the children to do the same for them.
duke@435 1645 void CFGLoop::compute_loop_depth(int depth) {
duke@435 1646 _depth = depth;
duke@435 1647 CFGLoop* ch = _child;
duke@435 1648 while (ch != NULL) {
duke@435 1649 ch->compute_loop_depth(depth + 1);
duke@435 1650 ch = ch->_sibling;
duke@435 1651 }
duke@435 1652 }
duke@435 1653
duke@435 1654 //------------------------------compute_freq-----------------------------------
duke@435 1655 // Compute the frequency of each block and loop, relative to a single entry
duke@435 1656 // into the dominating loop head.
duke@435 1657 void CFGLoop::compute_freq() {
duke@435 1658 // Bottom up traversal of loop tree (visit inner loops first.)
duke@435 1659 // Set loop head frequency to 1.0, then transitively
duke@435 1660 // compute frequency for all successors in the loop,
duke@435 1661 // as well as for each exit edge. Inner loops are
duke@435 1662 // treated as single blocks with loop exit targets
duke@435 1663 // as the successor blocks.
duke@435 1664
duke@435 1665 // Nested loops first
duke@435 1666 CFGLoop* ch = _child;
duke@435 1667 while (ch != NULL) {
duke@435 1668 ch->compute_freq();
duke@435 1669 ch = ch->_sibling;
duke@435 1670 }
duke@435 1671 assert (_members.length() > 0, "no empty loops");
duke@435 1672 Block* hd = head();
duke@435 1673 hd->_freq = 1.0f;
duke@435 1674 for (int i = 0; i < _members.length(); i++) {
duke@435 1675 CFGElement* s = _members.at(i);
duke@435 1676 float freq = s->_freq;
duke@435 1677 if (s->is_block()) {
duke@435 1678 Block* b = s->as_Block();
duke@435 1679 for (uint j = 0; j < b->_num_succs; j++) {
duke@435 1680 Block* sb = b->_succs[j];
duke@435 1681 update_succ_freq(sb, freq * b->succ_prob(j));
duke@435 1682 }
duke@435 1683 } else {
duke@435 1684 CFGLoop* lp = s->as_CFGLoop();
duke@435 1685 assert(lp->_parent == this, "immediate child");
duke@435 1686 for (int k = 0; k < lp->_exits.length(); k++) {
duke@435 1687 Block* eb = lp->_exits.at(k).get_target();
duke@435 1688 float prob = lp->_exits.at(k).get_prob();
duke@435 1689 update_succ_freq(eb, freq * prob);
duke@435 1690 }
duke@435 1691 }
duke@435 1692 }
duke@435 1693
duke@435 1694 // For all loops other than the outer, "method" loop,
duke@435 1695 // sum and normalize the exit probability. The "method" loop
duke@435 1696 // should keep the initial exit probability of 1, so that
duke@435 1697 // inner blocks do not get erroneously scaled.
duke@435 1698 if (_depth != 0) {
duke@435 1699 // Total the exit probabilities for this loop.
duke@435 1700 float exits_sum = 0.0f;
duke@435 1701 for (int i = 0; i < _exits.length(); i++) {
duke@435 1702 exits_sum += _exits.at(i).get_prob();
duke@435 1703 }
duke@435 1704
duke@435 1705 // Normalize the exit probabilities. Until now, the
duke@435 1706 // probabilities estimate the possibility of exit per
duke@435 1707 // a single loop iteration; afterward, they estimate
duke@435 1708 // the probability of exit per loop entry.
duke@435 1709 for (int i = 0; i < _exits.length(); i++) {
duke@435 1710 Block* et = _exits.at(i).get_target();
rasbold@853 1711 float new_prob = 0.0f;
rasbold@853 1712 if (_exits.at(i).get_prob() > 0.0f) {
rasbold@853 1713 new_prob = _exits.at(i).get_prob() / exits_sum;
rasbold@853 1714 }
duke@435 1715 BlockProbPair bpp(et, new_prob);
duke@435 1716 _exits.at_put(i, bpp);
duke@435 1717 }
duke@435 1718
rasbold@853 1719 // Save the total, but guard against unreasonable probability,
duke@435 1720 // as the value is used to estimate the loop trip count.
duke@435 1721 // An infinite trip count would blur relative block
duke@435 1722 // frequencies.
duke@435 1723 if (exits_sum > 1.0f) exits_sum = 1.0;
duke@435 1724 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
duke@435 1725 _exit_prob = exits_sum;
duke@435 1726 }
duke@435 1727 }
duke@435 1728
duke@435 1729 //------------------------------succ_prob-------------------------------------
duke@435 1730 // Determine the probability of reaching successor 'i' from the receiver block.
duke@435 1731 float Block::succ_prob(uint i) {
duke@435 1732 int eidx = end_idx();
adlertz@5635 1733 Node *n = get_node(eidx); // Get ending Node
rasbold@743 1734
rasbold@743 1735 int op = n->Opcode();
rasbold@743 1736 if (n->is_Mach()) {
rasbold@743 1737 if (n->is_MachNullCheck()) {
rasbold@743 1738 // Can only reach here if called after lcm. The original Op_If is gone,
rasbold@743 1739 // so we attempt to infer the probability from one or both of the
rasbold@743 1740 // successor blocks.
rasbold@743 1741 assert(_num_succs == 2, "expecting 2 successors of a null check");
rasbold@743 1742 // If either successor has only one predecessor, then the
twisti@1040 1743 // probability estimate can be derived using the
rasbold@743 1744 // relative frequency of the successor and this block.
rasbold@743 1745 if (_succs[i]->num_preds() == 2) {
rasbold@743 1746 return _succs[i]->_freq / _freq;
rasbold@743 1747 } else if (_succs[1-i]->num_preds() == 2) {
rasbold@743 1748 return 1 - (_succs[1-i]->_freq / _freq);
rasbold@743 1749 } else {
rasbold@743 1750 // Estimate using both successor frequencies
rasbold@743 1751 float freq = _succs[i]->_freq;
rasbold@743 1752 return freq / (freq + _succs[1-i]->_freq);
rasbold@743 1753 }
rasbold@743 1754 }
rasbold@743 1755 op = n->as_Mach()->ideal_Opcode();
rasbold@743 1756 }
rasbold@743 1757
duke@435 1758
duke@435 1759 // Switch on branch type
duke@435 1760 switch( op ) {
duke@435 1761 case Op_CountedLoopEnd:
duke@435 1762 case Op_If: {
duke@435 1763 assert (i < 2, "just checking");
duke@435 1764 // Conditionals pass on only part of their frequency
duke@435 1765 float prob = n->as_MachIf()->_prob;
duke@435 1766 assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
duke@435 1767 // If succ[i] is the FALSE branch, invert path info
adlertz@5635 1768 if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
duke@435 1769 return 1.0f - prob; // not taken
duke@435 1770 } else {
duke@435 1771 return prob; // taken
duke@435 1772 }
duke@435 1773 }
duke@435 1774
duke@435 1775 case Op_Jump:
duke@435 1776 // Divide the frequency between all successors evenly
duke@435 1777 return 1.0f/_num_succs;
duke@435 1778
duke@435 1779 case Op_Catch: {
adlertz@5635 1780 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
duke@435 1781 if (ci->_con == CatchProjNode::fall_through_index) {
duke@435 1782 // Fall-thru path gets the lion's share.
duke@435 1783 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
duke@435 1784 } else {
duke@435 1785 // Presume exceptional paths are equally unlikely
duke@435 1786 return PROB_UNLIKELY_MAG(5);
duke@435 1787 }
duke@435 1788 }
duke@435 1789
duke@435 1790 case Op_Root:
duke@435 1791 case Op_Goto:
duke@435 1792 // Pass frequency straight thru to target
duke@435 1793 return 1.0f;
duke@435 1794
duke@435 1795 case Op_NeverBranch:
duke@435 1796 return 0.0f;
duke@435 1797
duke@435 1798 case Op_TailCall:
duke@435 1799 case Op_TailJump:
duke@435 1800 case Op_Return:
duke@435 1801 case Op_Halt:
duke@435 1802 case Op_Rethrow:
duke@435 1803 // Do not push out freq to root block
duke@435 1804 return 0.0f;
duke@435 1805
duke@435 1806 default:
duke@435 1807 ShouldNotReachHere();
duke@435 1808 }
duke@435 1809
duke@435 1810 return 0.0f;
duke@435 1811 }
duke@435 1812
rasbold@853 1813 //------------------------------num_fall_throughs-----------------------------
rasbold@853 1814 // Return the number of fall-through candidates for a block
rasbold@853 1815 int Block::num_fall_throughs() {
rasbold@853 1816 int eidx = end_idx();
adlertz@5635 1817 Node *n = get_node(eidx); // Get ending Node
rasbold@853 1818
rasbold@853 1819 int op = n->Opcode();
rasbold@853 1820 if (n->is_Mach()) {
rasbold@853 1821 if (n->is_MachNullCheck()) {
rasbold@853 1822 // In theory, either side can fall-thru, for simplicity sake,
rasbold@853 1823 // let's say only the false branch can now.
rasbold@853 1824 return 1;
rasbold@853 1825 }
rasbold@853 1826 op = n->as_Mach()->ideal_Opcode();
rasbold@853 1827 }
rasbold@853 1828
rasbold@853 1829 // Switch on branch type
rasbold@853 1830 switch( op ) {
rasbold@853 1831 case Op_CountedLoopEnd:
rasbold@853 1832 case Op_If:
rasbold@853 1833 return 2;
rasbold@853 1834
rasbold@853 1835 case Op_Root:
rasbold@853 1836 case Op_Goto:
rasbold@853 1837 return 1;
rasbold@853 1838
rasbold@853 1839 case Op_Catch: {
rasbold@853 1840 for (uint i = 0; i < _num_succs; i++) {
adlertz@5635 1841 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
rasbold@853 1842 if (ci->_con == CatchProjNode::fall_through_index) {
rasbold@853 1843 return 1;
rasbold@853 1844 }
rasbold@853 1845 }
rasbold@853 1846 return 0;
rasbold@853 1847 }
rasbold@853 1848
rasbold@853 1849 case Op_Jump:
rasbold@853 1850 case Op_NeverBranch:
rasbold@853 1851 case Op_TailCall:
rasbold@853 1852 case Op_TailJump:
rasbold@853 1853 case Op_Return:
rasbold@853 1854 case Op_Halt:
rasbold@853 1855 case Op_Rethrow:
rasbold@853 1856 return 0;
rasbold@853 1857
rasbold@853 1858 default:
rasbold@853 1859 ShouldNotReachHere();
rasbold@853 1860 }
rasbold@853 1861
rasbold@853 1862 return 0;
rasbold@853 1863 }
rasbold@853 1864
rasbold@853 1865 //------------------------------succ_fall_through-----------------------------
rasbold@853 1866 // Return true if a specific successor could be fall-through target.
rasbold@853 1867 bool Block::succ_fall_through(uint i) {
rasbold@853 1868 int eidx = end_idx();
adlertz@5635 1869 Node *n = get_node(eidx); // Get ending Node
rasbold@853 1870
rasbold@853 1871 int op = n->Opcode();
rasbold@853 1872 if (n->is_Mach()) {
rasbold@853 1873 if (n->is_MachNullCheck()) {
rasbold@853 1874 // In theory, either side can fall-thru, for simplicity sake,
rasbold@853 1875 // let's say only the false branch can now.
adlertz@5635 1876 return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
rasbold@853 1877 }
rasbold@853 1878 op = n->as_Mach()->ideal_Opcode();
rasbold@853 1879 }
rasbold@853 1880
rasbold@853 1881 // Switch on branch type
rasbold@853 1882 switch( op ) {
rasbold@853 1883 case Op_CountedLoopEnd:
rasbold@853 1884 case Op_If:
rasbold@853 1885 case Op_Root:
rasbold@853 1886 case Op_Goto:
rasbold@853 1887 return true;
rasbold@853 1888
rasbold@853 1889 case Op_Catch: {
adlertz@5635 1890 const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
rasbold@853 1891 return ci->_con == CatchProjNode::fall_through_index;
rasbold@853 1892 }
rasbold@853 1893
rasbold@853 1894 case Op_Jump:
rasbold@853 1895 case Op_NeverBranch:
rasbold@853 1896 case Op_TailCall:
rasbold@853 1897 case Op_TailJump:
rasbold@853 1898 case Op_Return:
rasbold@853 1899 case Op_Halt:
rasbold@853 1900 case Op_Rethrow:
rasbold@853 1901 return false;
rasbold@853 1902
rasbold@853 1903 default:
rasbold@853 1904 ShouldNotReachHere();
rasbold@853 1905 }
rasbold@853 1906
rasbold@853 1907 return false;
rasbold@853 1908 }
rasbold@853 1909
rasbold@853 1910 //------------------------------update_uncommon_branch------------------------
rasbold@853 1911 // Update the probability of a two-branch to be uncommon
rasbold@853 1912 void Block::update_uncommon_branch(Block* ub) {
rasbold@853 1913 int eidx = end_idx();
adlertz@5635 1914 Node *n = get_node(eidx); // Get ending Node
rasbold@853 1915
rasbold@853 1916 int op = n->as_Mach()->ideal_Opcode();
rasbold@853 1917
rasbold@853 1918 assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
rasbold@853 1919 assert(num_fall_throughs() == 2, "must be a two way branch block");
rasbold@853 1920
rasbold@853 1921 // Which successor is ub?
rasbold@853 1922 uint s;
rasbold@853 1923 for (s = 0; s <_num_succs; s++) {
rasbold@853 1924 if (_succs[s] == ub) break;
rasbold@853 1925 }
rasbold@853 1926 assert(s < 2, "uncommon successor must be found");
rasbold@853 1927
rasbold@853 1928 // If ub is the true path, make the proability small, else
rasbold@853 1929 // ub is the false path, and make the probability large
adlertz@5635 1930 bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
rasbold@853 1931
rasbold@853 1932 // Get existing probability
rasbold@853 1933 float p = n->as_MachIf()->_prob;
rasbold@853 1934
rasbold@853 1935 if (invert) p = 1.0 - p;
rasbold@853 1936 if (p > PROB_MIN) {
rasbold@853 1937 p = PROB_MIN;
rasbold@853 1938 }
rasbold@853 1939 if (invert) p = 1.0 - p;
rasbold@853 1940
rasbold@853 1941 n->as_MachIf()->_prob = p;
rasbold@853 1942 }
rasbold@853 1943
duke@435 1944 //------------------------------update_succ_freq-------------------------------
twisti@1040 1945 // Update the appropriate frequency associated with block 'b', a successor of
duke@435 1946 // a block in this loop.
duke@435 1947 void CFGLoop::update_succ_freq(Block* b, float freq) {
duke@435 1948 if (b->_loop == this) {
duke@435 1949 if (b == head()) {
duke@435 1950 // back branch within the loop
duke@435 1951 // Do nothing now, the loop carried frequency will be
duke@435 1952 // adjust later in scale_freq().
duke@435 1953 } else {
duke@435 1954 // simple branch within the loop
duke@435 1955 b->_freq += freq;
duke@435 1956 }
duke@435 1957 } else if (!in_loop_nest(b)) {
duke@435 1958 // branch is exit from this loop
duke@435 1959 BlockProbPair bpp(b, freq);
duke@435 1960 _exits.append(bpp);
duke@435 1961 } else {
duke@435 1962 // branch into nested loop
duke@435 1963 CFGLoop* ch = b->_loop;
duke@435 1964 ch->_freq += freq;
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968 //------------------------------in_loop_nest-----------------------------------
duke@435 1969 // Determine if block b is in the receiver's loop nest.
duke@435 1970 bool CFGLoop::in_loop_nest(Block* b) {
duke@435 1971 int depth = _depth;
duke@435 1972 CFGLoop* b_loop = b->_loop;
duke@435 1973 int b_depth = b_loop->_depth;
duke@435 1974 if (depth == b_depth) {
duke@435 1975 return true;
duke@435 1976 }
duke@435 1977 while (b_depth > depth) {
duke@435 1978 b_loop = b_loop->_parent;
duke@435 1979 b_depth = b_loop->_depth;
duke@435 1980 }
duke@435 1981 return b_loop == this;
duke@435 1982 }
duke@435 1983
duke@435 1984 //------------------------------scale_freq-------------------------------------
duke@435 1985 // Scale frequency of loops and blocks by trip counts from outer loops
duke@435 1986 // Do a top down traversal of loop tree (visit outer loops first.)
duke@435 1987 void CFGLoop::scale_freq() {
duke@435 1988 float loop_freq = _freq * trip_count();
kvn@1108 1989 _freq = loop_freq;
duke@435 1990 for (int i = 0; i < _members.length(); i++) {
duke@435 1991 CFGElement* s = _members.at(i);
kvn@987 1992 float block_freq = s->_freq * loop_freq;
kvn@1056 1993 if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
kvn@1056 1994 block_freq = MIN_BLOCK_FREQUENCY;
kvn@987 1995 s->_freq = block_freq;
duke@435 1996 }
duke@435 1997 CFGLoop* ch = _child;
duke@435 1998 while (ch != NULL) {
duke@435 1999 ch->scale_freq();
duke@435 2000 ch = ch->_sibling;
duke@435 2001 }
duke@435 2002 }
duke@435 2003
kvn@1108 2004 // Frequency of outer loop
kvn@1108 2005 float CFGLoop::outer_loop_freq() const {
kvn@1108 2006 if (_child != NULL) {
kvn@1108 2007 return _child->_freq;
kvn@1108 2008 }
kvn@1108 2009 return _freq;
kvn@1108 2010 }
kvn@1108 2011
duke@435 2012 #ifndef PRODUCT
duke@435 2013 //------------------------------dump_tree--------------------------------------
duke@435 2014 void CFGLoop::dump_tree() const {
duke@435 2015 dump();
duke@435 2016 if (_child != NULL) _child->dump_tree();
duke@435 2017 if (_sibling != NULL) _sibling->dump_tree();
duke@435 2018 }
duke@435 2019
duke@435 2020 //------------------------------dump-------------------------------------------
duke@435 2021 void CFGLoop::dump() const {
duke@435 2022 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 2023 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
duke@435 2024 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
duke@435 2025 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 2026 tty->print(" members:", _id);
duke@435 2027 int k = 0;
duke@435 2028 for (int i = 0; i < _members.length(); i++) {
duke@435 2029 if (k++ >= 6) {
duke@435 2030 tty->print("\n ");
duke@435 2031 for (int j = 0; j < _depth+1; j++) tty->print(" ");
duke@435 2032 k = 0;
duke@435 2033 }
duke@435 2034 CFGElement *s = _members.at(i);
duke@435 2035 if (s->is_block()) {
duke@435 2036 Block *b = s->as_Block();
duke@435 2037 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
duke@435 2038 } else {
duke@435 2039 CFGLoop* lp = s->as_CFGLoop();
duke@435 2040 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
duke@435 2041 }
duke@435 2042 }
duke@435 2043 tty->print("\n");
duke@435 2044 for (int i = 0; i < _depth; i++) tty->print(" ");
duke@435 2045 tty->print(" exits: ");
duke@435 2046 k = 0;
duke@435 2047 for (int i = 0; i < _exits.length(); i++) {
duke@435 2048 if (k++ >= 7) {
duke@435 2049 tty->print("\n ");
duke@435 2050 for (int j = 0; j < _depth+1; j++) tty->print(" ");
duke@435 2051 k = 0;
duke@435 2052 }
duke@435 2053 Block *blk = _exits.at(i).get_target();
duke@435 2054 float prob = _exits.at(i).get_prob();
duke@435 2055 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
duke@435 2056 }
duke@435 2057 tty->print("\n");
duke@435 2058 }
duke@435 2059 #endif

mercurial